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A new  method  for  generating  weighted  random 
patterns  for  testing LSSD logic  chips  and 
modules is  described.  Advantages  in  using 
weighted  random  versus  either  deterministic  or 
random test  patterns are discussed.  An 
algorithm  for  calculating  an  initial  set of input- 
weighting  factors  and  a  procedure  for  obtaining 
complete  stuck-fault  coverage are presented. 

1. Introduction 
An interest in the use  of random patterns for testing  logic 
devices has existed at least  since  1965,  when  Seshu [ 11 
described  a  test-generation method that included both 
random selection of input values and a deterministic 
generator. In 197 1, Nagamine [2] outlined a method that 
used random patterns in its initial phase and a deterministic 
test-pattern algorithm, the D-Algorithm  [3], as a  finishing 
procedure. Agrawal and Agrawal[4] reported in 1972 on 
experiments in testing  Illiac  IV  logic  boards. The finding of 
this work  was that the computer time required for test 
generation could be  reduced  by combining random patterns 
with the D-Algorithm. 

The LSI era brought additional motivations for the 
development of random-pattern test methods. Benowitz 
et al. [5] argued that including linear feedback  shift  register 
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(LFSR) random-pattern generators in logic circuits could 
reduce the costs of both tester equipment and diagnostic 
software. A 1975 paper by Schnurmann et al.  [6] pointed to 
ways  of  using a random-pattern generator to achieve  a test of 
better quality than that obtainable with  existing 
deterministic test-generation programs. 

The acceptance of design-for-testability  rules,  like  LSSD 
[7] over  a  decade  ago,  began to transform logic test into an 
essentially combinational problem. One effect  of this was 
that existing deterministic pattern systems  received extended 
life; another was that associated  research  received  new 
impetus. Furthermore, development of random-pattern 
strategies was deferred for a time. Soon, however, it was 
observed that even  with  testability  design constraints such as 
LSSD, deterministic test data were  likely to grow in a 
nonlinear manner in  the VLSI era and potentially cause test 
application time problems [%IO]. 

In 1977  Williams and Eichelberger [ 1 I] noted that LSSD 
chips were often highly  testable  with IO00 random patterns. 
Two  years later, Koenemann et al. [ 121 proposed  a built-in 
random-pattern technique, called  BILBO,  which could be 
used  with  scan-path-designed  logic. It was conjectured that 
with  modest circuit additions, scan-path-constrained logic 
readily adapted to random-pattern test [ 13- 151. But the 
question remained: Can a random-pattern strategy provide 
the quality of test required in manufacturing? At  IBM, for 
instance, technology groups were  faced  with the problem of 
supplying product for  use  with the Thermal Conduction 
Module (TCM) [ 161, which  would contain approximately 
100 chips and permitted limited rework  cycles. Near 100% 
stuck-fault  coverage on chips was  viewed as a prerequisite for 
a  successful TCM program. 149 
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Proposals have  been made regarding methods for 
estimating the number of random patterns required to 
achieve a given  coverage target for any particular device [ 17- 
201. Experiments conducted with a large number of different 
logic  designs  for actual product, reported by Motika et al. 
[21], confirmed the belief that some LSI devices  would not 
receive a full stuck-fault test  with any tolerable number of 
random patterns. There are nonredundant logic networks 
with faults that  are not easily  exposed  with random patterns 
[ 15]-such faults have become known as random-pattern- 
resistant  faults. Something must be added to random-pattern 
testing to make it a complete strategy, one competitive in 
today’s quality arena. It might be possible to supplement 
random patterns with deterministic ones to cover the 
random-pattern-resistant faults. However, this would entail 
stored test patterns and the erosion of the purported data- 
reduction advantage of random patterns. A solution to the 
problem would  seem to imply that the device to be  tested 
must be modified to remove the random-pattern obstacles, 
or  the patterns themselves must be  modified to provide full 
coverage  with an economical number of patterns. 

Modifying circuit designs to make them random-pattern- 
testable was  discussed  by  Eichelberger and Lindbloom in 
1983 [ 151. More recently Briers and  Totton [22]  have 
developed a general procedure for doing such circuit 
modification. 

The alternative-modifying the random test patterns 
themselves-was  suggested  by Carpenter et al. [23] in 1973. 
In 1975, two papers, one by  Agrawal and Agrawal  [24], the 
other by Schnurmann et al. [6], described modifications of 
random test patterns to improve their efficiency. The first 
method, based on logic depth and fan-in, was a means for 
obtaining a single  weight parameter for  all inputs of 
symmetric, nonreconvergent networks. The second method, 
aimed at unconstrained sequential logic,  used  good machine 
simulation to observe circuit switching resulting from 
primary input changes when stimulated with random 
patterns. In the final test-pattern set, individual inputs were 
given a weighted probability of  switching in proportion to 
this observed internal activity count. In 1976 Parker 
described a means for adapting random patterns that 
involved a hill-climbing technique guided by fault 
simulation [25]; he also pointed to the utility of dividing 
patterns into subtests governed by different weights  [26]. 
After a few  years’ hiatus in reported new developments, 
Timoc et al. [27] reported on  an approach to testing a 
microprocessor that involved weighting the likelihood of the 
active state of  selected functional pins; the choices were 
guided by repetitive use of a special-purpose hardware fault 
simulator. Lieberherr [28]  discussed the analysis of test 
patterns generated with  weighted input probabilities. In 1985 
Wunderlich [29] proposed a general  hill-climbing technique 
(“PROTEST”) for obtaining a set  of  weighted random 
patterns; and in 1987 he published [30] a procedure for 
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optimizing input probabilities. In 1986 Lisanke et al. [31] 
described a method which  uses a testability-analysis tool, a 
gradient-calculation algorithm, and a fault simulator to 
achieve patterns with nonuniform input probabilities. 

In the body  of this paper a new method for generating 
weighted random patterns for LSSD  logic is outlined [32]. 
Designated as the “weighted random-pattern’’ (WRP) 
method, it rests on a linear algorithm for calculating an 
initial set  of input-weighting factors [33]. This initial weight 
set  is  based on  the connections between  logic  gates in the 
device to be tested. A fast combinational fault simulator is 
then used to determine whether additional weight sets are 
required. If any are required, a conventional test-generation 
algorithm becomes the means for devising the finishing  set 
or sets of  weights. 

Our production experience with bipolar logic chips shows 
that  the WRP method is an efficient approach to test-pattern 
preparation. In addition, when it is integrated into a 
manufacturing, tester-based random-pattern test  system,  of 
the kind described in 1983 [21], it can improve the quality 
of  logic  final test. 

motivation for a weighted random-pattern system, the LSSD 
WRP application sequences, the initial weight-set algorithm, 
the procedure for generating additional weight  sets, and 
some results obtained with the  WRP method. 

Throughout the paper three kinds of test patterns are 
distinguished: random, weighted random, and deterministic. 
Random as used here refers to patterns obtained directly 
from a maximum-length LFSR  [34]. While bit sequences 
generated in this manner have some of the attributes of 
randomness-the  next  bit has a nearly equal and 
independent likelihood of  being either a ‘ 1 ‘ or a ‘0‘-they 
are, strictly speaking, “pseudorandom” in that they are 
predictable. Weighted  random  refers to patterns obtained 
from a pseudorandom source, together with a means for 
changing the 1 / O  probability of any  input bit according to a 
predetermined value.  Deterministic  refers to explicit, 
manually or automatically precalculated, usually dense, 
stored patterns. 

The remaining sections of this paper describe the 

2. Motivation 
The testing of  VLSI chips requires an extremely high-quality 
test that can be applied economically. A common way to 
accomplish this is  with a deterministic test whose objective is 
to detect a very  high percentage (>99%) of the 
nonredundant single stuck-faults (SSF). This will  be 
considered a minimum test requirement, but with the 
increasing need to produce chips of higher quality, even this 
may not be sufficient. Nonmodeled defects (any defect  which 
does not behave as an SSF) such as transition faults [35] and 
shorts are becoming the  dominant  contributor to quality 
problems. Generating deterministic tests  specifically  for these 
faults is almost certain to be prohibitively expensive.  Even 
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the generation of a test for  all SSFs has  severe problems 
associated  with  high test-preparation costs and large  test-data 
volumes. 

testing of nonmodeled faults.  Associated  with many 
nonmodeled faults there is an SSF  whose test is a necessary 
(though not sufficient) condition for detecting the 
nonmodeled fault. Nonmodeled faults which  satisfy this 
condition are referred to as dependent  nonmodeled faults 
(DNMF). For example, the detection of a dot-or short 
between  two  gates requires a test which will detect the 
stuck-at-' 1 ' fault on one of the gates and place a ' 1 ' state on 
the other gate.  Similarly, the detection of a transition fault 
requires a test  which will detect the corresponding SSF and 
cause a transition to occur at the point of the fault. While 
the test for the SSF does not guarantee a test for the DNMF, 
it does  satisfy a necessary condition. It follows, then, that the 
more frequently the SSF  is detected, the more opportunities 
there will  be to detect the DNMF, resulting in a higher 
probability of detection. Note that unless the corresponding 
SSF is detected at least  once, there is no chance of detecting 
the DNMF. The  DNMF coverage  is  always limited by the 
SSF  test  coverage.  Since it is impractical to test  explicitly for 
all the DNMFs, the desired  objective of a test is to detect 
every  SSF at least once and as many times as practical. 

Random-pattern testing combined with  collecting output 
responses in signature registers can solve some test  problems. 
It eliminates test generation (although fault simulation may 
still  be required) and requires only a small amount of data to 
define the entire test. Furthermore, the resulting  increase in 
pattern count can improve the ability to detect nonmodeled 
defects but is limited by the SSF test coverage.  However, the 
increased pattern count aggravates other problems, such as 
the cost of determining expected  responses and evaluating 
the test  coverage.  But the fatal flaw  of random-pattern 
testing  is its inability to consistently  achieve the required SSF 
test  coverage  with a reasonable number of test patterns. This 
deficiency  is due to the lack of control of the random 
patterns to be directed toward untested faults. Pattern 
control allows a deterministic test to advance steadily toward 
the desired  test-coverage  goal,  while a random test remains 
subject to the inherent random-pattern resistance of the 
design. 

The use  of  weighted random-pattern testing is a means of 
controlling a random test to achieve maximum test coverage 
in a relatively small number of patterns. The benefits of a 
random test,  such as minimal test generation and test data 
volumes, are retained. Given maximum SSF  test  coverage 
and many times more patterns (10-5OX) relative to a 
deterministic test, the WRP test will almost certainly have an 
improved test coverage of nonmodeled faults. 

To meet the test-coverage  objectives  for  all structures in a 
production environment, the WRP method performs the 
following  tasks: 

The SSF  model continues to play an important role  in the 

Determines the appropriate random-pattern application 
sequences that provide opportunities to test all  faults. 
(These  sequences  define the events necessary to apply a 
single random pattern.) 
Calculates the desired  weighting  factors for each structure 
input that provide an adequate test probability for each 
fault. 
Determines the number of times the pattern application 
sequences must be  repeated for a given  set  of  weighting 
factors to achieve the desired  SSF test coverage. 
Determines the expected signature register  value for the 
resulting  test. (The signature is a compression of output 
responses  collected during the test. A comparison of the 
actual signature with the expected  value determines 
whether the device has passed the WRP test.) 
Precisely  measures the SSF  test  coverage. 

At this point it may  be  useful to notice that in several 
ways WRP test is not a random procedure. The test patterns 
are perfectly repeatable; given the definition of the linear 
feedback  shift  registers (the source of the weighted random 
stimuli), the weighting  factors, and the pattern application 
sequences, the WRP test  is  completely predetermined. Given 
this predictability, a WRP test is measurable; by using fault 
simulation, the expected signature and the exact test 
coverage are calculated.  Finally, WRP testing is highly 
structured; device  clock and scan pins are identified, and 
LSSD load and unload sequences-described in the next 
section-are applied at  the required repetition. 

3. WRP pattern  application  sequences 

Objectives of pattern sequences 
The first task of the WRP test generator is to create pattern 
sequences that identify how to apply random patterns in an 
LSSD environment. A sequence  defines how input stimuli 
are applied to the device under test and how  responses that 
result from these stimuli are collected.  Sufficient  sequences 
are created to allow  all  single stuck-faults to be detectable in 
at least one sequence.  Each  sequence  is structured such that 
it can be  represented by a single combinational pattern to 
allow  for maximum simulation performance. For a 
combinational design, this consists of a single sequence that 
contains only  two  events: application of Weighted Random 
Values (WRV) to each Primary Input (PI) followed  by 
compression of all Primary Output (PO)  responses into a 
Multiple Input Signature Register  (MISR). This sequence 
can then be repeated as often as desired  with the appropriate 
weighting  factors until the desired test coverage  is  achieved. 
LSSD structures, however, contain clocks and latches which 
require several, more complex  sequences to provide the 
necessary opportunity to test all  faults. It is assumed that all 
designs are double-latch LSSD, as indicated in Figure 1. 151 

J.  A. WAICUKAUSKI ET AL. IBM J.  RES. DEVELOP. VOL. 3 83 NO, 2 MARCH 1989 



A SRI 

P P  

I I I I I I  - 1  

L PI PI 

No. I 
PO 

PO 

data 
system 

data No. 2 No. 2 
PI region 

i SRO 

I Fault regions in double-latch LSSD structure 

Table 1 Clock and observation  points of fault regions. 

Region Clock Observe 

A clock A, 9 L1 
B clock B, B L2 
C clock c, L1 
L1 system data C L1 
PO system data - Po 

SR. To observe  L1  values, the B scan  clock  is  first  pulsed, 
placing the L1  values into L2 latches,  followed by the L2 
observation routine. The clocks  of an L1 latch (the A scan 
clock and the system  clocks)  are  referred to collectively as 
“LI clocks.”  Similarly, the clocks of an L2 latch (the B scan 
clock) are designated as “L2 clocks.” 

Stuckfault regions 
Single  stuck-faults  are  classified  according to how the fault 
can  become  detectable. The classification  is  based on where 
the fault  is  observable (L1, L2, or PO) and what, if any, 
clocks  must  be  activated  for the fault to be observable. The 
five  basic  regions in a  double-latch LSSD structure are 
illustrated in Figure 1. Faults in the scan path itself are 
assumed  tested in a  separate functional test of the SR and 
hence are not considered  here. Faults in the clock  region 
may  cause  clock inputs of latches to be stuck in either their 
“on” or “off states. Detection of stuck “off faults  requires 
the application of the clock,  while detection of  stuck “on” 
faults  requires the absence  of the clock.  It should be noted 
that a  clock “on” fault can disturb the scan  process and thus 
affect the accuracy of the simulation. However, it is  unlikely 
that these faults will  escape detection if the simulation 
predicts that the faults will be detected. 

Table 1 identifies the clock  necessary to expose each fault 
group and the observation point where the fault is  detected. 
The bar  above  a  clock indicates that the absence of that 
clock  is  necessary to detect certain faults in the region. 

Pattern sequences are then generated to allow the 
detection of faults  in  each  region. The appropriate sequences 
are repeated as many times as necessary to detect all  faults. 
If a  fault  resides in more than one region, it need  only be 
detected  once. There are two  basic  types  of pattern 
sequences depending on whether L1 or L2 latches are 
selected to be  clocked and observed. Faults detected at POs 
can be observed  with either sequence  type. 

Description of LSSD 
LSSD  places  all  storage elements in scannable  shift  registers 
[7]. Each  Shift  Register  Latch  (SRL)  of the Shift  Register 
(SR) is a pair of latches,  which are designated as L1 and L2. 
Individual SRLs may  be treated as pseudo-PIS and pseudo- 
POs,  since  they are both controllable and observable  points. 
Desired  values can be placed in SRLs by  serially  shifting in 
those values from the SR Input (SRI)  using the A and B test- 
mode clocks.  System data can be captured into  an L1  by 
application of a  system  clock (C), and can then be observed 
by  serially shifting out values through the SR Output (SRO). 
During shifting out, either the L1 or L2  values  may be 
selected to be observed. The observation of the L2  values  is 
accomplished by repeating the shift  sequence  (measure SRO, 
pulse A scan  clock,  pulse B scan  clock)  for  each SRL in the 

Pattern sequence for faults that propagate to  L1 latch or 
PO 
Most  faults in a  double-latch LSSD device  belong to this 
class.  These faults reside in the A clock  region,  C  clock 
region, L1  system data region, and PO system data region, as 
shown in Figure 1. Detection of  these faults requires  placing 
WRVs on SRLs and nonclock PIS,  followed  by collecting PO 
responses and pulsing the appropriate L1 clock, and finally 
shifting out the L1  values. A separate  sequence  is  defined  for 
each  L1  clock; the pattern application sequence  for this class 
is as follows: 

Load  shift  register  with WRVs. 
Apply WRVs to nonclock PIS. 
Collect  PO  responses in MISR  (measure  POs). 
Pulse  L1  clock. 
Unload Ll  values into MISR. 
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Since there are faults in L1  clock circuitry that require the 
L1 clock to be  off to become detectable, one variation of the 
sequence is created by omitting the pulse  of the L1 clock. 
For the example  shown in Figure 1, three sequences of this 
type are created-an  A  clock  sequence,  a  C  clock  sequence, 
and a  sequence  with no clocks. 

Pattern  sequence for faults that propagate to L2 latch or 
PO 
Faults in this class include faults in the B clock  region in 
addition to the  PO system data region  faults  already  detected 
in the prior sequence. To detect the clock line faults, the 
value on the data line must be  different from the latch value. 
For the B scan  clock, the data line is the L1 latch which  is 
paired  with the L2.  A normal SR load  results in an L1 value 
being identical to its associated  L2,  which prevents the 
detection of  these B scan  clock  faults. To allow L1 and L2 
for the same  SRL to be  different,  a  skewed load of the SR  is 
performed  which adds an extra A  scan  clock  pulse to the 
normal SR load. This disturbance of the L1  values  does not 
affect the ability to detect other faults because the L1  latch 
only  propagates to its paired  L2 latch in a  double-latch 
design. The class  2  sequence  consists of the following  events: 

Load shift  register  with  WRVs (with extra A  clock). 
Apply  WRVs to nonclock  PIS. 
Collect PO responses in MISR. 
Pulse L2 clock. 
Unload L2  values into MISR. 

Once again, to detect faults in L2  clock lines which require 
the L2 to be in  the off state, one variation of the sequence  is 
created by omitting the pulse  of the L2  clock. For the 
example shown in Figure I, there are two  sequences of this 
type-a B clock  sequence and a  sequence  with no clocks. 
This results in a total of  five sequences to test all the fault 
regions  shown in Figure 1. 

Clock grouping 
Although an LSSD chip might  have as few as three clock 
inputs (C,  A, and B), in general it might contain a number of 
different  C  clocks as well as multiple A and B clocks. This 
could result in large numbers of both types of pattern 
sequences. To minimize these  sequences, an attempt is 
usually made to group the clocks together so that the clocks 
in a  single group may  be  pulsed simultaneously. This is 
desirable  because the extra clocks  pulsed in a  sequence  allow 
additional faults to be detectable for  a  given number of 
patterns, which reduces the total test length. 

Care must be taken in selecting the L1 or L2  clocks  which 
can be  safely grouped together. Incorrect grouping can result 
in race conditions or overlaying  of  desired  values in latches. 
Clocks  may  be  grouped  together if they are the same type 
(either L1 or L2) and  do not propagate directly to a 
common latch. 

Table 2 Optimal weights for isolated gates. 

No. of inputs (n) Probability of NCV 

n 

0.50 
0.60 
0.69 
0.75 
0.80 

4. Initial  weight  generation 
After it is determined how the random patterns are to be 
applied, it is  necessary to provide  sufficient control (via 
weights) to the random patterns to ensure that all  SSFs are 
detected. 

Optimal weighted probabilities for isolated gates 
Even  a  single  logic  gate can require an enormous number of 
random patterns in order to test all of the stuck faults 
associated  with the gate. For example, the average random- 
pattern test length for a 20-input AND gate is approximately 
three million patterns; this contrasts with  a test length of 
only  2 I patterns for a deterministic test. An examination of 
the patterns that detect the faults reveals that there is one 
fault (the output stuck-at-'0' ) that requires all  20 inputs  at a 
' 1  state, while the other 20 faults (the input stuck-at-' 1 ' 
faults) need 19 inputs at a ' 1 ' state and  the other input at a 
'0 ' .  This strongly  suggests that increasing the probability of a 
' 1 ' state on the  inputs would  decrease the expected number 
of random test  vectors required to detect every fault. If the 
probability of a 1 ' state being applied to any given input 
line is  increased to 0.95 (approximately the distribution of 
' 1 ' states in the set of deterministic patterns), then the 
average random test  length  is reduced to 190 patterns-a 
reduction of more than four orders of magnitude! 

This shifting of the probabilities of a '0' and a ' I ' away 
from  a  "purely random" even distribution is  what  is meant 
by  "weighting." By applying  properly generated weighted 
random values to a  gate, it is  possible to dramatically reduce 
the number of  vectors  needed to fully test the faults 
associated  with  it. To accomplish this, it is  desirable to 
increase the probability of the noncontrolling value  (NCV) 
of the inputs to the logic  gate ( ' 1 ' for the AND-type  blocks 
and '0' for the OR-type blocks). The optimal weights for 
minimizing the average  test  length  for any isolated gate with 
n inputs, as derived from Monte Carlo experiments, are 
given in Table 2. When n = 1, the optimal probability is 
given  by n/(n  + 1) or 1/2. As n becomes  large, the optimal 
probability becomes  progressively  less than n/(n  + 1) and 
approaches, but never  exactly  equals, (n  - l) /n 153 
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R i  = NDI,/NDI, . (1) 

n 

PI 0 3 :  1 

PI 0 
- AND 

- 

PI Y 
1 Calculated weights for gate imbedded in logic structure; ' 1 ' : ' 0 ' 
1 ratios are indicated. 

Table 3 Formulas for calculating WO and WI. 

Logic woj WI; 
function of g 

AND WOC R i .  WI, 
NAND WI, R i .  WO, 
OR R i .  WO, 
NOR 

WI, 
R i .  WI, WO, 

Calculation  of  weights for a logic structure 
When a gate  is imbedded in a logic structure, the calculation 
of the optimal weighting factors for each input becomes 
more complex. The weighting factors must provide a test not 
only for all faults on a gate but also  for the faults which are 
tested through it. The probability of applying the NCV to 
each gate input is  still enhanced, but the degree of 
enhancement depends on the number of faults that must be 
tested through each of the gate's inputs. In general, the more 
faults that must be  tested through a gate input, the more the 
other inputs should be  weighted to the NCV. 

Define the number of device inputs (NDZ) for each  gate to 
be the number of PIS and SRLs that propagate  directly to 
the gate. NDZ will  be  used as a relative  measure of the 
number of faults that are to be detected through a given  gate. 
The desired ratio ( R i )  of the NCV to the controlling value 
for each  gate input is approximated by dividing NDZ of the 
gate (NDI,) by NDI of the inputs (NDZi), 

Consider the three-input AND gate  shown in Figure 2, 
which  has  six  device inputs feeding it. As indicated, its three 
inputs are assumed to contain one, two, and three device 
inputs. More  faults  must  be detected through the third input 
than through the others; this should result in the other 
inputs being  weighted more heavily toward the NCV.  Using 
Equation (1) to calculate the desired ratios of a ' 1 ' state to a 
'0' state for  each input gives the following  results: 

RI = NDIg/NDZi = 611 = 6, 

R2 = NDI,/NDZ, = 612 = 3, 

R3 = NDIg/NDIi = 613 = 2. 

This indicates that the first input is to receive  six times more 
' 1 ' values than '0' values, the second input three times 
more, and the third input only  two times more. 

to determine how to weight the PIS of the circuit. The 
algorithm which performs this calculation consists of the 
following  steps: 

1. Determine the NDI for all  logic  gates in  the circuit. 
2. Assign to each  logic  gate  two numbers, called the "0 

Equation (1) can be  used on each gate of an entire circuit 

weight" ( WO) and the '' I weight" ( W1 ), and initialize 
both to ' 1 '. The ratio of the final  values of WO and W1 
for  device inputs gives the desired odds of having a '0' 
placed on the input. 

3. Perform a backtrace from each  device output (POs and 
SRLs). As the backtrace goes from a gate g to a gate i 
driving one of its inputs, WO and WI of gate i ( WO, and 
WI,) are adjusted depending on the logical function of 
gate g. The weights for gate i resulting  from the path from 
gate g are given in Table 3 for the primitive logic 
functions of gate g, where Ri is the value  calculated from 
Equation (1). The new value of WOi is the larger of WO 
calculated from Table 1 and the previous  value of WO,. 
Similarly, the new value of Wli is the larger of WI from 
the table and its previous  value. The previous value  may 
be either the initial value or the value  calculated  from 
another path. 

Weighted  value ( WV) 
4. Finally, for each  device input, determine the following: 

WVrepresents the logical  value to which the input is to 
be biased. If WO > WI, WV = 0, else WV = 1. 

WF indicates the amount of biasing toward the 
weighted  value. It is  calculated by dividing the larger of 
WO and WI by the smaller. WV and WF for a single 
input will define the weight  for that  input,  and WV and 
WF for all inputs constitute a set of  weights. The set of 
weights  calculated  by this algorithm is  designated as the 
global set of  weights. 

Weighting factor ( WF) 
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Weight calculation example 
The circuit shown in Figure 3 is  used to illustrate the 
algorithm that generates a set of  weights. The circuit 
contains five primitive logic gates, 12 device inputs, and two 
device outputs. 

Step I 
The value of NDI is calculated  for  each  logic  gate and is 
shown in parentheses inside  each  gate. The value of NDI for 
a PI  is 1 by definition. 

Step 2 
The WO and WI values  for  all  gates and PIS are initialized 
to 1. 

Step 3 
A backtrace from both POs is  performed to calculate WO 
and W1 for  all  gates and PIS.  PO1  is traced first,  followed  by 
P02. The order has no effect on the final  result and, in fact, 
the backtrace may  even be performed in parallel as long as 
all calculations are camed to completion. The values at each 
step of the backtrace are given in Table 4 as the trace goes 
from a gate g to a gate on an input i. 

Step 4 
The weight  set  is determined from the final  values of WO 
and WI for  all 12  PIS. The first four PIS are to be  weighted 
so that the ' 1 ' state is  favored by a factor of 8 to 1 (the 
probability of the ' 1 ' state is  8/9).  PIS 5 through 8 receive a 
probability of a '0' state of 4/5, and PIS 9 through 12  receive 
a probability of a ' 1 ' state of 8/9. Table 5 compares the test 
detection probability [ 361  of  all nonequivalent single  stuck- 
faults in the circuit for both a random test and the weighted 
random test  resulting  from this calculation. Note that the 
most random-pattern-resistant faults (PIS 1-4 stuck at ' 1 ' , 
Input 1 of Gate 5 stuck at ' 1 ', etc.)  all improved their test 
probability by at least a factor of  8. Further notice that some 
highly random testable faults (Output PO1 stuck at I O ' ,  

Output  POI stuck at ' 1 ', etc.) declined slightly in test 
probability.  Since the probability of testing  these faults was 
still  high, this had no effect on the WRP test  length. The test 
detection probabilities can  be  used to calculate an average 
test length (number of patterns required to achieve a 50% 
chance of detecting all  faults). The WRP test reduces this 
average pattern length to 66  from the 600 pattern needed  for 
a random test. This compares to 10 deterministic patterns 
which are required to test  all of the faults in the circuit in 
Figure 3. 

Hardware generation of weighted random values 
The weight calculation allows for the generation of a 
continuum of  weighting  factors;  i.e., a particular device 
input can acquire any ratio of ' 1 ' s  to '0's. In  practice, this 
proves to be prohibitively  expensive to allow in hardware, so 
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Table 4 Calculations of WO and WI from backtrace. 

Calculation From (g) To (i) WOi  Wli 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

PO 1 Gate 4 1 1 
Gate 4 Gate 1 2 1 
Gate 1 PIS 1-4 1 8 
Gate 4 Gate 2 2 1 
Gate 2 PIS 5-8 8 1 
PO2 Gate 5 1 1 
Gate 5 Gate 2 2 2 
Gate 2 PIS 5-8 8 2 
Gate 5 Gate 3 1 2 
Gate 3 PIS 9-12 1 8 

Table 5 Fault-detection  probabilities. 

Fault RP test WRP test 

PIS 1-4' 0.0039  0.032 
PIS 5-8' 0.0076  0.078 
PIS 9-  12' 0.059 0.046 
Gate 1 output' 0.059 0.154 
Gate 2 output' 0.0076 0.314 
Gate 2 outputt 0.113 0.45 1 
Gate 3 output' 0.819 0.22 1 
Gate 4 input 2' 0.059 0.369 
Gate 5 input 1' 0.0039 0.256 
Gate 4 output' 0.0039 0.256 
Gate 4 output' 0.996 0.744 
Gate 5 output' 0.94 1 0.632 
Gate 5 outputt 0.059 0.368 

Stuck at I 
t Stuck at 0 
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Hardware implementation of weight generator. 
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only a small number of  weight factors that can easily  be 
generated at a tester are used. A 32-bit linear feedback  shift 
register (LFSR) is  used as the source of the weighted  bits. 
Instead of  simply taking a random bit from the LFSR and 
applying it to the device under test, a group of bits is  used to 
generate the single  weighted  bit, as shown  in Figure 4. 
Latches are designated  by  Ls; XOR  designates an exclusive- 
OR  circuit. By taking,  for instance, the last three bits in the 
LFSR and performing an AND function upon them, a bit 
with a weight factor of 7 is  produced (7/8 probability of '0' 
or 7/8 probability of ' 1 ' with  inversion).  Similarly, by taking 
four bits at a time and performing the AND function on 
them, a bit  with a weight factor of  15  is produced. This bit  is 
then passed through an exclusive-OR  gate  whose other input 
is the desired  weighted  value,  resulting in bits weighted 
toward the ' 1 ' or the '0' state. This particular design  of a 
weighting generator produces  weight factors of 1 (random), 
3 ,7 ,  and 15 toward  both the '0' and ' 1 ' states. The desired 
weight factors  calculated by the algorithm are the closest 
allowable  value. In addition to the standard weights, the zero 
and infinite  weights  which are equivalent to deterministic 
values  are  also  available. Note that in order to eliminate any 
direct  dependency  between  consecutively  produced  weighted 
bits,  all  of the bits used  in  producing a single  weighted  bit are 
shifted out of the LFSR  before  succeeding  weighted bits are 
created. 

Problems with a single set of weights 
In the attempt to find a weight that satisfies  all random- 
pattern resistant  faults  from  different paths to a single  gate, 
there  often  occurs a competition of conflicting weights.  If the 
weights are of opposite  value and equal magnitude, this 
results in an unbiased  weight  which  does nothing to improve 
testability. 

An example of  weight competition is  shown  in Figure 5. 
In this example the PI fans out  to two  gates, both of  which 
desire  large, but opposite,  weights on the PI. The problem  is 
how to weight the PI to minimize the number of random 
patterns necessary to test  all the faults through both the OR 
gate and the AND  gate. The OR  gate  heavily  favors the '0' 
state on the PI, while the AND gate  equally  heavily  favors 
the ' 1 ' state. The algorithm  would  calculate WO = 5 and WI 
= 1 for the PI from  the OR gate path and WO = 1 and WI = 
5 from the AND gate path. Since  only the larger  values are 
selected  for the final  values, the result  is WO = 5 and WI = 5 
for the PI. The effects  of both gates  have  averaged out at the 
PI, resulting in a balanced  weight  being  assigned to the PI. 
Whenever random-pattern-resistant faults result  in 
conflicting  weights, a single  set  of  weights  is not sufficient to 
test  all  faults. 

In  resolving  conflicts, it should be noted that extreme  care 
must be  used  in  selecting  weighting  factors. The maximum 
benefit that can be  gained  by  weighting a single input to the 
proper  value  (probability  changed  from  1/2 to 15/16)  is an 

IBM J. RES. DEVELOP.  VOL. 33 NO. 2 MARCH 1989 



improvement in test probabilities of about 2. However, the 
damage created by weighting this input to the incorrect value 
(probability changed  from  1/2 to 1/ 16) can be  as  high as a 
factor of 8. Therefore, unless the calculation of the weights  is 
done properly, the weights  may do more harm than good. 

5. Strategy for creating  a  complete WRP test 
Since  a  single  set  of  weights cannot be expected to always 
satisfy  all the random-pattern-resistant faults in the device, 
the solution is to allow additional sets of  weights. In addition 
to the previously  described  global set of  weights,  which 
attempts to make the entire device  testable, additional sets of 
weights are created that focus on faults left untested. The 
untested faults are determined by fault simulation using the 
recently  developed  Parallel Pattern Single Fault Propagate 
(PPSFP) simulator [37]. 

the remaining faults are either random-pattern-resistant 
faults or redundant. A deterministic generator becomes the 
source of the additional sets of  weights that will test the 
remaining faults. The advantages of using deterministic test 
generation are the following: 

After the patterns for the global  set of  weights are applied, 

0 Any fault that can be  tested  with deterministic patterns 

0 The appropriate sequence  necessary to detect the fault can 
be  identified. Given where the deterministic pattern 
observed the fault and what  clocks must be on to detect 
the fault, the corresponding sequence can be  directly 
determined. 

can be  tested  with  WRP. 

In  most  cases, the deterministic test generator can identify 
redundant faults,  which are then eliminated from further 
consideration. 

A deterministic test  may  be translated to a  set of  weights 
by assigning  a  weight of 15/ 16 to the desired  values  for  PIS 
and SRLs that are set by the test. The choice of 15/ 16 is 
desirable  because it gives  a  high probability of  testing the 
focal fault while  still  allowing  a  reasonable probability of 
detecting the remaining SSFs that require a similar test. In 
this respect,  a  single set of  weights created by  a deterministic 
test  is more productive at testing faults than the 
deterministic test itself,  which can only detect additional 
faults that require the identical test. This ability, plus the fact 
that most faults have  already  been detected by the global  set 
of  weights, minimizes the deterministic test-generation  effort 
required to generate a complete WRP test. This sometimes 
results in improved single-stuck-fault  coverage  over  a 
deterministic test,  because of faults that resist deterministic 
test generation but are detected  with  WRPs. 

To achieve the goal of testing  all  possible  single stuck- 
faults in a minimum number of  weighted random patterns 
and sets of  weights, the following algorithm, depicted in 
Figure 6, was developed 
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h v + 
Create pattern sequences 

I 
1 

t 
Create fault  list 

I 
I 

t 
Generate global set of  weights 

I 
1 

t 
Select first pattern sequence 

I I 
Perform PPSFF’ fault  simulation 

Yes 

No 

Create  new set of weights from 
test  generation  of  focal  fault 
and other selected  faults 

t 
Determine sequence that detects focal  fault 

I c 
I 

Perform PPSFP fault  simulation 
I 

1. Create the set of pattern sequences that can test all  faults. 
2. Create the set of single  stuck-faults  which are to be  tested. 
3. Calculate the global  set of  weights  (described in Section 
4). 

4. For each  sequence,  use the PPSFP fault simulator to 
fault-simulate the precise WRPs that result from the 
selected  set  of  weights  for the selected  sequence, 
eliminating faults which  become detectable. Patterns are 
simulated 256 at a time, and when  a new set of  256 
patterns no longer detects at least one fault, the 
simulation is terminated. The number of patterns 
simulated up to this point is  selected as the number of 
patterns to be applied for this set of  weights for this 
sequence. As the simulation is  performed, the expected 
signatures are calculated. 

generate  a deterministic test that can detect the fault. 
Assign a  weight  of  15/  16 toward the desired  value of all 

5. Select one fault (focal fault) still in  the fault list and 
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PIS and SRLs  set by the test.  From  the  observation  point 
of the fault and the clock  (if any) which must be on for 
detection, the appropriate sequence that can detect the 
focal  fault  is determined. This becomes  a  new  set  of 
weights  which has  a high probability of detecting the focal 
fault. To maximize  the number of faults  detected by this 
set  of  weights, additional test  generation  is  performed on 
faults  selected  from the fault list which  reside  in  logic not 
set  by previous  test  generations. If the new  test  is 
consistent  with the selected  sequence and results in five or 
fewer conflicting  values on PIs/SRLs  when compared to 
this set  of  weights, the inputs set  by this test are also  given 
a 15/ 16 probability to the desired state, except  for 
conflicts  which  receive  a  1/2  probability.  If  test  generation 
identifies  a fault as redundant, it is removed from the 
fault  list. If the test  generator  fails to create  a  test (or 
prove redundancy) for  a  fault  in the maximum allowed 
CPU time (1 s, IBM  308 I), a weight  set cannot be created 
for that fault. The fault  is  excluded  from further test 
generation but continues to be simulated. If the fault  is 
still  undetected at the end of the WRP  test, it is 
considered an untested fault, even though it may  be 
redundant. 

6.  For the sequence that can detect the focal  fault,  repeat the 
simulation described in Step 4 to determine the faults 
that are detected  with the new  set  of  weights. In this case 
the simulation is continued until at least the focal  fault  is 
detected, and the simulation is then terminated by a new 
set of  256 patterns that fail to detect a new fault. 

7. Repeat  Steps 5 and 6 until no faults remain. 

This algorithm can test  any  fault that can be detected  with 
a  deterministic  test by controlling the degree to which the 
individual  PIS and SRLs are weighted.  Clearly, there will  be 
more  WRPs than deterministic patterns, but the ratio is  now 
reasonably bounded. Empirical  results on a  large number of 
designs  of varying  size  gave  a  range  of about 10 to 50 times 
more  WRPs than deterministic patterns. 

With up to 50 times more patterns, one might  question 
the efficiency  of the calculation of the test  coverage and 
signature. Great care was taken in constraining the design to 
be  LSSD and constructing pattern sequences that could be 
represented by a combinational pattern. This environment 
can now  be  very  profitably exploited  using the PPSFP 
simulator to perform  these  calculations. An implementation 
of the WRP test-generation  algorithm which has  been run on 
more than 1600 chip designs  of about 1000  logic  gates 
required an average  of only 2.1 CPU seconds (on an IBM 
308 1)  to create and evaluate the full WRP test. 

In our experience, the factor of  50 in test patterns is 
represented  in  less than 10% of the test data needed  for  a 
deterministic test. This is due to the WRP compact coding 
of the patterns. The complete WRP pattern set  is repesented 

158 by initial  seeds,  sequence  types and length,  weighting  factors, 

and response  signatures-as opposed to the explicit  coding 
of  all the test  stimuli and responses  in the deterministic 
pattern set. 

test  application time. In our environment, where an LT 
tester [ 38 J has been  modified to apply  weighted random 
patterns, it has  proved  possible to apply the 50X WRP 
patterns in  less time than a deterministic set.  With  a  tester 
that had  high-speed pattern buffers  per pin, the test time 
advantage  might be with the deterministic test for some 
product. However, the WRP method  may  still  be the 
preferred method for the following  reasons: 

The other concern with  a 50x factor  in pattern count is 

The absolute time of the test,  though  longer than a 
deterministic one, is  still  small,  since it can be run at 
product maximum scan  speed, and hence attractive, 
particularly in view  of the improved fault coverage  which 
is  achieved  through the use of the WRP method. 
The WRP strategy and equipment would  reduce test data 
requirements,  particularly  for  high-density  chips and 
modules. 
The tester implementing the WRP method could be  less 
costly than the high-speed deterministic tester. 

6. Benchmark results 
The WPR  test  generator has been run on the IO ISCAS 
benchmark  circuits  [39].  These  circuits,  which were  selected 
as a  representative mixture of actual designs, are 
combinational and range in size  from  239 to 3827  logic 
gates. The primary inputs and outputs are considered  gates 
and are included  here  in the logic-gate count. Two  designs 
(C432 and C499) contain exclusive-OR  gates that were 
remodeled into more  basic  logic  gates. This results  in 
additional logic  gates and faults; 18  of these  extra  faults  were 
found to be redundant for the C432  design.  When more 
than one of the inputs to a  gate  come from a common gate, 
the faults on these inputs are identified as redundant without 
requiring  test  generation. The C3540  design contains six  of 
these  faults,  while  C1908 and C2670  have  two  each. 

The WRP test-generation  results are shown in Table 6. 
A description of  each column follows: 

1. Design The assigned name for  each 

2. No. of gates The total number of  logic  gates 
in the circuit, including PIS and 
POS. 

circuit. 

3. No. of faults The total number of fault- 
equivalence  classes  generated 
from the circuit model. 

weights that were  necessary to 
test  all  faults in the circuit. 

4. No. of wt. sets The total number of sets of 
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Table 6 Benchmark  results. 

Design No. of No. of No. of No. of CPU time NUF  NRF  NTGEN 
gates faults wt. sets WRP patterns (308 1-seconds) 

C432 239 560 1 1024 0.6 0 22 22 
c499 483 1158 2 1792 1 . 1  0 8 10 
C880 469 942 2 1280 0.5 0 0 12 

C1355 619 1574 3 2098 1.7 0 8 14 
C 1908 938 1879 6 5376 2.2 0 9 21 
C2670 1566 2747 8 5888 16.3 1 I*  106  129 
C3540 1741 2428 4 3840 3.5 0 137  I37 
C5315 2608 5350 2 2048 2.2 0 59 60 
C6288 2480 7744 1 512 9.2 0 34  34 
C7522 3827 7550 10 9728 13.9 0 131  175 

‘These I I untested faults were redundant but were not idenufied by the WRP method as redundant. 

5. No. of WRP patterns 

6. CPU time 

I .  NUF 

8. NRF 

9. NTGEN 

The total number of WRP 
patterns necessary to test  all 
faults in the circuit. 
The total CPU time, in IBM 
308 1 -seconds, required to 
perform the entire WRP test 
generation. This includes the 
weight generation, fault 
simulation, and signature 
calculation. 
The number of untested  faults 
(not counting identified 
redundant faults) remaining at 
the end of test. 
The number of faults identified 
as redundant by the deterministic 
generator. 
The number of faults for  which 
the WRP deterministic generator 
was invoked to create a test. 

Examination of the results  shows that all nonredundant 
faults were tested for each  design. The C2670 design did 
have 11 faults  which the WRP deterministic test generator 
could not identify as redundant but which are known to be 
redundant [40]. Eleven  seconds  of the WRP test generation 
time were spent in an unsuccessful  effort to generate a test 
for these 1 1 faults. The number of  weight  sets  varied from 
1 to 10, and no design required more than 10000 WRP 
patterns to test  all  faults. The IBM 308 1 CPU time required 
to perform the complete WRP procedure for the largest 
design  was  only  13.9  seconds. Compared to a deterministic 
approach, little effort  was spent on test generation and, in 
fact,  most of the test generation was  performed on 
redundant faults. 

Concluding  remarks 
A new method has been presented in this paper for 
generating  weighted random patterns for testing LSSD logic 

devices. The advantages observed in using the WRP 
procedure are the following: 

It provides  full stuck-fault coverage, unlike a random- 
pattern test, and can provide improved coverage of 
nonmodeled faults compared to a deterministic pattern 
approach. 
It has the ability to apply at least  an order of magnitude 
more patterns to a chip or module than a deterministic 
test in comparable time in our tester environment. This is 
accomplished  with an order of magnitude less 
precalculated test data. 
The computer time spent to generate the weighting data 
and determine the number of pattern sequences to obtain 
full stuck-fault coverage  is small compared to that used in 
generation of a deterministic test. 
These advantages are realized  with no circuit overhead 
other than that required for the inclusion of LSSD. 

Using a method such as the WRP method, it is  now 
possible to begin to realize the data  and application 
advantages promised for random-pattern testing,  while  also 
obtaining an improvement in fault coverage. 
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