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A new method for generating weighted random
patterns for testing LSSD logic chips and
modaules is described. Advantages in using
weighted random versus either deterministic or
random test patterns are discussed. An
algorithm for calculating an initial set of input-
weighting factors and a procedure for obtaining
complete stuck-fault coverage are presented.

1. Introduction
An interest in the use of random patterns for testing logic
devices has existed at least since 1965, when Seshu [1]
described a test-generation method that included both
random selection of input values and a deterministic
generator. In 1971, Nagamine [2] outlined a method that
used random patterns in its initial phase and a deterministic
test-pattern algorithm, the D-Algorithm [3], as a finishing
procedure. Agrawal and Agrawal [4] reported in 1972 on
experiments in testing Illiac IV logic boards. The finding of
this work was that the computer time required for test

- generation could be reduced by combining random patterns
with the D-Algorithm.

The LSI era brought additional motivations for the

development of random-pattern test methods. Benowitz
et al. [5] argued that including linear feedback shift register
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(LFSR) random-pattern generators in logic circuits could
reduce the costs of both tester equipment and diagnostic
software. A 1975 paper by Schnurmann et al. [6] pointed to
ways of using a random-pattern generator to achieve a test of
better quality than that obtainable with existing
deterministic test-generation programs.

The acceptance of design-for-testability rules, like LSSD
[7] over a decade ago, began to transform logic test into an
essentially combinational problem. One effect of this was
that existing deterministic pattern systems received extended
life; another was that associated research received new
impetus. Furthermore, development of random-pattern
strategies was deferred for a time. Soon, however, it was
observed that even with testability design constraints such as
LSSD, deterministic test data were likely to grow in a
nonlinear manner in the VLSI era and potentially cause test
application time problems [8-10].

In 1977 Williams and Eichelberger [11] noted that LSSD
chips were often highly testable with 1000 random patterns.
Two years later, Koenemann et al. [12] proposed a built-in
random-pattern technique, called BILBO, which could be
used with scan-path-designed logic. It was conjectured that
with modest circuit additions, scan-path-constrained logic
readily adapted to random-pattern test [13-15]. But the
question remained: Can a random-pattern strategy provide
the quality of test required in manufacturing? At IBM, for
instance, technology groups were faced with the problem of
supplying product for use with the Thermal Conduction
Module (TCM) [16], which would contain approximately
100 chips and permitted limited rework cycles. Near 100%
stuck-fault coverage on chips was viewed as a prerequisite for
a successful TCM program. 149
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Proposals have been made regarding methods for
estimating the number of random patterns required to
achieve a given coverage target for any particular device [17-
20]. Experiments conducted with a large number of different
logic designs for actual product, reported by Motika et al.
[21], confirmed the belief that some LSI devices would not
receive a full stuck-fault test with any tolerable number of
random patterns. There are nonredundant logic networks
with faults that are not easily exposed with random patterns
[15]—such faults have become known as random-pattern-
resistant faults. Something must be added to random-pattern
testing to make it a complete strategy, one competitive in
today’s quality arena. It might be possible to supplement
random patterns with deterministic ones to cover the
random-pattern-resistant faults. However, this would entail
stored test patterns and the erosion of the purported data-
reduction advantage of random patterns. A solution to the
problem would seem to imply that the device to be tested
must be modified to remove the random-pattern obstacles,
or the patterns themselves must be modified to provide full
coverage with an economical number of patterns.

Modifying circuit designs to make them random-pattern-
testable was discussed by Eichelberger and Lindbloom in
1983 [15]. More recently Briers and Totton [22] have
developed a general procedure for doing such circuit
modification.

The alternative—modifying the random test patterns
themselves—was suggested by Carpenter et al. [23] in 1973.
In 1975, two papers, one by Agrawal and Agrawal [24], the
other by Schnurmann et al. [6], described modifications of
random test patterns to improve their efficiency. The first
method, based on logic depth and fan-in, was a means for
obtaining a single weight parameter for all inputs of
symmetric, nonreconvergent networks. The second method,
aimed at unconstrained sequential logic, used good machine
simulation to observe circuit switching resulting from
primary input changes when stimulated with random
patterns. In the final test-pattern set, individual inputs were
given a weighted probability of switching in proportion to
this observed internal activity count. In 1976 Parker
described a means for adapting random patterns that
involved a hill-climbing technique guided by fault
simulation [25]; he also pointed to the utility of dividing
patterns into subtests governed by different weights [26].
After a few years’ hiatus in reported new developments,
Timoc et al. [27] reported on an approach to testing a
microprocessor that involved weighting the likelihood of the
active state of selected functional pins; the choices were
guided by repetitive use of a special-purpose hardware fault
simulator. Lieberherr [28] discussed the analysis of test
patterns generated with weighted input probabilities. In 1985
Wunderlich [29] proposed a general hill-climbing technique
(“PROTEST”) for obtaining a set of weighted random
patterns; and in 1987 he published [30] a procedure for
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optimizing input probabilities. In 1986 Lisanke et al. [31]
described a method which uses a testability-analysis tool, a
gradient-calculation algorithm, and a fault simulator to
achieve patterns with nonuniform input probabilities.

In the body of this paper a new method for generating
weighted random patterns for LSSD logic is outlined [32].
Designated as the “weighted random-pattern” (WRP)
method, it rests on a linear algorithm for calculating an
initial set of input-weighting factors [33]. This initial weight
set is based on the connections between logic gates in the
device to be tested. A fast combinational fault simulator is
then used to determine whether additional weight sets are
required. If any are required, a conventional test-generation
algorithm becomes the means for devising the finishing set
or sets of weights.

Our production experience with bipolar logic chips shows
that the WRP method is an efficient approach to test-pattern
preparation. In addition, when it is integrated into a
manufacturing, tester-based random-pattern test system, of
the kind described in 1983 [21], it can improve the quality
of logic final test.

The remaining sections of this paper describe the
motivation for a weighted random-pattern system, the LSSD
WRP application sequences, the initial weight-set algorithm,
the procedure for generating additional weight sets, and
some results obtained with the WRP method.

Throughout the paper three kinds of test patterns are
distinguished: random, weighted random, and deterministic.
Random as used here refers to patterns obtained directly
from a maximum-length LFSR [34]. While bit sequences
generated in this manner have some of the attributes of
randomness—the next bit has a nearly equal and
independent likelihood of being either a '1' or a '0'—they
are, strictly speaking, “pseudorandom” in that they are
predictable. Weighted random refers to patterns obtained
from a pseudorandom source, together with a means for
changing the 1/0 probability of any input bit according to a
predetermined value. Deterministic refers to explicit,
manually or automatically precalculated, usually dense,
stored patterns.

2. Motivation

The testing of VLSI chips requires an extremely high-quality
test that can be applied economically. A common way to
accomplish this is with a deterministic test whose objective is
to detect a very high percentage (>99%) of the
nonredundant single stuck-faults (SSF). This will be
considered a minimum test requirement, but with the
increasing need to produce chips of higher quality, even this
may not be sufficient. Nonmodeled defects (any defect which
does not behave as an SSF) such as transition faults (35] and
shorts are becoming the dominant contributor to quality
problems. Generating deterministic tests specifically for these
faults is almost certain to be prohibitively expensive. Even
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the generation of a test for all SSFs has severe problems
associated with high test-preparation costs and large test-data
volumes.

The SSF model continues to play an important role in the
testing of nonmodeled faults. Associated with many
nonmodeled faults there is an SSF whose test is a necessary
(though not sufficient) condition for detecting the
nonmodeled fault. Nonmodeled faults which satisfy this
condition are referred to as dependent nonmodeled faults
(DNMF). For example, the detection of a dot-or short
between two gates requires a test which will detect the
stuck-at-'1' fault on one of the gates and place a '1' state on
the other gate. Similarly, the detection of a transition fault
requires a test which will detect the corresponding SSF and
cause a transition to occur at the point of the fault. While
the test for the SSF does not guarantee a test for the DNMF,
it does satisfy a necessary condition. It follows, then, that the
more frequently the SSF is detected, the more opportunities
there will be to detect the DNMF, resulting in a higher
probability of detection. Note that unless the corresponding
SSF is detected at least once, there is no chance of detecting
the DNMF. The DNMF coverage is always limited by the
SSF test coverage. Since it is impractical to test explicitly for
all the DNMTFs, the desired objective of a test is to detect
every SSF at least once and as many times as practical.

Random-pattern testing combined with collecting output
responses in signature registers can solve some test problems.
It eliminates test generation (although fault simulation may
still be required) and requires only a small amount of data to
define the entire test. Furthermore, the resulting increase in
pattern count can improve the ability to detect nonmodeled
defects but is limited by the SSF test coverage. However, the
increased pattern count aggravates other problems, such as
the cost of determining expected responses and evaluating
the test coverage. But the fatal flaw of random-pattern
testing is its inability to consistently achieve the required SSF
test coverage with a reasonable number of test patterns. This
deficiency is due to the lack of control of the random
patterns to be directed toward untested faults. Pattern
control allows a deterministic test to advance steadily toward
the desired test-coverage goal, while a random test remains
subject to the inherent random-pattern resistance of the
design.

The use of weighted random-pattern testing is a means of
controlling a random test to achieve maximum test coverage
in a relatively small number of patterns. The benefits of a
random test, such as minimal test generation and test data
volumes, are retained. Given maximum SSF test coverage
and many times more patterns (10-50X) relative to a
deterministic test, the WRP test will almost certainly have an
improved test coverage of nonmodeled faults.

To meet the test-coverage objectives for all structures in a
production environment, the WRP method performs the
following tasks:
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e Determines the appropriate random-pattern application

sequences that provide opportunities to test all faults.

(These sequences define the events necessary to apply a

single random pattern.)

Calculates the desired weighting factors for each structure

input that provide an adequate test probability for each

fault.

Determines the number of times the pattern application

sequences must be repeated for a given set of weighting

factors to achieve the desired SSF test coverage.

¢ Determines the expected signature register value for the
resulting test. (The signature is a compression of output
responses collected during the test. A comparison of the
actual signature with the expected value determines
whether the device has passed the WRP test.)

* Precisely measures the SSF test coverage.

At this point it may be useful to notice that in several
ways WRP test is not a random procedure. The test patterns
are perfectly repeatable; given the definition of the linear
feedback shift registers (the source of the weighted random
stimuli), the weighting factors, and the pattern application
sequences, the WRP test is completely predetermined. Given
this predictability, a WRP test is measurable; by using fault
simulation, the expected signature and the exact test
coverage are calculated. Finally, WRP testing is highly
structured; device clock and scan pins are identified, and
LSSD load and unload sequences—described in the next
section—are applied at the required repetition.

3. WRP pattern application sequences

& Objectives of pattern sequences

The first task of the WRP test generator is to create pattern
sequences that identify how to apply random patterns in an
LSSD environment. A sequence defines how input stimuli
are applied to the device under test and how responses that
result from these stimuli are collected. Sufficient sequences
are created to allow all single stuck-faults to be detectable in
at least one sequence. Each sequence is structured such that
it can be represented by a single combinational pattern to
allow for maximum simulation performance. For a
combinational design, this consists of a single sequence that
contains only two events: application of Weighted Random
Values (WRYV) to each Primary Input (PI) followed by
compression of all Primary Output (PO) responses into a
Multiple Input Signature Register (MISR). This sequence
can then be repeated as often as desired with the appropriate
weighting factors until the desired test coverage is achieved.
LSSD structures, however, contain clocks and latches which
require several, more complex sequences to provide the
necessary opportunity to test all faults. It is assumed that all

designs are double-latch LSSD, as indicated in Figure 1. 151
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Table 1 Clock and observation points of fault regions.

Region Clock Observe
A clock A A L1
B clock B,B L2
C clock C,C L1
L1 system data C L1
PO system data —_ PO

& Description of LSSD

LSSD places all storage elements in scannable shift registers
[7]. Each Shift Register Latch (SRL) of the Shift Register
(SR) is a pair of latches, which are designated as L1 and L2,
Individual SRLs may be treated as pseudo-PIs and pseudo-
POs, since they are both controllable and observable points.
Desired values can be placed in SRLs by serially shifting in
those values from the SR Input (SRI) using the A and B test-
mode clocks. System data can be captured into an L1 by
application of a system clock (C), and can then be observed
by serially shifting out values through the SR Output (SRO).
During shifting out, either the L1 or L2 values may be
selected to be observed. The observation of the L2 values is
accomplished by repeating the shift sequence (measure SRO,
pulse A scan clock, pulse B scan clock) for each SRL in the
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SR. To observe L1 values, the B scan clock is first pulsed,
placing the L1 values into L2 latches, followed by the L2
observation routine. The clocks of an L1 latch (the A scan
clock and the system clocks) are referred to collectively as
“L1 clocks.” Similarly, the clocks of an L2 latch (the B scan
clock) are designated as “L2 clocks.”

o Stuck-fault regions

Single stuck-faults are classified according to how the fault
can become detectable. The classification is based on where
the fault is observable (L1, L2, or PO) and what, if any,
clocks must be activated for the fault to be observable. The
five basic regions in a double-latch LSSD structure are
illustrated in Figure [, Faults in the scan path itself are
assumed tested in a separate functional test of the SR and
hence are not considered here. Faults in the clock region
may cause clock inputs of latches to be stuck in either their
“on” or “off” states. Detection of stuck “off” faults requires
the application of the clock, while detection of stuck “on”
faults requires the absence of the clock. It should be noted
that a clock “on” fault can disturb the scan process and thus
affect the accuracy of the simulation. However, it is unlikely
that these faults will escape detection if the simulation
predicts that the faults will be detected.

Table 1 identifies the clock necessary to expose each fault
group and the observation point where the fault is detected.
The bar above a clock indicates that the absence of that
clock is necessary to detect certain faults in the region.

Pattern sequences are then generated to allow the
detection of faults in each region. The appropriate sequences
are repeated as many times as necessary to detect all faults.
If a fault resides in more than one region, it need only be
detected once. There are two basic types of pattern
sequences depending on whether L1 or L2 latches are
selected to be clocked and observed. Faults detected at POs
can be observed with either sequence type.

& Pattern sequence for faults that propagate to L1 latch or
PO

Most faults in a double-latch LSSD device belong to this
class. These faults reside in the A clock region, C clock
region, L1 system data region, and PO system data region, as
shown in Figure 1. Detection of these faults requires placing
WRYVs on SRLs and nonclock PIs, followed by collecting PO
responses and pulsing the appropriate L1 clock, and finally
shifting out the L1 values. A separate sequence is defined for
each L1 clock; the pattern application sequence for this class
is as follows:

® Load shift register with WRVs,

& Apply WRVs to nonclock PIs.

& Collect PO responses in MISR (measure POs).
@ Pulse L1 clock.

® Unload L1 values into MISR.

IBM J. RES. DEVELOP. VOL. 33 NO. 2 MARCH 1989



Since there are faults in L1 clock circuitry that require the
L1 clock to be off to become detectable, one variation of the
sequence is created by omitting the pulse of the L1 clock.
For the example shown in Figure 1, three sequences of this
type are created—an A clock sequence, a C clock sequence,
and a sequence with no clocks.

o Pattern sequence for faults that propagate to L2 latch or
PO

Faults in this class include faults in the B clock region in
addition to the PO system data region faults already detected
in the prior sequence. To detect the clock line faults, the
value on the data line must be different from the latch value.
For the B scan clock, the data line is the L1 latch which is
paired with the L2. A normal SR load results in an L1 value
being identical to its associated L2, which prevents the
detection of these B scan clock faults. To allow L1 and L2
for the same SRL to be different, a skewed load of the SR is
performed which adds an extra A scan clock pulse to the
normal SR load. This disturbance of the L1 values does not
affect the ability to detect other faults because the L1 latch
only propagates to its paired 1.2 latch in a double-latch
design. The class 2 sequence consists of the following events:

o Load shift register with WRVs (with extra A clock).
e Apply WRVs to nonclock Pls.

o Collect PO responses in MISR.

o Puilse L2 clock.

e Unload L2 values into MISR.

Once again, to detect faults in L2 clock lines which require
the L2 to be in the off state, one variation of the sequence is
created by omitting the pulse of the L2 clock. For the
example shown in Figure 1, there are two sequences of this
type—a B clock sequence and a sequence with no clocks.
This results in a total of five sequences to test all the fault
regions shown in Figure 1.

o Clock grouping

Although an LSSD chip might have as few as three clock
inputs (C, A, and B), in general it might contain a number of
different C clocks as well as multiple A and B clocks. This
could result in large numbers of both types of pattern
sequences. To minimize these sequences, an attempt is
usually made to group the clocks together so that the clocks
in a single group may be pulsed simultaneously. This is
desirable because the extra clocks pulsed in a sequence allow
additional faults to be detectable for a given number of
patterns, which reduces the total test length.

Care must be taken in selecting the L1 or L2 clocks which
can be safely grouped together. Incorrect grouping can result
in race conditions or overlaying of desired values in latches.
Clocks may be grouped together if they are the same type
(either L1 or L2) and do not propagate directly to a
common latch.
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Table 2 Optimal weights for isolated gates.

No. of inputs (n) Probability of NCV

0.50
0.60
0.69
0.75
0.80

R W=

4. Initial weight generation

After it is determined how the random patterns are to be
applied, it is necessary to provide sufficient control (via
weights) to the random patterns to ensure that all SSFs are
detected.

o Optimal weighted probabilities for isolated gates

Even a single logic gate can require an enormous number of
random patterns in order to test all of the stuck faults
associated with the gate. For example, the average random-
pattern test length for a 20-input AND gate is approximately
three million patterns; this contrasts with a test length of
only 21 patterns for a deterministic test. An examination of
the patterns that detect the faults reveals that there is one
fault (the output stuck-at-'0') that requires all 20 inputs at a
'1" state, while the other 20 faults (the input stuck-at-'1'
faults) need 19 inputs at a '1' state and the other input at a
'0". This strongly suggests that increasing the probability of a
'1' state on the inputs would decrease the expected number
of random test vectors required to detect every fault. If the
probability of a '1' state being applied to any given input
line is increased to 0.95 (approximately the distribution of
'1' states in the set of deterministic patterns), then the
average random test length is reduced to 190 patterns—a
reduction of more than four orders of magnitude!

This shifting of the probabilities of a '0' and a '1' away
from a “purely random” even distribution is what is meant
by “weighting.” By applying properly generated weighted
random values to a gate, it is possible to dramatically reduce
the number of vectors needed to fully test the faults
associated with it. To accomplish this, it is desirable to
increase the probability of the noncontrolling value (NCV)
of the inputs to the logic gate ('1' for the AND-type blocks
and '0' for the OR-type blocks). The optimal weights for
minimizing the average test length for any isolated gate with
n inputs, as derived from Monte Carlo experiments, are
given in Table 2. When n = 1, the optimal probability is
given by n/(n + 1) or 1/2. As n becomes large, the optimal
probability becomes progressively less than n/(n + 1) and
approaches, but never exactly equals, (n — 1)/n.
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Pl 6:1
Pl o——— 3:1
AND
Pl o
Plo—
Pl 2:1
Pl

Calculated weights for gate imbedded in logic structure; '1' : '0!
ratios are indicated.

.

Table 3 Formulas for calculating W0 and W1.

Logic wo; wi;
Sfunction of g

AND W, Ri . Wi,

NAND wi, Ri . WO,

OR Ri - WO, Wi,

NOR Ri . Wi, WO,

& Calculation of weights for a logic structure

When a gate is imbedded in a logic structure, the calculation
of the optimal weighting factors for each input becomes
more complex. The weighting factors must provide a test not
only for all faults on a gate but also for the faults which are
tested through it. The probability of applying the NCV to
each gate input is still enhanced, but the degree of
enhancement depends on the number of faults that must be
tested through each of the gate’s inputs. In general, the more
faults that must be tested through a gate input, the more the
other inputs should be weighted to the NCV.

Define the number of device inputs (NDI) for each gate to
be the number of PIs and SRLs that propagate directly to
the gate. NDI will be used as a relative measure of the
number of faults that are to be detected through a given gate.
The desired ratio (Ri) of the NCV to the controlling value
for each gate input is approximated by dividing NDI of the
gate (NDI,) by NDI of the inputs (NDI),
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Ri = NDI/NDI,. (1)

Consider the three-input AND gate shown in Figure 2,
which has six device inputs feeding it. As indicated, its three
inputs are assumed to contain one, two, and three device
inputs. More faults must be detected through the third input
than through the others; this should result in the other
inputs being weighted more heavily toward the NCV. Using
Equation (1) to calculate the desired ratios of a '1' state to a
'0" state for each input gives the following results:

R1 = NDI /NDI, = 6/1 = 6,
R2 = NDI /NDI, = 6/2 = 3,

R3 = NDI/NDI, = 6/3 = 2.

This indicates that the first input is to receive six times more
'1' values than '0' values, the second input three times
more, and the third input only two times more.

Equation (1) can be used on each gate of an entire circuit
to determine how to weight the PIs of the circuit. The
algorithm which performs this calculation consists of the
following steps:

1. Determine the NDI for all logic gates in the circuit.

2. Assign to each logic gate two numbers, called the “0
weight” (W0) and the “1 weight” (W1), and initialize
both to '1'. The ratio of the final values of W0 and W1
for device inputs gives the desired odds of having a '0'
placed on the input.

3. Perform a backtrace from each device output (POs and
SRLs). As the backtrace goes from a gate g to a gate i
driving one of its inputs, W0 and W1 of gate i (W0, and
W1,) are adjusted depending on the logical function of
gate g. The weights for gate i resulting from the path from
gate g are given in Table 3 for the primitive logic
functions of gate g, where Ri is the value calculated from
Equation (1). The new value of W0, is the larger of W0
calculated from Table 1 and the previous value of W0,.
Similarly, the new value of W1, is the larger of W1 from
the table and its previous value. The previous value may
be either the initial value or the value calculated from
another path.

4. Finally, for each device input, determine the following:

& Weighted value (WV)
WYV represents the logical value to which the input is to
be biased. If W0 > W1, WV =0, else WV = 1.

& Weighting factor (WF)
WF indicates the amount of biasing toward the
weighted value. It is calculated by dividing the larger of
W0 and W1 by the smaller. W1V and WF for a single
input will define the weight for that input, and WV and
WF for all inputs constitute a set of weights. The set of
weights calculated by this algorithm is designated as the
global set of weights.
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o Weight calculation example
The circuit shown in Figure 3 is used to illustrate the

algorithm that generates a set of weights. The circuit —_— ‘
contains five primitive logic gates, 12 device inputs, and two . o 1
. . o—_|NAND
device outputs. : @
Step 1 or |——oror
The value of NDI is calculated for each logic gate and is : (8)
shown in parentheses inside each gate. The value of NDI for Y o] ,
a Pl is 1 by definition. A
: (@]
oo
Step 2 : 5
The W0 and W1 values for all gates and PIs are initialized : A(lgf)D 0 P02
to 1.
° 3
P
Step 3 o—— A;4N)D
. Pl 12 o——f
A backtrace from both POs is performed to calculate W0

and W1 for all gates and PIs. PO is traced first, followed by
PO2. The order has no effect on the final result and, in fact,
the backtrace may even be performed in parallel as long as
all calculations are carried to completion. The values at each
step of the backtrace are given in Table 4 as the trace goes | Weight-calculation circuit.
from a gate g to a gate on an input J.

Step 4

The weight set is determined from the final values of W0
and W1 for all 12 PI.s. The first four Pls are to be weighted Calculation From (g) To (i) wo, Wi,
so that the '1' state is favored by a factor of 8 to 1 (the no.

probability of the '1' state is 8/9). PIs 5 through 8 receive a

Table 4 cCalculations of W0 and W1 from backtrace.

probability of a '0' state of 4/5, and PIs 9 through 12 receive ; ggtL 4 gz:: ‘1‘ é i
a probability of a '1' state of 8/9. Table S compares the test 3 Gate 1 Pls 1-4 1 8
detection probability [36] of all nonequivalent single stuck- 4 Gate 4 Gate 2 2 1
faults in the circuit for both a random test and the weighted 2 g'gt; 2 E;I:tg—ss ? i
random test resulting from this calculation. Note that the 7 Gate 5 Gate 2 2 2
most random-pattern-resistant faults (PIs 1-4 stuck at '1’, 8 Gate 2 Pls 5-8 8 2
Input 1 of Gate 5 stuck at '1', etc.) all improved their test 9 Gate 5 Gate 3 ! 2
. T . 10 Gate 3 Pls 9-12 1 8
probability by at least a factor of 8. Further notice that some
highly random testable faults (Output PO1 stuck at '0’',
Output POl stuck at '1’, etc.) declined slightly in test Table 5 Fault-detection probabilities.
probability. Since the probability of testing these faults was
still high, this had no effect on the WRP test length. The test Fault RP test WRP test
detection probabilities can be used to calculate an average
t . . PIs 1-4" 0.0039 0.032
est length (number of patterns required to achieve a 50% Pls 5-8" 0.0076 0.078
chance of detecting all faults). The WRP test reduces this Pls 9-12" 0.059 0.046
average pattern length to 66 from the 600 pattern needed for Gate | output! 0.059 0.154
. s Gate 2 output” 0.0076 0.314
a ra}ndom test. Thls compares to 10 deterr.mmstlc.patt.eltns Gate 2 output' 0113 0.451
which are required to test all of the faults in the circuit in Gate 3 output’ 0.819 0.221
Figure 3. Gate 4 input 2' 0.059 0.369
Gate 5 input 1 0.0039 0.256
Gate 4 output” 0.0039 0.256
e Hardware generation of weighted random values Gate 4 output' 0.996 0.744
The weight calculation allows for the generation of a Gate 5 output 0.941 0.632
. . . . . Gate 5 output’ 0.059 0.368
continuum of weighting factors; i.e., a particular device
input can acquire any ratio of '1's to '0's. In practice, this o Stuck at |
proves to be prohibitively expensive to allow in hardware, s0 1 Stuckat0 155
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Conflicting weighting factors.
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OR

AND

only a small number of weight factors that can easily be
generated at a tester are used. A 32-bit linear feedback shift
register (LFSR) is used as the source of the weighted bits.
Instead of simply taking a random bit from the LFSR and
applying it to the device under test, a group of bits is used to
generate the single weighted bit, as shown in Figure 4.
Latches are designated by Ls; XOR designates an exclusive-
OR circuit. By taking, for instance, the last three bits in the
LFSR and performing an AND function upon them, a bit
with a weight factor of 7 is produced (7/8 probability of '0’
or 7/8 probability of '1' with inversion). Similarly, by taking
four bits at a time and performing the AND function on
them, a bit with a weight factor of 15 is produced. This bit is
then passed through an exclusive-OR gate whose other input
is the desired weighted value, resulting in bits weighted
toward the '1' or the '0' state. This particular design of a
weighting generator produces weight factors of 1 (random),
3,7, and 15 toward both the '0' and '1' states. The desired
weight factors calculated by the algorithm are the closest
allowable value. In addition to the standard weights, the zero
and infinite weights which are equivalent to deterministic
values are also available. Note that in order to eliminate any
direct dependency between consecutively produced weighted
bits, all of the bits used in producing a single weighted bit are
shifted out of the LFSR before succeeding weighted bits are
created.

o Problems with a single set of weights

In the attempt to find a weight that satisfies all random-
pattern resistant faults from different paths to a single gate,
there often occurs a competition of conflicting weights. If the
weights are of opposite value and equal magnitude, this
results in an unbiased weight which does nothing to improve
testability.

An example of weight competition is shown in Figure 5.
In this example the PI fans out to two gates, both of which
desire large, but opposite, weights on the PI. The problem is
how to weight the PI to minimize the number of random
patterns necessary to test all the faults through both the OR
gate and the AND gate. The OR gate heavily favors the '0'
state on the PI, while the AND gate equally heavily favors
the '1' state. The algorithm would calculate W0 = 5 and W1
= 1 for the PI from the OR gate path and W0 = 1 and W1 =
5 from the AND gate path. Since only the larger values are
selected for the final values, the resultis W0 = Sand Wi =35
for the PI. The effects of both gates have averaged out at the
PI, resulting in a balanced weight being assigned to the PI.
Whenever random-pattern-resistant faults result in
conflicting weights, a single set of weights is not sufficient to
test all faults.

In resolving conflicts, it should be noted that extreme care
must be used in selecting weighting factors. The maximum
benefit that can be gained by weighting a single input to the
proper value (probability changed from 1/2 to 15/16) is an
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improvement in test probabilities of about 2. However, the
damage created by weighting this input to the incorrect value
(probability changed from 1/2 to 1/16) can be as high as a
factor of 8. Therefore, unless the calculation of the weights is
done properly, the weights may do more harm than good.

5. Strategy for creating a complete WRP test
Since a single set of weights cannot be expected to always
satisfy all the random-pattern-resistant faults in the device,
the solution is to allow additional sets of weights. In addition
to the previously described global set of weights, which
attempts to make the entire device testable, additional sets of
weights are created that focus on faults left untested. The
untested faults are determined by fault simulation using the
recently developed Parallel Pattern Single Fault Propagate
(PPSFP) simulator [37].

After the patterns for the global set of weights are applied,
the remaining faults are either random-pattern-resistant
faults or redundant. A deterministic generator becomes the
source of the additional sets of weights that will test the
remaining faults. The advantages of using deterministic test
generation are the following:

e Any fault that can be tested with deterministic patterns
can be tested with WRP.

¢ The appropriate sequence necessary to detect the fault can
be identified. Given where the deterministic pattern
observed the fault and what clocks must be on to detect
the fault, the corresponding sequence can be directly
determined.

¢ In most cases, the deterministic test generator can identify
redundant faults, which are then eliminated from further
consideration.

A deterministic test may be translated to a set of weights
by assigning a weight of 15/16 to the desired values for Pls
and SRLs that are set by the test. The choice of 15/16 is
desirable because it gives a high probability of testing the
focal fault while still allowing a reasonable probability of
detecting the remaining SSFs that require a similar test. In
this respect, a single set of weights created by a deterministic
test is more productive at testing faults than the
deterministic test itseif, which can only detect additional
faults that require the identical test. This ability, plus the fact
that most faults have already been detected by the global set
of weights, minimizes the deterministic test-generation effort
required to generate a complete WRP test. This sometimes
results in improved single-stuck-fault coverage over a
deterministic test, because of faults that resist deterministic
test generation but are detected with WRPs.

To achieve the goal of testing all possible single stuck-
faults in a minimum number of weighted random patterns
and sets of weights, the following algorithm, depicted in
Figure 6, was developed:
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Create pattern sequences 1
[ Create f‘ault list |
( Generate globil set of weights |
L Select first pjnem sequence |

{

Perform PPSFP fault simulation J

Create new set of weights from
test generation of focal fault
and other selected faults
(eliminate redundant faults)

I Determine sequence that detects focal fault J

{ Perform PPSFP fault simulation |

]

WRP test-generation algorithm.

1. Create the set of pattern sequences that can test all faults.

2. Create the set of single stuck-faults which are to be tested.

3. Calculate the global set of weights (described in Section
4).

4. For each sequence, use the PPSFP fault simulator to
fault-simulate the precise WRPs that result from the
selected set of weights for the selected sequence,
eliminating faults which become detectable. Patterns are
simulated 256 at a time, and when a new set of 256
patterns no longer detects at least one fault, the
simulation is terminated. The number of patterns
simulated up to this point is selected as the number of
patterns to be applied for this set of weights for this
sequence. As the simulation is performed, the expected
signatures are calculated.

5. Select one fault (focal fault) still in the fault list and
generate a deterministic test that can detect the fault.
Assign a weight of 15/16 toward the desired value of all
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PIs and SRLs set by the test. From the observation point
of the fault and the clock (if any) which must be on for
detection, the appropriate sequence that can detect the
focal fault is determined. This becomes a new set of
weights which has a high probability of detecting the focal
fault. To maximize the number of faults detected by this
set of weights, additional test generation is performed on
faults selected from the fault list which reside in logic not
set by previous test generations. If the new test is
consistent with the selected sequence and results in five or
fewer conflicting values on PIs/SRLs when compared to
this set of weights, the inputs set by this test are also given
a 15/16 probability to the desired state, except for
conflicts which receive a 1/2 probability. If test generation
identifies a fault as redundant, it is removed from the
fault list. If the test generator fails to create a test (or
prove redundancy) for a fault in the maximum allowed
CPU time (1 s, IBM 3081), a weight set cannot be created
for that fault. The fault is excluded from further test
generation but continues to be simulated. If the fault is
still undetected at the end of the WRP test, it is
considered an untested fault, even though it may be
redundant.

6. For the sequence that can detect the focal fault, repeat the
simulation described in Step 4 to determine the faults
that are detected with the new set of weights. In this case
the simulation is continued until at least the focal fault is
detected, and the simulation is then terminated by a new
set of 256 patterns that fail to detect a new fault,

7. Repeat Steps 5 and 6 until no faults remain.

This algorithm can test any fault that can be detected with
a deterministic test by controlling the degree to which the
individual PIs and SRLs are weighted. Clearly, there will be
more WRPs than deterministic patterns, but the ratio is now
reasonably bounded. Empirical results on a large number of
designs of varying size gave a range of about 10 to 50 times
more WRPs than deterministic patterns.

With up to 50 times more patterns, one might question
the efficiency of the calculation of the test coverage and
signature. Great care was taken in constraining the design to
be LSSD and constructing pattern sequences that could be
represented by a combinational pattern. This environment
can now be very profitably exploited using the PPSFP
simulator to perform these calculations. An implementation
of the WRP test-generation algorithm which has been run on
more than 1600 chip designs of about 1000 logic gates
required an average of only 2.1 CPU seconds (on an IBM
3081) to create and evaluate the full WRP test.

In our experience, the factor of 50 in test patterns is
represented in less than 10% of the test data needed for a
deterministic test. This is due to the WRP compact coding
of the patterns. The complete WRP pattern set is repesented
by initial seeds, sequence types and length, weighting factors,
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and response signatures—as opposed to the explicit coding
of all the test stimuli and responses in the deterministic

pattern set.

The other concern with a 50X factor in pattern count is
test application time. In our environment, where an LT
tester [38] has been modified to apply weighted random
patterns, it has proved possible to apply the 50X WRP
patterns in less time than a deterministic set. With a tester
that had high-speed pattern buffers per pin, the test time
advantage might be with the deterministic test for some
product. However, the WRP method may still be the
preferred method for the following reasons:

o The absolute time of the test, though longer than a
deterministic one, is still small, since it can be run at
product maximum scan speed, and hence attractive,
particularly in view of the improved fault coverage which
is achieved through the use of the WRP method.

e The WRP strategy and equipment would reduce test data
requirements, particularly for high-density chips and
modules.

o The tester implementing the WRP method could be less
costly than the high-speed deterministic tester.

6. Benchmark results
The WPR test generator has been run on the 10 ISCAS
benchmark circuits [39]. These circuits, which were selected
as a representative mixture of actual designs, are
combinational and range in size from 239 to 3827 logic
gates. The primary inputs and outputs are considered gates
and are included here in the logic-gate count. Two designs
(C432 and C499) contain exclusive-OR gates that were
remodeled into more basic logic gates. This results in
additional logic gates and faults; 18 of these extra faults were
found to be redundant for the C432 design. When more
than one of the inputs to a gate come from a common gate,
the faults on these inputs are identified as redundant without
requiring test generation. The C3540 design contains six of
these faults, while C1908 and C2670 have two each.

The WRP test-generation results are shown in Table 6.
A description of each column follows:

1. Design The assigned name for each
circuit.
2. No. of gates The total number of logic gates

in the circuit, including PIs and
PO:s.

The total number of fault-
equivalence classes generated
from the circuit model.

The total number of sets of
weights that were necessary to
test all faults in the circuit.

3. No. of faults

4, No. of wt. sets
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Table 6 Benchmark results.

Design No. of No. of No. of No. of CPU time NUF NRF NTGEN
gates Jaults WL, sets WRP patterns (3081-seconds)

C432 239 560 1 1024 0.6 0 22 22

C499 483 1158 2 1792 1.1 0 8 10

C880 469 942 2 1280 0.5 0 0 12
C1355 619 1574 3 2098 1.7 0 8 14
C1908 938 1879 6 5376 2.2 0 9 21
C2670 1566 2747 8 5888 16.3 11* 106 129
C3540 1741 2428 4 3840 35 0 137 137
C5315 2608 5350 2 2048 2.2 0 59 60
C6288 2480 7744 1 512 9.2 0 34 34
C7522 3827 7550 10 9728 13.9 0 131 175

* These 11 untested faults were redundant but were not identified by the WRP method as redundant.

The total number of WRP
patterns necessary to test all
faults in the circuit.

The total CPU time, in IBM
3081-seconds, required to
perform the entire WRP test
generation. This includes the
weight generation, fault
simulation, and signature
calculation.

The number of untested faults
(not counting identified
redundant faults) remaining at
the end of test.

The number of faults identified
as redundant by the deterministic
generator.

The number of faults for which
the WRP deterministic generator
was invoked to create a test.

5. No. of WRP patterns

6. CPU time

7. NUF

8. NRF

9. NTGEN

Examination of the results shows that all nonredundant
faults were tested for each design. The C2670 design did
have 11 faults which the WRP deterministic test generator
could not identify as redundant but which are known to be
redundant [40]. Eleven seconds of the WRP test generation
time were spent in an unsuccessful effort to generate a test
for these 11 faults. The number of weight sets varied from
1 to 10, and no design required more than 10000 WRP
patterns to test all faults. The IBM 3081 CPU time required
to perform the complete WRP procedure for the largest
design was only 13.9 seconds. Compared to a deterministic
approach, little effort was spent on test generation and, in
fact, most of the test generation was performed on
redundant faults.

Concluding remarks
A new method has been presented in this paper for
generating weighted random patterns for testing LSSD logic
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devices. The advantages observed in using the WRP
procedure are the following:

o It provides full stuck-fault coverage, unlike a random-
pattern test, and can provide improved coverage of
nonmodeled faults compared to a deterministic pattern
approach,

It has the ability to apply at least an order of magnitude
more patterns to a chip or module than a deterministic
test in comparable time in our tester environment. This is
accomplished with an order of magnitude less
precalculated test data.

e The computer time spent to generate the weighting data
and determine the number of pattern sequences to obtain
full stuck-fault coverage is small compared to that used in
generation of a deterministic test.

These advantages are realized with no circuit overhead
other than that required for the inclusion of LSSD.

Using a method such as the WRP method, it is now
possible to begin to realize the data and application
advantages promised for random-pattern testing, while also
obtaining an improvement in fault coverage.
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