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After a brief  review  of  the  means  for 
characterizing  lattice  gases  using  cellular 
automata  rules,  we  discuss  the  implementation 
of  the rules for  simulating  hydrodynamic 
phenomena  which  can be described  by  the 
Navier-Stokes  equations.  Special  emphasis  is 
placed on data-mapping  strategies  and 
implementation  through  the  use  of  the  high 
speed and large memory  resources  offered  by 
vector  multiprocessors  such  as  the IBM 3090 
Vector  Facility.  We  present  performance  data 
which  pertain  to  square  and  hexagonal  lattice 
gases,  and  discuss  the  limits  of  the  approach 
used  and  its  potential  extendability  to  other 
areas. 

Introduction 
Lattice-gas  models  which  obey  cellular automata (CA)  rules 
are of increasing interest in connection with the simulation 
of complex hydrodynamic phenomena [ 11. By using 
appropriate restrictions on the crystallographic symmetries 
of the lattice, and by taking appropriate limits, various  fluid- 
dynamics equations are obtained which  describe the 
macroscopic  behavior of the lattice gas as a continuum 
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system  despite its underlying  discrete nature. Since the 
cellular automata rules are intrinsically  discrete and involve 
only  logical operations, a new simulation strategy  is  offered 
which  is  qualitatively  different from the “conventional” 
approximation procedures  usually adopted for the solution 
of partial differential equations. From the computational 
point of  view, the key aspect of  CA rules  is the use  of 
quantized variables,  i.e.,  variables  which take values  only in 
a small  set of integers,  typically just zero or one. This offers 
the possibility of organizing the data structure in such a way 
as to code  only one bit  per dynamic variable, as opposed to 
“conventional” simulations based on real (floating-point) 
variables requiring an entire computer word (32, 64 bits). 
Clearly, one cannot expect a single  CA variable to capture 
the same amount of information as a 32- or 64-bit  floating- 
point variable.  However, one should bear in mind that,  in 
contrast to the floating-point representation in which the 
least  significant bits carry  progressively  less information, in a 
CA simulation all bits have the same importance. Moreover, 
since  integers  enjoy an exact representation in the computer, 
CA simulations are by definition free of the approximation 
(truncations, round-off ) errors which  affect simulations 
based on real  variables. Therefore, it is reasonable to expect 
that the CA approach should permit the processing of the 
same amount of  useful information, and retain it in the 
course of the calculation at a lower  cost in CPU time and 
storage than a conventional simulation. In this paper, we 
present and discuss the criteria which  govern the efficient 
implementation of  CA rules in a vector multiprocessor such 
as the IBM 3090  Vector  Facility. Performance data are 
presented, and some qualitative elements of comparisons 
with other techniques commonly adopted for the solution of 
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the Navier-Stokes equations are discussed. The programs 
developed thus far are concerned only  with  lattice-gas 
models simulating the Navier-Stokes equations in two 
dimensions. Extensions to three dimensions are discussed 
briefly.  Applicability to other areas, such as geophysics, 
magnetohydrodynamics, etc.  is not covered in this paper. 
The reader interested in such applications is  referred to the 
reference  list  given in [ I ]  and the papers included in [2]. 

Basic  principles of lattice-gas  automata 
In this section we  briefly  review the basic elements of the 
theory of discrete lattice gases; since a complete discussion of 
the theory is  beyond the scope of this paper, the reader 
interested in an exhaustive treatment of this subject is 
referred to [ 1,3,4]. 

We  begin  by considering a two-dimensional  Bravais lattice 
A consisting of L2 spatial  sites. It is  assumed that each of the 
sites can hold up to S particles,  endowed  with unit mass and 
unit speed along the directions defined by the links 
connecting each  site to its S neighbors (S  is the coordination 
number of the lattice). The microscopic configuration of the 
system  is thus defined by a set of positions Fj  E A, a set of 
unit speeds ?; = E,, and corresponding occupation numbers 
Nf E 2’’” (0, I)’, i = I ,  Lz ,  s = 1, S, which  assume the 
values of 0 or 1 depending on whether or not the ith site  is 
occupied by a particle pointing in the direction s. For 
example, in the four-link lattice gas introduced by Hardy, 
Pomeau, and De Pazzis [3], henceforth designated as HPP, 

E ,  = (1, O), E2 = (0, l), 

E3 = (-1, O), z4 = (0, -1). (1) 

s = 3  

s = 2  

= 1  

s = 4  

f Four links emerging from a gridpoint of an HPP lattice gas 

Illustrated in Figure 1 is a gridpoint of an HPP lattice  gas 
and four associated  emerging  links.  In Figure 2, the row 
vector I 0000) indicates the total absence of particles (hole); 
the row vector I 0 10 1 ) indicates a half-occupied  site, and  the 
row vector I I I I 1 ) indicates a fully occupied site. 

1 Row vectors, indicating (from left to right) a hole,  a half-occupied site, and a fully occupied site in  an HPP lattice gas. 

137 
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’ Collision configurations of the HPP lattice gas. Zeros indicate the 1 absence of a particle and ones indicate its presence. 

Since the bits are indistinguishable with  regard to their 
importance, the corresponding particles  obey an exclusion 
principle which forbids the simultaneous presence of  two or 
more of them at a given  site  if their velocities are in the same 
direction. Thus, in a pictorial sense, we can view the 
automaton as a Fermionic gas of bits in mutual interaction. 

The evolution of the automaton consists of  two  phases: a 
free-streaming  phase, in which  all the particles  propagate 
synchronously one step ahead along the link associated  with 
their speeds, and a collision  phase, in which at each node the 
particle  speeds are redistributed according to simple rules 
whose details depend on the type of automaton under 
consideration, although they are in any case subject to 
constraints of conservation (typically,  particle number and 
linear momentum). 

Collisions are assumed to be instantaneous, and  the free- 
streaming of the particles  is assumed to take place  between 
two distinct instants t and t + 1 (time is also a discrete 
variable), Consequently, the evolution of the Boolean  field 
N :  is governed by a first-order  difference equation (Liouville 
equation) of the form 

where A, is the discrete  forward-time-differencing operator 
and &the Liouville evolution operator. 

The Liouville operator is given  by the direct product of a 
free-streaming operator 3 and a collision operator C, defined 
as  follows: 

where u is the increment of the index i in the direction of the 
vector 2, and 6 is a function that indicates the change of the 
particle population at a given node due to the collision 
interaction. 

At each  site there are 2‘ possible configurations, and  the 
collision operator is a mapping from Zzs to Zzs,  which 
reduces to the identity for all those configurations which 
cannot be altered without violating the aforementioned 
conservation laws and exclusion  principle.  In the remaining 
cases, the collision operator decreases/increases 
(annihilation/generation) the occupation number of the site 
by one unit. For example, in the case of the four-link HPP 
automaton, it is  easy to verify that only two out of the 
sixteen (Z4) possible configurations can give  rise to a legal 
collision;  these are the doublets 10101) and I lolo), which 
transform into one another by a rigid rotation of 7r/2 (see 
Figure 3). 

It is  easy to verify that in the case  of an HPP lattice gas, 
the collision function 6“ takes the following simple form (the 
spatial  index i is omitted for the sake of simplicity, and 
N, = Ns):  

where the subscripts are to be taken modulo 4. The HPP 
automaton is deterministic in that the correspondence 
between the precollision and postcollision configurations is 
one-to-one. When the coordination number is increased, this 
is no longer true; consequently, the collision operator 
becomes  stochastic, in the sense that the final state must be 
chosen randomly from a set of permitted final 
configurations. 

The microscopic behavior of the lattice gas can be 
analyzed  using the standard techniques of statistical 
mechanics [ 51; in particular, analysis of the equilibrium 
states shows that the Liouville distribution function is 
factorized in terms of single-node distribution functions. As 
a result, the mean occupation numbers 

are distributed according to the Fermi-Dirac law 

where the scalar h and the vector 4 are functions of the mean 
density p and macroscopic  velocity ii, defined as 

S S 

p = ns, ii = nsEs. 
s= 1 s= 1 

At thermodynamic equilibrium, the macroscopic density p 
and speed ii become constant in space. To understand how 
this equilibrium is attained, one must examine the transport 
processes  which take place in  the system. The macroscopic 
equations which  govern  these  processes are obtained by 
postulating a local equilibrium distribution of the same form 
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as the one in Equation (6), where p and ti are assumed to 
exhibit small-amplitude long-wavelength departures from 
their equilibrium values. One then expands Equation (6) 
around their equilibrium solution and subsequently adopts a 
Chapman-Enskong expansion [6] of the macroscopic speed. 
After retention of terms up to  the second order, this leads to 
fluid-like equations which in two dimensions take the 
following form: 

2 

a l p  + c a /pu /  = 0, 
/ = I  

2 

a t P U /  + E a,(Z‘, - vQ,) = 0, 
m= 1 

where 

2 s - 2 P  

sc4 s - P 
G(p) = - -, 

The coefficient u in Equation (9) is related to the kinematic 
viscosity  of the fluid,  which  is  responsible  for the dissipative 
effects taking place in the lattice gas and is crucially related 
to the details of the collision operator. 

The above expressions are closely related to the Navier- 
Stokes equations except for the factor C ( p )  and the tensor 
T/,,,,,, which stem from the intrinsic discreteness of the 
underlying lattice. In particular, depending on  the geometry 
of the lattice, these factors cause breaking of the translational 
(Galilean) and rotational invariance (isotropy) at a 
macroscopic level.  Although Galilean invariance is  recovered 
in the  continuum limit, this is not generally the case  for 
rotational invariance, since the group of rotations 
(approximated by Z s )  is compact. In fact, following the 
arguments presented in [ 11, it is possible to show that in 
order for the  momentum flux tensor Plm and the viscous 
tensor Q, to be isotropic, the underlying lattice must exhibit 
at least a sixfold symmetry. It is this very observation, with 
the consequent introduction of the Frisch, Hasslacher, and 
Pomeau automaton [4], henceforth designated as FHP, 
which  has stimulated interest in using lattice gases to 
investigate hydrodynamic problems. 

contained set, a closure condition (state equation) is required 
As usual, in order for the fluid equations to be a self- 

to fix a further relation among the thermodynamic variables 
p ,  6, and p (scalar pressure). This third relation is indeed 
hidden in Equations (lo), which implicitly embody the state 
equation 

p = constant x p. (14) 

This equation highlights the fact that, owing to the 
dispersionless nature of the velocity distribution function, 
the thermodynamic notion of temperature is  missing in the 
lattice gas. Thermal effects can be introduced by allowing 
particles to move to the nearest neighbor (speed 1) and to 
the next-nearest neighbor (speed h) in the lattice [7]. 

In summary, this brief  survey  of lattice gases indicates that 
they exhibit macroscopic properties which are similar in 
many respects to those of a real  fluid, except for the density- 
dependent factor G ( p )  in the nonlinear advective term and 
tensorial relationships. In spite of these undeniable physical 
drawbacks, lattice gases are of considerable interest because 
of their conceptual simplicity and the resulting potential 
advantages they offer from a computational point of  view, 
especially  in conjunction with a vector and parallel 
processing environment. 

Implementation on a vector  multiprocessor 
Having reviewed the basic concepts underlying the theory of 
lattice-gas automata, we now  discuss  how the theory can be 
implemented and transformed into  an efficient 
computational tool. 

To implement CA rules efficiently on a vector 
multiprocessor, one must devise data-mapping strategies 
allowing  it to take full advantage of the essential 
characteristics of the updating rule which governs the 
evolution of the lattice-gas automaton; these characteristics 
are locality, uniformity, and speed quantization. As usual, 
locality is regarded as implying that only a few neighbors 
interact, while uniformity is regarded as implying that  the 
updating rule is the same for each dynamic variable 
regardless  of its spatial and temporal location. As in any 
other computational context, these two properties ideally 
match the concepts of parallelism and vectorization, 
respectively.  Because  speed quantization is peculiar to CA 
simulations, it offers a third computational opportunity 
which has no counterpart in “conventional” fluid dynamics, 
although it definitely has one in statistical mechanics [8] 
(spin lattices). In fact, starting from the fact that speeds 
assume only the values  of 0 or 1, one realizes that  it  must be 
possible to pack the data in such a way as to spend just  one 
bit per dynamical variable (it is worth stressing that  the 
necessity  of packing data is a direct consequence of the fact 
that we need to work in a word-oriented environment). This 
is the philosophical essence  of the method which, rather than 
being  based on real (floating-point) variables,  each requiring 
a whole computer word  (say W bits,  with W = 32,64) of 
storage, is conceived to treat single bits as working units. 139 
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b =  1 
-i- 

b = 4   b = l  
a i +  I- 

b = 4  

f Data  structure for the HPP lattice  gas of Figure 1. 

Returning to our problem, let us see  how these  ideas can 
be made practical. 

As a first step we must distinguish between the two  basic 
phases of the evolution, namely  free propagation and 
collision. For the sake of simplicity  let us refer to the simple 
case  of the four-link lattice sketched in Figure 1. In this 
lattice there are only  two independent displacement 
directions: horizontal (left/&@) and vertical (up/down). If 
we decide to assign  each  of these links to a single bit of an 
integer  variable, it follows that the Boolean  field N j  can be 
represented in computer storage as a set of S = 4 two- 
dimensional arrays Zs(i, j ) .  If  we further pack bits along the 
horizontal direction (x) (see Figure 4, for  which W = 4), 
then the entire structure of the lattice is  recovered by letting 
the index i vary between 1 and L/ W and  the index j between 
1 and L. 

Once this data structure has been  specified, the Move 
operator can  be  formalized as follows: 

Zs(i’, j ’ ,  b’, t + 1) = Zs(i,j, b, t )  s = 1, 4, (15) 

where the triplet (i, j ,  b) indicates the bth bit in the subscript 
Zs(i, j ) .  If  we choose I ,  to represent the bits  which must 
move “right” (s = l), the specific form of the Move rule is 
then 

i ‘ = i ,  j ’ = j ,  b ’ = b + l   ( b = l , W - l )  (16) 

where bits are supposed to increase from left to right (in 
actual storage the numbering is the other way around). 
Displacements along the vertical direction are even simpler: 

i ’ = i , j ‘ = j +  1 ( b =  1 , 2 , . . - , W ) .  (18) 

Both of these  mappings can easily  be implemented with 
appropriate FORTRAN instructions. For vertical 
displacements, one simply  needs to copy one vector onto 
another: 
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DO  2  I=1  ,L/W 
DO 1  J=2,L 

1  INEW(J,I) = IOLD(J-1 ,I) 
2 INEW(1 ,I) = IOLD(L,I) 

where OLD and NEW denote the instants t and t + 1, 
respectively. 

This construct is optimal in  the sense that it at best 
exploits the data packing (each copy operation 
simultaneously updates W dynamic variables), and vectorizes 
over contiguous memory locations (stride 1) along the 
maximal vector length L. Note that in order to achieve this 
latter feature, the unpacked index J has been  designed to be 
the internal one. 

When  bits  have  been  packed  along the horizontal 
direction, the internal boundaries set up by the finiteness of 
the word  length (b = W) are completely “transparent” to the 
vertical  displacements; this results from the displacements 
being  exactly orthogonal to the packing direction. 
Unfortunately, this is not the case for the horizontal 
displacements,  which must necessarily run through the word 
boundaries. In fact, the mapping given  by Equations (16) 
and ( 17) can be implemented via the FORTRAN routine 
ISHFT [9], which  shifts the content of a single  register  by a 
prescribed number of bits according to the syntax 

IS = ISHFT(l,m). 

This means that the bits in I are shifted m positions 
(-3 1 I m 5 3 1 with  32-bit-long  words)  right (m < 0) or 
left (m > 0) and placed into IS; bits shifted out of the vector 
register are lost and those shifted in are padded with  zeros. 

(1 5 b < W ), but does not work for the boundary bits, 
which, instead of  flowing in the leftmost positions of the 
next subscript, are simply  lost from the register. This implies 
that the boundary bits must be  saved prior to the shift 
operation and must subsequently be  placed in the correct 
positions. 

This is  perfectly appropriate for the internal bits 

To date, the procedure we  have adopted consists  of three 
steps: 

1. M = ISHFT(IOLD(I,J-1),-31) Pick up the rightmost 
bit of IOLD(J,I-1) and 
place it into the leftmost 
bit of the mask M. 

2. INEW(J,I) = ISHFT(IOLD(J,I),-1) Move the subscript 

3. INEW(J,I) = IOR(INEW(J,I),M) Force the leftmost bit of 
IOLD(J,I). 

M into the leftmost bit 
of INEW. 

The routine IOR is the FORTRAN routine used for 
performing the connective OR operation. Note that the last 
operation guarantees that  the rightmost bit of M will  be 
placed into  the leftmost bit of INEW(J,I), since after the shift 
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this bit is padded with a zero. The above procedure involves 
three logical operations, two  of  which (the first and the last) 
are required only  because of the boundary bit! This 
drawback  is inherently related to word  finiteness,  i.e., to the 
fact that use  is  being made of a general-purpose computer. 
In this sense, the optimal situation would  be to have  longer 
computer words in order to minimize the LZ W-’ operations 
needed to sweep around the computational domain. The 
other extreme would  be to resort to a set of L2 one-bit 
independent processors,  which  characterizes  special-purpose 
hardware [lo]. Fortunately, as we  see in the next  section, the 
CPU cost due to the boundary-bit problem  is not 
proportional to the number of extra operations, because the 
CPU time required by data transfer ( fetch/store operands 
from/to storage) can be  of the same order of magnitude as 
the time spent by the operands in the logical/arithmetical 
processing unit. 

a square-lattice automaton. Obviously,  when the 
coordination number of the lattice is  raised from 4 to 6, 
matters become  considerably more involved.  However, the 
basic  principles remain essentially the same. 

In the six-link lattice sketched in Figure 5, there are three 
independent directions of propagation, which we 
conveniently label as “right/left” (s = 1, 4); “up-right/down- 
left” (s = 2, 5) and “up-left/down-right” (s = 3, 6). Since 
there are now three propagation directions but only  two 
macroscopic dimensions, it is  clear that, no matter how the 
gridlines are numbered, we must account for diagonal 
displacements which  directly couple the triplet (i, j ,  b) to the 
triplet i, j & 1, b * 1). For example, if  we want to maintain 
the same data structure introduced for the square lattice, the 
Move “up-right” reads  as  follows: 

The discussion thus far has referred to the simplest  case of 

j ’  = ( j  + l)L, i‘ = 1, ’ b ’ =   b +  1 

( b =  1, W -  l), (19) 

j ’  = ( j  + l)L, i’ = (i + l ) L , w ,  b’ = 1 

(b  = W ) ,  (20) 

where the subscript designates “modulo.” This is  illustrated 
in Figure 6. 

simultaneously upon the corresponding arrays with  Copy 
and Shift operations, viz., 

These transitions can be implemented by acting 

INEW(J,I) = ISHFT(IOLD(J-1  ,l),1). 

Of  course, the boundary-bit problem  also  becomes a little 
more vexing,  since  these  cross-diagonal hopping terms 
require the three-step procedure outlined above.  Also, in 
general one must be  careful in handling the boundary 
conditions, since there are bits  which  belong to all three 
types of boundaries, along X,  Y, and b. However, it is  worth 
pointing out that the conceptual scheme does not change 
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s = 3  s = 2  

s = 4  

s = 5  s = 6  

The six links emerging from a gridpoint in  an FHP lattice gas 

.;- a i  + 1- 
b =  1 b = 4  b = l  b = 4  

1 Data structure for the FHP lattice gas. 

qualitatively, and no additional software  is required to 
handle higher coordination numbers. 

Having  discussed the implementation of the free- 
streaming operator, we can now turn  our attention to the 
collision  phase.  Assuming the same data structure as for the 
free-streaming  phase, the collision step can be formalized as 
follows: 

I#, j ,  t )  = gszs[Z,(i, j ,  t ) .  i, t)l, (21) 

where B, is a suitable set of Boolean operators. Note that 141 
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since the collisions are ultralocal in space and time, the 
indices i, j ,  t on  the left-hand and right-hand sides  of the 
above equation are the same. 

either as a combination of elementary Boolean functions 
(OR,  XOR, AND) or alternatively as a lookup table 
mapping the bits  of the precollision state into those of the 
postcollision one. This latter solution causes a deterioration 
(by roughly a factor of S/ W) of the performance of the free- 
streaming phase. In fact, since the S links emanating from a 
site must be coded over contiguous bits of the same word, 
each  word contains only W/S bits which propagate along the 
same direction. As a result, only W/S bits can be moved 
simultaneously with a single operation. On the other hand, 
resorting to a lookup table becomes mandatory in 
applications such as those involving mixtures [ 121, in which 
the number of bits per site is so high that a closed  Boolean 
expression  of the collision operator cannot be found. The 
same consideration holds for hydrodynamics in three 
dimensions. 

In practice, the Boolean operators as can be constructed 

However,  as long as one is interested in two-dimensional 
hydrodynamic applications, there is no question that  the 
data structure introduced previously, namely S independent 
two-dimensional “layers” of  bits,  is to be preferred. 

Once this organization has been stipulated, the collision 
phase  can be implemented by means of the following  single 
DO-loop (IEOR is the FORTRAN routine performing the 
exclusive-OR): 

DO 1 I=l,L/W 
DO 1 J=l ,L 

MASKCl = BOOLEl(Il(J,I), . . . 16(J,I)) 

MASKC2 = BOOLE2(1l(J,I), . . . 16(J,I)) 

MASKC6 = BOOLE6(11(J,I), . . . 16(J,I)) 
Il(J,I) = IEOR(MASKC1 ,ll(J,l)) 
12(J,I) = IEOR(MASKC2,11(J,I)) 
. . . . .  

1 16(J,I) = IEOR(MASKC6,16(J,I)) 

where BOOLEl -BOOLEG represent a set  of  Boolean 
relations constructed in such a way that the bits of the 
collision masks MASKC1-MASKC6 are ON or OFF 
depending on whether or not the corresponding site holds a 
collision configuration. 

Again, we are dealing with an ideal construct which  has 
the same advantageous properties of vectorizability and 
packing efficiency already discussed  for the vertical 
displacements. Moreover, this construct is independent of 
the coordination number of the lattice, which  affects  only 
the degree of complexity of the Boolean  expression  needed 
to construct the collision  masks. The coordination number 
has crucial consequences regarding the properties of the 
lattice gas, and obviously also an important impact on the 
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resulting computational performance; however, it remains 
true that the above implementation structure is independent 
of these problems. 

Before  closing this section, we consider a few aspects of 
the correspondence of uniformity to vectorization, speed 
quantization to data packing, and locality to parallelization. 
We have already seen that the first two can be optimally 
achieved by means of appropriately chosen DO-loops. With 
respect to the parallelization, we  first note  that the lattice A 
is  by construction expressible  as the direct sum of S 
decoupled sublattices Ax, each corresponding to a different 
direction of propagation. If  we imagine partitioning each of 
these sublattices into R subregions, we can write 

A = U A s =  U U As,. (22) 

This expression indicates that two levels  of parallelism are in 
principle available. The degrees of parallelism associated 
with  these two levels,  say PI and P2, have upper bounds S 
and R, respectively. Note that by taking the limit PI + S 
and P2 + R + L2, the “special hardware” view  of SL2 
locally connected one-bit processors is recovered. 

For the Move step, to implement the second level  of 
parallelism one must account for the  data transfer between 
the different  processors imposed by the existence of internal 
boundaries between the various sublattices. For instance, if 
we partitioned the computational domain into NP horizontal 
slices, the conceptual procedure to move bits “up” would 
read  as  follows (the DO-loop refers to the Pth processor): 

S S R  

s= I s = 1  ,= I  

DO 1 I=1  ,L/W 
1 INEW(1  ,l,P) = IOLD(L/NP,I,PMl) 

DO 2  I=1  ,L/W 
DO 2  J=P,L/NP 

2 INEW(J,I,P) = IOLD(J-1  ,l,P) 

where the index PM1 = P - 1 for P = 1,2, .  . + ,  NP - 1 and 
PM1 = 1 for P = NP. 

Unlike the free-streaming phase, the collision step does 
not lend itself to  the first level  of parallelization because the 
“internal” speed states are by definition all coupled. 
However, the second type of parallelization is trivial because, 
since the collisions are ultralocal, each subdomain is 
completely decoupled from the others, and consequently no 
information needs to be passed through the boundaries. As a 
result, the parallelization procedure is reduced to a trivial 
segmentation of the corresponding DO-loop [ 131. 

Performance  data 
The basic principles illustrated in the previous section have 
been implemented in a series  of computer programs running 
on the IBM  3090  Vector  Facility. In particular, three lattice- 
gas-automata codes have been developed thus  far: HPP, and 
FHP Models 1 and 2,  which  respectively involve 4, 6, and 7 
variables per site. In the last  case, the seventh bit is used to 
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Table 1 CPU ms required to run one step of the HPP, FHP1, 
and FHPZ  lattice-gas automata. 

Scalar mode Vector mode 

HPP 66 36 
FHP 1 120 69 
FHPZ 233 138 

Table 3 Partition of CPU ms/step in scalar mode. 

Type MOVE  MOVET COLL 

HPP 12 + 8.1 + 12 + 8.1 40.2  26 
FHPl 10.2 + 8.3 + 8.3 + 10.2 + 8.3 + 8.3 53.6 66 
FHP2 10.2 + 8.3 + 8.3 + 10.2 + 8.3 + 8.3 53.6  179 

Table 2 Partition of the CPU ms/step in vector mode. 
Table 4 CPU ms/step required by the Collision, Move, and 
Advance steps of an  HPP lattice gas. The data  are from [ 141. 

Type MOVE  MOVET COLL 

HPP 7.1 + 4.0 + 7.1 + 4.0 22.2 14 
FHPl 6.1 + 5.5 + 5.5 + 6.1 + 5.0+ 5.0 33.2  36 
FHPZ 6 .1+5 .5+5 .5+6 .1+5 .0+5 .0  33.2 105 

introduce “rest” particles which participate only in the 
collision  phase without moving. It can be shown [ 11 that  the 
inclusion of  these particles significantly  affects the transport 
coefficients  of the fluid, and in particular causes a significant 
reduction of kinematic viscosity,  which leads to  an increase 
in the highest Reynolds number achievable in the 
simulation. 

All  of the data presented refer to  a single  processor and  a 
1024 X 1024  grid (the CPU time to perform one time-step 
scales  linearly  with the total number of points in the lattice). 

A typical set  of CPU times required to run one step of the 
three different automata is shown in Table 1. Equivalently, 
one second of CPU time is required for about 30  sweeps 
over a 1024 X 1024 HPP lattice and about 7 sweeps over a 
1024 x 1024 FHP2 lattice, referred to as  30 and 7 megasites 
per second, respectively. 

In each  case,  use  of the vector mode results in an increase 
by about  a factor of 2 over the scalar mode, at virtually no 
cost in terms of programming effort. Table I also shows the 
increasing cost of CPU  time as the complexity of the 
automaton is raised. Comparing the HPP and FHPl cases, 
this is due to both the Move and Collision  steps. Comparing 
the FHPl and  FHP2 cases, the increased cost is caused 
entirely by the collisions (rest particles do not move!),  which 
require more Boolean  algebra. 

This is more evident in Table 2, which contains  a more 
detailed partition of the CPU ms/step among  the various 
stages  of the evolution, as obtained by running  the programs 
in the vector mode. The numbers appearing under the 
MOVE column refer to  the different directions of 
propagation, numbered counterclockwise, as in Figures 1 
and 5. 

The entries in the MOVET (total move time) column of 
Table 2 proceed almost linearly with coordination number, 
which  is 4 for the HPP lattice and 6 for the FHPl and F’HP2 
lattices. The numbers in the COLL (collision) column reflect 

Scalar mode Vector mode 

COLLIDE 25  14 
MOVE 46 23 
ADVANCE 21 09 

the increasing number of logic operations required to 
construct the respective operators, viz., 9, 35, and 125 in the 
three cases. Note, however, that CPU ms/step scales  less 
than linearly with the Boolean operations because  of the cost 
of data transfer from memory to registers and vice  versa. 

The nonuniform partition in  the MOVE column is a 
signature of the bit-boundary problem; in fact, with data 
packed horizontally, Move Right and Move Left are  the 
most expensive  steps. The same applies to the scalar mode, 
as indicated in Table 3. 

for the cost of data transfer. An example is presented in 
Table 4, which cites the CPU ms per step required by a 
preliminary version  of the HPP lattice-gas code in which the 
advancement of the  time variable was performed in a 
separate routine (Advance) whose job was simply to fetch 
the OLD arrays and copy them  onto NEW. 

From the  data of Table 4, it is evident that the cost of 
loading and storing is approximately the same as that 
required by the logical elaboration. Obviously, as the 
complexity of the collision operator is raised, this problem 
becomes  less  significant. 

Actually, the time variable can be advanced without 
introducing two separate sets  of arrays for the times t and 
t + I .  However, this requires some effort to ensure that only 
those variables which are  no longer needed for the Move 
step undergo the  time advancement; differently phrased, 
time recurrences must be avoided. Clearly, this can be 
achieved by scanning the DO-loops upstream. 

Again, extra care is necessary  regarding the boundaries, 
which must be treated with the aid of temporary arrays 
holding the  content of the boundary bits, in accordance with 
the procedure described in [ 141. This approach is  very 
effective,  because  it gains all  of the  CPU  time required by the 
Advance step; above all, it yields a saving  of a factor of 2 in 
required computer storage. The  data reported in Tables 1-3 

We have already mentioned the importance of accounting 
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Table 5 Elapsed time (ms/step)  required by the  Move  and 
Collision  steps in vector mode as a function  of  the  number  of 
processors  used. 

P A40 VE COLL SPEEDUP 

1 23.6  99.0 1 
2 12.5 50.0 
3 

1.96 
9.2 34.5 

4 
2.80 

5 
9.1 25.7 3.52 

6 
8.2 22.1 4.05 
4.1 19.5 5.06 

refer to a version  of the programs in which this rule was 
used, although some further means related to the optimal 
usage  of vector  registers  (such as resorting to temporary 
scalars  holding the contents of subscripts) were not used.  Use 
of the latter was found to yield a gain in CPU time by about 
a factor of 1.3. Further gains can be contemplated For 
example, the word-boundary problem  might be alleviated by 
coding adjacent sites  as homologous bits of contiguous 
words  instead of contiguous bits of the same word. Consider 
coding sites 1 to L/ Win the leftmost bit (the Wth) of the 
elements ZR( l), . . . , ZR(L/W), sites L/W+ 1 to 2L/ Win 
the ( W - 1)th bit and so on up to the rightmost  bit (b = 1) .  
In this case,  if ZR represents the bits  which must move 
“right,” the propagation is achieved by simply  copying the 
element ZR(Z) into ZR(Z + 1). The internal boundaries 
imposed by the finiteness of the word  length  would occur at 
each L/ W site instead of at each W site as in the present 
implementation. This is convenient whenever L > W 2 ;  i.e., 
L > 1024 in the case  of our actual codes.  An additional 
improvement might  also be obtained by merging the 
Collision and Move  steps in a single loop to minimize the 
number of load/store operations. However, neither would 
change matters appreciably, especially  when the Collision 
step starts to dominate, as it does in cases  of  practical 
interest. 

All the data presented so far  refer to a single-processor 
version of the codes.  Recently, we developed a parallel 
version of the FHP3 automaton [ 11 which has been run on 
up to six processors of the IBM 3090/600 VF under 
MVS/XA  using the Multitasking Facility [9]. To date, the 
parallelization of the Move step has  been obtained by 
dispatching the six routines which  perform the propagation 
along the six directions of the hexagonal  grid. The Collision 
step has been  parallelized  by a simple segmentation of the 
DO-loops  which run over the computational domain, as 
mentioned in the previous section [ 151. 

due to the parallelization  costs (dispatching and 
synchronization) the required CPU time increases  with the 
number of processors  used.  However, the benefits of 
parallelism  have to be  measured in terms of the elapsed 
time, the time one must wait  for the completion of the 

It is  worth pointing out that, as in any parallel application, 
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grid  is reported in Table 5, in which P denotes the number 
of processors; the second and third columns indicate the 
elapsed time (ms/step) required by the Move and Collision 
steps, and the fourth column indicates the global  (Move + 
Collision) speedup due to parallelization. From the data of 
Table 5, we  see that the parallelization  efficiency  of the 
Move step is quite satisfactory  for P = 2, 3, and 6. This is 
due to the fact that since the Move  phase consists of  six 
independent routines of comparable execution time, the 
computational load of different  processors  is well balanced 
only if 6/P is an integer. The parallelization efficiency  of the 
Collision step ranges from 0.99 (P = 2)  to 0.85 (P = 6) with 
a smooth behavior because the loop-segmentation technique 
guarantees a balanced computational workload.  Finally, we 
remark that, since the Collision step requires about three 
times as much CPU time as the Move step, the overall 
speedup is  satisfactory  also in the case  of four and five 
processors. 

Computational  efficiency of lattice  gases for 
two-dimensional  hydrodynamic  analysis 
As mentioned in the Introduction, the important aspect of 
the effectiveness  of the CA approach is whether it really 
requires  less computer resource to handle the same amount 
of  useful information. Obviously, a serious investigation of 
this question would require a systematic and quantitative 
benchmark analysis,  which  lies  beyond the scope of the 
present  work. Moreover, since  all of the programs we have 
examined thus far pertain only to the solution of “Navier- 
Stokes-like’’ equations, any extrapolation of the forthcoming 
considerations to other areas is  unjustified. 

The crucial hydrodynamic parameter to be  considered is 
the “effective”  Reynolds number, which  is  defined as 

UD 
R e = G - - ,  (23) 

U 

where D is a characteristic dimension of the geometry, U is 
the macroscopic  speed of the fluid, u represents its kinematic 
viscosity, and G designates the coefficient  arising from the 
lack of Galilean invariance. As is known, the Reynolds 
number measures the degree  of turbulence of the fluid  via 
the advection/dissipation ratio, which in turn fixes the 
shortest  wavelengths  excited in  the motion (dissipative  scale). 

More  specifically, the dissipative  scale d is  related to the 
macroscopic  scale by a power-law relation d/D - Re-m, with 
m = -0.5 in two dimensions (Batchelor-Kraichnan theory 
[ 161, well supported by numerical simulations [ 171) and 
m = -0.75 in three dimensions (Kolmogorov theory of 
energy  cascade [ 181, well supported by experimental data 
[ 191). Thus, the simplest criterion for judging the 
effectiveness  of a lattice-gas simulation is that its mesh 
spacing  be  considerably  less than  the dissipative  length. 

In a lattice containing n sites  over a length I, the 
maximum achievable Reynolds number is  given  by 
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Re,,, = nCMD/I = an, (24) 

where M is the Mach number of the flow, which must be 
kept  smaller than one to ensure incompressibility;* C is  a 
dimensionless coefficient that depends on the specific 
collision rule implemented and is typically 1-1  0. On the 
other hand, the storage requirements scale as Snz and the 
CPU time as Sn3, because reducing the lattice spacing  causes 
the particles to require a  correspondingly  longer time to 
cover  a  given  macroscopic  length.  If we are willing to accept 
this scaling, it can be  inferred (more sophisticated arguments 
can  be found in [20]) that STORAGE = S(Re,,/af and 
CPU = K ( R ~ , , , / L ~ ) ~ ,  where K is  a  factor  which depends on 
the computer performance, which, for the 3090  Vector 
Facility, can be  assumed to be about 0.1  second  per step per 
megasite. 

These  two relationships are plotted in Figure 7. It was 
assumed that K = 0.1  s/step/megasite, MC = 1, and 
D/I = 0.1. The CPU time plotted corresponds to the 
evolution over n time steps. 

From this, it follows that in an installation which  offers 
256  megabytes of central memory, a  Reynolds number in 
excess  of 1000 can be  reached. This is high enough for the 
investigation of the statistical properties of two-dimensional 
turbulence. However, running a lattice gas in this regime to 
solve  the  Navier-Stokes equations would require more than 
100 hours of CPU time, which  would  be much more 
expensive than making use  of  a  spectral  code  [21]. Runs 
camed out at the IBM European Center for Scientific and 
Engineering Computing for the purpose of studying the 
statistical properties of free-decaying two-dimensional 
turbulence [22] have indicated that a resolution of  8192’ 
gridpoints is  only  marginally  sufficient to reveal the physical 
behavior  emerging  from the spectral simulation. More 
precisely, this resolution has been found to yield 
approximately the same amount of hydrodynamic 
information as a 64’ spectral run, at a computational cost 
which  is  greater by about three orders of magnitude in CPU 
time and two orders of magnitude in storage requirements. 
These  figures  reflect  unfavorably on the lattice-gas method. 
However, it is important to remark that, using  present-day 
state-of-the-art means, resorting to more efficient  collision 
rules (such as those given  by the pseudo-4D scheme 
described in the next section) and special-purpose  hardware 
can reduce the computational costs of the lattice-gas 
simulation by a factor of about a hundred in CPU time and 
ten in memory requirements. These are significant 
improvements, especially  if one considers that, since the 
subject is still in its scientific “infancy,” major progress  can 
be  expected in both its theoretical and technological  aspects. 

Generally  speaking,  a  basic  difficulty  is preventing the 
dissipation from overwhelming the convective effects which 

* It follows from Equations (IO), (12), and (14) that the pressure Braplent driving  linear. 

effects disappear only  in the  limit of incompressible flows ( M +  0). 
mode propagation  acquires  a  spurious  multiplicative  factor ( I  - M ) whose 

Reynolds number 

CPU time and storage requirements for the two-dimensional lattice- 
gas simulation as a function of Reynolds number. 

characterize the physics of  highly turbulent fluids. This can 
be seen from Figures 8 and 9, which  respectively depict a 
turbulent fluid configuration at time zero and after 16 384 
steps of the FHP2 automaton. The dissipation is much more 
visible than the advection. A similar difficulty is encountered 
in applications of lattice gases to problems of  wave 
propagation  [23], and it is conjectured that a breakthrough 
in the applicability of lattice gases  will require finding some 
way to reduce their diffusivity, or, equivalently, to reduce the 
amount of microscopic  noise produced by the  automaton. 
Work in this direction, focused on the application of lattice- 
gas techniques to the study of flows past  a cylinder, is 
currently in progress  [24].  Even  when we restrict outselves to 
considerations of  efficiency in a  general-purpose 
environment, the competitiveness of cellular automata 
modeling improves in situations characterized by irregular 
geometries and small  values of the Reynolds number, such 
as those encountered, for example, in  the study of  flows 
through porous media [25]. With one-bit processor  special 
hardware, the enhanced role  played  by irregular geometries 
favors the use of lattice gases  because  complex and irregular 
geometries can be handled easily  by cellular automata rules. 
(It is sufficient to define  different  Boolean  rules in  the region 
assigned to the obstacle.) 
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Lattice-gas  automata in three  dimensions 
Although we have thus far  considered  only two-dimensional 
flow, it is clearly of importance to examine whether the 
lattice-gas approach can  be extended to three dimensions. To 
do so, it should just be noted that the triangular lattice was 
chosen for a two-dimensional gas in order to achieve 
isotropy of the pressure and viscous  stress tensors. 
Unfortunately, it is known  from  elasticity theory that there 
exists no lattice in three dimensions for which  general 
symmetrical fourth-order tensors are isotropic. From this, 
one might conclude that it  is  impossible to simulate realistic 
fluid mechanics in three dimensions using  lattice-gas 
automata. 

However,  d'Humikres, Lallemand, and Frisch  [26]  have 
noticed that a suitable lattice exists in four dimensions: 
a face-centered-hypercubic (FCHC) lattice. Its generating 
vectors connect the center of a hypercube to each of its 24 
two-dimensional faces, thus defining a 24-velocity  lattice-gas 
model. The components of the velocity  vectors are deduced 
from one of the faces by application of permutations and 
sign changes of the coordinates. For example, starting from 
(Z, Z, 0, 0) one generates (Z, 0, Z, 0), (Z, 0, 0, I ) ,  (0, Z, Z, 0), 

# Initial turbulent configuration of a  cellular  automaton  fluid.  The (0, 1, 0, I), (0,  0, 1, I), where I = +I .  

f directions. 
arrows represent  the  macroscoPic  velocity  along  the X and 4' The symmetry group of the lattice has 1 152 elements and 

is  large enough to ensure the isotropy of any symmetrical 
fourth-order tensor. Clearly,  because four-dimensional 
models are more demanding than three-dimensional ones 
for practical applications, the lattice width along the fourth 
dimension should be  kept as small as  possible. In practice, 
this width  can contain only one node,  with periodic 
boundary conditions along the fourth dimension. This leads 
to a three-dimensional model for which the usual Navier- 
Stokes equations are recovered in the incompressible limit. 
In addition, this model  also  leads to a fourth transport 
equation (for a passive  scalar)  which  arises from momentum 
considerations. The FCHC lattice can be projected back into 
a three-dimensional cubic lattice in which the existence  of 
the underlying fourth dimension is retained through the 
inclusion of the following  particles: 

Y 
Twelve  particles  moving on the six links connecting the 
nodes to their nearest  neighbors (bold arrows in Figure 
lo), six having a "spin" of 1 and six having a "spin" of - 1. 
Twelve  particles  moving on the twelve links connecting 
the nodes to their next-nearest  neighbors  (light  arrows in 
Figure lo), each  having a "spin" of 0. 

As stated in the previous section, the efficiency  of  lattice-gas 
automata as a numerical scheme is  tightly coupled to the 
value of the viscosity,  which should be  kept as small as 
possible.  Since  each node is described by a 24-bit  word. its 
state can assume 224 = 16 777 2 16  different  configurations. 
Obviously, such a huge number of states precludes the 
possibility of the manual design  of  associated  collision  rules, 
as  for the two-dimensional models.  In this context, Henon 
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[27] has  presented a general  strategy for designing  efficient 
collision  rules  which  maximize the available  Reynolds 
number. The strategy  is  as  follows: The number of relevant 
states is  reduced  using the symmetry group so that of the 
7009  possible momentum values,  only  37 are returned. The 
states are then sorted by equivalence classes  of states with the 
same number of particles and the same momentum (which 
can  be  exchanged during the collision step); this is 
accomplished by using  an optimization criterion which can 
be applied independently to each  equivalence  class and leads 
to the least  viscous  model. Then the symmetry group is 
again  applied to derive the collision  rules  for  all of the states 
which are recorded in a huge lookup table of 224 24-bit 
words (or 48 megabytes of memory). 

As for the two-dimensional case, the algorithm is  based on 
two  steps:  Collision and Propagation. In the Collision step 
the new state of the automaton is obtained node by node by 
(hard-wired) indirect addressing of the huge lookup table 
mentioned above. This table  need  only  be  generated  once;  it 
is subsequently  retrieved  from  mass  storage  before  each run. 
The Propagation step is  split into three stages corresponding 
to propagation  along the directions x, y, and z respectively. 
During each  of  these  stages, bits associated  with a given 
propagation direction are first  extracted  from the computer 
word  by masking operations and subsequently  moved by 
address  shiftings.  Both the Collision and Propagation steps 
have  been multitasked on four processors  (for  full details see 
[281). 

around a circular plate were simulated in a 128 X 128 X 256 
space [29]. Nonstationary flows  were obtained at a Reynolds 
number of about 150 with a processing  speed of about 30 
million updates per  second on the four processors of a 
CRAY2 supercomputer. 

Using this basic algorithm, three-dimensional flows 

However,  use  of the algorithm has  several  drawbacks: 

A large amount of memory is required (e.g., a 2563 lattice 
requires 48 + 48  megabytes,  available  only on very  large 
mainframes), 
Its  speed  of  execution  is  directly  related to the efficiency  of 
indirect and random addressing in a very  large lookup 
table. 
Its lookup table  causes  parallel algorithms to depend on 
the efficiency  of the computer in managing  access  conflicts 
to a common memory. 

The second point has  negative  effects in any computing 
environment, and is particularly  severe  if  use  is made of a 
computer which  relies on data in a fast memory of moderate 
size to achieve  efficient memory access. For this reason and 
because of the desirability of decreasing the demands of the 
collision step on memory, the usefulness of this approach 
may  be crucially dependent on further efforts to devise  new 
algorithms based either on Boolean  logic or on repeated 
applications of smaller lookup tables. 

I ,  

:: """""_"" 

Three-dimensional  projection  of  the  face-centered  hypercube 
(FCHC) used for  the  pseudo-4D  algorithm.  The  bold  arrows 1 represent four-dimensional links (fourth component = kl); the light 

j arrows represent three-dimensional links (fourth component = 0) .  

Concluding  remarks 
The lattice-gas method provides a means for constructing a 
family  of  "synthetic"  fluids on a computer and studying the 
passage from the microscopic to the hydrodynamic domain 
1301. 

From an application viewpoint, it is too early to identify 
areas to which it will most  effectively apply. Its 
hydrodynamic applications are limited to those associated 
with moderate Reynolds numbers, both in two and three 
dimensions. Two applications are promising: application to 
the study of moving boundaries between  different media, 
such  as those occurring in combustion or chemical reactions 
[3 I]; and application to the study of Brownian motion in 
suspensions [32] having flows with moderate Reynolds 
numbers and for which the simulations can take full 
advantage of the intrinsic noise of the lattice gas.  However, 
study  of the latter will require an improved understanding of 
associated solid-boundary phenomena. 
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