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Lattice-gas
hydrodynamics
on the IBM 3090

Vector Facility

by S. Succi
D. d'Humiéres
F. Szelényi

After a brief review of the means for
characterizing lattice gases using cellular
automata rules, we discuss the implementation
of the rules for simulating hydrodynamic
phenomena which can be described by the
Navier-Stokes equations. Special emphasis is
placed on data-mapping strategies and
implementation through the use of the high
speed and large memory resources offered by
vector multiprocessors such as the IBM 3090
Vector Facility. We present performance data
which pertain to square and hexagonal lattice
gases, and discuss the limits of the approach
used and its potential extendability to other
areas.

Introduction

Lattice-gas models which obey cellular automata (CA) rules
are of increasing interest in connection with the simulation
of complex hydrodynamic phenomena [1]. By using
appropriate restrictions on the crystallographic symmetries
of the lattice, and by taking appropriate limits, various fluid-
dynamics equations are obtained which describe the
macroscopic behavior of the lattice gas as a continuum
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system despite its underlying discrete nature. Since the
cellular automata rules are intrinsically discrete and involve
only logical operations, a new simulation strategy is offered
which is qualitatively different from the “conventional”
approximation procedures usually adopted for the solution
of partial differential equations. From the computational
point of view, the key aspect of CA rules is the use of
quantized variables, i.e., variables which take values only in
a small set of integers, typically just zero or one. This offers
the possibility of organizing the data structure in such a way
as to code only one bit per dynamic variable, as opposed to
“conventional” simulations based on real (floating-point)
variables requiring an entire computer word (32, 64 bits).
Clearly, one cannot expect a single CA variable to capture
the same amount of information as a 32- or 64-bit floating-
point variable. However, one should bear in mind that, in
contrast to the floating-point representation in which the
least significant bits carry progressively less information, in a
CA simulation all bits have the same importance. Moreover,
since integers enjoy an exact representation in the computer,
CA simulations are by definition free of the approximation
(truncations, round-off ) errors which affect simulations
based on real variables. Therefore, it is reasonable to expect
that the CA approach should permit the processing of the
same amount of useful information, and retain it in the
course of the calculation at a lower cost in CPU time and
storage than a conventional simulation. In this paper, we
present and discuss the criteria which govern the efficient
implementation of CA rules in a vector multiprocessor such
as the IBM 3090 Vector Facility. Performance data are
presented, and some qualitative elements of comparisons
with other techniques commonly adopted for the solution of
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the Navier-Stokes equations are discussed. The programs
developed thus far are concerned only with lattice-gas
models simulating the Navier-Stokes equations in two
dimensions. Extensions to three dimensions are discussed
briefly. Applicability to other areas, such as geophysics,
magnetohydrodynamics, etc. is not covered in this paper.
The reader interested in such applications is referred to the
reference list given in [1] and the papers included in [2].

Basic principles of lattice-gas automata
In this section we briefly review the basic elements of the
theory of discrete lattice gases; since a complete discussion of
the theory is beyond the scope of this paper, the reader
interested in an exhaustive treatment of this subject is
referred to [1, 3, 4].

We begin by considering a two-dimensional Bravais lattice
A consisting of L’ spatial sites. It is assumed that each of the
sites can hold up to S particles, endowed with unit mass and
unit speed along the directions defined by the links
connecting each site to its S neighbors (S is the coordination
number of the lattice). The microscopic configuration of the
system is thus defined by a set of positions 7; € A, a set of
unit speeds &; = ¢, and corresponding occupation numbers
Nie Z¥ = (0, 1%, i=1,L% s=1, S, which assume the
values of 0 or 1 depending on whether or not the ith site is
occupied by a particle pointing in the direction s. For
exampile, in the four-link lattice gas introduced by Hardy,
Pomeau, and De Pazzis [3], henceforth designated as HPP,

G=(,0, &= 01,

63 = (_19 0)9 64 = (O, —1) (1)
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Four links emerging from a gridpoint of an HPP lattice gas.

Illustrated in Figure 1 is a gridpoint of an HPP lattice gas
and four associated emerging links. In Figure 2, the row
vector | 0000) indicates the total absence of particles (hole);
the row vector | 0101 ) indicates a half-occupied site, and the
row vector | 1111) indicates a fully occupied site.
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Row vectors, indicating (from left to right) a hole, a half-occupied site, and a fully occupied site in an HPP lattice gas.
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! Collision configurations of the HPP lattice gas. Zeros indicate the
absence of a particle and ones indicate its presence.

Since the bits are indistinguishable with regard to their
importance, the corresponding particles obey an exclusion
principle which forbids the simultaneous presence of two or
more of them at a given site if their velocities are in the same
direction. Thus, in a pictorial sense, we can view the
automaton as a Fermionic gas of bits in mutual interaction.

The evolution of the automaton consists of two phases: a
free-streaming phase, in which all the particles propagate
synchronously one step ahead along the link associated with
their speeds, and a collision phase, in which at each node the
particle speeds are redistributed according to simple rules
whose details depend on the type of automaton under
consideration, although they are in any case subject to
constraints of conservation (typically, particle number and
linear momentum).

Collisions are assumed to be instantaneous, and the free-
streaming of the particles is assumed to take place between
two distinct instants ¢ and ¢ + 1 (time is also a discrete
variable). Consequently, the evolution of the Boolean field
N7 is governed by a first-order difference equation (Liouville
equation) of the form

AN, =£N3, (2)

where A, is the discrete forward-time-differencing operator
and & the Liouville evolution operator.

The Liouville operator is given by the direct product of a
free-streaming operator 7 and a collision operator C, defined
as follows:

C: Ni(t) = Nj(t) + 6°(N;, - - -, N?),

F:N (1) —> Nf.ﬂ(s)(t + 1), 3)

where ¢ is the increment of the index { in the direction of the
vector ¢, and ¢ is a function that indicates the change of the
particle population at a given node due to the collision
interaction.
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At each site there are 2° possible configurations, and the
collision operator is a mapping from Z* to Z*°, which
reduces 1o the identity for all those configurations which
cannot be altered without violating the aforementioned
conservation laws and exclusion principle. In the remaining
cases, the collision operator decreases/increases
(annihilation/generation) the occupation number of the site
by one unit. For example, in the case of the four-link HPP
automaton, it is easy to verify that only two out of the
sixteen (2*) possible configurations can give rise to a legal
collision; these are the doublets | 0101) and | 1010), which
transform into one another by a rigid rotation of 7/2 (see
Figure 3).

It is easy to verify that in the case of an HPP lattice gas,
the collision function &° takes the following simple form (the
spatial index i is omitted for the sake of simplicity, and
N,=N}):

8 =N_,N,,*x(1-N)-N,_,,)

s+14 7 s+3
- Nst+2 X (1 - Ns+l)(1 - Ns—+—3)’ (4)

where the subscripts are to be taken modulo 4. The HPP
automaton is deterministic in that the correspondence
between the precollision and postcollision configurations is
one-to-one. When the coordination number is increased, this
is no longer true; consequently, the collision operator
becomes stochastic, in the sense that the final state must be
chosen randomly from a set of permitted final
configurations.

The microscopic behavior of the lattice gas can be
analyzed using the standard techniques of statistical
mechanics [5]; in particular, analysis of the equilibrium
states shows that the Liouville distribution function is
factorized in terms of single-node distribution functions. As
a result, the mean occupation numbers

2 N?
n=73— (%)
s E‘l L2
are distributed according to the Fermi-Dirac law
1
(6)

ns= n R
l+exp(h+g-¢)

where the scalar 4 and the vector g are functions of the mean
density p and macroscopic velocity i, defined as
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At thermodynamic equilibrium, the macroscopic density p
and speed # become constant in space. To understand how
this equilibrium is attained, one must examine the transport
processes which take place in the system. The macroscopic
equations which govern these processes are obtained by
postulating a local equilibrium distribution of the same form

IBM J. RES. DEVELOP. VOL. 33 NO. 2 MARCH 1989




as the one in Equation (6), where p and # are assumed to
exhibit smali-amplitude long-wavelength departures from
their equilibrium values. One then expands Equation (6)
around their equilibrium solution and subsequently adopts a
Chapman-Enskong expansion [6] of the macroscopic speed.
After retention of terms up to the second order, this leads to
fluid-like equations which in two dimensions take the
following form:

2.
3+ % a,pu =0, @®)
=1
2
ooty + X 9, (P,, — vQ,,) =0, )
m=1
where
2 62
le = p[G(p) 2 Tlmnounuo + 3 6/m:| 4
no=1
2
le =p 2 T/mnoanua ’ (10)
n,o=1
and
2 §-2p
G(p) =— , 11
)= =5 (1n
S
Tlmna = Z Cslcsm Usno’ (12)
=1
c2
v, =c,c,—=29d (13)

sno snso 2 no*

The coefficient » in Equation (9) is related to the kinematic
viscosity of the fluid, which is responsible for the dissipative
effects taking place in the lattice gas and is crucially related
to the details of the collision operator.

The above expressions are closely related to the Navier—
Stokes equations except for the factor G(p) and the tensor
T,,..,» Which stem from the intrinsic discreteness of the
underlying lattice. In particular, depending on the geometry
of the lattice, these factors cause breaking of the translational
(Galilean) and rotational invariance (isotropy) at a
macroscopic level. Although Galilean invariance is recovered
in the continuum limit, this is not generally the case for
rotational invariance, since the group of rotations
(approximated by ZS) is compact. In fact, following the
arguments presented in [1], it is possible to show that in
order for the momentum flux tensor P,,, and the viscous
tensor Q,, to be isotropic, the underlying lattice must exhibit
at least a sixfold symmetry. It is this very observation, with
the consequent introduction of the Frisch, Hasslacher, and
Pomeau automaton [4], henceforth designated as FHP,
which has stimulated interest in using lattice gases to
investigate hydrodynamic problems.

As usual, in order for the fluid equations to be a self-
contained set, a closure condition (state equation) is required
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to fix a further relation among the thermodynamic variables
p, i, and p (scalar pressure). This third relation is indeed
hidden in Equations (10), which implicitly embody the state
equation

p = constant X p. (14)
This equation highlights the fact that, owing to the
dispersionless nature of the velocity distribution function,
the thermodynamic notion of temperature is missing in the
lattice gas. Thermal effects can be introduced by allowing
particles to move to the nearest neighbor (speed 1) and to
the next-nearest neighbor (speed \/3 ) in the lattice [7].

In summary, this brief survey of lattice gases indicates that
they exhibit macroscopic properties which are similar in
many respects to those of a real fluid, except for the density-
dependent factor G(p) in the nonlinear advective term and
tensorial relationships. In spite of these undeniable physical
drawbacks, lattice gases are of considerable interest because
of their conceptual simplicity and the resulting potential
advantages they offer from a computational point of view,
especially in conjunction with a vector and paraliel
processing environment.

Implementation on a vector multiprocessor
Having reviewed the basic concepts underlying the theory of
lattice-gas automata, we now discuss how the theory can be
implemented and transformed into an efficient
computational tool.

To implement CA rules efficiently on a vector
multiprocessor, one must devise data-mapping strategies
allowing it to take full advantage of the essential
characteristics of the updating rule which governs the
evolution of the lattice-gas automaton; these characteristics
are locality, uniformity, and speed quantization. As usual,
locality is regarded as implying that only a few neighbors
interact, while uniformity is regarded as implying that the
updating rule is the same for each dynamic variable
regardless of its spatial and temporal location. As in any
other computational context, these two properties ideally
match the concepts of parallelism and vectorization,
respectively. Because speed quantization is peculiar to CA
simulations, it offers a third computational opportunity
which has no counterpart in “conventional” fluid dynamics,
although it definitely has one in statistical mechanics [8]
(spin lattices). In fact, starting from the fact that speeds
assume only the values of 0 or 1, one realizes that it must be
possible to pack the data in such a way as to spend just one
bit per dynamical variable (it is worth stressing that the
necessity of packing data is a direct consequence of the fact
that we need to work in a word-oriented environment). This
is the philosophical essence of the method which, rather than
being based on real (floating-point) variables, each requiring
a whole computer word (say W bits, with W = 32, 64) of
storage, is conceived to treat single bits as working units.

139
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i Data structure for the HPP lattice gas of Figure 1.

Returning to our problem, let us see how these ideas can
be made practical.

As a first step we must distinguish between the two basic
phases of the evolution, namely free propagation and
collision. For the sake of simplicity let us refer to the simple
case of the four-link lattice sketched in Figure 1. In this
lattice there are only two independent displacement
directions: horizontal (left/right) and vertical (up/down). If
we decide to assign each of these links to a single bit of an
integer variable, it follows that the Boolean field N; can be
represented in computer storage as a set of S = 4 two-
dimensional arrays I (i, j). If we further pack bits along the
horizontal direction (x) (see Figure 4, for which W = 4),
then the entire structure of the lattice is recovered by letting
the index / vary between 1 and L/W and the index j between
land L.

Once this data structure has been specified, the Move
operator can be formalized as follows:

IG,j, b, t+1)=1(,j b, t) s=1,4, (15)

where the triplet (i, j, b) indicates the bth bit in the subscript
1.(i, j). If we choose I, to represent the bits which must
move “right” (s = 1), the specific form of the Move rule is
then

i'=1, J=j b¥=b+1 (b=1,W-1) (16)

b=w), (17)

where bits are supposed to increase from left to right (in
actual storage the numbering is the other way around).
Displacements along the vertical direction are even simpler:

b=12.--, W) (18)

Both of these mappings can easily be implemented with
appropriate FORTRAN instructions. For vertical
displacements, one simply needs to copy one vector onto
another:

i'=i+1, j=j, b =1

i"=ij =j+1
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DO 2 I=1,L/W
DO 1J=2L
1 INEW(J,I) = IOLD(J-1,I)
2 INEW(1,l) = IOLD(L,))

where OLD and NEW denote the instants tand ¢ + 1,
respectively.

This construct is optimal in the sense that it at best
exploits the data packing (each copy operation
simultaneously updates W dynamic variables), and vectorizes
over contiguous memory locations (stride 1) along the
maximal vector length L. Note that in order to achieve this
latter feature, the unpacked index J has been designed to be
the internal one.

When bits have been packed along the horizontal
direction, the internal boundaries set up by the finiteness of
the word length (b = W) are completely “transparent” to the
vertical displacements; this results from the displacements
being exactly orthogonal to the packing direction.
Unfortunately, this is not the case for the horizontal
displacements, which must necessarily run through the word
boundaries. In fact, the mapping given by Equations (16)
and (17) can be implemented via the FORTRAN routine
ISHFT [9], which shifts the content of a single register by a
prescribed number of bits according to the syntax

IS = ISHFT(l,m).

This means that the bits in | are shifted m positions
(=31 = m = 31 with 32-bit-long words) right (m < 0) or
left (m > 0) and placed into IS; bits shifted out of the vector
register are lost and those shifted in are padded with zeros.

This is perfectly appropriate for the internal bits
(1 = b < W), but does not work for the boundary bits,
which, instead of flowing in the leftmost positions of the
next subscript, are simply lost from the register. This implies
that the boundary bits must be saved prior to the shift
operation and must subsequently be placed in the correct
positions.

To date, the procedure we have adopted consists of three
steps:
1. M = ISHFT(IOLD(,J=1),—31)  Pick up the rightmost
bit of IOLD(J,l-1) and
place it into the leftmost
bit of the mask M.
2. INEW(J,|) = ISHFT(IOLD(J,l),—1) Move the subscript
IOLD(J, ).
Force the leftmost bit of
M into the leftmost bit
of INEW.

3. INEW(J,]) = IOR(INEW(J,}),M)

The routine IOR is the FORTRAN routine used for
performing the connective OR operation. Note that the last
operation guarantees that the rightmost bit of M will be
placed into the leftmost bit of INEW(J,I), since after the shift
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this bit is padded with a zero. The above procedure involves
three logical operations, two of which (the first and the last)
are required only because of the boundary bit! This
drawback is inherently related to word finiteness, i.e., to the
fact that use is being made of a general-purpose computer.
In this sense, the optimal situation would be to have longer
computer words in order to minimize the Lw™ operations
needed to sweep around the computational domain. The
other extreme would be to resort to a set of L one-bit
independent processors, which characterizes special-purpose
hardware [10]. Fortunately, as we see in the next section, the
CPU cost due to the boundary-bit problem is not
proportional to the number of extra operations, because the
CPU time required by data transfer (fetch/store operands
from/to storage) can be of the same order of magnitude as
the time spent by the operands in the logical/arithmetical
processing unit.

The discussion thus far has referred to the simplest case of
a square-lattice automaton. Obviously, when the
coordination number of the lattice is raised from 4 to 6,
matters become considerably more involved. However, the
basic principles remain essentially the same.

In the six-link lattice sketched in Figure 5, there are three
independent directions of propagation, which we
conveniently label as “right/left” (s = 1, 4); “up-right/down-
left” (s = 2, 5) and “up-left/down-right” (s = 3, 6). Since
there are now three propagation directions but only two
macroscopic dimensions, it is clear that, no matter how the
gridlines are numbered, we must account for diagonal
displacements which directly couple the triplet (i, j, b) to the
triplet i, j = 1, b = 1). For example, if we want to maintain
the same data structure introduced for the square lattice, the
Move “up-right” reads as follows:

J =G, i=i b =b+1
b=1,W-1), (19)

=G, =G4 Uy, b =1
b=w), ()

where the subscript designates “modulo.” This is illustrated
in Figure 6.

These transitions can be implemented by acting
simultaneously upon the corresponding arrays with Copy
and Shift operations, viz.,

INEW(J,)) = ISHFT(IOLD(J—1,}),1).

Of course, the boundary-bit problem also becomes a little
more vexing, since these cross-diagonal hopping terms
require the three-step procedure outlined above. Also, in
general one must be careful in handling the boundary
conditions, since there are bits which belong to all three
types of boundaries, along X, Y, and b. However, it is worth
pointing out that the conceptual scheme does not change
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The six links emerging from a gridpoint in an FHP lattice gas.

Data structure for the FHP lattice gas.

qualitatively, and no additional software is required to
handle higher coordination numbers.

Having discussed the implementation of the free-
streaming operator, we can now turn our attention to the
collision phase. Assuming the same data structure as for the
free-streaming phase, the collision step can be formalized as
follows:

I_\-(i: j’ t) = gs[ll(i’ j, t) ot Is(i’ j7 t)]’

where £_ is a suitable set of Boolean operators. Note that

@n
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since the collisions are ultralocal in space and time, the
indices I, j, ¢ on the left-hand and right-hand sides of the
above equation are the same.

In practice, the Boolean operators #, can be constructed
either as a combination of elementary Boolean functions
(OR, XOR, AND) or alternatively as a lookup table
mapping the bits of the precollision state into those of the
postcollision one. This latter solution causes a deterioration
(by roughly a factor of S/ W) of the performance of the free-
streaming phase. In fact, since the .S links emanating from a
site must be coded over contiguous bits of the same word,
each word contains only W/S bits which propagate along the
same direction. As a result, only W/S bits can be moved
simultaneously with a single operation. On the other hand,
resorting to a lookup table becomes mandatory in
applications such as those involving mixtures [12], in which
the number of bits per site is so high that a closed Boolean
expression of the collision operator cannot be found. The
same consideration holds for hydrodynamics in three
dimensions.

However, as long as one is interested in two-dimensional
hydrodynamic applications, there is no question that the
data structure introduced previously, namely S independent
two-dimensional “layers” of bits, is to be preferred.

Once this organization has been stipulated, the collision
phase can be implemented by means of the following single
DO-loop (IEOR is the FORTRAN routine performing the
exclusive-OR):

DO 1 I=1,L/W
DO 1J=1,L

MASKC1 = BOOLE1(I1(J,)), - - - 16(J,1))
MASKC2 = BOOLE2(I1(J 1}, - - - 16(J,1))

MASKC6 = BOOLEB(11(J 1), - - - 16(J,1))
11(J,) = IEOR(MASKC1,I1(J,l))
12(d,l) = IEOR(MASKC2,11(J,1))

1 16(J.l) = IEOR(MASKCS,I6(J,I))

where BOOLE1-BOOLES represent a set of Boolean
relations constructed in such a way that the bits of the
collision masks MASKC1-MASKC6 are ON or OFF
depending on whether or not the corresponding site holds a
collision configuration.

Again, we are dealing with an ideal construct which has
the same advantageous properties of vectorizability and
packing efficiency already discussed for the vertical
displacements. Moreover, this construct is independent of
the coordination number of the lattice, which affects only
the degree of complexity of the Boolean expression needed
to construct the collision masks. The coordination number
has crucial consequences regarding the properties of the
lattice gas, and obviously also an important impact on the
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resulting computational performance; however, it remains
true that the above implementation structure is independent
of these problems.

Before closing this section, we consider a few aspects of
the correspondence of uniformity to vectorization, speed
quantization to data packing, and locality to parallelization.
We have already seen that the first two can be optimally
achieved by means of appropriately chosen DO-loops. With
respect to the parallelization, we first note that the lattice A
is by construction expressible as the direct sum of §
decoupied sublattices A, each corresponding to a different
direction of propagation. If we imagine partitioning each of
these sublattices into R subregions, we can write

S R

Ag=U U A,. (22)

1 s=1 r=1

A=

P Cw

This expression indicates that two levels of parallelism are in
principle available. The degrees of parallelism associated
with these two levels, say P, and P,, have upper bounds S
and R, respectively. Note that by taking the limit P, — S
and P, — R — L’, the “special hardware” view of SL?
locally connected one-bit processors is recovered.

For the Move step, to implement the second level of
parallelism one must account for the data transfer between
the different processors imposed by the existence of internal
boundaries between the various sublattices. For instance, if
we partitioned the computational domain into NP horizontal
slices, the conceptual procedure to move bits “up” would
read as follows (the DO-loop refers to the Pth processor):

DO 1 I=1,L/W
1 INEW(1,1,P) = IOLD(L/NP,|,PM1)
DO 2 I=1,L/W
DO 2 J=2,L/NP
2 INEW(J,},P) = IOLD(J—1,1,P)

where the index PM1 =P -1 forP=1,2,---,NP = | and
PM1 =1 for P = NP.

Unlike the free-streaming phase, the collision step does
not lend itself to the first level of parallelization because the
“internal” speed states are by definition all coupled.
However, the second type of parallelization is trivial because,
since the collisions are ultralocal, each subdomain is
completely decoupled from the others, and consequently no
information needs to be passed through the boundaries. As a
result, the parallelization procedure is reduced to a trivial
segmentation of the corresponding DO-loop [13].

Performance data

The basic principles illustrated in the previous section have
been implemented in a series of computer programs running
on the IBM 3090 Vector Facility. In particular, three lattice-
gas-automata codes have been developed thus far: HPP, and
FHP Models 1 and 2, which respectively involve 4, 6, and 7
variables per site. In the last case, the seventh bit is used to
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Table 1 CPU ms required to run one step of the HPP, FHP1,
and FHP?2 lattice-gas automata.

Scalar mode Vector mode

HPP 66 36
FHP1 120 69
FHP2 233 138

Table 2 Partition of the CPU ms/step in vector mode.

Table 3 Partition of CPU ms/step in scalar mode.

Type MOVE MOVET COLL
HPP 12+81+12+8.1 40.2 26
FHP! 102+ 83+83+10.2+83+383 53.6 66
FHP2 102+83+83+102+83+83 53.6 179

Table 4 CPU ms/step required by the Collision, Move, and
Advance steps of an HPP lattice gas. The data are from [14].

Type MOVE MOVET COLL Scalar mode Vector mode
HPP 71+40+7.1+40 222 14 COLLIDE 25 14
FHPl 6.1+55+55+6.1+50+5.0 33.2 36 MOVE 46 23
FHP2 6.1+4+55+55+6.1+50+5.0 332 105 ADVANCE 21 09

introduce “rest” particles which participate only in the
collision phase without moving. It can be shown [1] that the
inclusion of these particles significantly affects the transport
coefficients of the fluid, and in particular causes a significant
reduction of kinematic viscosity, which leads to an increase
in the highest Reynolds number achievable in the
simulation.

All of the data presented refer to a single processor and a
1024 x 1024 grid (the CPU time to perform one time-step
scales linearly with the total number of points in the lattice).

A typical set of CPU times required to run one step of the
three different automata is shown in Table 1. Equivalently,
one second of CPU time is required for about 30 sweeps
over a 1024 x 1024 HPP lattice and about 7 sweeps over a
1024 x 1024 FHP2 lattice, referred to as 30 and 7 megasites
per second, respectively.

In each case, use of the vector mode results in an increase
by about a factor of 2 over the scalar mode, at virtually no
cost in terms of programming effort. Table 1 also shows the
increasing cost of CPU time as the complexity of the
automaton is raised. Comparing the HPP and FHP1 cases,
this is due to both the Move and Collision steps. Comparing
the FHP1 and FHP2 cases, the increased cost is caused
entirely by the collisions (rest particles do not move!), which
require more Boolean algebra.

This is more evident in Table 2, which contains a more
detailed partition of the CPU ms/step among the various
stages of the evolution, as obtained by running the programs
in the vector mode. The numbers appearing under the
MOVE column refer to the different directions of
propagation, numbered counterclockwise, as in Figures 1
and 5.

The entries in the MOVET (total move time) column of
Table 2 proceed almost linearly with coordination number,
which is 4 for the HPP lattice and 6 for the FHP1 and FHP2
lattices. The numbers in the COLL (collision) column reflect
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the increasing number of logic operations required to
construct the respective operators, viz., 9, 35, and 125 in the
three cases. Note, however, that CPU ms/step scales less
than linearly with the Boolean operations because of the cost
of data transfer from memory to registers and vice versa.

The nonuniform partition in the MOVE column is a
signature of the bit-boundary problem; in fact, with data
packed horizontally, Move Right and Move Left are the
most expensive steps. The same applies to the scalar mode,
as indicated in Table 3.

We have already mentioned the importance of accounting
for the cost of data transfer. An example is presented in
Table 4, which cites the CPU ms per step required by a
preliminary version of the HPP lattice-gas code in which the
advancement of the time variable was performed in a
separate routine (Advance) whose job was simply to fetch
the OLD arrays and copy them onto NEW.

From the data of Table 4, it is evident that the cost of
loading and storing is approximately the same as that
required by the logical elaboration. Obviously, as the
complexity of the collision operator is raised, this problem
becomes less significant.

Actually, the time variable can be advanced without
introducing two separate sets of arrays for the times ¢ and
t + 1. However, this requires some effort to ensure that only
those variables which are no longer needed for the Move
step undergo the time advancement; differently phrased,
time recurrences must be avoided. Clearly, this can be
achieved by scanning the DO-loops upstream.

Again, extra care is necessary regarding the boundaries,
which must be treated with the aid of temporary arrays
holding the content of the boundary bits, in accordance with
the procedure described in [14]. This approach is very
effective, because it gains all of the CPU time required by the
Advance step; above all, it yields a saving of a factor of 2 in
required computer storage. The data reported in Tables 1-3
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Table 5 Elapsed time (ms/step) required by the Move and
Collision steps in vector mode as a function of the number of
processors used.

P MOVE COLL SPEEDUP
1 23.6 99.0 1

2 12.5 50.0 1.96

3 9.2 345 2.80

4 9.1 25.7 3.52

5 8.2 22.1 4.05

6 4.7 19.5 5.06

refer to a version of the programs in which this rule was
used, although some further means related to the optimal
usage of vector registers (such as resorting to temporary
scalars holding the contents of subscripts) were not used. Use
of the latter was found to yield a gain in CPU time by about
a factor of 1.3, Further gains can be contemplated: For
example, the word-boundary problem might be alleviated by
coding adjacent sites as homologous bits of contiguous
words instead of contiguous bits of the same word. Consider
coding sites 1 to L/ W in the leftmost bit (the Wth) of the
elements IR(1),- -+, IR(L/W), sites L/W + 1 to 2L/Win
the (W — 1)th bit and so on up to the rightmost bit (b = 1).
In this case, if IR represents the bits which must move
“right,” the propagation is achieved by simply copying the
element /R(I) into IR(I + 1). The internal boundaries
imposed by the finiteness of the word length would occur at
each L/W site instead of at each W site as in the present
implementation. This is convenient whenever L > W2; ie.,
L > 1024 in the case of our actual codes. An additional
improvement might also be obtained by merging the
Collision and Move steps in a single loop to minimize the
number of load/store operations, However, neither would
change matters appreciably, especially when the Collision
step starts to dominate, as it does in cases of practical
interest.

All the data presented so far refer to a single-processor
version of the codes. Recently, we developed a parallel
version of the FHP3 automaton 1] which has been run on
up to six processors of the IBM 3090/600 VF under
MVS/XA using the Multitasking Facility [9]. To date, the
parallelization of the Move step has been obtained by
dispatching the six routines which perform the propagation
along the six directions of the hexagonal grid. The Collision
step has been parallelized by a simple segmentation of the
DO-loops which run over the computational domain, as
mentioned in the previous section [15].

It is worth pointing out that, as in any parallel application,
due to the parallelization costs (dispatching and
synchronization) the required CPU time increases with the
number of processors used. However, the benefits of
parallelism have to be measured in terms of the elapsed
time, the time one must wait for the completion of the
application. A typical set of data referring to a 1024 X 1024
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grid is reported in Table 5, in which P denotes the number
of processors; the second and third columns indicate the
elapsed time (ms/step) required by the Move and Collision
steps, and the fourth column indicates the global (Move +
Collision) speedup due to parallelization. From the data of
Table 5, we see that the parallelization efficiency of the
Move step is quite satisfactory for P = 2, 3, and 6. This is
due to the fact that since the Move phase consists of six
independent routines of comparable execution time, the
computational load of different processors is well balanced
only if 6/P is an integer. The parallelization efficiency of the
Collision step ranges from 0.99 (P = 2) to 0.85 (P = 6) with
a smooth behavior because the loop-segmentation technique
guarantees a balanced computational workload. Finally, we
remark that, since the Collision step requires about three
times as much CPU time as the Move step, the overall
speedup is satisfactory also in the case of four and five
Processors.

Computational efficiency of lattice gases for
two-dimensional hydrodynamic analysis
As mentioned in the Introduction, the important aspect of
the effectiveness of the CA approach is whether it really
requires less computer resource to handle the same amount
of useful information. Obviously, a serious investigation of
this question would require a systematic and quantitative
benchmark analysis, which lies beyond the scope of the
present work. Moreover, since all of the programs we have
examined thus far pertain only to the solution of “Navier-
Stokes-like” equations, any extrapolation of the forthcoming
considerations to other areas is unjustified.

The crucial hydrodynamic parameter to be considered is
the “effective” Reynolds number, which is defined as

Re = G@, (23)
14

where D is a characteristic dimension of the geometry, U is
the macroscopic speed of the fluid, » represents its kinematic
viscosity, and G designates the coefficient arising from the
lack of Galilean invariance. As is known, the Reynolds
number measures the degree of turbulence of the fluid via
the advection/dissipation ratio, which in turn fixes the
shortest wavelengths excited in the motion (dissipative scale).

More specifically, the dissipative scale d is related to the
macroscopic scale by a power-law relation d/D ~ Re” ", with
m = —0.5 in two dimensions (Batchelor-Kraichnan theory
[16], well supported by numerical simulations [17]) and
m = —0.75 in three dimensions (Kolmogorov theory of
energy cascade [18], well supported by experimental data
[19]). Thus, the simplest criterion for judging the
effectiveness of a lattice-gas simulation is that its mesh
spacing be considerably less than the dissipative length.

In a lattice containing » sites over a length /, the
maximum achievable Reynolds number is given by
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Re = nCMD|l = an, (24)

where M is the Mach number of the flow, which must be
kept smaller than one to ensure incompressibility;* Cisa
dimensionless coeflicient that depends on the specific
collision rule implemented and is typically 1-10. On the
other hand, the storage requirements scale as Sn” and the
CPU time as Sn’, because reducing the lattice spacing causes
the particles to require a correspondingly longer time to
cover a given macroscopic length. If we are willing to accept
this scaling, it can be inferred (more sophisticated arguments
can be found in [20]) that STORAGE = S(Remx/a)z and
CPU = K(Re,,,/a )3, where K is a factor which depends on
the computer performance, which, for the 3090 Vector
Facility, can be assumed to be about 0.1 second per step per
megasite.

These two relationships are plotted in Figure 7. It was
assumed that K = 0.1 s/step/megasite, MC = 1, and
D/l = 0.1. The CPU time plotted corresponds to the
evolution over # time steps.

From this, it follows that in an installation which offers
256 megabytes of central memory, a Reynolds number in
excess of 1000 can be reached. This is high enough for the
investigation of the statistical properties of two-dimensional
turbulence. However, running a lattice gas in this regime to
solve the Navier-Stokes equations would require more than
100 hours of CPU time, which would be much more
expensive than making use of a spectral code [21]. Runs
carried out at the IBM European Center for Scientific and
Engineering Computing for the purpose of studying the
statistical properties of free-decaying two-dimensional
turbulence [22] have indicated that a resolution of 8192°
gridpoints is only marginally sufficient to reveal the physical
behavior emerging from the spectral simulation. More
precisely, this resolution has been found to yield
approximately the same amount of hydrodynamic
information as a 64° spectral run, at a computational cost
which is greater by about three orders of magnitude in CPU
time and two orders of magnitude in storage requirements.
These figures reflect unfavorably on the lattice-gas method.
However, it is important to remark that, using present-day
state-of-the-art means, resorting to more efficient collision
rules (such as those given by the pseudo-4D scheme
described in the next section) and special-purpose hardware
can reduce the computational costs of the lattice-gas
simulation by a factor of about a hundred in CPU time and
ten in memory requirements. These are significant
improvements, especially if one considers that, since the
subject is still in its scientific “infancy,” major progress can
be expected in both its theoretical and technological aspects.

Generally speaking, a basic difficulty is preventing the
dissipation from overwhelming the convective effects which

* It follows from Equations (10), (12), and (14) that the pressure gragient driving linear-
mode propagation acquires a spurious multiplicative factor (1 ~ M) whose
effects disappear only in the limit of incompressible flows (M — 0).
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CPU time and storage requirements for the two-dimensional lattice-
gas simulation as a function of Reynolds number.

characterize the physics of highly turbulent fluids. This can
be seen from Figures 8 and 9, which respectively depict a
turbulent fluid configuration at time zero and after 16384
steps of the FHP2 automaton. The dissipation is much more
visible than the advection. A similar difficulty is encountered
in applications of lattice gases to problems of wave
propagation [23], and it is conjectured that a breakthrough
in the applicability of lattice gases will require finding some
way to reduce their diffusivity, or, equivalently, to reduce the
amount of microscopic noise produced by the automaton.
Work in this direction, focused on the application of lattice-
gas techniques to the study of flows past a cylinder, is
currently in progress [24]. Even when we restrict outselves to
considerations of efficiency in a general-purpose
environment, the competitiveness of cellular automata
modeling improves in situations characterized by irregular
geometries and small values of the Reynolds number, such
as those encountered, for example, in the study of flows
through porous media [25]. With one-bit processor special
hardware, the enhanced role played by irregular geometries
favors the use of lattice gases because complex and irregular
geometries can be handled easily by cellular automata rules.
(It is sufficient to define different Boolean rules in the region
assigned to the obstacle.)
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Lattice-gas automata in three dimensions
Although we have thus far considered only two-dimensional
flow, it is clearly of importance to examine whether the
lattice-gas approach can be extended to three dimensions. To
do so, it should just be noted that the triangular lattice was
chosen for a two-dimensional gas in order to achieve
isotropy of the pressure and viscous stress tensors,
Unfortunately, it is known from elasticity theory that there
exists no lattice in three dimensions for which general
symmetrical fourth-order tensors are isotropic. From this,
one might conclude that it is impossible to simulate realistic
fluid mechanics in three dimensions using lattice-gas
automata.

However, d’Humiéres, Lallemand, and Frisch [26] have
noticed that a suitable lattice exists in four dimensions:

a face-centered-hypercubic (FCHC) lattice. Its generating
vectors connect the center of a hypercube to each of its 24
two-dimensional faces, thus defining a 24-velocity lattice-gas
model. The components of the velocity vectors are deduced
from one of the faces by application of permutations and
sign changes of the coordinates. For example, starting from
(1, 1, 0, 0) one generates (1, 0, I, 0), (1, 0,0, I, (0, 1, I, 0),
0,1,0,1),(0,0, I, I), where I = £1.

The symmetry group of the lattice has 1152 elements and
is large enough to ensure the isotropy of any symmetrical
fourth-order tensor. Clearly, because four-dimensional
models are more demanding than three-dimensional ones
for practical applications, the lattice width along the fourth
dimension should be kept as small as possible. In practice,
this width can contain only one node, with periodic
boundary conditions along the fourth dimension. This leads
to a three-dimensional model for which the usual Navier—
Stokes equations are recovered in the incompressible limit.
In addition, this model also leads to a fourth transport
equation (for a passive scalar) which arises from momentum
considerations. The FCHC lattice can be projected back into
a three-dimensional cubic lattice in which the existence of
the underlying fourth dimension is retained through the
inclusion of the following particles:

o Twelve particles moving on the six links connecting the
nodes to their nearest neighbors (bold arrows in Figure
10), six having a “spin” of 1 and six having a “spin” of —1.

o Twelve particles moving on the twelve links connecting
the nodes to their next-nearest neighbors (light arrows in
Figure 10), each having a “spin” of 0.

As stated in the previous section, the efficiency of lattice-gas
automata as a numerical scheme is tightly coupled to the
value of the viscosity, which should be kept as small as
possible. Since each node is described by a 24-bit word, its
state can assume 2°* = 16 777 216 different configurations.
Obviously, such a huge number of states precludes the
possibility of the manual design of associated collision rules,
as for the two-dimensional models. In this context, Henon
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[27] has presented a general strategy for designing efficient
collision rules which maximize the available Reynolds
number. The strategy is as follows: The number of relevant
states is reduced using the symmetry group so that of the
7009 possible momentum values, only 37 are returned. The
states are then sorted by equivalence classes of states with the
same number of particles and the same momentum (which
can be exchanged during the collision step); this is
accomplished by using an optimization criterion which can
be applied independently to each equivalence class and leads
to the least viscous model. Then the symmetry group is
again applied to derive the collision rules for all of the states
which are recorded in a huge lookup table of 2** 24-bit
words (or 48 megabytes of memory).

As for the two-dimensional case, the algorithm is based on
two steps: Collision and Propagation. In the Collision step
the new state of the automaton is obtained node by node by
(hard-wired) indirect addressing of the huge lookup table
mentioned above. This table need only be generated once; it
is subsequently retrieved from mass storage before each run.
The Propagation step is split into three stages corresponding
to propagation along the directions x, y, and z respectively.
During each of these stages, bits associated with a given
propagation direction are first extracted from the computer
word by masking operations and subsequently moved by
address shiftings. Both the Collision and Propagation steps
have been multitasked on four processors (for full details see
[28]).

Using this basic algorithm, three-dimensional flows
around a circular plate were simulated in a 128 X 128 X 256
space [29]). Nonstationary flows were obtained at a Reynolds
number of about 150 with a processing speed of about 30
million updates per second on the four processors of a
CRAY2 supercomputer.

However, use of the algorithm has several drawbacks:

o A large amount of memory is required (e.g., a 256 lattice
requires 48 + 48 megabytes, available only on very large
mainframes).

¢ Its speed of execution is directly related to the efficiency of
indirect and random addressing in a very large lookup
table.

o Its lookup table causes parallel algorithms to depend on
the efficiency of the computer in managing access conflicts
to a common memory.

The second point has negative effects in any computing
environment, and is particularly severe if use is made of a
computer which relies on data in a fast memory of moderate
size to achieve efficient memory access. For this reason and
because of the desirability of decreasing the demands of the
collision step on memory, the usefulness of this approach
may be crucially dependent on further efforts to devise new
algorithms based either on Boolean logic or on repeated
applications of smaller lookup tables.
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Three-dimensional projection of the face-centered hypercube
(FCHC) used for the pseudo-4D algorithm. The bold arrows
represent four-dimensional links (fourth component = *1); the light
arrows represent three-dimensional links (fourth component = 0).
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Concluding remarks

The lattice-gas method provides a means for constructing a
family of “synthetic” fluids on a computer and studying the
passage from the microscopic to the hydrodynamic domain
[30].

From an application viewpoint, it is too early to identify
areas to which it will most effectively apply. Its
hydrodynamic applications are limited to those associated
with moderate Reynolds numbers, both in two and three
dimensions. Two applications are promising: application to
the study of moving boundaries between different media,
such as those occurring in combustion or chemical reactions
[31]; and application to the study of Brownian motion in
suspensions [32] having flows with moderate Reynolds
numbers and for which the simulations can take full
advantage of the intrinsic noise of the lattice gas. However,
study of the latter will require an improved understanding of
associated solid-boundary phenomena.
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