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This paper describes a set of optimized
subroutines for use in solving sparse,
symmetric, positive definite linear systems of
equations using iterative algorithms. The set has
been included in the Engineering and Scientific
Subroutine Library (ESSL) for the IBM 3090
Vector Facility (VF). The subroutines are based
on the conjugate-gradient method,
preconditioned by the diagonal or by an
incomplete factorization. They make use of
storage representations of sparse matrices that
are optimal for vector implementation. The ESSL
vector subroutines are up to six times faster
than a scalar implementation of the same
algorithm.

Introduction

In the solution of large simulation problems, such as those
encountered in fluid dynamics or structural analysis, the
need often arises for the numerical solution of partial
differential equations by finite-difference or finite-element
methods. This, in turn, requires the solution of many very
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large linear systems of equations. In a typical problem there
may be tens of thousands of unknowns, but only five to
thirty nonzero coefficients per row of the associated “sparse”
matrix, depending on the discretization technique used.

Systems of linear equations can be solved either by direct
or by iterative algorithms. Direct methods that take
advantage of the sparsity structure of the matrix are
frequently used for problems of small to moderate size [1, 2].
However, direct methods are difficult to implement
efficiently on vector processors because of the short length of
the vectors involved in the computation. Iterative methods
have proven very successful in the solution of large
problems, because they generally require less storage and
fewer arithmetic operations than direct sparse methods.
Furthermore, iterative algorithms can be efficiently
implemented on modern vector processors.

Release 2 of the Engineering and Scientific Subroutine
Library (ESSL) includes two subroutines for the solution of
large sparse, symmetric, positive definite linear systems of
equations using the preconditioned conjugate gradient [3-5];
the subroutines are optimized for use with the IBM 3090 VF
[6, 7). The sparse-matrix vector product is one of the basic
computational kernels in conjugate-gradient and other
iterative methods. For matrices with a general sparsity
pattern, this operation can be vectorized using gather-scatter
vector operations if the matrix is stored in a suitable format
[8]. Preconditioning by an incomplete Cholesky factorization
[9-11] increases the computational cost of each conjugate-
gradient iteration, but it generally accelerates the rate of
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convergence, so that the global number of floating-point
operations of the conjugate gradient preconditioned by an
incomplete Cholesky factorization (ICCG) is less than that of
the conjugate gradient preconditioned by the diagonal
(DCG). Both preconditioning strategies are implemented in
the ESSL subroutines.

In this paper we compare the efficiency of the ESSL
iterative sparse-matrix subroutines to that of JCG, the
FORTRAN implementation of the conjugate gradient
preconditioned by the diagonal in ITPACK. ITPACK
[12, 13] is a software library developed at the University of
Texas at Austin, distributed as FORTRAN source code,
which contains several adaptive accelerated iterative
algorithms. In the comparisons both the scalar and vector
versions of JCG were used.

The first test problem used to compare the performance
was a linear system of 64000 equations arising from the
discretization of an elliptic partial differential equation with
mixed-type boundary conditions, on a three-dimensional
40 x 40 X 40 regular grid. The second test problem was a
linear system of 109 375 equations arising from the
discretization of the diffusion equation with mixed-type
boundary conditions, on a three-dimensional irregular grid.
On the IBM 3090 VF, by vectorizing ICCG we obtained
speedups of a factor of two over its scalar version, whereas
by vectorizing DCG we obtained speedups by factors of four
to six. As a consequence, on some problems the vector
version of DCG is more efficient than that of ICCG, even
though it requires a larger number of floating-point
operations.

Many applications require the solution of linear systems
with the same coefficient matrix and different right-hand
sides. When using the ESSL subroutines for ICCG, it is
possible to take advantage of this because the preconditioner
needs to be computed only once and can be used again for
all the right-hand sides. The cost of computing the
incomplete factorization is in general not very large, and is
equivalent to that of a few iterations.

When an implicit time-differencing scheme is used to
solve an initial-value partial differential equation, it is
necessary to solve a sparse linear system of equations at each
discrete time interval. If an iterative method is used and the
solution vectors at successive time intervals are close to one
another, the rate of convergence may be accelerated by using
the solution at one interval as the initial approximation for
the solution at the next interval.

Conjugate-gradient algorithm

The conjugate-gradient algorithm is an iterative algorithm
for use in solving symmetric, positive definite systems of
linear algebraic equations. The algorithm was originally
proposed in 1952 by Hestenes and Stiefel [3]; it is discussed
in [4, 5, 14]. It is often used in production-type codes for the
solution of large sparse systems. In contrast to other iterative
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algorithms, such as successive over-relaxation (SOR), it
requires no information on the value of extreme eigenvalues
in order to estimate the optimal acceleration parameters.
The algorithm can be accelerated effectively by various
preconditioning strategies. (Preconditioning is essentially the
transformation to an equivalent linear system with a lower
condition number [10, 11, 15-18].)

Given A4, a symmetric and positive definite matrix of order
n, and a vector y, the preconditioned conjugate-gradient
algorithm is an iterative method for solving the system of
linear equations

Ax =y. (1)

Given a suitable nonsingular preconditioning matrix M ~ A4
and an initial approximation to the solution x,, the method
is given by the following: setr, =y — AX,, and p, = M —11_0;

dofori=0,1,2,--- until convergence
o, = (r, M"'r)/(p,, 4p), (22)
Xy = X; + a;p;, (2b)
I =T — aAp;, (2¢c)
Bivr = (0, M 'r, )/, M), (2d)
Py = M7+ BBy, (2e)
end do.

In steps (2a), (2d), and (2e) it is necessary to solve a linear
system to compute M ~'r. In an actual computer
implementation, the solution is computed once per iteration
and saved in a temporary array.

In exact arithmetic the conjugate-gradient algorithm
converges to the solution in at most # iteration steps. This is
not true in approximated arithmetic. The process may
actually diverge for very ill-conditioned problems because of
roundoff errors. It is essential to find a good preconditioning
matrix M ~ A to accelerate the convergence rate of the basic
conjugate-gradient algorithm, particularly if the condition
number of the matrix is large.

The problem is to find M so that the process converges in
few iterations, and so that the cost of each iteration is not
too large in order to reduce the global computational cost of
the algorithm. This means that A/ must be easily invertible
and must not require too much computer storage.

& Preconditioning by the diagonal

Here the preconditioning matrix is the main diagonal D, of
the matrix 4. The resulting algorithm is designated as the
Jacobi conjugate gradient, because it is equivalent to a
polynomial acceleration of the basic Jacobi method [4]. The
computation of D™'r need not be carried out within the
iteration loop. The algorithm may be simplified as follows:
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1. Scale the matrix problem by computing 4 = D},"?4D ",
§ = D;"y; % = D'’x. The scaled matrix A has unit
diagonal.

2. Apply the iterative process (2) to the system: A% = ¥,
where M = I, the unit matrix.

—1/2
.

3. Scale back the solution: x = D,

e Preconditioning by an incomplete factorization

In this case, the preconditioning matrix M = LDL" is an
incomplete factorization of 4. Here L is the lower
incomplete factor, with unit diagonal, and D is a diagonal
matrix. Many alternative factorizations are possible. Usually
L is computed with a modified Cholesky algorithm, forcing
L to have the same sparsity pattern as 4:

dofori=1,2,---,n
doforj=1,2,---,i-1
if 4;=0, then L, =0,

j=1

Ai,j - kz Li,ij,ka
=1

elseif 4, # 0, then L, = o

J

end do.

Di=4,,- z L?.k D,

k=1

end do.

Two sparse triangular systems must be solved at each
iteration to compute M'r, = LDLTr,.. If L has the same
sparsity pattern as A, this requires approximately the same
number of arithmetic operations as the sparse-matrix vector
multiplication. Therefore, the cost of one iteration is
considerably higher than that of one iteration of DCG.
However, the global number of arithmetic operations for the
algorithm is generally lower, because the higher cost per
iteration is more than offset by the faster convergence rate of
the algorithm.

o Stopping criteria

In exact arithmetic the iterative procedure converges to the
exact solution in a finite number of steps. In practice, the
iteration procedure is terminated when the approximate
solution x is close to the exact solution:

||X—)-(||2
—_—

<o 3)
T

where ¢ is the desired relative accuracy. Because 4 is a
symmetric, positive definite matrix,
- —1_
Ix—xl, W4 i,
<<

=— = A4
%1,

T,

- 3
%1,

C))

I,
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where F = y — Ax is the residual vector and )\M(A_') is the
maximum eigenvalue of 4~'. AM(A_I) = 1/A,(4), the
minimum eigenvalue of the matrix 4. Combining (3) and
(4), we use

I,

— o, 5)
VETR

as a criterion to estimate the error in the solution to
terminate the iteration procedure. If no information on the
minimum eigenvalue is available, A (4) can be estimated
adaptively in the iteration procedure at each iteration step as
a function of the coefficients «; and g, [4, 5]. One obtains

a monotonically decreasing sequence )\fn that converges to

. the minimum eigenvalue A (4). This adaptive computation

is not costly.

Computer implementation

For each iteration step, a computer implementation of the
conjugate-gradient algorithm requires three vector updates,
two inner products, and one sparse-matrix vector product. In
addition, preconditioning by an incomplete factorization
requires the solution of two sparse triangular systems, which
requires approximately the same number of floating-point
operations as the sparse-matrix vector product. The first
three kernels are efficiently vectorizable. The sparse-matrix
vector product is vectorizable using indirect addressing
vector instructions if the sparse matrix is stored in a suitable
form. The solution of the sparse triangular systems is not
vectorizable unless the sparse matrix has a special regular
structure [19-23].

There are several ways to represent a sparse matrix in a
computer; here we describe three of them. The row-wise
representation of a sparse matrix is used in several software
packages for scalar processors (ITPACK [12], SLMATH
[24]), and is discussed, for example, by Gustavson [25]; this
method is not used in Release 2 of ESSL. A second method,
the compressed-matrix representation, has been adopted in
ITPACKYV [13], in ELLPACK [26], and in the iterative
sparse-matrix routines in Release 2 of ESSL [27]. This
storage mode is efficient on a vector processor if each row of
the matrix has approximately the same number of nonzero
elements. This is true in many sparse matrices that arise
from the finite-element or finite-difference discretization of
partial differential equations.

For structured sparse matrices, it is possible to use the
compressed-diagonal storage mode. This scheme is the most
rigid, since it can represent efficiently only matrices with a
regular diagonal structure. Using this scheme, the sparse-
matrix vector product operates on contiguous memory
locations, and it is vectorizable without using indirect-
addressing-type operations. The scheme is similar to that
described by Madsen et al. [28].

In [8] the performance on the 3090 VF of a vector
implementation of the sparse-matrix vector product using 127
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Performance of the sparse-matrix vector product vs. matrix size. The
performance of a scalar implementation based on the representation
by rows (solid curve) is compared to the performance of two vector
implementations based on the compressed-matrix (dotted curve) and
the compressed-diagonal (dashed curve) storage modes. The test
matrix contained between 15 and 20 nonzero elements per row,
arranged along its diagonals.

these storage representations was compared to that of a
scalar code based on the row-wise representation of a sparse
matrix, which is the most efficient on a scalar processor. The
following was found:

e A speedup by a factor of two to four could be achieved for
matrices stored in the compressed-matrix storage mode,
where gather-scatter vector operations are needed to access
the computer storage.

® A speedup by a factor of four to six could be achieved for
matrices with diagonal structure stored in the compressed-
diagonal mode.

In Figure 1 we compare the performance of the matrix
vector product using these three different storage techniques
for a sparse matrix having between 15 and 20 nonzero
elements per row.

Mehlem [20] described another data structure suitable for
processing sparse matrices on vector computers. This scheme
is a generalization of the diagonal representation, but is
more rigid than the compressed-matrix representation. For
general matrices it requires about the same amount of
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storage as the compressed-matrix storage mode, and on
the 3090 VF it yields approximately the same performance
for most problems. For symmetric matrices, if the

scheme is applicable, it is possible to use only half

the storage. When the matrices are very large and do not
fit the core memory, the smaller memory requirements for
symmetric problems permit a higher performance than

use of the compressed-matrix storage because paging of
data to secondary devices is reduced.

o Storage by rows

Given a general sparse m X n matrix A with ne nonzero
elements, the matrix is represented by FORTRAN arrays:
a real array AR and two integer arrays JA and IA set up as
follows:

o The real array AR of length ne contains the nonzero
elements of A4, stored by row in contiguous memory
locations.

e The integer array JA of length »ne contains the column
numbers of each nonzero element in 4 stored in the
corresponding elements of AR.

e The integer array IA of length m + 1 contains pointers to
the starting position of each row of 4 in arrays AR and JA.
That is, each element IA(¢) points to the beginning of row i
in AR and JA. Row i contains IA(i + 1) — IA({) elements.
In particular, IA(1) =1 and IA(m + 1) = ne + 1.

Within a row, the elements need not be ordered. The

example in Figure 2 illustrates this storage scheme on a

6 X 6 sparse matrix which contains 18 nonzero entries.
The following FORTRAN program performs the matrix

vector product using this storage scheme:

DO 20 I=1,M
Y() = 0.
DO 10 J = 1A(), IA(I+1)—1
Y(l) = Y(l) + X(JAW))*AR(J)
10 CONTINUE
20 CONTINUE

Arrays AR and JA are accessed in an orderly fashion. Array
X, on the contrary, is accessed randomly with addresses
specified by JA.

If the matrix is symmetric, only half of the matrix
coefficients need to be stored. Usually the upper triangle is
stored. In this case, the sparse-matrix vector product is
performed with random accesses to both the X and Y arrays.
Thus, although only half of the memory is required to
represent the matrix, the performance of the sparse
symmetric-matrix vector product is comparable to that of
the general case. If, however, the matrix does not fit in the
core memory, the saving in memory can be crucial in
minimizing paging.
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Storage by rows of a sparse matrix.

In this algorithm Y (i) is computed by performing an inner
product of the nonzero elements in the ith row by the
corresponding elements of the X array. On a scalar
processor, the matrix vector product using the row-wise
representation is efficient because only the nonzero elements
of A are processed. For this reason, the row-wise
representation has been used in several sparse-matrix
software packages for scalar processors. On a vector
processor, by using this matrix representation, the sparse-
matrix vector product can be vectorized with the use of
indirect-addressing-type operations to collect the elements of
the X array involved in each inner product. The vector code
will, however, be inefficient because the vectors involved in
the operations are very short. On the 3090 VF, when there
are 15 or fewer elements per row, the scalar version of this
algorithm is faster than the vector version because of the
start-up time for vector instructions.
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e Compressed-matrix storage mode

Given a general sparse m X n matrix 4 having a maximum
of nz nonzero elements in each row, the matrix is
represented using a real array AC and an integer array KA as
follows:

e The real array AC contains m rows and nz columns: Each
row of AC contains the nonzero elements of the
corresponding row of the matrix A. If a row of 4 has fewer
than »nz nonzero elements, the corresponding row in AC is
padded with zeros. The elements within a row can be
stored in any order.

The integer array KA contains m rows and 7z columns; it
contains the column numbers of the nonzero elements

of matrix A that are stored in the corresponding

positions in array AC. If the corresponding element in AC
is zero, any index in the range [ - - - n may be used.

GIUSEPPE RADICATI DI BROZOLO AND MARCELLO VITALETTI

129




130

Sparse matrix in compressed-matrix storage mode.

Unless all the rows of the sparse matrix have
approximately the same number of nonzero elements, this
storage scheme will require a large amount of storage. Figure
3 illustrates the scheme on the same matrix used in the
previous example. In this case m = n = 6 and nz = 4. An
asterisk (*) in the array KA indicates that any valid index
may be used because the value of the corresponding element
in the array AC is zero.

The following is an example of a FORTRAN program
which might be used to perform the matrix vector product
using this storage scheme:

DO 10 I=1,M
Y() = 0.
10 CONTINUE
DO 30 J=1,NZ
DO 20 I=1,M
Y() = Y(I) + X(KA(,J)*AC(,J)
20  CONTINUE
30 CONTINUE

Arrays AC and KA are accessed in an orderly fashion. Array
X, on the contrary, is accessed randomly with addresses
specified by KA. The computation of Y is achieved by
summing #z vectors of length m that are the result of an
element-by-element product of two vectors. This algorithm
is the equivalent for sparse matrices of the matrix vector
multiplication algorithm for full matrices based on SAXPY
[29].

On a scalar processor, use of this algorithm does not resuit
in optimal performance because, if some rows have less than
nz elements, it will result in the execution of a certain
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number of multiplications by zero. On a vector processor,
when this representation is used, the matrix vector
multiplication vectorizes by using indirect-addressing-type
operations to collect the elements of array X involved in
each element-by-element product. In this case the vector
operations have length m. Moreover, the result of one
element-by-element vector multiplication may be kept in a
vector register and added directly to the result of the
successive multiplication, thus saving loads and stores to
memory.

On the 3090 VF, the matrix vector product using this
storage scheme may be implemented using the following
vector instructions to perform the gather and the nz
element-by-element vector products:

o VL (load integer vector): Load pointer integers from array
KA.

o VLID (load direct): Load elements of array X using the
pointer integers (gather).

® VMAD (multiply and add): Perform element-by-element
vector product of elements of X and a column of AC,
which is referenced directly from memory, and sum to
previous result. This instruction executes a floating-point
multiplication and addition in each machine cycle.

After the nz element-by-element vector products have
been computed, the result is contained in a vector register
and must be stored with a vector instruction. In this
algorithm, the vector hardware is used efficiently because all
of the vector instructions are executed on long vectors, and
the use of data in the vector register is optimized. Using long
vectors minimizes the impact of the start-up time.
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Sparse matrix in compressed-diagonal storage mode.

e Compressed-diagonal storage mode

Let 4 be a sparse # X n matrix with nd diagonals with
nonzero entries. The diagonal number k = j — i of element
a;; is a constant along each diagonal of the matrix; it is
positive for the superdiagonals and negative for the
subdiagonals. The matrix is stored using a rectangular array
AD, and an array LA of pointers:

o AD is a real array, with » rows and nd columns. AD
contains the diagonals of 4 that have at least one nonzero
entry. These diagonals, including all the zeros, are stored
in a column of AD in # contiguous memory locations. The
superdiagonals are padded to a length » with k trailing
zeros, and the subdiagonals are padded with | k | leading
zeros, where k is the diagonal number. Each nonzero
element a;; of the original matrix A is stored in row i of
array AD.

e LA is an integer array of length nd. LA({) is the diagonal
number of the diagonal stored in column i of AD.

This matrix representation requires that entire diagonals be
stored, and requires a large amount of memory if the
nonzero entries of 4 are not concentrated along a few
diagonals. If the matrix is symmetric, only the main diagonal
and one of each couple of identical diagonals k and —k need
to be stored in array AD.

Figure 4 illustrates this storage scheme on the same matrix
used in Figure 2. In this case n = 6 and nd = 5.
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The following is a FORTRAN program to perform the
matrix vector product using this storage scheme:

DO101=1N
Y(l) = 0.
10 CONTINUE
DO30L=1ND
K = LA(L)
N1 = MAX(1,1-K)
N2 = MIN(N,N—K)
DO 20 | = N1,N2
Y() = Y(I) + X(K+1)*AD(l,L)
20  CONTINUE
30 CONTINUE

In this program, Y is computed by summing nd vectors of
length 7 that are the result of an element-by-element product
of two vectors. All of the arrays involved in the operations
are stored in contiguous memory locations, while in the
algorithm for the compressed-matrix representation it is
necessary to gather elements of array X from noncontiguous
memory locations.

This storage scheme is efficient on both scalar and vector
processors, because the matrix vector product does not
require random accesses to the elements of array X and may
therefore be implemented with fewer instructions;
furthermore, the local memory is used more efficiently. The
scheme is efficient provided the matrix has a diagonal structure;
otherwise the product would require a large number of
multiplications by zero.
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Table 1 Performance of DSMCG and DSDCG using diagonal
preconditioning (64 000 equations).

Subroutine Iterations CPU seconds Mflops Speedup
JCG (ITPACK) 231 74 5 1
JCG (ITPACKYV) 231 28 12 2.6
DSMCG 231 19 20 4
DSDCG 231 13 30 6

Table 2 Performance of DSMCG and DSDCG preconditioned
by an incomplete factorization (64000 equations).

Subroutine  Iterations CPU seconds Mflops Speedup
ICCG (scalar) 74 46 4 1
DSMCG 74 20 9 2
DSDCG 74 18 9 2

The matrix vector product using this storage scheme may
be implemented on the 3090 VF using the following vector
instruction to compute the nd element-by-element vector
products:

e VLD (load): Load elements of array X. Different
contiguous segments of X are involved in each element-by-
element vector product.

o VMAD (multiply and add): Perform element-by-element
vector product of the segment of X and a column of AD,
which is referenced directly from memory, and sum to
result of previous element-by-element vector product.

In this case the vector hardware is used efficiently because all
the vector operations are executed on long vectors that lie in
contiguous memory locations.

o Sparse-matrix subroutines

Release 2 of ESSL includes two routines to compute the
sparse-matrix vector product, and two routines for solving a
system of linear equations using the preconditioned
conjugate-gradient algorithm:

e DSMMX: To compute the matrix vector product for a
sparse matrix in compressed-matrix storage mode.

¢ DSDMX: To compute the matrix vector product for a
sparse matrix in compressed-diagonal storage mode.

e DSMCG: To solve a symmetric, positive definite system
of linear equations, using the conjugate-gradient method,
for a sparse matrix stored in compressed-matrix storage
mode. Depending on the value of a parameter, either the
conjugate gradient preconditioned by the diagonal or the
conjugate gradient preconditioned by an incomplete
factorization is used.
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e DSDCG: To solve a symmetric, positive definite system of
linear equations, using the conjugate-gradient method, for
a sparse matrix stored in compressed-diagonal storage
mode. Depending on the value of a parameter, either the
conjugate gradient preconditioned by the diagonal or the
conjugate gradient preconditioned by an incomplete
factorization is used.

o DSMTM: To transpose a sparse matrix stored in
compressed-matrix storage mode.

e DSRSD: To convert a sparse matrix from row-wise
storage mode to compressed-matrix storage mode.

Performance of the conjugate-gradient
subroutines

In this section we discuss the performance of the conjugate-
gradient subroutines DSMCG and DSDCG. Our aim is to
discuss how the representation used to store a sparse matrix
affects the performance of the conjugate-gradient algorithm
on a vector processor. The CPU time needed to compute the
solution with subroutines DSMCG and DSDCG is
compared to that of the scalar and vectorized versions of
JCG, the FORTRAN implementation of the conjugate
gradient preconditioned by the diagonal from the ITPACK-
2C and ITPACKY libraries, and ICCG, a scalar FORTRAN
implementation of the conjugate gradient preconditioned by
an incomplete factorization.

The JCG subroutine in ITPACK-2C is based on the row-
wise storage mode, which is the most efficient storage mode
for computing the sparse-matrix vector product in scalar
mode, while the JCG subroutine in ITPACKYV is based on
the compressed-matrix representation, and the sparse-matrix
vector product is vectorized by the FORTRAN compiler.
ITPACK does not contain an implementation of the
conjugate gradient preconditioned by an incomplete
factorization. The FORTRAN subroutines were compiled
with the IBM VS FORTRAN Version 2 compiler at the
highest level of optimization.

e Test problem 1: An elliptic, three-dimensional, partial
differential equation

Consider first the system of linear equations generated by the
numerical solution of the following self-adjoint elliptic
partial differential equation on the unit cube

U + 2u, + 3u,=0 (6)

with mixed-type boundary conditions. This is one of the test
problems provided with ITPACK to test the iterative
algorithms; it is described in [12].

Equation (6) is discretized using a three-dimensional
regular mesh. Using the standard seven-point finite-
difference operator, this problem gives rise to a system of
order N = l/h3 (h is the grid spacing). Each point has six
nearest neighbors, and hence each row of the coefficient
matrix has at most seven nonzero elements, which are
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arranged along seven diagonals. This allows the matrix to be
stored efficiently in both the compressed-matrix and the
compressed-diagonal storage modes. In both storage
representations almost no zeros need to be stored; using
either representation, the matrix vector product can be
performed efficiently.

We considered the linear system of 64000 equations
arising from the discretization of Equation (6) on a mesh of
40 X 40 x 40 gridpoints. Sparse-matrix problems of this size
require between 10 and 30 megabytes of storage depending
on the algorithm, and therefore fit in the core memory of the
3090. No paging to secondary storage devices is necessary,
and as a consequence the CPU time is equivalent to the
elapsed time in a dedicated environment.

If the preconditioned path of the DSMCG and DSDCG
subroutines is chosen, an incomplete Cholesky factorization
must be computed. The factorization can be used in the
solution of other linear systems with the same coefficient
matrix and a different right-hand side. The cost of the
factorization in terms of iterations is largely independent of
the size of the problem. Table 1 compares the performance
of the different scalar and vector implementations of DCG.
Table 2 compares the performance of the different scalar and
vector implementations of ICCG. The time includes two
seconds spent in computing the incomplete factorization.
The measures were obtained on an IBM 3090 with a cycle
time of 18.5 nanoseconds.

o Test problem 2: Three-dimensional diffusion equation
Consider the system of linear equations generated by the
numerical solution of the diffusion equation over the unit
cube with a corner missing (Figure 5),

9F = V(DVF), 7)
at

where D and F are scalar fields. Mixed-type boundary
conditions were chosen. This test is a three-dimensional
generalization of the model test problem proposed by
Kershaw in [10]. We solve the linear system generated by the
initial value problem at a given time step using implicit time
differencing.

Each row of the sparse coefficients matrix has at most
seven nonzero elements. Because the mesh is not regular, the
nonzero coeflicients are no longer arranged along seven
diagonals. The nonzero coefficients result in the sparsity
pattern shown in Figure 6, which can be stored efficiently in
compressed-matrix storage mode but not in compressed-
diagonal storage mode. We considered the linear system of
109375 equations arising from the discretization of Equation
(7) on a mesh of 50 X 50 x 50 gridpoints. The nonzero
coefficients are arranged along 59 diagonals, which would
make the use of the compressed-diagonal storage mode
inefficient. This problem fits in the core memory of the
3090. Table 3 compares the performances of the different
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Irregular computational domain over which the diffusion equation
was solved.

Typical sparsity pattern generated using a seven-point difference
scheme over the computational domain in Figure 5.

scalar and vector implementatfons of DCG, while Table 4
compares the performances of the different scalar and vector
implementations of ICCG. The time includes three seconds
to compute the incomplete factorization.
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Table 3 Performance of DSMCG using diagonal
preconditioning (109375 equations).

Subroutine Iterations  CPU seconds Mflops Speedup
JCG (ITPACK) 85 46 5 1
JCG (ITPACKYV) 85 33 12 2.6
DSMCG 85 12 19 4
DSDCG Not applicable

Table 4 Performance of DSMCG preconditioned by an
incomplete factorization (109 375 equations).

Subroutine Tterations CPU seconds Mflops Speedup
ICCG (scalar) 30 30 4 1
DSMCG 30 16 9 2
DSDCG Not applicabie

Table 5 Performance of DSMCG with different types of
preconditioning, for solving system of 1473 equations involving use
of the matrix BCSSTM12.

Subroutine Iterations  CPU seconds  Speedup
JCG (ITPACK) 164 1.62 1
DSMCG (diagonal) 164 0.75 2.1
DSMCG (Cholesky) 11 0.25 6.5

o Test problem 3: Harwell-Boeing sparse-matrix collection
Dulff et al. [30] have described a set of sparse test matrices
from a wide variety of scientific and engineering disciplines,
which is offered as a standard benchmark for comparative
studies of algorithms. We have used several of the symmetric
matrices to test the performance, accuracy, and robustness of
the ESSL sparse-matrix subroutines. We summarize briefly
the results we have obtained in solving a linear system of
equations involving use of the matrix BCSSTM 12, which are
rather typical of the results we obtained with this set of test
matrices. Table 5 compares the performance of the ITPACK
scalar subroutine JCG with diagonal preconditioning and
DSMCG with two different types of preconditioning. The
matrix BCSSTM 12 has order 1473, 10566 nonzero
elements, and a maximum of 22 nonzero elements per row.
When the compressed-matrix storage is used, 40% of the
matrix entries in the sparse representation are zero. Both the
subroutine JCG and the subroutine DSMCG with diagonal
preconditioning require 164 iterations to reach convergence.
The speedup of the vectorized version is 2.15, even though
40% of the arithmetic operations in the sparse-matrix vector
product involve zeros.

The subroutine DSMCG preconditioned by an incomplete
factorization requires only 11 iterations to converge; it is
three times faster, in this experiment, than DSMCG
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preconditioned by the diagonal. These figures are typical of
other problems in the Harwell-Boeing sparse-matrix
collection.

Conclusions

With the use of the scalar FORTRAN codes,
preconditioning by an incomplete factorization generally
yields a better performance than preconditioning by the
diagonal. The greater cost per iteration is more than offset by
the large reduction in the number of iterations. Both scalar
algorithms perform at roughly five Mflops, and both make
good use of the IBM 3090, even though its memory is
accessed randomly.

Using the conjugate-gradient vector subroutines in ESSL
results in a significant speedup. The vectorized conjugate
gradient preconditioned by the diagonal takes full advantage
of the vector features of the IBM 3090 VF. The subroutines
perform at between 20 and 30 Mflops depending on the
sparse-matrix representation. On the contrary, only about
half of the operations in the conjugate gradient
preconditioned by an incomplete factorization are
vectorizable. The solution of the two triangular systems is a
recursive algorithm which accounts for almost half of the
operations required. As a consequence, the subroutines
make only a moderate use of the vector feature, as the
9-Mflops performance indicates. Whether or not
preconditioning by an incomplete factorization will improve
the overall performance of the conjugate-gradient algorithm
in a vector environment depends on the problem under
consideration. For the first two problems we described,
which had a moderate condition number, the use of the
conjugate gradient preconditioned by the diagonal yielded a
higher performance than the use of the conjugate gradient
preconditioned by an incomplete factorization—although
the total number of floating-point operations of the
preconditioned algorithm was smaller. On the contrary,
other examples, such as our third test problem, indicated
that for ill-conditioned problems, preconditioning
significantly improves overall performance in a vector as
well as in a scalar environment.
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