
Conjugate- 
gradient 
subroutines 
for the IBM 3090 
Vector Facility 

by Giuseppe  Radicati  di Brozolo 
Marcello  Vitaletti 

This  paper  describes  a  set of optimized 
subroutines  for  use  in  solving  sparse, 
symmetric,  positive  definite  linear  systems of 
equations  using iterative algorithms.  The  set  has 
been included  in  the  Engineering  and  Scientific 
Subroutine  Library  (ESSL)  for  the IBM 3090 
Vector  Facility  (VF).  The  subroutines are based 
on the  conjugate-gradient  method, 
preconditioned by the  diagonal or  by  an 
incomplete  factorization.  They  make  use of 
storage  representations of sparse  matrices  that 
are optimal  for  vector  implementation.  The  ESSL 
vector  subroutines are up  to  six  times  faster 
than  a  scalar  implementation of the  same 
algorithm. 

Introduction 
In the solution of large simulation problems, such as those 
encountered in fluid dynamics or structural analysis, the 
need  often  arises for the numerical solution of partial 
differential equations by finite-difference or finite-element 
methods. This, in  turn, requires the solution of many very 
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large linear systems of equations. In a typical  problem there 
may be tens of thousands of unknowns, but only five to 
thirty nonzero coefficients  per  row  of the associated “sparse” 
matrix, depending on the discretization technique used. 

Systems of linear equations can be solved either by direct 
or by iterative algorithms. Direct methods that take 
advantage of the sparsity structure of the matrix are 
frequently used for problems of small to moderate size [ 1,2]. 
However, direct methods are difficult to implement 
efficiently on vector  processors  because of the short length of 
the vectors  involved in the computation. Iterative methods 
have  proven  very  successful in the solution of  large 
problems, because they generally require less  storage and 
fewer arithmetic operations than direct  sparse methods. 
Furthermore, iterative algorithms can  be  efficiently 
implemented on modem vector  processors. 

Release 2 of the Engineering and Scientific Subroutine 
Library (ESSL) includes two subroutines for the solution of 
large  sparse, symmetric, positive  definite linear systems of 
equations using the preconditioned conjugate gradient [3-51; 
the subroutines are optimized for  use  with the IBM 3090 VF 
[6,7]. The sparse-matrix  vector product is one of the basic 
computational kernels in conjugate-gradient and other 
iterative methods. For matrices with a general  sparsity 
pattern, this operation can be vectorized  using  gather-scatter 
vector operations if the matrix is  stored in a suitable format 
[SI. Preconditioning by an incomplete Cholesky factorization 
[9-1 I] increases the computational cost of each  conjugate- 
gradient iteration, but it generally  accelerates the rate of 
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convergence, so that the global number of floating-point 
operations of the conjugate gradient preconditioned by an 
incomplete Cholesky factorization (ICCG)  is  less than that of 
the conjugate gradient preconditioned by the diagonal 
(DCG). Both preconditioning strategies are implemented in 
the ESSL subroutines. 

In this paper we compare the efficiency  of the ESSL 
iterative sparse-matrix subroutines to that of JCG, the 
FORTRAN implementation of the conjugate gradient 
preconditioned by the diagonal in ITPACK.  ITPACK 
[ 12,  131  is a software  library  developed at the University of 
Texas at Austin, distributed as FORTRAN source code, 
which contains several adaptive accelerated iterative 
algorithms.  In the comparisons both the scalar and vector 
versions of JCG were  used. 

The first test problem used to compare the performance 
was a linear system  of 64 000 equations arising from the 
discretization of an elliptic partial differential equation with 
mixed-type boundary conditions, on a three-dimensional 
40 X 40 X 40  regular  grid. The second test problem was a 
linear system of 109 375 equations arising from the 
discretization of the diffusion equation with  mixed-type 
boundary conditions, on a three-dimensional irregular grid. 
On the IBM 3090  VF, by vectorizing  ICCG we obtained 
speedups of a factor of  two  over its scalar  version,  whereas 
by vectorizing DCG we obtained speedups by factors of four 
to six.  As a consequence, on some problems the vector 
version of DCG is more efficient than that of ICCG, even 
though it requires a larger number of floating-point 
operations. 

with the same coefficient matrix and different right-hand 
sides.  When  using the ESSL subroutines for ICCG, it is 
possible to take advantage of this because the preconditioner 
needs to be computed only once and can  be  used  again  for 
all the right-hand sides. The cost of computing the 
incomplete factorization is in general not very  large, and is 
equivalent to that of a few iterations. 

When an implicit time-differencing  scheme is  used to 
solve an initial-value partial differential equation, it is 
necessary to solve a sparse linear system  of equations at each 
discrete time interval. If an iterative method is  used and the 
solution vectors at successive time intervals are close to one 
another, the rate of convergence  may be accelerated by using 
the solution at one interval as the initial approximation for 
the solution at the next interval. 

Many applications require the solution of linear systems 

Conjugate-gradient  algorithm 
The conjugate-gradient algorithm is an iterative algorithm 
for use in solving symmetric, positive  definite  systems of 
linear algebraic equations. The algorithm was  originally 
proposed in 1952 by Hestenes and Stiefel[3]; it is  discussed 
in [4, 5,  141. It is  often  used in production-type codes  for the 
solution of  large sparse  systems. In contrast to other iterative 126 
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algorithms,  such as successive  over-relaxation (SOR), it 
requires no information on the value of extreme eigenvalues 
in order to estimate the optimal acceleration parameters. 
The algorithm can be  accelerated  effectively by various 
preconditioning strategies. (Preconditioning is essentially the 
transformation to an equivalent linear system  with a lower 
condition number [ 10, 1 1, 15- 181.) 

n, and a vector y, the preconditioned conjugate-gradient 
algorithm is an iterative method for  solving the system  of 
linear equations 

Ax = y. (1) 

Given a suitable nonsingular preconditioning matrix M - A 
and an initial approximation to the solution x,,, the method 
is given  by the following:  set ro = y - Ax,,, and po = M-lro; 

Given A, a symmetric and positive  definite matrix of order 

In  steps (2a), (2d), and (2e) it is  necessary to solve a linear 
system to compute ~ l r .  In an actual computer 
implementation, the solution is computed once per iteration 
and saved in a temporary array. 

In  exact arithmetic the conjugate-gradient algorithm 
converges to the solution in at most n iteration steps. This is 
not true in approximated arithmetic. The process  may 
actually  diverge for very ill-conditioned problems because of 
roundoff errors. It is  essential to find a good preconditioning 
matrix M - A to accelerate the convergence rate of the basic 
conjugate-gradient algorithm, particularly if the condition 
number of the matrix is  large. 

The problem is to find M so that the process  converges in 
few iterations, and so that the cost of each iteration is not 
too large in order to reduce the global computational cost  of 
the algorithm. This means that M must be  easily invertible 
and must not require too much computer storage. 

Preconditioning by the diagonal 
Here the preconditioning matrix is the main diagonal D, of 
the matrix A.  The resulting algorithm is designated as the 
Jacobi conjugate gradient, because it is equivalent to a 
polynomial acceleration of the basic Jacobi method [4]. The 
computation of D"r need not be  carried out within the 
iteration loop. The algorithm may  be  simplified  as  follows: 
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1. Scale the matrix problem by computing2 = D,1'2AD,''2; 
i = Di112y; % = D y x .  The scaled matrix k has unit 
diagonal. 

2.  Apply the iterative process (2) to the system: 2% = i, 
where M = Z, the unit matrix. 

3. Scale  back the solution: x = 

Preconditioning by an incomplete factorization 
In this case, the preconditioning matrix M = LDLT is an 
incomplete factorization of A. Here L is the lower 
incomplete factor, with unit diagonal, and D is a diagonal 
matrix. Many alternative factorizations are possible.  Usually 
L is computed with a modified  Cholesky algorithm, forcing 
L to have the same sparsity pattern as A : 

d o f o r i =   1 , 2 , . . . , n  

dofor j=   1 ,2 ; . . , i -  1 

if A,, = 0, then L,, = 0, 
I -  I 

A, , j  - 2 LirkLj,kDk 

else  if Ai, # 0, then L, = 
k= I 

0, 

end do. 

Di = Ai,i - 2 L2 D r,k k 
k= I 

end do. 

Two sparse triangular systems must be solved at each 
iteration to compute M-lri = LDLTri. If L has the same 
sparsity pattern as A, this requires approximately the same 
number of arithmetic operations as the sparse-matrix vector 
multiplication. Therefore, the cost of one iteration is 
considerably higher than  that of one iteration of DCG. 
However, the global number of arithmetic operations for the 
algorithm is  generally  lower,  because the higher  cost  per 
iteration is more than offset  by the faster  convergence rate of 
the algorithm. 

Stopping criteria 
In exact arithmetic the iterative procedure converges to  the 
exact solution in a finite number of  steps. In practice, the 
iteration procedure is terminated when the approximate 
solution t is close to the exact solution: 

I IX  - f l l 2  

II f II 2 

5 E, (3) 

where E is the desired  relative  accuracy.  Because A is a 
symmetric, positive definite matrix, 
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where i = y - A t  is the residual vector and hM(A-l) is the 
maximum eigenvalue ofA-I. hM(A-l) = l/Xm(A), the 
minimum eigenvalue  of the matrix A. Combining (3)  and 
(4), we  use 

as a criterion to estimate the error in the solution to 
terminate the iteration procedure. If no information on  the 
minimum eigenvalue  is available, X,(A) can be estimated 
adaptively in the iteration procedure at each iteration step as 
a function of the coefficients a, and ,f3, [4, 51. One obtains 
a monotonically decreasing sequence X; that converges to 
the  minimum eigenvalue Xm(A). This adaptive computation 
is not costly. 

Computer  implementation 
For each iteration step, a computer implementation of the 
conjugate-gradient algorithm requires three vector updates, 
two inner products, and one sparse-matrix vector product. In 
addition, preconditioning by an incomplete factorization 
requires the solution of two  sparse triangular systems,  which 
requires approximately the same number of floating-point 
operations as the sparse-matrix vector product. The first 
three kernels are efficiently  vectorizable. The sparse-matrix 
vector product is  vectorizable  using indirect addressing 
vector instructions if the sparse matrix is stored in a suitable 
form. The solution of the sparse triangular systems is not 
vectorizable  unless the sparse matrix has a special  regular 
structure [ 19-23]. 

There are several ways to represent a sparse matrix in a 
computer; here we describe three of them.  The row-wise 
representation of a sparse matrix is used in several  software 
packages  for  scalar  processors (ITPACK [ 121, SLMATH 
[24]), and is  discussed, for example, by Gustavson [25]; this 
method is not used in Release 2 of  ESSL. A second method, 
the compressed-matrix representation, has been adopted in 
ITPACKV [ 131, in ELLPACK  [26], and in the iterative 
sparse-matrix routines in Release 2 of  ESSL [27]. This 
storage mode is efficient on  a vector  processor if each  row  of 
the matrix has approximately the same number of nonzero 
elements. This is true in many sparse matrices that arise 
from the finite-element or finite-difference discretization of 
partial differential equations. 

For structured sparse matrices, it is possible to use the 
compressed-diagonal storage mode. This scheme is the most 
rigid, since it can represent efficiently  only matrices with a 
regular diagonal structure. Using this scheme, the sparse- 
matrix vector product operates on contiguous memory 
locations, and  it is  vectorizable without using indirect- 
addressing-type operations. The scheme is similar to that 
described by Madsen et al. 1281. 

In [8] the performance on  the 3090 VF of a vector 
implementation of the sparse-matrix vector product using 
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Performance of the sparse-matrix vector product vs. matrix size. The 
performance of a scalar implementation based on the representation 
by rows (solid curve) is compared to the performance of two vector 
implementations based on the compressed-matrix (dotted curve) and 
the compressed-diagonal  (dashed  curve) storage modes.  The test 
matrix  contained  between 15 and 20 nonzero  elements  per  row, 
arranged along its diagonals. 

these  storage representations was compared to that of a 
scalar  code  based on the row-wise representation of a sparse 
matrix, which  is the most  efficient on a scalar  processor. The 
following  was found 

A speedup by a factor of  two to four could be achieved  for 
matrices  stored in the compressed-matrix  storage  mode, 
where  gather-scatter  vector operations are needed to access 
the computer storage. 
A speedup by a factor of four to six could be achieved  for 
matrices with  diagonal structure stored in the compressed- 
diagonal  mode. 

In Figure 1 we compare the performance of the matrix 
vector product using  these three different  storage techniques 
for a sparse matrix having  between I5  and 20 nonzero 
elements per  row. 

Mehlem [20] described another data structure suitable  for 
processing  sparse  matrices on vector computers. This scheme 
is a generalization of the diagonal representation, but is 
more rigid than the compressed-matrix representation. For 
general matrices it requires about the same amount of 
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storage as the compressed-matrix  storage mode, and on 
the 3090 VF it yields approximately the same performance 
for  most  problems. For symmetric matrices, if the 
scheme  is  applicable, it is  possible to use only  half 
the storage.  When the matrices are very  large and do not 
fit the core memory, the smaller memory requirements for 
symmetric problems permit a higher performance than 
use  of the compressed-matrix  storage  because  paging of 
data to secondary  devices is reduced. 

Storage by rows 
Given a general  sparse m X n matrix A with ne nonzero 
elements, the matrix is  represented by FORTRAN arrays: 
a real array AR and two  integer  arrays JA and IA set up as 
follows: 

The real array AR of length ne contains the nonzero 
elements of A,  stored by  row in contiguous memory 
locations. 
The integer array JA of length ne contains the column 
numbers of each nonzero element in A stored in the 
corresponding elements of AR. 

the starting position of each  row  of A in arrays AR and JA. 
That is,  each element IA(i) points to the beginning of  row i 
in AR and JA. Row i contains IA(i + 1) - IA(i) elements. 
In particular, IA( 1) = 1 and IA(m + 1) = ne + 1. 

Within a row, the elements need not be ordered. The 
example in Figure 2 illustrates this storage scheme on a 
6 x 6 sparse matrix which contains 18 nonzero entries. 

vector product using this storage  scheme: 

The integer array IA of length m + 1 contains pointers to 

The following FORTRAN program performs the matrix 

DO 20 I=1 ,M 
Y(I) = 0. 
DO 10 J = IA(I), lA(l+l)-1 

Y(I) = Y(I) + X(JA(J))*AR(J) 
10 CONTINUE 
20 CONTINUE 

Arrays AR and JA are accessed in an orderly  fashion.  Array 
X, on the contrary, is  accessed randomly with  addresses 
specified  by JA. 

If the matrix is symmetric, only  half  of the matrix 
coefficients  need to be stored. Usually the upper triangle is 
stored. In this case, the sparse-matrix  vector product is 
performed  with random accesses to both the X and Y arrays. 
Thus, although only  half  of the memory is required to 
represent the matrix, the performance of the sparse 
symmetric-matrix vector product is comparable to that of 
the general  case.  If,  however, the matrix does not fit in  the 
core memory, the saving in memory can be  crucial in 
minimizing paging. 
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Storage by rows of a sparse matrix. 

In this  algorithm Y ( i )  is computed by performing an inner 
product of the  nonzero  elements  in  the  ith row by the 
corresponding elements of the X array. On a scalar 
processor, the  matrix vector product using the row-wise 
representation  is efficient because only  the  nonzero  elements 
of A are processed. For this  reason, the row-wise 
representation has been used in several sparse-matrix 
software packages for scalar processors. On a vector 
processor, by using this matrix representation, the sparse- 
matrix vector product  can be vectorized with the use of 
indirect-addressing-type operations  to collect the  elements of 
the X array involved in each inner product. The vector code 
will, however, be inefficient because the vectors  involved in 
the  operations  are very short. On  the 3090 VF, when there 
are 15 or fewer elements per row, the scalar version of this 
algorithm is faster than  the vector version because of the 
start-up  time  for vector instructions. 

Compressed-matrix storage  mode 
Given a general sparse  m X n matrix A having  a maximum 
of nz nonzero  elements  in each row, the  matrix is 
represented  using  a real array AC and  an integer array KA as 
follows: 

The real array AC contains m rows and nz columns:  Each 
row of AC contains  the  nonzero  elements  of  the 
corresponding row of the  matrix A .  If a row of A has fewer 
than nz nonzero elements, the corresponding row in AC is 
padded with zeros. The  elements within  a row can be 
stored  in any order. 
The integer array KA contains m rows and nz columns;  it 
contains  the  column  numbers of the  nonzero  elements 
of matrix A that  are stored in  the corresponding 
positions in  array AC. If the corresponding element  in AC 
is  zero, any index in  the range 1 . . . n may  be used. 129 
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Sparse matrix in compressed-matrix storage mode. 

Unless  all the rows  of the sparse matrix have 
approximately the same number of nonzero elements, this 
storage  scheme will require a large amount of storage. Figure 
3 illustrates the scheme on the same matrix used in the 
previous example.  In this case m = n = 6 and nz = 4. An 
asterisk (*) in the array KA indicates that any valid  index 
may  be  used because the value of the corresponding element 
in the array AC is  zero. 

The following  is an example of a FORTRAN program 
which  might  be  used to perform the matrix vector product 
using this storage  scheme: 

DO 10 I=1 ,M 
Y(I) = 0. 

10 CONTINUE 
DO 30 J=l ,NZ 

DO 20 I=1 ,M 
Y(I) = Y(I) + X(KA(I,J))*AC(I,J) 

20 CONTINUE 
30 CONTINUE 

Arrays AC and KA are accessed in an orderly  fashion.  Array 
X, on the contrary, is  accessed randomly with  addresses 
specified  by KA. The computation of Y is  achieved by 
summing nz vectors of length m that are the result of an 
element-by-element product of two  vectors. This algorithm 
is the equivalent for sparse matrices of the matrix vector 
multiplication algorithm for  full matrices based on SAXPY 
1291. 

On a scalar  processor,  use of this algorithm does not result 
in optimal performance because, if some rows  have  less than 
nz elements, it will result in the execution of a certain 
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number of multiplications by  zero. On a vector  processor, 
when this representation is  used, the matrix vector 
multiplication vectorizes by using  indirect-addressing-type 
operations to collect the elements of array X involved in 
each  element-by-element product. In this case the vector 
operations have  length m. Moreover, the result of one 
element-by-element  vector multiplication may  be  kept in a 
vector  register and added directly to the result of the 
successive multiplication, thus saving loads and stores to 
memory. 

On the 3090 VF, the matrix vector product using this 
storage scheme may  be implemented using the following 
vector instructions to perform the gather and the nz 
element-by-element  vector products: 

VL (loud integer vector): Load pointer integers  from array 

VLZD (loud  direct): Load elements of array X using the 
pointer integers  (gather). 
VMAD (multiply and udd): Perform  element-by-element 
vector product of elements of X and a column of AC, 
which  is  referenced  directly from memory, and sum to 
previous  result. This instruction executes a floating-point 
multiplication and addition in each machine cycle. 

KA. 

After the nz element-by-element vector products have 
been computed, the result is contained in a vector  register 
and must be stored with a vector instruction. In this 
algorithm, the vector hardware is  used  efficiently  because  all 
of the vector instructions are executed on long  vectors, and 
the use  of data in the vector  register  is optimized. Using  long 
vectors minimizes the impact of the start-up time. 
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Compressed-diagonal storage mode 
Let A be a sparse n X n matrix with nd diagonals with 
nonzero entries. The diagonal number k = j - i of element 
a,, is a constant along each diagonal of the matrix; it  is 
positive for the superdiagonals and negative for the 
subdiagonals. The matrix is stored using a rectangular array 
AD, and  an array LA of pointers: 

AD is a real array, with n rows and nd columns. AD 
contains the diagonals of A that have at least one nonzero 
entry. These diagonals, including all the zeros, are stored 
in a column of AD in n contiguous memory locations. The 
superdiagonals are padded to a length n with k trailing 
zeros, and the subdiagonals are padded with I k I leading 
zeros,  where k is the diagonal number. Each nonzero 
element a,j of the original matrix A is stored in row i of 
array AD. 
LA is an integer array of length nd. LA(i) is the diagonal 
number of the diagonal stored in column i of AD. 

This matrix representation requires that entire diagonals be 
stored, and requires a large amount of memory if the 
nonzero entries of A are not concentrated along a few 
diagonals. If the matrix is symmetric, only the main diagonal 
and  one of each couple of identical diagonals k and -k need 
to be stored in array AD. 

Figure 4 illustrates this storage scheme on  the same matrix 
used in Figure 2. In this case n = 6 and nd = 5. 
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The following is a FORTRAN program to perform the 
matrix vector product using this storage  scheme: 

DO 101 = l ,N  
Y(I) = 0. 

10 CONTINUE 
DO 30 L = 1,ND 

K = LA(L) 
N1 = MAX(1,l -K) 
N2 = MIN(N,N-K) 
DO 20 I = N1 ,N2 

Y(I) = Y(I) + X(K+I)’AD(I,L) 
20 CONTINUE 
30 CONTINUE 

In this program, Y is computed by summing nd vectors of 
length n that are the result of an element-by-element product 
of two  vectors. All  of the arrays involved in  the operations 
are stored in contiguous memory locations, while in the 
algorithm for the compressed-matrix representation it is 
necessary to gather elements of array X from noncontiguous 
memory locations. 

This storage scheme is efficient on both scalar and vector 
processors,  because the matrix vector product does not 
require random accesses to the elements of array X and may 
therefore be implemented with  fewer instructions; 
furthermore, the local memory is used more efficiently. The 
scheme is efficient provided the matrix has a diagonal structure; 
otherwise the product would require a large number of 
multiplications by zero. 131 
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Table 1 Performance  of  DSMCG  and  DSDCG  using  diagonal 
preconditioning (64000 equations). 

~ ~ 

Subroutine  Iterations  CPU  seconds Mflops Speedup 

JCG (ITPACK) 231 14 5 1 
JCG (ITPACKV) 23 1 28 12 
DSMCG 23 I 19 20 

2.6 
4 

DSDCG 23 1 13 30 6 

Table 2 Performance of DSMCG  and  DSDCG  preconditioned 
by an  incomplete  factorization (64000 equations). 

Subroutine  Iterations  CPU  seconds  Mflops  Speedup 

ICCG  (scalar) 74 46 4 1 
DSMCG 74 20 9 2 
DSDCG 74 18 9 2 

The matrix vector product using this storage scheme may 
be implemented on the 3090 VF using the following  vector 
instruction to compute the nd element-by-element  vector 
products: 

0 VLD (load): Load elements of array X. Different 
contiguous segments of X are involved in each  element-by- 
element vector product. 
VMAD  (multiply  and  add): Perform element-by-element 
vector product of the segment of X and a column of AD, 
which  is  referenced  directly from memory, and sum to 
result of previous element-by-element  vector product. 

In this case the vector hardware is used  efficiently  because  all 
the vector operations are executed on long  vectors that lie in 
contiguous memory locations. 

Sparse-matrix subroutines 
Release 2 of  ESSL includes two routines to compute the 
sparse-matrix  vector product, and two routines for  solving a 
system  of linear equations using the preconditioned 
conjugate-gradient algorithm: 

DSMMX: To compute the matrix vector product for a 
sparse matrix in compressed-matrix  storage  mode. 
DSDMX: To compute the matrix vector product for a 
sparse matrix in compressed-diagonal  storage mode. 
DSMCG: To solve a symmetric, positive  definite  system 
of linear equations, using the conjugate-gradient method, 
for a sparse matrix stored in compressed-matrix  storage 
mode. Depending on the value of a parameter, either the 
conjugate gradient preconditioned by the diagonal or the 
conjugate gradient preconditioned by an incomplete 
factorization is  used. 132 
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DSDCG To solve a symmetric, positive  definite  system of 
linear equations, using the conjugate-gradient method, for 
a sparse matrix stored in compressed-diagonal  storage 
mode. Depending on the value of a parameter, either the 
conjugate gradient preconditioned by the diagonal or the 
conjugate gradient preconditioned by an incomplete 
factorization is  used. 
DSMTM: To transpose a sparse matrix stored in 
compressed-matrix  storage mode. 
DSRSD  To convert a sparse matrix from row-wise 
storage mode to compressed-matrix storage  mode. 

Performance of the  conjugate-gradient 
subroutines 
In this section we discuss the performance of the conjugate- 
gradient subroutines DSMCG and DSDCG. Our aim is to 
discuss  how the representation used to store a sparse matrix 
affects the performance of the conjugate-gradient algorithm 
on a vector  processor. The CPU time needed to compute the 
solution with subroutines DSMCG and DSDCG is 
compared to that of the scalar and vectorized  versions of 
JCG, the FORTRAN implementation of the conjugate 
gradient preconditioned by the diagonal from the ITPACK- 
2C and ITPACKV  libraries, and ICCG, a scalar FORTRAN 
implementation of the conjugate gradient preconditioned by 
an incomplete factorization. 

The JCG subroutine in ITPACK-2C  is  based on the row- 
wise storage mode, which  is the most  efficient  storage mode 
for computing the sparse-matrix  vector product in scalar 
mode,  while the JCG subroutine in ITPACKV  is  based on 
the compressed-matrix representation, and  the sparse-matrix 
vector product is vectorized  by the FORTRAN compiler. 
ITPACK  does not contain an implementation of the 
conjugate gradient preconditioned by an incomplete 
factorization. The FORTRAN subroutines were  compiled 
with the IBM VS FORTRAN Version 2 compiler at  the 
highest  level  of optimization. 

0 Test problem 1: An  elliptic,  three-dimensional, partial 
differential  equation 
Consider first the system  of linear equations generated by the 
numerical solution of the following  self-adjoint  elliptic 
partial differential equation on the unit cube 

uxx + 2uyy + 3u, = 0 (6) 

with  mixed-type boundary conditions. This is one of the test 
problems provided  with  ITPACK to test the iterative 
algorithms; it is described in [ 121. 

Equation (6) is discretized  using a three-dimensional 
regular  mesh.  Using the standard seven-point  finite- 
difference operator, this problem gives  rise to a system  of 
order N = l / h 3   ( h  is the grid  spacing).  Each point has six 
nearest neighbors, and hence each  row of the coefficient 
matrix has at most  seven nonzero elements, which are 
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arranged along seven diagonals. This allows the matrix to be 
stored efficiently in both the compressed-matrix and the 
compressed-diagonal storage modes. In both storage 
representations almost no zeros  need to be stored; using 
either representation, the matrix vector product can be 
performed efficiently. 

We considered the linear system of 64000 equations 
arising from the discretization of Equation (6) on a mesh  of 
40 X 40 X 40 gridpoints. Sparse-matrix problems of this size 
require between 10 and 30  megabytes of storage depending 
on  the algorithm, and therefore fit in the core memory of the 
3090. No paging to secondary storage  devices is necessary, 
and as a consequence the CPU time is equivalent to the 
elapsed time in a dedicated environment. 

If the preconditioned path of the DSMCG and DSDCG 
subroutines is chosen, an incomplete Cholesky factorization 
must be computed. The factorization can be  used in the 
solution of other linear systems  with  the same coefficient 
matrix and a different right-hand side. The cost  of the 
factorization in terms of iterations is largely independent of 
the size of the problem. Table 1 compares the performance 
of the different scalar and vector implementations of DCG. 
Table 2 compares the performance of the different  scalar and 
vector implementations of  ICCG. The  time includes two 
seconds spent in computing the incomplete factorization. 
The measures were obtained on an IBM 3090 with a cycle 
time of 18.5 nanoseconds. 

Test  problem 2: Three-dimensional dlffusion equation 
Consider the system of linear equations generated by the 
numerical solution of the diffusion equation over the unit 
cube with a corner missing (Figure 5),  

- = V(DVF),  
aF 
at (7 1 

where D and Fare scalar  fields.  Mixed-type boundary 
conditions were chosen. This test is a three-dimensional 
generalization of the model  test problem proposed by 
Kershaw in [IO]. We  solve the linear system generated by the 
initial value problem at a given time step using implicit time 
differencing. 

Each  row of the sparse coefficients matrix has at most 
seven nonzero elements. Because the mesh is not regular, the 
nonzero coefficients are  no longer arranged along seven 
diagonals. The nonzero coefficients result in the sparsity 
pattern shown in Figure 6, which can be stored efficiently in 
compressed-matrix storage mode but  not in compressed- 
diagonal storage mode. We considered the linear system of 
109375 equations arising from the discretization of Equation 
(7) on a mesh of 50 X 50 X 50 gridpoints. The nonzero 
coefficients are arranged along 59  diagonals,  which  would 
make the use  of the compressed-diagonal storage mode 
inefficient. This problem fits in the core memory of the 
3090. Table 3 compares the performances of the different 

Irregular  computational  domain  over which the diffusion  equation 
was solved. 

Typical  sparsity  pattern  generated  using  a  seven-point  difference 
scheme  over the computational  domain in Figure 5 .  

scalar and vector implementations of DCG, while Table 4 
compares the performances of the different scalar and vector 
implementations of ICCG. The  time includes three seconds 
to compute the incomplete factorization. 133 
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Table 3 Performance of DSMCG using  diagonal 
preconditioning (109 375 equations). 

Subroutine Iterations CPU seconds Mflops Speedup 

JCG (ITPACK) 85  46 5 1  
JCG (ITPACKV) 85 33 12 2.6 
DSMCG 85 12 19 4 
DSDCG Not applicable 

Table 4 Performance of DSMCG preconditioned by an 
incomplete factorization (109 375 equations). 

Subroutine Iterations CPU seconds Mflops Speedup 

ICCG (scalar) 30 30 4 1 
DSMCG 30  16 9 2 
DSDCG Not applicable 

Table 5 Performance of DSMCG with different types of 
preconditioning, for solving  system of 1473 equations involving use 
of the matrix BCSSTM 12. 

Subroutine Iterations CPU seconds Speedup 

JCG (ITPACK) 164  1.62 1 
DSMCG (diagonal) 164 0.75 
DSMCG (Cholesky) 11 0.25 6.5 

2.1 

134 

9 Test problem 3: Harwell-Boeing  sparse-matrix collection 
Duff et al. [30]  have  described a set  of sparse test matrices 
from a wide  variety  of  scientific and engineering disciplines, 
which  is  offered  as a standard benchmark for comparative 
studies of algorithms. We have  used  several  of the symmetric 
matrices to test the performance, accuracy, and robustness of 
the ESSL sparse-matrix subroutines. We summarize briefly 
the results we have obtained in solving a linear system of 
equations involving use of the matrix BCSSTM  12, which are 
rather typical of the results we obtained with this set  of  test 
matrices. Table 5 compares the performance of the ITPACK 
scalar subroutine JCG with diagonal preconditioning and 
DSMCG with  two  different types of preconditioning. The 
matrix BCSSTM12 has order 1473, 10566 nonzero 
elements, and  a maximum of  22 nonzero elements per row. 
When the compressed-matrix storage is used, 40% of the 
matrix entries in the sparse representation are zero.  Both the 
subroutine JCG  and  the subroutine DSMCG  with diagonal 
preconditioning require 164 iterations to reach convergence. 
The speedup of the vectorized  version is 2.15, even though 
40% of the arithmetic operations in the sparse-matrix vector 
product involve zeros. 

The subroutine DSMCG preconditioned by an incomplete 
factorization requires only 11 iterations to converge; it is 
three times faster, in this experiment, than DSMCG 
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preconditioned by the diagonal. These  figures are typical  of 
other problems in the Hanvell-Boeing sparse-matrix 
collection. 

Conclusions 
With the use  of the scalar FORTRAN codes, 
preconditioning by an incomplete factorization generally 
yields a better performance than preconditioning by the 
diagonal. The greater cost per iteration is more than offset  by 
the large reduction in the number of iterations. Both  scalar 
algorithms perform at roughly five Mflops, and both make 
good  use  of the IBM 3090,  even though its memory is 
accessed randomly. 

Using the conjugate-gradient vector subroutines in ESSL 
results in a significant speedup. The vectorized conjugate 
gradient preconditioned by the diagonal takes full advantage 
of the vector features of the IBM 3090  VF. The subroutines 
perform at between  20 and 30 Mflops depending on  the 
sparse-matrix representation. On the contrary, only about 
half  of the operations in the conjugate gradient 
preconditioned by an incomplete factorization are 
vectorizable. The solution of the two triangular systems  is a 
recursive algorithm which accounts for almost half  of the 
operations required. As a consequence, the subroutines 
make only a moderate use  of the vector feature, as the 
9-Mflops performance indicates. Whether or not 
preconditioning by an incomplete factorization will improve 
the overall performance of the conjugate-gradient algorithm 
in a vector environment depends on the problem under 
consideration. For the first  two problems we described, 
which had a moderate condition number, the use  of the 
conjugate gradient preconditioned by the diagonal yielded a 
higher performance than  the use  of the conjugate gradient 
preconditioned by an incomplete factorization-although 
the total number of floating-point operations of the 
preconditioned algorithm was smaller. On the contrary, 
other examples, such as our  third test problem, indicated 
that for ill-conditioned problems, preconditioning 
significantly improves overall performance in a vector as 
well as in a scalar environment. 
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