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In  a  companion  paper [l], we  examined  the 
representation of geometric  tolerances  in  solid 
models  from  the  perspective  of  certain 
functional  requirements.  We  showed  that 
assembly  and  material  bulk  requirements  can be 
specified as virtual  boundary  requirements 
(VBRs). Here,  we  study  the  related  issue  of 
deriving  equivalent  alternative  specifications. 
Specifically,  we  first  explore  the  reasons  for 
converting VBRs to  another  form  of  tolerances 
designated as conditional  tolerances  (CTs).  We 
then  develop  a  theoretical  basis  for  converting 
VBRs to  CTs  and  derive  CTs  for  some  common 
and  practical VBRs. We  thereby  demonstrate  the 
difficulties  in  finding  a  general-purpose 
algorithm  for  such  conversions  and  also  show 
that  some  of  the CT formulas used  in current 
practice are incorrect. 

Introduction 
In current practice [2], the geometrical  specifications of 
mechanical parts take the form of dimensions and 
tolerances. The goal  of  such  specifications  is to describe a 

Topyright 1989 by International Business Machines Corporation. 
Copying in printed form for private use is permitted without 
payment of royalty  provided that ( I )  each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first  page. The title and abstract, but no 
other portions, of this paper  may  be  copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper must be obtained from the Editor. 

class of functionally acceptable mechanical parts that are 
geometrically  similar. The approach used  is to describe the 
geometry of a nominal mechanical part whose  surface 
features are mathematically perfect in form, and the extent 
to which the geometry of any candidate part may deviate 
from that of the nominal part. 

The description of the nominal geometry often takes the 
form of a set of annotated two-dimensional projections of 
the nominal mechanical part, or more recently, complete 
and unambiguous solid-geometric representations in a 
computer. In either case, dimensions are assertions of 
geometric nature on a set of features (both surface features 
and derived features such as axes and median planes) of the 
nominal mechanical part. Dimensions specify the form 
(implicitly)  (e.g., shank of pin in Example 1 of the 
companion paper [ 11 is a cylindrical  surface) or the size (e&, 
diameter of shank is 10 mm) of a single feature, or the 
positional (locational and/or orientational) relationship 
among a set of features (e.g., shank and lip of pin are 
perpendicular). 

of features is a measure of the extent to which the set of 
features of an actual candidate part may deviate 
geometrically from the set of features of the nominal part. 
Conceptually, a tolerance specification can be interpreted to 
define a certain region  of  space (a tolerance zone) within 
which  it should be possible to contain the set of features of 
an actual candidate part [2,3]. Thus, it serves to provide a 
theoretical inspection procedure. In practice, the set  of 
features of the candidate part is approximated closely 
(through a process of measuring and fitting of features) by a 

A tolerance specification, or, briefly, a tolerance, on a set 
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set of features of the corresponding mathematically perfect 
form, and the geometric parameters derived from them are 
compared with the tolerance specification. Here, the 
tolerance specification is interpreted to provide bounds on 
the allowable variation of geometric parameters derived from 
the measurement of actual features. 

As in the case of dimensions, tolerances can be  specified 
on the form of a single feature (e& the form tolerance on 
shank of pin is  0.1 mm) or its size  (e.g., the size tolerance on 
the diameter of shank is 0.25 mm), or the positional 
(locational and/or orientational) relationship among a set  of 
features (e.g., the orientation tolerance for shank and lip is 
0.1 mm). In addition, tolerances may be broadly  qualified as 
either unconditional or conditional on the basis  of the 
dependence of the allowable  geometrical variations they 
represent on the geometric parameters of actual features. 

An unconditional tolerance on a set of features specifies 
geometric variations that do not depend on any geometric 
parameters derived from fitting of the actual set of features. 
For example, an unconditional tolerance on the position of a 
cylindrical  hole  specifies that  the allowable variation in the 
position of the (fitted) hole  is independent of the size  of the 
(fitted) hole. In practice,  most tolerance specifications, 
including Regardless of Feature Size (RFS) tolerances [2], 
are unconditional. 

In contrast, a conditional tolerance (CT) on a set  of 
features specifies  geometric variations that are dependent on 
some geometric parameters derived from fitting of the actual 
set of features. Thus, a CT on the position  of a cylindrical 
hole states that the allowable variation in the position of the 
(fitted) hole depends on the size  of the (fitted)  hole. The 
Maximum Material Condition (MMC) and Least Material 
Condition (LMC) tolerances [2] used in practice are in fact 
CT specifications.  Typically, virtual boundary requirements 
(VBRs),  when translated into allowable variations in 
geometric parameters of features, give  rise to CTs. 

VBRs capture certain classes  of functional requirements 
and facilitate the design  of functional gauges  where 
appropriate [ 11. It is  necessary,  however, to derive alternative 
specifications  (as  nearly equivalent to the VBRs as possible) 
based on the concept of CTs. Some of the reasons for this 
are as follows. 

Part geometry verification VBRs are not always  verifiable 
using functional gauges.  Even  when  applicable,  building 
functional gauges can be  very  expensive, particularly for 
small volume production. Use  of modem inspection tools 
such as coordinate measuring machines and vision-based 
parts measurements systems [4] would require that VBRs  be 
translated into CTs. 

Part fabrication process planning Selection of the 
appropriate equipment and the subsequent specification of 

106 process parameters for fabricating a part require knowledge 

of the geometric parameters of the features of the part and of 
allowable variations from their nominal values. For example, 
if a drilling machine with an xy table  is  used to drill hole in 
washer of Example 1 in [I], it  is important to know the 
allowable variations in the x and the y locations, and the 
orientation of the drill  axis  with  respect to the fixtures. The 
VBRs do not provide  such information directly. 

Part fabrication process  control In-process measurements 
that can point back to drifting process parameters are 
necessary  for  process control. For example, in the case  of 
drilling a hole in a plate, the process controller monitors the 
location, orientation, and size parameters associated  with the 
drilled  hole and must decide  which parameter is drifting 
toward its control limit. Merely  verifying compliance with 
the VBRs does not provide this information. 

Statistical tolerancing Tolerance analysis and synthesis 
based on statistical approaches require a set of parameters, 
each of  which  assumes a range of values subject to a 
probability distribution [5]. Since the parameters associated 
with  VBRs are deterministic and do not vary from instance 
to instance of the manufactured part, they are not directly 
suitable for  statistical tolerancing. On the other hand, 
converting VBRs into tolerance specifications on feature 
parameters can help identify the relevant  set of parameters 
to focus on, as  well  as establish their ranges of variations 
over  which probability distributions can be  used. 

We have  seen a number of reasons  for converting VBRs 
into tolerance specifications on the geometric parameters of 
features. We next make a number of observations regarding 
current industrial tolerancing practices  related to CTs. 
Figures 9 and 10 in [ 11 indicate how the example parts of the 
companion paper are usually  specified. In addition to the 
derivation of virtual surfaces, the specifications are used to 
derive CTs on the orientation or the position of axes and 
median planes in simple cases  (see  Figure 9 in [ 1 1  and the 
discussions  following Results 2 and 5 in this paper). Such 
interpretations are not provided in more complex  cases  (see 
[6]). Even  when provided, the interpretations may not be 
equivalent to the VBRs,  as  shown later. Furthermore, when 
the tolerance is on position, the manner in which deviations 
in orientation and location can combine to produce the 
positional deviation is  usually not known. 

specifications from the given primary tolerance specifications 
has received  very little attention in the literature (see [7, 81). 
Our earlier  work [9] raised this issue as a topic to be studied 
in detail. Here, we examine the problem of converting 
geometric tolerance representations and develop a theoretical 
basis  for the conversion of  VBRs to CTs. We derive the CTs 
for a number of  VBRs that occur frequently. We thereby 
demonstrate the difficulties in finding a general-purpose 
algorithm for such conversions, and also  show that some of 

The problem of deriving alternative tolerance 
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the  CT expressions in current use are incorrect. Finally, we 
discuss some open research  issues in converting VBRs to 
CTs. 

Formalization 
In this section, we provide a formal basis  for the conversion 
of VBRs to CTs. We  first derive the necessary and sufficient 
conditions for the satisfaction of VBRs, in terms of virtual 
boundary parameters (ai in Definition 7 of [ 11) and fitting 
parameters for actual surface features (bi in Definition 7 of 
[I]). We then develop formally the  manner in which a well- 
defined  set  of geometric parameters can be  associated  with 
actual surface features (using the concept of surrogate surface 
features that are of  perfect form and are conservative 
approximations to actual surface features), the concept of 
tolerance zones (that correspond to VBRs) in the space of 
such geometric parameters, and the conditions under which 
such zones are to be considered CT zones.  We  use the 
definitions and notations developed in [ 11. 

Conversion of virtual boundary requirements 
In this subsection, we state and prove a number of 
important properties of projection and offsetting.  Using  these 
properties, we show that fitting surfaces and the actual 
surface features they fit touch each other at least at one 
point. This leads to the proof of an important relationship 
between the virtual boundary parameters and fitting 
parameters of actual surface features. 

We start with a property of projection. 

Property 1 
Let A be a subset of E 3  and  p  a point with d(p, A )  > 0. If 
q E p(p, A ) ,  then q E p(r, A )  where r E 6(p,  9). 

Proof For any q' E A we have, from the triangle 
inequality, d(r, q') + d(p, r) 2 d(p, 9'). From the definition 
of projection, we have d(p, 4') 2 d(p, 9). Hence, 
d(r, q') 2 [d(p, q) - d(p, r)] = d(r, q), which implies that q 
is one of the members of cl A closest to r, leading to the 
desired  result. 0 

Some properties of  offsetting  follow. 

Property 2 
Let A be a regular  subset of E' and a a scalar such that 
a 2 0. Then d(p, d A )  = a for any p E d ( A  1' a). 

Proof From the definitions of regularize! shrinking and 
regular  sets, we have d(A 1' a) = d(A'* 7' a ) = d(A' 7' a). 
Hence, p E d(2 '  7' a), and from [IO], d(p, dA') = a = 

d(P, w .  0 

Property 3 
Let A be a regular  subset of E 3 ,  p  a point with d(p, A )  = 

b > 0, and a a scalar such that 0 5 a 5 b. Then  d(p, A 7' a)  
= b - a .  

= min{d[p, &(q, a)]:q E A )  

= min{[d(p, q) - a]:q E A )  

= b - a .  0 

Property 4 
Let A be a regular  subset of E 3 ,  p E i A a point such that 
d(p, d A )  = b > 0, and a a scalar such that 0 5 a < b. Then 
d[p, d(A 1' a)] = b - a and p E i(A 1' a). Furthermore, if 
q E p(p, d A ) ,  then r E p[p, d(A 1' a)], where r = 

I' 4 i-l JYP, 9). 

Proof p E iA implies p g x*. Then, from [ 101 it  follows 
that d(p, A') = d(p, d l ' )  = d(p, d A )  = b > 0. From Property 
3, d(p, 2' t' a) = ( b  - a) > 0. Hence, p E i@* t' a ). 
That is, p E i(A 1' a). Furthermore, -. d(p, 3' t' a) = 

-. 
d[p, d(A* t' a)] = d[p, d(A' t' a )] = d[p, d(A 1' a)] = 
( b  - a). 

Since r E J (p ,  q) and q E p(p, d A ) ,  we have q E p(r, dA) 
from Property I .  From Property 2 we have d(r, dA) = a, 
since r E d ( A  1' a). Therefore, d(r, q) = a, which implies that 
d(p, r) = b - a = d[p, d ( A  1' a)]. From the definition of 
projection, it follows that r E p[p, d(A 1' a)]. 0 

if rl = r2, then O(S;  r l )  = O(S;  r2). We  need the following 
properties and lemmas to understand what happens when 
r, # r,. 

Given two arbitrary scalars r, and r,, it is trivially true  that 

Property 5 
O(S;  r I )  and O(S;  r2) are regular. 

Proof Follows from the fact that S is regular. See [ I  11. 0 

Property 6 
V r  > 0, S c St '  r. 

Proof Let p E S. Then  d(p, S )  = 0 < r. Hence, by 
definition of regularized  growing, p E S t' r. Now  pick a 
small  positive E such that 0 < E < r. Then Vp 3 d(p, S )  = E, 

p 4 S but  p E S t' r. Hence we obtain the proper subset 
property. 0 

Property 7 
V r  > 0, S 3 SI' r. 

Proof From Property 6 we know that 3' C 3' 7' r. 
Applying  regularized coqplementation on both 
sides, we have S 3 3' t' r . Hence S 3 S 1' r. 0 

Lemma I 
If rl < r,, then O(S;  r l )  c O(S;  r2). 
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Proof There are three cases. In the first  case, r l ,  r, I 0; i.e., 
both offsets are obtained by regularized shrinking. Let 
I rl I = I r, I + E for some positive E > 0. Since the regularized 
shrinking operation is  associative [ 1 11, S 4’ 1 rl I = 
( S  4’ I r, I ) 4’ E C S 4’ I r2 1 ,  using Property 7. From the 
definition of regularized  offset,  it  follows that O(S;  rl)  C 

O(S;  r2). 
In the second  case, rl I 0, r, > 0; i.e., one is obtained by 

regularized shrinking, and the other is obtained by 
regularized  growing. From Properties 6 and 7, we  have 
S 1’ I rl I C S C S t’ r,. Then the result  follows  directly 
from the definition of regularized  offset. 

In the third case, rl , r2 > 0; i.e., both offsets are obtained 
by regularized  growing.  Let r, = r,  + E for some positive 
E > 0. Since the regularized  growing operation is  associative 
[ 1 1 ] , S ~ * r 2 = ( S ~ * r , ) ~ * ~ > S ~ * r l , u s i n g P r o p e r t y 6 .  
From the definition of regularized  offset, it follows that 
O(S; r l )  C O(S; r,). 0 

Lemma 2 
If 3 P E aO(S; r,) 3 p E O(S; r l ) ,  then rl E r2. 

Proof By contradiction. Let rl < r,. Then from Lemma 1, 
O(S;  r l )  C O(S; rz). Since both the regularized 
offsets are closed, this means that aO(S; r,) C i[O(S; r l )  1. 
But this violates the condition satisfied  by p. 0 

From the requirements to be  satisfied  by  measures  of 
closeness  used in fitting, we can prove the following 
important lemmas, which  show that the boundary of  every 
fitting  half-space touches the corresponding actual feature at 
least at one point. 

-* 

Lemma 3 
If H is a fitting  half-space  for an actual surface feature FA, 
then 3 p  E FA 3 p E dH. 

Proof We  first address the external fitting  case. From the 
definition of fitting, FA C Hand C(FA, aH) is the smallest it 
can be. The proof is  by contradiction. Assume that for any 
q E FA, q E iH. Then d(q, d H )  > 0. Let 

min d(q, aH) = r > 0 
q.F* 

and let 

Then, from Property 4, q E iH‘. Thus, H‘ satisfies the 
containment condition for  fitting. 

Note that since H i s  a fitting  half-space  for FA, it satisfies 
the material-side condition. That is, 3q’ E p(q, afl)  A 
3 r  E [cl d(q,  q‘)] n FA 3 q’ E IjE(r, FA). Using Property 4, 
we conclude that q” = [aH’ n d(q, q’)] E p(q, d H ’ ) .  From 

Property 2, d(q”, q’) = ( r /2) ,  since q“ E dH’, while 
d(r, 4’) E r, by assumption. Therefore, q” E d ( r ,  q’) and 
r E cl d(q, 9”). Since r E cl d(q,  q’) n FA, it follows that 
r E cl d(q,  9”) n FA. Furthermore, q” E IjE(r, FA), since 
d ( r ,  9’) C IjE(r, FA). Thus, H ’  satisfies the material-side 
condition also. 

Also from Property 4, we have 

Thus, aH’ is  closer to every point of FA than dH. From the 
requirements to be  satisfied  by the criterion for individual 
measures of  closeness, it follows that C(FA, aH’) < 
C(FA, aH), which contradicts the fact that H i s  a fitting 
half-space for FA. Hence, 3 p E FA 3 p E aH. 

The proof  is similar for the internal fitting  case. 0 

Lemma 4 
For a set of actual surface features TA * (FA,, . . . , FAk), if 
H * (HI ,  . . . , Hk) is a rigid  collection  of  fitting  half-spaces, 
then V i 3 p i  E FAi 3 pi E aHi. 

Proof Follows  from the definition of overall  measure of 
closeness as the sum of the individual measures of  closeness, 
the requirements to be  satisfied  by the criterion for the 
individual measures of  closeness, and Lemma 3. 0 

We  now state necessary and sufficient conditions for the 
satisfaction of VBRs, in terms of virtual boundary 
parameters and fitting parameters for actual surface  features. 

Theorem I 
Let A be a virtual boundary requirement asserted on TN and 
characterized by a. Let b and W be  such that WO( TN; b) is a 
rigid collection of fitting  half-spaces  (satisfying appropriate 
spatial constraints with  respect to the datum system, if any, 
referred to in A and established on the actual solid)  for TA. 
Then, TA 0 A if and only  if, for all i, bi 5 ai for  assembly, 
and b, z ai for material bulk. 

Proof We start with the assembly requirement. To 
establish  necessity,  assume that TA 0 A. Then from the 
containment condition we  have Vi, FAi C WO(HFNi; ai). 
From Lemma 4 it follows that Vi, 3 qi E FAi 3 
qi E a WO(HFNi; bi). From these  facts, we deduce that Vi, 
3q, E aO(HFNi; bi) 3 qi E O(HFNi; ai). Using Lemma 2, we 
conclude that Vi, b, I ai. 

Lemma 1 we  observe that  O(HFNi; bi) C O(HFNi; ai). From 
the containment condition for fitting, we have FAi C 
WO(HFNi; bi), from which  we deduce that 
FAi C WO(HFNi; ai) .  The position condition is automatically 
satisfied  by the existence of WO( TN; b). Thus TA 0 A. 

The proof is similar for material bulk requirement. 0 

To show  sufficiency,  assume that Vi, bi I a,. From 
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Conditional  tolerances 
In this subsection, we describe an approach for  associating  a 
well-defined  set  of  geometric  parameters  with  a  set  of actual 
features  subject to a given  set  of tolerance assertions. We 
define an alternative  representation  for the tolerance 
assertions, in terms of  these geometric  parameters. We 
discuss the concept of CTs by characterizing further the 
nature of the set of  allowable parameter values, and close 
with  some  remarks on deriving CTs from VBRs. 

The set  of parameters associated  with actual features 
should reflect the purpose of deriving the alternative 
tolerance  representation. For this reason, we consider certain 
grouping,  fitting, and limiting operations on sets of actual 
features to create  perfect-form  surface  patches that serve as 
conservative and close approximations (surrogates) to actual 
features  in  verifying  their  satisfaction  of  given  tolerance 
assertions. Here, the grouping operations preserve  some  of 
the spatial  relationships among the nominal features  in the 
fitting  process. The type of tolerance assertion  being  verified 
determines the side  of the actual surface  feature in which the 
fitting entity should  lie. 

features. 
We start with  a  definition of a  grouping of a  set  of  surface 

Definition I 
Let T = IF,, . . 1 , Fk j be a  set  of  surface  features. A grouping 
G = {GI ,  . . . , G,) associated  with Tis a  subset of the 
power  set  of  T  such that 0 4 G; for i # j ,  G, n G, = 0; and 

U Gi = T. 0 
i 

Observe that each Gi is a  set of  surface features and 
therefore can play roles  similar to that of  T,  wherever 
appropriate. Two  extreme  examples of grouping  are I = k 
with Gi = Fi ) and 1 = I with GI = T. In the former  case, 
none of the  positional  relationships among the members of 
the corresponding  set of nominal surface  features are 
preserved in the subsequent  fitting  process. In the latter case, 
all of the angular  relationships are maintained. 

Next, we define the notion of fitted and limited  surface 
features  for  a  member G, of a  grouping G, associated  with  a 
member T, of the nominal tolerance  set T,. 

Definition 2 
Let G, = { FNl , . . . , F,, ) be a  set  of nominal surface 
features and GA = (FA,, . . . , FAm ) be the corresponding  set 
of actual surface  features.  Let m be a  rigid-body 
transformation and a = {a , ,  . . , a, ) be a  set  of  scalars  such 
that mO(G,; a) is  a  rigid  collection  of externally (internally) 
fitting  half-spaces  for GA for assembly (material bulk). A 
rigid  collection  of  surrogate  surface features rigidly  associated 
with G, for  a given  set  of tolerance  assertions A on T, is a 
rigid collection of geometric entities denoted as GF = 
IF,, , . . . , FFm) such that for  all i ,  FFi C mdO(HFN,; ai); FFi is 
bounded and closed  in the relative  topology  of mdO(HFN,; ai); 
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and the spatial extent of FFi is  such that GA satisfies A 
whenever G, satisfies A. 0 

G, is  a  conservative approximation to GA because it is 
possible  for GA to satisfy A without G, satisfying A, while 
the converse is prohibited by the definition  above.  Each FFi 
inherits an inside (material side) and an outside (nonmaterial 
side)  from HFAi, the fitting  half-space  for FAi, which means 
that G, can be fitted  (in  a  constrained manner) further. The 
definition  does not prescribe  any  process  for  limiting the 
boundary of the fitting  half-space  for FAi to derive FFi. We 
conjecture that for  any  closed and bounded subset of the 
boundary of the fitting  half-space  for  a  surface  feature FA, to 
serve as a  surrogate  for FAi (i.e., to satisfy the requirement 
that whenever the subset  satisfies A, the actual feature 
satisfies A), it is  sufficient  for that subset to include the 
projection of FAi onto the boundary of the fitting  half-space. 
The special  cases in the next  section  seem to support this 
conjecture.  However, we have not been  able to prove it 
rigorously. There are an unlimited number of choices for 
surrogate  features.  Generally, the limiting  is done in such  a 
manner that the number of parameters necessary to 
characterize FFi is  minimized. Datum half-spaces and fitting 
half-spaces  (possibly  subject to additional constraints) for 
adjacent  features are often  used to limit the fitting  surface  for 
the feature  of  interest. We  now define the notion of fitted 
and limited  surface  features  for  a  grouping G, associated 
with  a  member T, of the nominal tolerance  set T,. 

Definition 3 
Let T, = IFNI, . , FNk) be a  member  of  a nominal 
tolerance  set T, and G, = ICNI, . , G,, ) be a  grouping 
associated  with T,. Let TA = IFAl, . . . , FAk) be the 
corresponding  member of the actual tolerance set  for an 
actual solid SA and G, = (G,,, . . - , GA,) be the grouping 
derived  from G,  and associated  with  TA. A rigid  collection  of 
surrogate  surface features T, = IF,,, . . . , FFk}, rigidly 
associated  with TA (subjected to GA), is  defined  as 

G F j ,  
i 

where GFi is  a  rigid  collection  of  surrogate  surface  features 
rigidly  associated  with GAi, and the spatial extents of FFi are 
such that TA  satisfies  a  given  set  of  tolerance  assertions A if 
TF satisfies A. 0 

In this definition,  since  each G,, is  a  member of a 
grouping,  Definition 2 is applicable. The rigid sets of 
surrogate  features thus associated  with CAI are collected into 
a  single  rigid  set  of  surrogate  features  associated  with TA. For 
example,  let T, = IFNI, FN2 1, where FNI and FN2 are parallel 
planar patches.  If the associated grouping G, = { IF,,, FN2)) ,  
then FFI and FF2 are  parallel to each other in TF = 
IF,,, F=). On the other hand, ifG, = ({FNl),  {FN2)), then 
FFI and FF2 may not be parallel to each other. 

As discussed  previously, it is  necessary to derive  for  a 
given VBR the ranges  of  values that are permissible in 
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certain geometric parameters characterizing the 
corresponding rigid collection of surrogate surface features of 
candidate actual solids. To define this more clearly, we note 
that T, can be  regarded as a member of a family of 
geometric entities, parameterized by a set  of parameters, 
(s,,  s,, . . . , s,, c,, c,, . . . , c,, I , ,  l,, . . . , lk) .  Here, the s, are 
parameters associated  with the fitting half-spaces  for TA 
(m can be zero). They define certain intrinsic sizes  of the 
member half-spaces and certain distances and angles among 
them, taking into account the grouping associated  with TN. 
We denote by c, the parameters associated  with the location 
and orientation of the rigid collection of fitting half-spaces 
for TA relative to the  datum system  referred to in the 
tolerance assertions A on TN ( n  cannot be greater than 6). If 
there is no  datum reference, these parameters are not used to 
characterize T, (i.e., n = 0). Finally, 1, are parameters 
associated  with the limiting process by which F,, are derived 
from the fitting surfaces for FA, ( k  can be zero). We  refer to 
all  these parameters as surrogate parameters. The space 
spanned by the surrogate parameters is the real space 
Rm+nck, which we refer to as the surrogate parameter space 
for TA subjected to GA and the specified limiting process.  We 
can now  define the parametric tolerance zone as follows. 

Dejnition 4 
The parametric tolerance zone for TA (subjected to a 
specified grouping and limiting process)  is a subset  of the 
surrogate parameter space for TA that corresponds to the set 
of  all actual solids  whose  TF  satisfies A. 0 

Note that the parametric tolerance zone also depends on 
110 some parameters associated  with A, but these parameters 

remain fixed and do not change from instance to instance of 
actual solids. 

If the bounding surfaces  of the parametric tolerance zone 
are hyperplanes perpendicular to the axes in the surrogate 
parameter space, we refer to  the zone as an unconditional 
tolerance zone. Such zones imply allowable variations in 
each surrogate parameter which are not dependent on values 
of other surrogate parameters. Otherwise, the zone is referred 
to as a conditional tolerance zone and is denoted by Z. Most 
VBRs lead to CT zones in the surrogate parameter space. 

For any given VBR, it  would  be  preferable to derive the 
CTzoneintheformZ=(z:A(z)~O,i=I,...,jJ,where 
z = (s,, . ' . , s,, c,, . . . , c,,, I , ,  . . . 1,) is a point in the 
surrogate parameter space and 3 = ( P I ,  . . . , ,$I is a set  of 
functions. Such a representation has the attraction that by 
simply evaluating the functions 4, one can determine 
whether a given point z in the surrogate parameter space  is a 
member of Z. Further, it may facilitate the determination of 
the allowable  range  of variation in one parameter for  given 
fixed  values  of other parameters. 

Deriving ,( for a given VBR involves essentially finding 
expressions  for b, used in fitting T,, in terms of the 
parameters that characterize T,. We do not know of a 
general algorithm for doing this. Next, we explore the 
process involved by studying a number of  cases that occur 
frequently. 

Representation  conversion 
In practice, cylindrical features and sets  of two nominally 
parallel planar features forming slabs or slots must 
frequently be considered. Here, we examine some VBRs that 
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. . . . . . . . . i Orientation tolerancing: assembly requirement for a cylindrical stud. 
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I i Orientation tolerancing: assembly requirement for a cylindrical hole. 

are often invoked on such features and derive CT zones for 
them. All  of the cases we examine refer to a datum system 
whose primary datum is a planar datum. We assume that 
the coordinate frame of reference for the actual solid is 
established  using the primary datum surface as the xy plane. 
Secondary and tertiary datums, if any, are used to fix the 
location of the origin and the orientation of the x axis of the 
coordinate frame in the primary datum surface. 

In all  cases, we derive surrogate surface features by using a 
slab half-space to limit the primitive surfaces that fit the 
actual surface  features. This slab  half-space,  defined as 

where p, is the z coordinate of  p, l2 is the z location of the 
median plane of the slab, and I ,  is the thickness of the slab, 
is oriented such that its median plane is  parallel to the 
primary datum surface and has the minimum thickness 
necessary to enclose the relevant actual surface  features. 
Note that our limiting process introduces two parameters, 1, 
and I,, for characterizing T,. The closeness criterion we  use 
to estimate individual measure of  closeness  is the maximum 
distance between the candidate fitting  surface and the actual 
feature; i.e., c(FA, dH) = max{d(p, d H ) :  p E FA). We start 
with a single  cylindrical feature. 

Cylindrical feature 
The reader  may wish to refer to Figures 10 and 1 1 (shown 
later), as a visual aid for  following the description below. A 
cylindrical  half-space  is  completely  specified  by its diameter 
s, (an intrinsic parameter) and its axis. A directed line, with 
the direction determined by increasing z, associated  with the 
axis  can be  specified  by  two locational parameters c, and c, 
that are the coordinates of the point of intersection of the 
line with the xy plane, and two orientational parameters, 
cj (the attitude angle,  defined as the acute angle  between the 
line and the z axis) and c, (the azimuth angle,  defined  as the 
positive rotation around the z axis  necessary to make the 
unit vector  along the x axis parallel to the directed projection 
of the axis line onto the xy plane). Our limiting process 
introduces two parameters, I ,  and I,, as stated above. Thus, 
the parametric space for a single  cylindrical surrogate feature 
(derived  using the limiting process  described  above)  is the 
space R7 spanned by the set of parameters z = (s, , c, , c,,  c,, 
c,, I , ,  I,). A VBR may  impose a limit on the range of 
variation of only a subset of these parameters, as is  seen 
below. 

Orientation tolerance 
Consider VBRs that refer to a datum system  with just a 
primary planar datum  and are asserted on single  cylindrical 
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features. The axes  of  virtual  cylindrical  surfaces in these 
cases are constrained to have  specified attitude angles, but 
their locations and azimuth angles are unconstrained. In  all 
cases  we consider, the nominal attitude angle is zero (see 
Example 1 in [ 1 1  for  such  requirements). 

Figure 1 shows  two nominal cylindrical  features, denoted 
by FNI , having  a nominal diameter of s,, . The cylindrical 
stud and the cylindrical  hole are nominally oriented so that 
their axes are perpendicular to a planar feature FN2. The 
member of the nominal tolerance set of interest here  is 
TN = {FNI 1 and the datum feature is {FNz I. Figure 2 shows 
an actual instance of a stud satisfjmg an assembly 
requirement. The figure  for the case  of  a  bulk requirement 
for  a  hole  is very similar (see 161). A  hole  with an assembly 
requirement is  shown in Figure 3. Again, the case of  a stud 

Since a ,  2 0 for  assembly, it follows that s,, + 2b, c s,, + 
2 I a ,  I. Similarly,  for the material bulk requirement a ,  c 0 
and b, z a , ,  which can be manipulated to read as s,, - 26, 
c s,, + 2 I a ,  I. The left-hand  side  of  each inequality is the 
diameter of the fitting  surface  for the surrogate  feature, 
which from  Figure 2 is  seen to be s,sec c, + /,tan c,, leading 
to the inequality s,sec c, + 1,tan c, - sNr - 21 a ,  I c 0. 

Note that the VBRs in these  cases do not constrain c, , c,, 
c,, or I,, and hence the CT zone  spans  all  values  of  these 
parameters. 

Result 2 
In the cases  of the assembly requirement for  a stud and the 
material  bulk requirement for  a  hole, it is  necessary that 
s, 5 sNl + 2 I a ,  I ; the conditional tolerance on c, is  given  by 

I 

satisfying  a material bulk requirement is very  similar  (see 
[6]) .  All  of these VBRs  refer to a datum system that consists 
of  only a primary planar datum associated with the datum 
feature {FA, 1. They are characterized by a  set  of  scalars 
a = { a ,  ). The relevant  member of the actual tolerance set 
is TA = {FA, 1, and the corresponding rigid collection of 
surrogate  surface  features  is TF = {FFI ). The size parameter 
of FF1 is s, . The top  and the bottom edges  of FF, are ellipses 
parallel to the primary datum surface. The only  indicated 
configuration parameter is the attitude angle c,. The 
appropriate fitting  half-spaces  for TF are indicated in the 
figures as m O (  T,; b), where b = {b, ). We  now derive the CT 
zones  for  these VBRs. 

Result I 
In the cases  of the assembly requirement for  a stud and the 

Proof From Result 1 we  have slsec c, + 1,tan c, c 
s,, + 2 I a,  I and 0 c c, < (?r/2). The above inequality cannot 
be  satisfied  for  any  value  of c, in this interval if s, > s,, + 
2 I a,  I. Thus, it is  necessary that s, c s,, + 2 I a ,  I. To obtain 
the upper and lower bounds for the allowable  variation in c, , 
note that s, sec c, + I, tan c, is  a  monotonically  increasing 
function of c3, and that the lower bound for c, is 0. The 
upper bound is obtained by solving the equation s,sec c3,,,= 
+l,tanc,,,=s,, + 2 1 a , l .  

tolerances in terms of tolerance zones in E3 for the axis of 
the surrogate  cylindrical  surface  (limited by HsLABl). If  we 
define  a  cylindrical  tolerance  zone  of diameter d = I, tan c, 
for the axis, then a CT for d can be derived  (from  Result 2) 
as 0 c d 5 dm,, where 

It is common in practice to specify orientational 

(sN1 + I a,  I - sl)(sN1 + I I + '1) 

dm, = 

[ s N 1 + 2 ~ a I ~ + s I ~ 1 + (  1, + 2 1  1, ' 1  I - 'I)] 

+ 2l '1 I + 

I 
material  bulk requirement for  a  hole, the conditional It is interesting to note that the CT for d commonly used in 
tolerance  zone is given  by current practice [2]  is 0 5 d 5 dAm = (sNI + 2 I a ,  I - s,), 

(8,  > 0) A ( I ,  > 0) A 
which  is an approximation of the expression we have 
derived. Note that by  using the approximation it is  actually 
possible to accept parts that should be rejected,  which means 
that it is not a  conservative approximation. The relative 

(s,sec c, + 1,tan c, - s,, - 21 a ,  I 5 0)  

Proof The first three inequalities are obvious  from the difference  between the maximum values permitted for d by 
definition  of s, , c,, and I , .  From Theorem 1, a  sufficient the expressions  above [i.e., (d& - d-)/d-] is  plotted as a 

112 condition for  satisfying the assembly requirement is b, c a , .  function of the feature size (s,) and height (1,) in Figure 4 
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(for loosely toleranced cases) and in Figure 5 (for tightly 
toleranced cases).  Clearly, the significance  of the difference 
should be carefully assessed in each  case  before adopting the 
approximation. 

Before  we  proceed further to compute the CT for  Figure 3, 
we need  some information about the symmetric  axis  of an 
ellipse. 

Dejinition 5 
A maximal disk for  a planar object  is an open  circular  disk 
that is completely  contained  within the object, but not in 
any other  disk in the object. The symmetric axis of a planar 
object  is the locus of the centers of  all maximal  disks  for the 
object [ 121. 0 

Property 8 
The length of the symmetric  axis  of an ellipse,  with  major 
axis d sec 8, where 0 5 8 < (r/2), and minor axis d, is 
d sin 0 tan 0. 

Proof The radius of curvature of the ellipse at the extreme 
points  along the major  axis  is (d/2) cos 8.  (See Figure 6.) 
Hence, the length of the  symmetric axis is d sec 0 - d cos 0, 
which can be reduced  to d sin 0 tan 8.  0 

I 

. . . . . .. - 

Symmetric axis for an ellipse. 

largest  circle that inscribes  both the ellipses  projected onto 
the datum surface, denoted as dF, is given  by 
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Using Property 8, this condition can be stated as 1, tan c, > 
s,sin c,tan c,;  i.e., sin c, < (l,/s,) [which  is  always  satisfied 
for 0 5 c, < (7r/2) if I ,  2 s,]. Then the inscribed  circle 
touches the ellipses at two points only [see Figure 7(a)], and 
dF = s, sec  c, - 1,tan c,. 

In the second  case, the symmetric axes  of the two  ellipses 
intersect; i.e., sin c, 2 (l,/s,). Then  the inscribed  circle 
touches the ellipses at four points [see  Figure 7(b)], and 
dF = m, which  is,  interestingly, independent of  c,. 0 

The variation of dF with c, is  shown  graphically in Figure 
8. We note that  the diameter of the fitting  surface for the 
surrogate feature in these  cases  is equal to dF. 

Result 4 
In the cases  of the assembly requirement for a hole and the 
material bulk requirement for a stud, the conditional 
tolerance zone is  given  by 

Proof The first three inequalities are obvious from the 
definition of s, , c,, and I , .  From Theorem 1, a sufficient 
condition for  satisfying the assembly requirement is b, 5 a,. 
Since a, 2 0 for  assembly, it follows that s,, - 2b, 2 
sN1 - 2 I a, I . Similarly, for the material bulk requirement 
a, 5 0 and b, 2 a,, which can be manipulated to read as 
sN, + 2b, 2 sN, - 2 I a, I .  The left-hand  side of each 
inequality is the same as the diameter dF of the fitting surface 
for the surrogate feature. Use  of Result 3 in the inequalities 
leads to the desired  result. 0 

l,, and therefore the CT zone spans all  values of these 
parameters. 

The VBRs in these  cases  also do not constrain c,, c,,  c,, or 

Result 5 
In the cases  of the assembly requirement for a hole and the 
material bulk requirement for a stud, it is  necessary that 
s, 2 sNI - 2 I a, 1 ,  and the conditional tolerance on c, is 
given  as  follows:  If 

W A Y  SRINIVASAN AND RANGARAJAN JAYARAMAN IBM J. RES. DEVELOP. VOL. 33 NO. 2 MARCH 1989 



I Stud I 

1, 2 s, V[ I ,  < s, A =< s,, - 21 a, I], 
then 

curve corresponding to a particular value  of (l,/s,). There are 
two  possibilities. In the first  case, the curve intersects the 

else 0 5 c, < ( ~ / 2 )  

Proof From Result 4 it  follows that sN, - 2 I a,  I 5 dF and 
0 5 c3 < ( ~ / 2 ) .  Figure 8 shows the variation of dF as a 
function of c3 for various  values of I ,  and s, in a 
nondimensional form. Also shown  is a dividing line that 
corresponds to dF = s,, - 2 I a, I. Note that any combination 
of parameters (s, , I,, e,) that lies  below this dividing line 
violates the VBR, whereas a combination that lies on or 
above the line satisfies the VBR.  Since the maximum value 
of dF is s, , we conclude that it is  necessary that s, 2 

S N I - 2 1 a I l .  

To derive bounds on c3, observe that the lower bound is 
clearly  zero.  The upper bound is derived by considering the 
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' 4  
I 
'dividing line at one point. This is true if 

The upper bound is obtained by solving the equation 

s,sec c3,,, - I, tan e,,, = sN, - 2 I a, I. 
In the second  case, the curve  is either on or above the 
dividing line, and the upper bound for c3 is  clearly (7r/2). 0 

If we define a cylindrical  tolerance zone of diameter 
d = I ,  tan c3 in E3 for the axis of the surrogate cylindrical 
surface (limited by HSLAB,), then a CT for d can be  given as 
follows.  If 

I, 2 s, v [I, < s, A e sN, - 2 I a, I], 
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Section A-B 

Position tolerancing: assembly requirement for a stud and bulk requirement for a hole 

then (FN2), (FN3], and {FN4] have  been  designated as primary, 
I 

L 

else 0 I d < 03. It is  once  again  interesting to note that the 
CT  for d commonly used  in current practice [2] is 0 I d 5 

(sI - s,, + 2 I a, I ). In this case,  however, current practice  is 
conservative; parts that are acceptable  functionally may  be 
rejected. 

Position  tolerance 
VBRs which  refer to a datum system  with three mutually 
orthogonal planar datums and which are asserted on single 
cylindrical  features constrain the axes  of the corresponding 
virtual  cylindrical  surfaces  completely.  In  all  such cases we 
consider  here, the nominal attitude angle  is  zero  (see [6] for 
examples of such  requirements). 

Figure 9 shows  two nominal cylindrical  features, denoted 
by FNI , having a nominal diameter of s,, . The member of 
the nominal tolerance set  of interest here is TN = { FNl 1, and 
FNz, FN3, and FN4 are mutually  orthogonal planar features. 116 
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‘secondary, and tertiary datum features of a complete datum 
system. FNl is  nominally oriented so that its axis  is 
perpendicular to FN2 and located at distances cN2 from FN3 
and c,, from FN4. The xyz coordinate system  associated  with 
the solid  has the primary datum as the xy plane, the 
secondary datum as the xz plane, and the tertiary datum as 
the yz plane. We consider  all combinations of  assembly and 
material  bulk requirements asserted on studs and holes, as 
previously.  They are all  characterized by the set  of scalars 
a = (a,  1 and refer to the datum system mentioned above. 
Figures illustrating actual instances of cylindrical  features 
satisfying  such VBRs are not provided  here  because  they are 
too complex to draw. Instead, shown in Figure 10 is the 
projection onto the xy plane and a specific  cross  section  of 
the rigid collection of surrogate  surface  features TF = (FFl ] 
associated  with the member of the actual tolerance set 
T, = (FAl ] of an actual solid.  Figure 10 indicates the 
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I 

/' 

r = O  
I 

relevant parameters and geometric constructions in the cases 
of the assembly requirement for a stud and the bulk 
requirement for a hole.  Similarly, the cases  of the assembly 
requirement for a hole and the bulk requirement for a stud 
are shown in Figure 11. 

In all of these  cases,  finding the exact functions 3 in closed 
form  for  defining Z is a very  difficult  task.  Essentially, in the 
cases depicted in Figure 10, this would require deriving the 
diameter of the smallest circular disk  with its center at 
(cN1, cN2), and which  encloses the projection of T,; in those 
depicted in Figure 1 1, this would require the derivation of 
the diameter of the largest circular disk  with its center at 
(cNI, cN2), and which  is  enclosed  by the projection of T,. 
Both  would  involve  finding the zeros of fourth-order 
polynomials in closed  form. The approach we use in these 
cases  is to show that by  using a conservative approximation 
to the surrogate feature, we can simplify the problem and 
determine relatively  easily a set of functions 3, that 
characterize a subset of Z .  In other words, we can obtain a 
conservative characterization of the CT zone as Z 2 Z ,  = 
(z: 3&) 5 0). We  refer to Z, as a conservative CT zone. 

Returning to Figure 10, we  have shown a cylindrical 
surface  with the smallest diameter that surrounds F,, and is 
perpendicular to the primary datum. This cylindrical  surface 
limited by IfsLAsl is denoted as FFFl. Note that TTF = (FFFI ) 
serves as a conservative approximation to T, in deriving Z,. 
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That is, the rigid  collection  of  fitting  half-spaces  for T,, 
denoted as mO(TN; b), where b = &), and  the rigid 
collection of fitting  half-spaces for TTF, denoted as 
mO( T,; b,), where b, = (b,,), are such that b, 5 b,, for 
assembly and b, 2 b,, for material bulk maintenance. The 
reader should be  able to convince himself  of this intuitively. 
Similarly,  Figure 11 shows a cylindrical  surface  with the 
largest diameter that is surrounded by FFI and is 
perpendicular to the primary datum. Here again, b, 5 b,, 
for  assembly and b, 2 b,, for material bulk maintenance. 

We  now derive  conservative CT zones for the VBRs 
illustrated in these  figures. 

Result 6 
In  the.cases of the assembly requirement for a stud and  the 
material bulk requirement for a hole  (Figure lo), which  refer 
to a complete datum system  composed  of three mutually 
perpendicular planar datums, a conservative conditional 
tolerance zone  is  given  by 

2, 

=(. 

where 
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Slab 

o = ~ ( c ,  + /,sin  c,cos c, - cNI12 + (c2 + [,sin  c,sin c, - CN2), 

Proof The first three inequalities are obvious from the where 
definition of s, , I,, and cg . From Theorem 1, and using TTF 

I 

I 

0 = J(c, + [,sin c3cos c, - cN,12 + (c2 + [,sin  c,sin  c, - cN2f .  

in place  of TF, we can write a sufficient condition for I Proof Similar to the proof of Result 6. See [6] for 
satisfying the VBR as sNI f 2b, 5 sNI +: 2b,, 5 s,, + 2 I a, 1 ,  details. 0 
with the + sign for  assembly and  the - sign for material Note that the VBRs in these  cases constrain all  of the 
bulk. From Figure 10, we can write the distance between surrogate parameters. Next, we examine the VBRs for a set 
points (cN,, cN2)  and the center of the projection of FFF, as of  two parallel planar features constituting a slab or a slot. 

and the diameter of the fitting  surface  for FFF, as s,, f 2b,, 
= (20 + s, sec  c, + 1, tan c,),  which  leads to the last 
inequality. 0 

Note that the VBRs in these  cases constrain all  of the 
surrogate parameters. 

Result 7 
In the cases  of the assembly requirement for a hole and the 
material bulk requirement for a stud (Figure 1 I ) ,  which  refer 
to a complete datum system  composed  of three mutually 
perpendicular planar datums, a conservative conditional 
tolerance zone  is  given  by 

(s, > 0)  A ( I ,  > 0)  A 

(SNI - 2 I a, I I dF - 20) 

0 = J(cI + /,sin C,COS C, - cN,12 + (c, + /,sin  c,sin c, - cN212. 

I 
Planar features 

Consider a TN = ( FNI , FN2) ,  where FNI and FN2 are planar 
features  parallel to each other and forming a slab or a slot, 
with an associated  grouping G, = (GI 1, where GI = 

{FN,, FN2). The rigid  collection of fitting  half-spaces for the 
corresponding T, is  composed of a set of two  parallel planar 
half-spaces  characterized by the distance s, between their 
bounding planes. (See Figure I6 or 17, shown later.) The 
median plane for the fitting  surfaces can be  specified  by one 
locational parameter c, , which  is the y coordinate of the 
intersection of the plane  with the y axis and two 
orientational parameters, c, (the azimuth angle defined as 
the positive rotation around the z axis  necessary to make the 
unit vector  along the x axis  parallel to uz X uzp, where uz is 
the unit vector  along the z axis and uzp is the projection of 

z, = 2 
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I Orientation tolerancing: material bulk requirement for  a  slab. 

uz onto the median plane) and c3 (the attitude angle  defined 
as the acute angle  between uz and uz,). The limiting process 
mentioned earlier introduces two parameters, I, and 1,. In 
addition, we further limit the fitting  surfaces  with another 
slab (ITSLAB2) of thickness l3 (minimally sufficient to enclose 
TA), whose median plane is perpendicular to the xy plane 
and further constrained such that only one parameter 1, is 
needed to specify its location. Thus, the parametric space for 
a set of  two  parallel planar surrogate features  (derived  using 
the limiting process  described above) is the space R8 spanned 
by the set of parameters z = (s,, c,, c,, c3, I , ,  12, 13, 1J. A 
VBR may impose a limit on the range of variation of only a 
subset of these parameters, as shown  below. 

Orientation tolerance 
Consider VBRs that refer to a datum system  with just a 
primary planar datum. The median planes  for the two 
virtual planar surfaces in these  cases are constrained to have 
specified attitude angles, but their locations and azimuth 
angles are unconstrained. In all of the cases  we consider, the 
nominal attitude angle  is  zero. The median plane of ITsLAB2 

must, in addition, be perpendicular to the median plane of 
the fitting  surfaces; the parameter 1, is the x coordinate of the 
intersection of the median plane of ITSLAB2 with the x axis. 

Figure 12 shows  two nominal planar features denoted by 
FNI and FN2, forming a slab and a slot. The nominal 
distance between the two planar features  is sNI. The median 
plane is so oriented that it is perpendicular to a planar 
feature FN3, and (FN3} has  been  designated as a datum 
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feature. The member of the nominal tolerance set of interest 
here is TN = (FNI, FN2}. Figures 13 and 14 show actual 
instances of a slot and a slab,  respectively,  satisfying a 
material bulk requirement. (See [6]  for similar figures for the 
cases  of assembly requirements for slabs and slots.) All of 
these VBRs refer to a datum system that consists  of  only a 
primary planar datum associated  with the  datum feature 
IFA3). They are characterized by the set of scalars 
a = ( a , ,   a , } .  The member of the actual tolerance set of 
interest is T, = (FA,,  FA,}. With a grouping G, = 
( (FA, ,  FA,}), the rigid  collection  of surrogate surface features 
TF = (FFl, FF2) is characterized by a distance parameter s, . 
Other indicated parameters are the limiting parameter 1, and 
the attitude angle c3 . The appropriate fitting  half-spaces for 
TF are indicated in the figures as WO( T,; b), where b = 

V I >  b2). 
We assume, without any loss of generality, that 6 ,  = b2 

and a,  = a,. We  now derive the CT zones for the VBRs 
depicted in these  figures. 

Result 8 
In the cases  of the assembly requirement for a slab and the 
material bulk requirement for a slot, the conditional 
tolerance zone  is  given  by 

( ~ , > O ) A ( I ~ > 0 ) A ( I 3 > O ) A  

(s,secc3+I,tanc3-sN,-21a, I S O )  119 
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Proof Similar to the proof of Result 1. 0 Proof The first four inequalities are obvious from the 

and hence the CT zone spans all  values of these parameters. a sufficient condition for  satisfymg the VBR as sNI T 2b, 2 

Result 9 material bulk. From Figure 14 we can write s,, T 2b, = 
In the cases of the assembly requirement for a slab and the s,sec C, - /,tan c,, which  leads to the inequality 
material bulk requirement for a slot, it is  necessary that sN, - 21 a, 1 - s,sec c, + l,tan c, 5 0. 0 
s, 5 sNI + 2 I a, I ,  and the conditional tolerance on c, is 
given  by 

Note that the VBRs here do not constrain c,, c,, l,, or 14, definition of s,, I , ,  l,, and c,. From Theorem 1, we can write 

sN, - 2 I a, I ,  with the - sign for assembly and the + sign for 

I 

1 
I 

Proof Similar to the proof of Result 2. 0 Result I I 

in terms of tolerance zones in E 3  for the median plane of the material bulk requirement for a slab, it is  necessary that 
surrogate planar surfaces (limited by HSLABI). If  we define a s, 2 sN, - 2 I a, I ,  and the conditional tolerance on c, is 
slab tolerance zone of width d = I ,  tan c, for the median given  by 
plane, then a CT for d can be derived as 

It is common practice to specify orientational tolerances In the cases  of the assembly requirement for a slot and the 

I 

- SN, + 2 1 u I l )  
1, 

o s c, 5 2 tan-' [ l+d )( 1, + 2 1 u 1 1 )  I- - 
("] + SNll: 1'1 I 

'I - 'NI 

Just as for the case of cylindrical  features, the CT for d Proof Similar to the proof of Result 5. 0 
commonly used in current practice [2 ]  is 0 I d 5 If  we define a slab tolerance zone of  width d = I, tan c, for 
(sN, + 2 I a, I - s,), permitting the acceptance of parts that  the median plane of the surrogate planar surfaces (limited by 
fail to meet functional requirements. l HsLAs,), then a CT for d can be  given as 

( S , - s S , , + 2 ~ a l ~ ) ( s ~ l - 2 / a l ~ + s l )  
O r d s  

Result IO ' It is once again interesting to note that the CT for d 
In the cases of the assembly requirement for a slot and the commonly used in Current  Practice 121 is 0 5 d 5 

material bulk requirement for a slab, the conditional (s, - sN, + 2 I a, I ) ,  which is conservative. 
tolerance zone  is  given  by 1 

VUAY  SRlNlVASAN AND RANGARAJAN  JAYARAMAN IBM I. RES. DEVELOP. VOL. 33 NO. 2 MARCH 1989 



I I 

F, 1 I 

Slab 

Slot 

Nominal  planar  features in slabislot  combination  for  position  tolerancing. 

Position tolerance 
Consider VBRs that refer to a datum system  with three 
mutually orthogonal planar datums  and are asserted on pairs 
of parallel planar features forming slabs or slots. The median 
planes of the two virtual planar surfaces in these  cases are 
completely constrained. In  all of the cases  we consider, the 
nominal attitude angle and the nominal azimuth angle are 
zero. In addition, the median plane of HSLABZ is required to 
be perpendicular to the x axis, and l4 is the x coordinate of 
the intersection of this median plane with the x axis. 

Figure 15 shows  two nominal planar features, denoted by 
FNI and FN,, forming a slab and a slot. sNI is the nominal 
distance between the two planar features. TN = (FNl, FNz) is 
the relevant member of the nominal tolerance set, and FN3, 
FN4, and FNs are mutually orthogonal planar features. IFN3), 
( FN4 I, and { FN5 ) have  been  designated  as primary, 
secondary, and tertiary datum features of a complete datum 
system. The median plane of FNI and FN2 is nominally 
oriented such that it is perpendicular to FN3, parallel to FN4, 
and located at a distance of c,, from FN4. The xyz 
coordinate system  associated  with the solid has the primary 
datum as the xy plane, the secondary datum as the xz plane, 
and  the tertiary datum as the yz  plane. We consider  all 
combinations of  assembly and material bulk requirements 

IBM 1. RES. DEVELOP. VOL. 33 NO. 2 MARCH 1989 

for  slabs and slots, as previously.  They are all  characterized 
by the set of scalars a = (u,, a,) and refer to the  datum 
system mentioned above. No figures are provided to 
illustrate actual instances of slabs and slots  satisfying  such 
VBRs, because they would  be too complex. Instead, shown 
in Figure 16 is the projection onto the xy plane and a 
specific  cross section of the rigid  collection  of surrogate 
surface features T, = { FFI , F,) associated  with the member 
of the actual tolerance set TA = (FA,, FA, ) of an actual solid. 
Figure 16 is for an assembly requirement for a slab and a 
bulk requirement for a slot; it indicates the relevant 
parameters and geometric constructions. Similarly, Figure 17 
depicts an assembly requirement for a slot and a bulk 
requirement for a slab. The appropriate fitting  half-spaces for 
T, are indicated in the figures as WO( TN; b), where b = 
(b ,  , b,). We  now derive the CT zones for the VBRs depicted 
in those  figures. 

Result 12 
In the cases  of the assembly requirement for a slab and the 
material bulk requirement for a slot,  which  refer to a 
complete datum system  composed  of three mutually 
perpendicular planar datums (Figure 16), the conditional 
tolerance zone is given  by 121 
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A Section A-B 

t 5 l2 sin c3 

Position tolerancing: assembly requirement for a slab and bulk requirement for a slot. 
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where y,,, = y i+ 11, ymi, = y (- 11, 

- [(II - q) tan c, - - sec c, sec c2 , 
Jksl 2 1 

i = sign(tan c,), j = sign(cos c2), and 

sign(x) = 
+1 if x 2 0, 
-1 i f x <  0. 

Proof The first four inequalities are obvious from the 
definition of s,, c,, I,, and I,. From Theorem 1 we obtain 
a sufficient condition for  satisfying the assembly  VBR  as 
b, 5 a, and b, 5 a,, which can be rewritten as 

'N I y,,, C,, + - + b, 5 + - + I I 'N I 

2 2 
and 

'N 1 c,, - - - la,l s c N l  --- 2 

I 

Refemng to Figure  16, the expression  for the y coordinate of 
the eight  vertices of TF can be written as 

y .  = 1, & - tan c2 + c, ' ( k) 
- [(I2 f g) tan c, & sec c, sec c,. Sl 1 

By using  these  expressions, we can obtain the maximum and 
the minimum values  for the y coordinate of the vertices of 
F,, and FF2, respectively; the results  lead to the desired 
inequalities. 0 

Note that the VBRs in these  cases constrain all of the 
surrogate  parameters. 

Result 13 
In the cases  of the assembly requirement for a slot and the 
material bulk requirement for a slab,  which  refer to a 
complete datum system composed of three mutually 
perpendicular planar datums (Figure 17), the conditional 
tolerance zone  is  given  by 

I 

whereymax = y(+l),  ymin = ~ ( - 1 ) ~  
Similarly,  for the material bulk requirement, b, 2 a, and 
b, 2 a,, which can be rewritten as 

'N I 'N I 
Ymax = c ~ , + - - ~ ~ s c ~ ~ + - + I ~ ~ I  2 2 

and 

'N I 'N I 
CN1 - - - l a 2 1  'NI -2 + b, = ymin . 

- [o, - q) tan c, + - sec c, sec c2 , 
JkS' 2 1 

i = sign(tan c2), j = sign(cos c2), and 

sign(x) = 
+1 ifx L 0, 
-1 i f x  < 0. 

Note that y,,, here  represents the maximum value of the y 
coordinate of the vertices of FF1, and ymin represents the Proof Similar to the proof of Result 12. See [6]  for 
minimum value of the y coordinate of the vertices of F,. details. 0 123 
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Note that the VBRs in these  cases constrain all  of the 
surrogate parameters. 

Concluding  remarks 
We  have examined the conversion of  VBRs to CTs,  which 
facilitate part fabrication and inspection. CTs specify 
allowable variations in the geometric parameters of features. 
A theoretical basis has been  developed  for  deriving CTs from 
VBRs, and CTs have  been  derived  for frequently occurring 
VBRs. 

A number of  issues  need to be studied further. We  have 
not provided  sufficient conditions for ensuring that a given 
procedure to limit fitting  surfaces  results in surrogate 
features. We conjecture that inclusion of the projection of 
actual features onto fitting surfaces is sufficient to guarantee 
the surrogate property. We  have not been  able to prove this. 
Our attempts to  do so have  led  us to believe that we must 
first examine the general properties of  visible  regions of 
surface  features, introduced for formalizing the concept of 
being on  the proper material  side of actual surface  features. 

A general-purpose algorithm for  deriving CT zones  from 
VBRs  is not known.  In the case  of  VBRs asserted on a 
pattern of simple  features  (e.g., studs, holes,  slabs, or slots), 
we  believe that the tolerance zones can be computed as 
intersections of zones for each member of the pattern. 
Deriving the tolerance zones  for a simple feature itself  is 
often difficult, as can be appreciated from the derivation of 
the positional tolerance for a single  cylindrical feature. In 
that case, the problem is reduced to one of finding the 
configuration  space  obstacle [ 131 for a planar object and a 
planar obstacle, both of which are bounded by curves. The 
reader is referred to [ 141 for some recent  work on algebraic 
algorithms for  generating the boundary of configuration 
space  obstacles for planar objects and obstacles bounded by 
algebraic  curves and subjected to pure translatory motions. 
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