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In a companion paper [1], we examined the
representation of geometric tolerances in solid
models from the perspective of certain
functional requirements. We showed that
assembly and material bulk requirements can be
specified as virtual boundary requirements
(VBRs). Here, we study the related issue of
deriving equivalent alternative specifications.
Specifically, we first explore the reasons for
converting VBRs to another form of tolerances
designated as conditional tolerances (CTs). We
then develop a theoretical basis for converting
VBRs to CTs and derive CTs for some common
and practical VBRs. We thereby demonstrate the
difficulties in finding a general-purpose
algorithm for such conversions and also show
that some of the CT formulas used in current
practice are incorrect.

Introduction

In current practice [2], the geometrical specifications of
mechanical parts take the form of dimensions and
tolerances. The goal of such specifications is to describe a
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class of functionally acceptable mechanical parts that are
geometrically similar, The approach used is to describe the
geometry of a nominal mechanical part whose surface
features are mathematically perfect in form, and the extent
to which the geometry of any candidate part may deviate
from that of the nominal part.

The description of the nominal geometry often takes the
form of a set of annotated two-dimensional projections of
the nominal mechanical part, or more recently, complete
and unambiguous solid-geometric representations in a
computer. In either case, dimensions are assertions of
geometric nature on a set of features (both surface features
and derived features such as axes and median planes) of the
nominal mechanical part. Dimensions specify the form
(implicitly) (e.g., shank of pin in Example 1 of the
companion paper [1] is a cylindrical surface) or the size (e.g.,
diameter of shank is 10 mm) of a single feature, or the
positional (locational and/or orientational) relationship
among a set of features (e.g., shank and /ip of pin are
perpendicular).

A tolerance specification, or, briefly, a tolerance, on a set
of features is a measure of the extent to which the set of
features of an actual candidate part may deviate
geometrically from the set of features of the nominal part.
Conceptually, a tolerance specification can be interpreted to
define a certain region of space (a tolerance zone) within
which it should be possible to contain the set of features of
an actual candidate part [2, 3]. Thus, it serves to provide a
theoretical inspection procedure. In practice, the set of
features of the candidate part is approximated closely
(through a process of measuring and fitting of features) by a
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set of features of the corresponding mathematically perfect
form, and the geometric parameters derived from them are
compared with the tolerance specification. Here, the
tolerance specification is interpreted to provide bounds on
the allowable variation of geometric parameters derived from
the measurement of actual features.

As in the case of dimensions, tolerances can be specified
on the form of a single feature (e.g., the form tolerance on
shank of pin is 0.1 mm) or its size (e.g., the size tolerance on
the diameter of shank is 0.25 mm), or the positional
(locational and/or orientational) relationship among a set of
features (e.g., the orientation tolerance for shank and /ip is
0.1 mm). In addition, tolerances may be broadly qualified as
either unconditional or conditional on the basis of the
dependence of the allowable geometrical variations they
represent on the geometric parameters of actual features.

An unconditional tolerance on a set of features specifies
geometric variations that do not depend on any geometric
parameters derived from fitting of the actual set of features.
For example, an unconditional tolerance on the position of a
cylindrical hole specifies that the allowable variation in the
position of the (fitted) hole is independent of the size of the
(fitted) hole. In practice, most tolerance specifications,
including Regardless of Feature Size (RFS) tolerances [2],
are unconditional.

In contrast, a conditional tolerance (CT) on a set of
features specifies geometric variations that are dependent on
some geometric parameters derived from fitting of the actual
set of features. Thus, a CT on the position of a cylindrical
hole states that the allowable variation in the position of the
(fitted) hole depends on the size of the (fitted) hole. The
Maximum Material Condition (MMC) and Least Material
Condition (LMC) tolerances [2] used in practice are in fact
CT specifications. Typically, virtual boundary requirements
(VBRs), when translated into allowable variations in
geometric parameters of features, give rise to CTs.

VBRs capture certain classes of functional requirements
and facilitate the design of functional gauges where
appropriate [1]. It is necessary, however, to derive alternative
specifications (as nearly equivalent to the VBRs as possible)
based on the concept of CTs. Some of the reasons for this
are as follows.

Part geometry verification VBRs are not always verifiable
using functional gauges. Even when applicable, building
functional gauges can be very expensive, particularly for
small volume production. Use of modern inspection tools
such as coordinate measuring machines and vision-based
parts measurements systems [4] would require that VBRs be
translated into CTs,

Part fabrication process planning  Selection of the
appropriate equipment and the subsequent specification of
process parameters for fabricating a part require knowledge
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of the geometric parameters of the features of the part and of
allowable variations from their nominal values. For example,
if a drilling machine with an xy table is used to drill #ole in
washer of Example 1 in [1], it is important to know the
allowable variations in the x and the y locations, and the
orientation of the drill axis with respect to the fixtures. The
VBRs do not provide such information directly.

Part fabrication process control  In-process measurements
that can point back to drifting process parameters are
necessary for process control. For example; in the case of
drilling a hole in a plate, the process controller monitors the
location, orientation, and size parameters associated with the
drilled hole and must decide which parameter is drifting
toward its control limit. Merely verifying compliance with
the VBRs does not provide this information.

Statistical tolerancing  Tolerance analysis and synthesis
based on statistical approaches require a set of parameters,
each of which assumes a range of values subject to a
probability distribution [5]. Since the parameters associated
with VBRs are deterministic and do not vary from instance
to instance of the manufactured part, they are not directly
suitable for statistical tolerancing. On the other hand,
converting VBRSs into tolerance specifications on feature
parameters can help identify the relevant set of parameters
to focus on, as well as establish their ranges of variations
over which probability distributions can be used.

We have seen a number of reasons for converting VBRs
into tolerance specifications on the geometric parameters of
features. We next make a number of observations regarding
current industrial tolerancing practices related to CTs.
Figures 9 and 10 in [1] indicate how the example parts of the
companion paper are usually specified. In addition to the
derivation of virtual surfaces, the specifications are used to
derive CTs on the orientation or the position of axes and
median planes in simple cases (see Figure 9 in [1] and the
discussions following Results 2 and 5 in this paper). Such
interpretations are not provided in more complex cases (see
[6]). Even when provided, the interpretations may not be
equivalent to the VBRs, as shown later. Furthermore, when
the tolerance is on position, the manner in which deviations
in orientation and location can combine to produce the
positional deviation is usually not known.

The problem of deriving alternative tolerance
specifications from the given primary tolerance specifications
has received very little attention in the literature (see [7, §]).
Our earlier work [9] raised this issue as a topic to be studied
in detail. Here, we examine the problem of converting
geometric tolerance representations and develop a theoretical
basis for the conversion of VBRs to CTs. We derive the CTs
for a number of VBRs that occur frequently. We thereby
demonstrate the difficulties in finding a general-purpose
algorithm for such conversions, and also show that some of
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the CT expressions in current use are incorrect. Finally, we
discuss some open research issues in converting VBRs to
CTs.

Formalization

In this section, we provide a formal basis for the conversion
of VBRs to CTs. We first derive the necessary and sufficient
conditions for the satisfaction of VBRs, in terms of virtual
boundary parameters (g, in Definition 7 of [1]) and fitting
parameters for actual surface features (b, in Definition 7 of
[1]). We then develop formally the manner in which a well-
defined set of geometric parameters can be associated with
actual surface features (using the concept of surrogate surface
features that are of perfect form and are conservative
approximations to actual surface features), the concept of
tolerance zones (that correspond to VBRs) in the space of
such geometric parameters, and the conditions under which
such zones are to be considered CT zones. We use the
definitions and notations developed in [1].

& Conversion of virtual boundary requirements
In this subsection, we state and prove a number of
important properties of projection and offsetting, Using these
properties, we show that fitting surfaces and the actual
surface features they fit touch each other at least at one
point. This leads to the proof of an important relationship
between the virtual boundary parameters and fitting
parameters of actual surface features.

We start with a property of projection.

Property 1
Let A be a subset of E” and p a point with d(p, A)>0.1If
q € P(p, A), then q € P(r, A) where r € L(p, q).

Proof For any q’ € A we have, from the triangle
inequality, J(r, q" )} + 4(p, r) = d(p, q’). From the definition
of projection, we have 4(p, q’) = J(p, q). Hence,
d(r,q") = [d(p, q) — d(p, r)] = d(r, q), which implies that q
is one of the members of cl A closest to r, leading to the
desired result. O

Some properties of offsetting follow.

Property 2
Let 4 be a regular subset of E * and a a scalar such that
a=0. Then Jd(p, 34) = a for any p € (4 |" a).

Proof From the definitions of regularized shrinking and
regular sets, we have 8(4 |"a)=o0(4 1" a) =4 1" a).
Hence, p € 3(4 1" a), and from [10], d(p, 84 ) =a =

d(p,04). O

Property 3

Let 4 be a regular subset of £ % p a point with d(p, A) =
b>0, and g a scalar such that 0 < a < b. Then d(p, 4 1" q)
=bh-—a.
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Proof From [10] it follows that
d(p, 41" a) = a/[p, U £(q, a)}
qeAd

= min{d[p, 8(q, a)l:q € A}
= min{[d(p, q) — a]:q € 4]
=bhb—-q 0O

Property 4

Let 4 be a regular subset of £ ’ p € i4 a point such that
d(p, 4) = b > 0, and a a scalar such that 0 < g < b. Then
d[p, 84 | a)] = b —aand p € (4 |” a). Furthermore, if
q € P(p, d4), thenr € P[p, (4 |* a)], where r =

A4 |" a) N L(p, q).

Proof peidimpliesp & A . Then, from [10] it follows
that (p, A7) = d(p, 34" ) = d(p, 34) = b > 0. From Property
3,d(p, A 1"a)=(b—-a)>0.Hence,pei(d 1" a ).

That s, p € i(4 |" ). Furthermore, d(p, 7 1" a) =

dlp. 04" 1" @)] = d[p. 94" 1" a )] = d[p, 8(4 |" @)] =

(b - a).

Since r € £(p, q) and q € P(p, dA4), we have q € P(r, dA)
from Property 1. From Property 2 we have d(r, d4) = a,
since r € 8(4 |” a). Therefore, d(r, q) = a, which implies that
d(p,r) =b—a=d[p, A4 | a)]. From the definition of
projection, it follows that r € P[p, 3(4 |* a)]. O

Given two arbitrary scalars 7, and r,, it is trivially true that
if r, = r,, then O(S; ;) = O(S; r,). We need the following
properties and lemmas to understand what happens when
r#E,.

Property 5
O(S; r,) and O(S; r,) are regular.

Proof Follows from the fact that S is regular. See [11]. O

Property 6
Vr>0,SCSTr

Proof Letpe S. Then d(p, S) =0 < r. Hence, by
definition of regularized growing, p € S 1" r. Now pick a
small positive ¢ such that 0 <e <r. Then Vp 2 d(p, S) =&,
p & Sbut p € S 1" r. Hence we obtain the proper subset
property. O

Property 7
Vr>0,S>85|"r

Proof From Property 6 we know that 5 C 5 1" r.

Applying regularized congplementation on both
% .

sides, we have SO § 1" r. Hence SO S |'r. O

Lemma 1

If r, < r,, then O(S; r)) C O(S; 1,). 107
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Proof There are three cases. In the first case, r,, r, < 0; i.e.,
both offsets are obtained by regularized shrinking. Let

| r,] =|r,| + ¢ for some positive ¢ > 0. Since the regularized
shrinking operation is associative [11}, S |" |r,| =

(S} 1r1)]"eCS|"|r,l, using Property 7. From the
definition of regularized offset, it follows that O(S; r,) C
O(S; ry).

In the second case, r; < 0, r, > 0; i.e., one is obtained by
regularized shrinking, and the other is obtained by
regularized growing. From Properties 6 and 7, we have
S1"1r | CSCS1 r,. Then the result follows directly
from the definition of regularized offset.

In the third case, r,, r, > 0; i.e., both offsets are obtained
by regularized growing. Let r, = r, + ¢ for some positive
¢ > 0. Since the regularized growing operation is associative
[111, 1" r,=(S1" 1) 1" ¢ D S 1" r,, using Property 6.

From the definition of regularized offset, it follows that
o(S;r)Cco(S;r,). O

Lemma 2
If3pedo(S;r,)2peO(S;r) thenr, = r,.

Proof By contradiction. Let r, < r,. Then from Lemma I,
O(S; r)) C O(S; r,). Since both the regularized .
offsets are closed, this means that 9O(S’; r,) Ci[O(S; r,) ].
But this violates the condition satisfied by p. O

From the requirements to be satisfied by measures of
closeness used in fitting, we can prove the following
important lemmas, which show that the boundary of every
fitting half-space touches the corresponding actual feature at
least at one point.

Lemma 3
If H is a fitting half-space for an actual surface feature F,,
then 3pe F, 2 p €4H.

Proof We first address the external fitting case. From the
definition of fitting, F, C H and C(F,, dH) is the smallest it
can be. The proof is by contradiction. Assume that for any
q€E€ F,,q€iH. Then d(q, dH) > 0. Let

min d(q, dH) =r>0

qefy,

and let

[ - r
Then, from Property 4, q € iH’. Thus, H' satisfies the
containment condition for fitting,

Note that since H is a fitting half-space for F,, it satisfies
the material-side condition. That is, q’ € pP(q, 3H) A
Are(clL(q, q')]NF,3q" € Y(r, F,). Using Property 4,
we conclude that q” = [0H’ N .L(q, q’)] € P(q, dH ). From
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Property 2, 4(q”, q") = (r/2), since q” € dH’, while
d(r, q') = r, by assumption. Therefore, q” € £L(r, q") and
recl.f(q,q”). Sincer € cl L(q, q’) N F,, it follows that
r € cl L(q, 9”) N F,. Furthermore, q” € Vy(x, F,), since
L(r, q') C VYg(r, F,). Thus, H' satisfies the material-side
condition also.

Also from Property 4, we have

d(q, 0H") = [J(q, oH) - %] < d(q, 3H).

Thus, dH’ is closer to every point of F, than d H. From the
requirements to be satisfied by the criterion for individual
measures of closeness, it follows that ¢(F,, dH’) <
C(F,, 9H), which contradicts the fact that H is a fitting
half-space for F,. Hence, 3p € F, > p € dH.

The proof is similar for the internal fitting case. O

Lemma 4

For a set of actual surface features 7, = {F,,, - -+, Fyl}, if
H={H,,---, H} isarigid collection of fitting half-spaces,
then Vidp,e F,, D p, € 0H,.

Proof Follows from the definition of overall measure of
closeness as the sum of the individual measures of closeness,
the requirements to be satisfied by the criterion for the
individual measures of closeness, and Lemma 3. O

We now state necessary and sufficient conditions for the
satisfaction of VBRs, in terms of virtual boundary
parameters and fitting parameters for actual surface features.

Theorem 1

Let _4 be a virtual boundary requirement asserted on Ty, and
characterized by a. Let b and # be such that #WO(T; b)is a
rigid collection of fitting half-spaces (satisfying appropriate
spatial constraints with respect to the datum system, if any,
referred to in .4 and established on the actual solid) for 7.
Then, T, © 4 if and only if, for all i, b, < a, for assembly,
and b, = a, for material bulk.

Proof We start with the assembly requirement. To
establish necessity, assume that 7, © _4. Then from the
containment condition we have Vi, F,, C MO(Hy,; a;)-
From Lemma 4 it follows that Vi, 3q, € F,; 3

q; € dMO(Hg,; b;). From these facts, we deduce that V1,
3q,€ 0(Hy,; b)) 2 q; € O(Hy,; a;). Using Lemma 2, we
conclude that Vi, b, < a,.

To show sufficiency, assume that Vi, b, < g;. From
Lemma 1 we observe that O(Hg,; b;) € O(Hg,; a;). From
the containment condition for fitting, we have F,, C
m0(HFN,,; b,), from which we deduce that
F,; C MO(Hy,,; a;). The position condition is automatically
satisfied by the existence of WO(Ty; b). Thus T, © 4.

The proof is similar for material bulk requirement. [J

IBM J. RES. DEVELOP. VOL. 33 NO. 2 MARCH 1989




o Conditional tolerances

In this subsection, we describe an approach for associating a
well-defined set of geometric parameters with a set of actual
features subject to a given set of tolerance assertions. We
define an alternative representation for the tolerance
assertions, in terms of these geometric parameters. We
discuss the concept of CTs by characterizing further the
nature of the set of allowable parameter values, and close
with some remarks on deriving CTs from VBRs.

The set of parameters associated with actual features
should reflect the purpose of deriving the alternative
tolerance representation. For this reason, we consider certain
grouping, fitting, and limiting operations on sets of actual
features to create perfect-form surface patches that serve as
conservative and close approximations (surrogates) to actual
features in verifying their satisfaction of given tolerance
assertions. Here, the grouping operations preserve some of
the spatial relationships among the nominal features in the
fitting process. The type of tolerance assertion being verified
determines the side of the actual surface feature in which the
fitting entity should lie.

We start with a definition of a grouping of a set of surface
features.

Definition 1

Let T = {F,,-- -, F,} be a set of surface features. A grouping
G = {G,,- -, G} associated with T is a subset of the

power set of T such that @ & G; fori # j, G, N G, =@; and

UG=T O

Observe that each G, is a set of surface features and
therefore can play roles similar to that of 7, wherever
appropriate. Two extreme examples of grouping are / = k
with G, = {F,;} and / = 1 with G, = T. In the former case,
none of the positional relationships among the members of
the corresponding set of nominal surface features are
preserved in the subsequent fitting process. In the latter case,
all of the angular relationships are maintained.

Next, we define the notion of fitted and limited surface
features for a member Gy, of a grouping Gy associated with a
member T}, of the nominal tolerance set Ty.

Definition 2

Let Gy = {Fy,, - -, Fy,,} be a set of nominal surface
features and G, = {F,,,- - -, F,,,} be the corresponding set
of actual surface features. Let #7 be a rigid-body
transformation and a = {a,, - - -, a,,} be a set of scalars such
that #O(Gy; a) is a rigid collection of externally (internally)
fitting half-spaces for G, for assembly (material bulk). A
rigid collection of surrogate surface features rigidly associated
with G, for a given set of tolerance assertions 4 on Ty is a
rigid collection of geometric entities denoted as G =

{Feis -+ + 5 Fy,,} such that for all i, F, C M30(Hy; a,); Fy, is
bounded and closed in the relative topology of MIO(Hg, ; a));
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and the spatial extent of F is such that G, satisfies 4
whenever G, satisfies 4. O

G, is a conservative approximation to G, because it is
possible for G, to satisfy 4 without GY. satisfying 4, while
the converse is prohibited by the definition above. Each Fy;
inherits an inside (material side) and an outside (nonmaterial
side) from Hy_, the fitting half-space for F,;, which means
that Gy can be fitted (in a constrained manner) further. The
definition does not prescribe any process for limiting the
boundary of the fitting half-space for F,; to derive Fr,. We
conjecture that for any closed and bounded subset of the
boundary of the fitting half-space for a surface feature F,, to
serve as a surrogate for F,; (i.e., to satisfy the requirement
that whenever the subset satisfies _4, the actual feature
satisfies _4), it is sufficient for that subset to include the
projection of F,; onto the boundary of the fitting haif-space.
The special cases in the next section seem to support this
conjecture. However, we have not been able to prove it
rigorously. There are an unlimited number of choices for
surrogate features. Generally, the limiting is done in such a
manner that the number of parameters necessary to
characterize F, is minimized. Datum half-spaces and fitting
half-spaces (possibly subject to additional constraints) for
adjacent features are often used to limit the fitting surface for
the feature of interest. We now define the notion of fitted
and limited surface features for a grouping G, associated
with a member T, of the nominal tolerance set Ty.

Definition 3

Let Ty = {Fy,, '+ +, Fi} be a member of a nominal
tolerance set Ty and G = {Gy,, ' - -, G} be a grouping
associated with Ty Let T, = {F,,,- - -, F,,} be the

corresponding member of the actual tolerance set for an
actual solid S, and G, = {G,,, - - -, G,;} be the grouping
derived from Gy and associated with T,. A rigid collection of
surrogate surface features Ty = {Fy,, - - -, Fg}, rigidly
associated with T, (subjected to G,), is defined as

L_J Gy,

where Gy, is a rigid collection of surrogate surface features
rigidly associated with G,;, and the spatial extents of F; are
such that T, satisfies a given set of tolerance assertions _4¢ if
T satisfies 4. O

In this definition, since each Gy, is a member of a
grouping, Definition 2 is applicable. The rigid sets of
surrogate features thus associated with G,, are collected into
a single rigid set of surrogate features associated with T,. For
example, let Ty, = {Fy,, Fy,}, where Fy, and Fy, are parallel
planar patches. If the associated grouping G, = {{Fy,, Fx,1},
then F, and F, are parallel to each other in T, =
{Fg(> Fro}- On the other hand, if Gy = {{Fy,}, {Fx.}}, then
F, and Fg, may not be parallel to each other.

As discussed previously, it is necessary to derive for a
given VBR the ranges of values that are permissible in
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certain geometric parameters characterizing the
corresponding rigid collection of surrogate surface features of
candidate actual solids. To define this more clearly, we note
that 7% can be regarded as a member of a family of
geometric entities, parameterized by a set of parameters,

(S1s 825 %3 8y €15 €5+ +5 Cpy Iy by, -+, 1), Here, the s, are
parameters associated with the fitting half-spaces for T,

(m can be zero). They define certain intrinsic sizes of the
member half-spaces and certain distances and angles among
them, taking into account the grouping associated with T'.
We denote by c, the parameters associated with the location
and orientation of the rigid collection of fitting half-spaces
for T, relative to the datum system referred to in the
tolerance assertions _4 on Ty, (n cannot be greater than 6). If
there is no datum reference, these parameters are not used to
characterize T¢ (i.e., n = 0). Finally, /, are parameters
associated with the limiting process by which Fy, are derived
from the fitting surfaces for F,; (k can be zero). We refer to
all these parameters as surrogate parameters. The space
spanned by the surrogate parameters is the real space
R"'“”k, which we refer to as the surrogate parameter space
for T, subjected to G, and the specified limiting process, We
can now define the parametric tolerance zone as follows.

Definition 4
The parametric tolerance zone for T, (subjected to a
specified grouping and limiting process) is a subset of the
surrogate parameter space for 7, that corresponds to the set
of all actual solids whose T satisfies 4. [

Note that the parametric tolerance zone also depends on
some parameters associated with _4, but these parameters
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remain fixed and do not change from instance to instance of
actual solids.

If the bounding surfaces of the parametric tolerance zone
are hyperplanes perpendicular to the axes in the surrogate
parameter space, we refer to the zone as an unconditional
tolerance zone. Such zones imply allowable variations in
each surrogate parameter which are not dependent on values
of other surrogate parameters. Otherwise, the zone is referred
to as a conditional tolerance zone and is denoted by Z. Most
VBRs lead to CT zones in the surrogate parameter space.

For any given VBR, it would be preferable to derive the
CT zonein the form Z={z: f(z) < 0,i=1,-- -, j}, where
Z=(S, ", 8, €1y "+ Cpy I, -+ - 1) is a point in the
surrogate parameter space and J = {/,,-- -, /} is a set of
functions. Such a representation has the attraction that by
simply evaluating the functions /,, one can determine
whether a given point z in the surrogate parameter space is a
member of Z. Further, it may facilitate the determination of
the allowable range of variation in one parameter for given
fixed values of other parameters.

Deriving / for a given VBR involves essentially finding
expressions for b, used in fitting 7, in terms of the
parameters that characterize 7. We do not know of a
general algorithm for doing this. Next, we explore the
process involved by studying a number of cases that occur
frequently.

Representation conversion

In practice, cylindrical features and sets of two nominally
parallel planar features forming slabs or slots must
frequently be considered. Here, we examine some VBRs that
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Orientation tolerancing: assembly requirement for a cylindrical stud.

are often invoked on such features and derive CT zones for
them. All of the cases we examine refer to a datum system
whose primary datum is a planar datum. We assume that
the coordinate frame of reference for the actual solid is
established using the primary datum surface as the xy plane.
Secondary and tertiary datums, if any, are used to fix the
location of the origin and the orientation of the x axis of the
coordinate frame in the primary datum surface.

In all cases, we derive surrogate surface features by using a
slab half-space to limit the primitive surfaces that fit the
actual surface features. This slab half-space, defined as

l
Hy up, = {pt o, — 41 551}’

where p, is the z coordinate of p, /, is the z location of the
median plane of the slab, and /| is the thickness of the slab,
is oriented such that its median plane is parallel to the
primary datum surface and has the minimum thickness
necessary to enclose the relevant actual surface features.
Note that our limiting process introduces two parameters, /,
and /,, for characterizing 7. The closeness criterion we use
to estimate individual measure of closeness is the maximum
distance between the candidate fitting surface and the actual
feature; i.e., C(F,, 0H) = max{d(p, dH):p € F,}. We start
with a single cylindrical feature.
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Orientation tolerancing: assembly requirement for a cylindrical hole.

o Cylindrical feature

The reader may wish to refer to Figures 10 and 11 (shown
later), as a visual aid for following the description below. A
cylindrical half-space is completely specified by its diameter
s, (an intrinsic parameter) and its axis. A directed line, with
the direction determined by increasing z, associated with the
axis can be specified by two locational parameters ¢, and c,
that are the coordinates of the point of intersection of the
line with the xy plane, and two orientational parameters,

¢, (the attitude angle, defined as the acute angle between the
line and the z axis) and ¢, (the azimuth angle, defined as the
positive rotation around the z axis necessary to make the
unit vector along the x axis parallel to the directed projection
of the axis line onto the xy plane). Our limiting process
introduces two parameters, /, and /,, as stated above. Thus,
the parametric space for a single cylindrical surrogate feature
(derived using the limiting process described above) is the
space R’ spanned by the set of parameters z = (s, ¢,, C;, €35
¢ 1,5 ). A VBR may impose a limit on the range of
variation of only a subset of these parameters, as is seen
below.

Orientation tolerance
Consider VBRSs that refer to a datum system with just a
primary planar datum and are asserted on single cylindrical
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features. The axes of virtual cylindrical surfaces in these
cases are constrained to have specified attitude angles, but
their locations and azimuth angles are unconstrained. In all
cases we consider, the nominal attitude angle is zero (see
Example 1 in [1] for such requirements).

Figure 1 shows two nominal cylindrical features, denoted
by Fy,, having a nominal diameter of sy,. The cylindrical
stud and the cylindrical hole are nominally oriented so that
their axes are perpendicular to a planar feature Fy,. The
member of the nominal tolerance set of interest here is
Ty = {Fy,} and the datum feature is {F\,}. Figure 2 shows
an actual instance of a stud satisfying an assembly
requirement. The figure for the case of a bulk requirement
for a hole is very similar (see [6]). A hole with an assembly
requirement is shown in Figure 3. Again, the case of a stud

0<c¢,=<2tan”’

satisfying a material bulk requirement is very similar (see
[6]). All of these VBRs refer to a datum system that consists
of only a primary planar datum associated with the datum
feature {F,,}. They are characterized by a set of scalars

a = {a,}. The relevant member of the actual tolerance set

is T, = {F,,}, and the corresponding rigid collection of
surrogate surface features is T = {F,}. The size parameter
of Fg, is 5,. The top and the bottom edges of Fy, are ellipses
parallel to the primary datum surface. The only indicated
configuration parameter is the attitude angle c,. The
appropriate fitting half-spaces for T} are indicated in the
figures as WO (T; b), where b = {b,}. We now derive the CT
zones for these VBRs.

Result 1

In the cases of the assembly requirement for a stud and the
J

Since a, = 0 for assembly, it follows that s, + 2b, < s, +
2| a, . Similarly, for the material bulk requirement g, < 0
and b, = a,, which can be manipulated to read as sy, — 2b,
< sy, + 2] g, |. The left-hand side of each inequality is the
diameter of the fitting surface for the surrogate feature,
which from Figure 2 is seen to be s, sec ¢, + /;tan c,, leading
to the inequality s,sec ¢, + /itan ¢, — s, — 2{a, | =0. O

Note that the VBRs in these cases do not constrain ¢, c,,
¢,, or [, and hence the CT zone spans all values of these
parameters.

Result 2

In the cases of the assembly requirement for a stud and the
material bulk requirement for a hole, it is necessary that

s, < 8y, + 2] a, | ; the conditional tolerance on c; is given by

s *2lal - sl)
I,

- \/1 R (sNl + 2|la,| +s,>(sm + 2|Ia,| - s1>
1 1

Proof From Result | we have s;sec ¢; + /jtan ¢; <
S+ 2] a,| and 0 < ¢, < (x/2). The above inequality cannot
be satisfied for any value of c, in this interval if 5, > s, +
2} a,|. Thus, it is necessary that s, < sy, + 2| a,|. To obtain
the upper and lower bounds for the allowable variation in ¢,,
note that s, sec ¢, + /;tan ¢, is a monotonically increasing
function of c;, and that the lower bound for ¢, is 0. The
upper bound is obtained by solving the equation s;sec ¢;,,,
+ [ itan ¢y, = S\ + 21 4,1, O

It is common in practice to specify orientational
tolerances in terms of tolerance zones in E” for the axis of
the surrogate cylindrical surface (limited by H, ,5,). If we
define a cylindrical tolerance zone of diameter d = /;tan ¢,
for the axis, then a CT for d can be derived (from Result 2)
as0=<d=d,, , where

'max’

(S + 2@, — 5 )8 + 21| +5)

max

|
material bulk requirement for a hole, the conditional

tolerance zone is given by

(s1>0)A(l,>O)A<05c3<-12£)A

(s;sec ¢, + Litan ¢; — sy, — 2] a,| < 0)

=3z

Prcof The first three inequalities are obvious from the
definition of s, c;, and /,. From Theorem 1, a sufficient
condition for satisfying the assembly requirement is b, < a,.

VIAY SRINIVASAN AND RANGARAJAN JAYARAMAN

Sa + 2la | + s)\/sa + 2la,] — 5,
sg +2la | + s, 1+ ] ]
1 1

It is interesting to note that the CT for d commonly used in
current practice [2]is0 s d=<d/_ = (s\, +2/a,| - 5,),
which is an approximation of the expression we have
derived. Note that by using the approximation it is actually
possible to accept parts that should be rejected, which means
that it is not a conservative approximation. The relative
difference between the maximum values permitted for d by
the expressions above [i.e., (d,,, — @0 )/ ey ) is Dlotted as a
function of the feature size (s,) and height (/,) in Figure 4
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Error in approximating axis orientation tolerance for loosely Error in approximating axis orientation tolerance for rightly
toleranced cases. . toleranced cases.

(for loosely toleranced cases) and in Figure 5 (for tightly
toleranced cases). Clearly, the significance of the difference
should be carefully assessed in each case before adopting the
approximation.

Before we proceed further to compute the CT for Figure 3,
we need some information about the symmetric axis of an
ellipse.

Symmetric axis

Definition 5

A maximal disk for a planar object is an open circular disk
that is completely contained within the object, but not in 2 o0
any other disk in the object. The symmetric axis of a planar ' _?__
object is the locus of the centers of all maximal disks for the
object [12]. OJ

r——dseca-———*-—>

Property 8

The length of the symmetric axis of an ellipse, with major
axis d sec 8, where 0 < 8 < (x/2), and minor axis d, is

d sin 6 tan 4.

Symmetric axis for an ellipse.

Proof The radius of curvature of the ellipse at the extreme
points along the major axis is (d/2) cos 8. (See Figure 6.)
Hence, the length of the symmetric axis is d sec 6 — d cos 4,
which can be reduced to dsin 6 tan §. O

largest circle that inscribes both the ellipses projected onto
the datum surface, denoted as df, is given by

J

!
(s;secc, — litanc;)) if L=,V [1, <s;Ahg= sin“’(f)] ,
d. = 1

Jsi- 12 otherwise.

Result 3
In the cases of the assembly requirement for a hole and the
material bulk requirement for a stud, the diameter of the

Proof There are two possibilities (see Figure 7). In the first
case, the symmetric axes of the two ellipses do not intersect.

VIJAY SRINIVASAN AND RANGARAJAN JAYARAMAN
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Inscribing circle for the projection of a fitted cylinder.
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Variation of di, with ¢;.

Using Property 8, this condition can be stated as /,tan ¢, >
s,sin cytan ¢35 ie., sin ¢; < ({,/s,) [which is always satisfied
for 0 = ¢; <(n/2) if [, = 5,]. Then the inscribed circle
touches the ellipses at two points only [see Figure 7(a)], and
dp = s;secc; — [tan c,.

In the second case, the symmetric axes of the two ellipses
intersect; i.€., sin ¢, = (/,/s,). Then the inscribed circle
touches the ellipses at four points [see Figure 7(b)], and
d. = Js? — I}, which is, interestingly, independent of ¢;. O

VIJAY SRINIVASAN AND RANGARAJAN JAYARAMAN

The variation of d; with c; is shown graphically in Figure
8. We note that the diameter of the fitting surface for the
surrogate feature in these cases is equal to dp.

Result 4

In the cases of the assembly requirement for a hole and the
material bulk requirement for a stud, the conditional
tolerance zone is given by

(s1>0)/\(ll>0)/\<0sc3<£>/\
=<1z 2
(Sni — 2| a, | = dp)

Proof The first three inequalities are obvious from the
definition of s, ¢;, and /,. From Theorem 1, a sufficient
condition for satisfying the assembly requirement is b, < a,.
Since a, = 0 for assembly, it follows that s, — 2b, =
Sn; = 2] a,|. Similarly, for the material bulk requirement
a, < 0and b, = a,, which can be manipulated to read as
S+ 2b, = sy, — 2| a,|. The left-hand side of each
inequality is the same as the diameter di of the fitting surface
for the surrogate feature. Use of Result 3 in the inequalities
leads to the desired result. O

The VBRs in these cases also do not constrain c,, ¢,, ¢,, Or
1,, and therefore the CT zone spans all values of these
parameters.

Result 5

In the cases of the assembly requirement for a hole and the
material bulk requirement for a stud, it is necessary that

$, 2 Sy; — 2] a, |, and the conditional tolerance on c; is
given as follows: If
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Fy |/ Fy,
\ 7

[,z s, V[l, <s, A \/sf—l,z<sm—-2|a,|:|,

then

s = 5t 2lad
l;

curve corresponding to a particular value of (/,/s,). There are
two possibilities. In the first case, the curve intersects the

0<c,=<2tan"

- \ﬁ _ <s1 + sml— 2|al|><s1
1

else 0 < ¢, < (x/2)

Proof From Result 4 it follows that sy, — 2| a,| < d and
0 = ¢, < (w/2). Figure 8 shows the variation of d;. as a
function of ¢, for various values of /, and s, in a
nondimensional form. Also shown is a dividing line that
corresponds to dr. = s, — 2| a, |. Note that any combination
of parameters (s,, /|, c,) that lies below this dividing line
violates the VBR, whereas a combination that lies on or
above the line satisfies the VBR. Since the maximum value
of d is 5,, we conclude that it is necessary that s, =
S — 21 a4l

To derive bounds on c,, observe that the lower bound is
clearly zero. The upper bound is derived by considering the
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S T 2lal
/;

[ .. .

dividing line at one point. This is true if

/=5 V[l1 <s A Vsl - IP<sg = 2|a,|:|.
The upper bound is obtained by solving the equation

§,86C Cypay — litan ¢y = 5 — 214 |.

In the second case, the curve is either on or above the

dividing line, and the upper bound for c, is clearly (x/2). O
If we define a cylindrical tolerance zone of diameter

d = I tan ¢, in E” for the axis of the surrogate cylindrical

surface (limited by Hg ,5,), then a CT for d can be given as

follows. If

I =5 v[ll <s5 A \/sf—112<sm—2|all],
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*y HIO(T; b,)

Section A—B

/, tan c3~’

l,sinc,

then

Position tolerancing: assembly requirement for a stud and bulk requirement for a hole.

{Fu)s {Fas), and {Fy,} have been designated as primary,
L

(s, — 5 +2la, sy — 21| +5))

O=d=

5, — &g+ 2la |

s, + 85, —2]a,|
sN,—2|a1|+s1\/1—-<l N‘l ‘
1

else 0 < d < . It is once again interesting to note that the
CT for d commonly used in current practice [2]is0 < d <
(s, — 55, + 2] @, ). In this case, however, current practice is
conservative; parts that are acceptable functionally may be
rejected.

Position tolerance

VBRs which refer to a datum system with three mutually
orthogonal planar datums and which are asserted on single
cylindrical features constrain the axes of the corresponding
virtual cylindrical surfaces completely. In all such cases we
consider here, the nominal attitude angle is zero (see [6] for
examples of such requirements).

Figure 9 shows two nominal cylindrical features, denoted
by Fy,, having a nominal diameter of s,. The member of
the nominal tolerance set of interest here is T, = {F,}, and
Fy,, Fy;, and Fy, are mutually orthogonal planar features.

VIJAY SRINIVASAN AND RANGARAJAN JAYARAMAN
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Isecondary, and tertiary datum features of a complete datum
system. F, is nominally oriented so that its axis is
perpendicular to Fy, and located at distances cy, from Fy;,
and ¢, from F,,. The xyz coordinate system associated with
the solid has the primary datum as the xy plane, the
secondary datum as the xz plane, and the tertiary datum as
the yz plane. We consider all combinations of assembly and
material bulk requirements asserted on studs and holes, as
previously. They are all characterized by the set of scalars

a = {a,} and refer to the datum system mentioned above.
Figures illustrating actual instances of cylindrical features
satisfying such VBRs are not provided here because they are
too complex to draw. Instead, shown in Figure 10 is the
projection onto the xy plane and a specific cross section of
the rigid collection of surrogate surface features Ty = {F, }
associated with the member of the actual tolerance set

T, = {F,,} of an actual solid. Figure 10 indicates the
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relevant parameters and geometric constructions in the cases
of the assembly requirement for a stud and the bulk
requirement for a hole. Similarly, the cases of the assembly
requirement for a hole and the bulk requirement for a stud
are shown in Figure 11.

In all of these cases, finding the exact functions 7 in closed
form for defining Z is a very difficult task. Essentially, in the
cases depicted in Figure 10, this would require deriving the
diameter of the smallest circular disk with its center at
(cn1s Cno)» and which encloses the projection of T5; in those
depicted in Figure 11, this would require the derivation of
the diameter of the largest circular disk with its center at
(cn1»> Cn2), @and which is enclosed by the projection of Tr.
Both would involve finding the zeros of fourth-order
polynomials in closed form. The approach we use in these
cases is to show that by using a conservative approximation
to the surrogate feature, we can simplify the problem and
determine relatively easily a set of functions . that
characterize a subset of Z. In other words, we can obtain a
conservative characterization of the CT zone as Z2 Z . =
{z: I-(z) < 0}. We refer to Z. as a conservative CT zone.

Returning to Figure 10, we have shown a cylindrical
surface with the smallest diameter that surrounds F, and is
perpendicular to the primary datum. This cylindrical surface
limited by Hy, ,p, is denoted as Fy_. Note that T',_= {F;_}
serves as a conservative approximation to 7T in deriving Z..
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That is, the rigid collection of fitting half-spaces for 7,
denoted as MIO(Ty; b), where b = {,}, and the rigid
collection of fitting half-spaces for T, denoted as
MO(Ty; be), where be = {b.,}, are such that b, < b, for
assembly and b, = b, for material bulk maintenance. The
reader should be able to convince himself of this intuitively.
Similarly, Figure 11 shows a cylindrical surface with the
largest diameter that is surrounded by Fy, and is
perpendicular to the primary datum. Here again, b, < b,
for assembly and b, = b, for material bulk maintenance.

We now derive conservative CT zones for the VBRs
illustrated in these figures.

Result 6
In the cases of the assembly requirement for a stud and the
material bulk requirement for a hole (Figure 10), which refer
to a complete datum system composed of three mutually
perpendicular planar datums, a conservative conditional
tolerance zone is given by
ZC
(s,>0)A(ll>0)/\<Osc3<§)A
— z b
(20 + s;sec ¢; + Ltan ¢; — s, — 2] a,| = 0)

where 117
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¢ Nominal planar features in slab/slot combination for orientation tolerancing

o= ~/(cl + sin ¢,c0s ¢, — cy,)* + (¢, + Lsin ¢sin ¢, — ¢y, ).

Proof The first three inequalities are obvious from the Iwhere
definition of 5,, /,, and ¢,. From Theorem 1, and using T;_

= . 3 . .
0= \/(Z + Lsin ¢,008 ¢, = ¢q,)" + (¢, + Lsin ¢sin ¢, ~ ¢y,) .

in place of T, we can write a sufficient condition for I Proof Similar to the proof of Result 6. See {6] for
satisfying the VBR as sy, * 25, < sy, * 2b,, < sy + 2[4, |, details. O

with the + sign for assembly and the — sign for material Note that the VBRs in these cases constrain all of the
bulk. From Figure 10, we can write the distance between surrogate parameters. Next, we examine the VBRs for a set
points (cy,, ¢y,) and the center of the projection of FFFl as Iﬂwo parallel planar features constituting a slab or a slot.

0= \/(cl + bLsin ¢;c08 ¢, — c,)* + (¢, + Lsin ¢;sin ¢, = ¢y,) .
and the diameter of the fitting surface for Fi._ as sy, + 2b¢, I
= (20 + s,8€C ¢, + /;tan ¢;), which leads to the last
inequality. O

Note that the VBRs in these cases constrain all of the
surrogate parameters.

e Planar features
Consider a Ty, = {Fy,, F\,}, where Fy, and Fy, are planar
features parallel to each other and forming a slab or a slot,
with an associated grouping Gy = {G,}, where G, =
{Fyis Fao}- The rigid collection of fitting half-spaces for the
corresponding T, is composed of a set of two parallel planar
half-spaces characterized by the distance s, between their
bounding planes. (See Figure 16 or 17, shown later.) The
median plane for the fitting surfaces can be specified by one
locational parameter ¢,, which is the y coordinate of the
intersection of the plane with the y axis and two
. orientational parameters, ¢, (the azimuth angle defined as

(5, >0OANU>0)A (O =< 5) A the positive rotation around the z axis necessary to make the

’ unit vector along the x axis parallel to u, X u,,, where u, is
the unit vector along the z axis and u,; is the projection of

Result 7

In the cases of the assembly requirement for a hole and the
material bulk requirement for a stud (Figure 11), which refer
to a complete datum system composed of three mutually
perpendicular planar datums, a conservative conditional
tolerance zone is given by

Ze=31
(i — 2@, | = dp ~ 20)
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¢ Orientation tolerancing: material bulk requirement for a slot.

u, onto the median plane) and ¢, (the attitude angle defined
as the acute angle between u, and u,;). The limiting process
mentioned earlier introduces two parameters, /, and /,. In
addition, we further limit the fitting surfaces with another
slab (Hy; ,5,) of thickness /, (minimally sufficient to enclose
T,), whose median plane is perpendicular to the xy plane
and further constrained such that only one parameter /, is
needed to specify its location. Thus, the parametric space for
a set of two parallel planar surrogate features (derived using
the limiting process described above) is the space Rt spanned
by the set of parametersz = (s,, ¢,, ¢, €3, Iy, b, I3, 1,). A
VBR may impose a limit on the range of variation of only a
subset of these parameters, as shown below.

Orientation tolerance
Consider VBRs that refer to a datum system with just a
primary planar datum. The median planes for the two
virtual planar surfaces in these cases are constrained to have
specified attitude angles, but their locations and azimuth
angles are unconstrained. In all of the cases we consider, the
nominal attitude angle is zero. The median plane of Hg; ,p,
must, in addition, be perpendicular to the median plane of
the fitting surfaces; the parameter /, is the x coordinate of the
intersection of the median plane of Hy, ,,, with the x axis.
Figure 12 shows two nominal planar features denoted by
F, and F,, forming a slab and a slot. The nominal
distance between the two planar features is sy,. The median
plane is so oriented that it is perpendicular to a planar
feature Fy;, and {Fy,} has been designated as a datum
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Orientation tolerancing: material bulk requirement for a slab.

feature. The member of the nominal tolerance set of interest
here is Ty, = {Fy,> Fy,}- Figures 13 and 14 show actual
instances of a slot and a slab, respectively, satisfying a
material bulk requirement. (See [6] for similar figures for the
cases of assembly requirements for slabs and slots.) All of
these VBRs refer to a datum system that consists of only a
primary planar datum associated with the datum feature
{F,;}. They are characterized by the set of scalars
a = {a,, a,}. The member of the actual tolerance set of
interest is T = {F,,, F,,}. With a grouping G, =
{{F,,» F.,}}, the rigid collection of surrogate surface features
T = {Fg,, Fy,} is characterized by a distance parameter s,.
Other indicated parameters are the limiting parameter /, and
the attitude angle c,. The appropriate fitting half-spaces for
T, are indicated in the figures as #O(Ty; b), where b =
{by, by}

We assume, without any loss of generality, that b, = b,
and a, = a,. We now derive the CT zones for the VBRs
depicted in these figures.

Result 8

In the cases of the assembly requirement for a slab and the

material bulk requirement for a slot, the conditional

tolerance zone is given by

(5, >0) A (,>0) A (l;>0) A <0$c3<%> A

Z = z
(s,secc, + 1/ tanc,— sy, — 2| a,| =0)
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Proof Similar to the proof of Result 1. O
Note that the VBRs here do not constrain ¢, ¢,, /,, or /,,
and hence the CT zone spans all values of these parameters.

Result 9

In the cases of the assembly requirement for a slab and the
material bulk requirement for a slot, it is necessary that

s, = sy, + 2| @, |, and the conditional tolerance on ¢, is

Proof The first four inequalities are obvious from the
definition of s,, /,, /,, and ¢;. From Theorem 1, we can write
a sufficient condition for satisfying the VBR as sy, ¥ 2b, =
sy — 21 a, |, with the — sign for assembly and the + sign for
material bulk. From Figure 14 we can write sy, F 2b, =
s,sec ¢, — /;tan ¢;, which leads to the inequality

Sa=-2la| —ssece;+tane; 0. O

given by
S t+21al - sl)
I,

1

0<c¢ =<2tan

. \/1 . (sm + 2|lal: + s,)(sm + 2|lal| - s,>
1 1

Proof Similar to the proof of Result 2. O

It is common practice to specify orientational tolerances
in terms of tolerance zones in E for the median plane of the
surrogate planar surfaces (limited by Hg ,p,). If we define a
slab tolerance zone of width d = / tan c, for the median

plane, then a CT for d can be derived as |

Result 11

In the cases of the assembly requirement for a slot and the
material bulk requirement for a slab, it is necessary that

§, = Sy, — 2| a, |, and the conditional tolerance on ¢, is
given by

(Sny + 210, | = 5,)50, + 2l a, | +

5,)

O=sd=

Sy F21a | + s\/Sa +2la, ] — s '
[sm+2|al|+sl \ﬁ+<Nl 7 l 1)(1« 11 1)
1 1

0=<c =<2tan™

Just as for the case of cylindrical features, the CT for d
commonly used in current practice [2]is0 =d =<

(s\y + 21 a, | — s5,), permitting the acceptance of parts that
fail to meet functional requirements.

O0=sds=

5, — Sa + 2ia]
ll

\/ s, + S0 — 2la| sl-sN,+2|a,|>
1+ 1-
A L

Proof Similar to the proof of Result 5. [

If we define a slab tolerance zone of width d = /tan ¢, for

the median plane of the surrogate planar surfaces (limited by
| Hsiam) then a CT for d can be given as

(8, = S + 21a, 1) — 21 a, | +5,)

[sm—Zlall

Result 10 !
In the cases of the assembly requirement for a slot and the
material bulk requirement for a slab, the conditional

5+ S = 2la \/s, — s + 2l
+ 5, 1 - ] ]
1 1

It is once again interesting to note that the CT for d
commonly used in current practice [2]is0 =d <
(s, — 551 + 2| a, ]), which is conservative.

L

tolerance zone is given by

Z=<1z 2

(51 — 2la;| — s;sec ¢, + [itan ¢; < 0)
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Slab

! Slot

Position tolerance

Consider VBRs that refer to a datum system with three
mutually orthogonal planar datums and are asserted on pairs
of parallel planar features forming slabs or slots. The median
planes of the two virtual planar surfaces in these cases are
completely constrained. In all of the cases we consider, the
nominal attitude angle and the nominal azimuth angle are
zero. In addition, the median plane of Hg 5, is required to
be perpendicular to the x axis, and /, is the x coordinate of
the intersection of this median plane with the x axis.

Figure 15 shows two nominal planar features, denoted by
Fy, and F,,, forming a slab and a slot. sy, is the nominal
distance between the two planar features. Ty, = {Fy,, Fy,} is
the relevant member of the nominal tolerance set, and Fy;,
F,,, and F, are mutually orthogonal planar features. {Fy;},
{Fua), and {Fy,} have been designated as primary,
secondary, and tertiary datum features of a complete datum
system. The median plane of F, and Fy, is nominally
oriented such that it is perpendicular to Fy, parallel to Fy,,
and located at a distance of ¢y, from Fy,. The xyz
coordinate system associated with the solid has the primary
datum as the xy plane, the secondary datum as the xz plane,
and the tertiary datum as the yz plane. We consider all
combinations of assembly and material bulk requirements
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Nominal planar features in slab/slot combination for position tolerancing.

for slabs and slots, as previously. They are all characterized
by the set of scalars a = {q,, a,} and refer to the datum
system mentioned above. No figures are provided to
illustrate actual instances of slabs and slots satisfying such
VBRs, because they would be too complex. Instead, shown
in Figure 16 is the projection onto the xy plane and a
specific cross section of the rigid collection of surrogate
surface features Ty = {F,, Fy,} associated with the member
of the actual tolerance set T, = {F,,, F,,} of an actual solid.
Figure 16 is for an assembly requirement for a slab and a
bulk requirement for a slot; it indicates the relevant
parameters and geometric constructions. Similarly, Figure 17
depicts an assembly requirement for a slot and a bulk
requirement for a slab. The appropriate fitting half-spaces for
T are indicated in the figures as #O(Ty; b), where b =

{b,, b,}. We now derive the CT zones for the VBRs depicted
in those figures.

Result 12

In the cases of the assembly requirement for a slab and the
material bulk requirement for a slot, which refer to a
complete datum system composed of three mutually
perpendicular planar datums (Figure 16), the conditional
tolerance zone is given by
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Section A—B

Tom

l,sinc,

Position tolerancing: assembly requirement for a slab and bulk requirement for a slot.

A/\ P Section A-B
A .

Lsinc,

Position tolerancing: assembly requirement for a slot and bulk requirement for a slab.
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(sl>0)/\(ll>0)/\(13>0)/\<0503<

<ymax - ch -

where V. = ¢ (+1), Vi = (= 1),

ikl
y(k) = <14 + 73> tan ¢, + ¢,
Jkl,

[l

| = sign{tan ¢,), j = sign(cos ¢,), and

Jjks,

5 s€cC C3:| seC ¢y,

sign(x) = { t}

ifx=0,
if x <.

Proof The first four inequalities are obvious from the
definition of s, ¢;, /;, and /;. From Theorem 1 we obtain
a sufficient condition for satisfying the assembly VBR as
b, < a, and b, < a,, which can be rewritten as

N
%—Mllso)/\(c’m———

™
5)“

|al| _yminso)

Referring to Figure 16, the expression for the y coordinate of
the eight vertices of T can be written as

13
V= I4i§ tan ¢, + ¢,

l,
- 1215 tan ¢, £

By using these expressions, we can obtain the maximum and
the minimum values for the y coordinate of the vertices of
Fy, and Fp,, respectively; the results lead to the desired
inequalities. O

Note that the VBRs in these cases constrain all of the
surrogate parameters.

Sy

5 sec c3] sec ¢,.

Result 13

In the cases of the assembly requirement for a slot and the
material bulk requirement for a slab, which refer to a
complete datum system composed of three mutually
perpendicular planar datums (Figure 17), the conditional
tolerance zone is given by

(s1>0)A(ll>0)/\(l3>0)/\(05c3<
\

T
5)“

Sni Sni
ymaxEch+7+blsch+7+|all
and
SNt Sni _
ch_T_ la,| Sch_—z__b2=ymin-
]
Z=K1

<yrnax

N1 Snit
—cN1+7—|02|50>/\<CN1+7_|a1| “ymm50>

Similarly, for the material bulk requirement, b, = a, and
b, = a,, which can be rewritten as

SNt SNt
ymaxEch+7_bl—ch+_§—+|al‘
and

Sni Sni
CNl__z__ la,| SCNI_7+b2"='ymin‘

where Vo = Y (+1), Vi = y (= 1),

ikl
yk) = <l4 + —2—3> tan ¢, + ¢,

-4

i = sign(tan ¢,), j = sign(cos c,), and

Jks,
tan ¢, + TN sec ¢; 1 sec ¢,

sign(x) = { ti

ifx=z0,
if x < 0.

Note that y,., here represents the maximum value of the y

coordinate of the vertices of Fy, and y_,, represents the
minimum value of the y coordinate of the vertices of F,.
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Proof Similar to the proof of Result 12. See [6] for

details. O 123
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Note that the VBRs in these cases constrain all of the
surrogate parameters.

Concluding remarks

We have examined the conversion of VBRs to CTs, which
facilitate part fabrication and inspection. CTs specify
allowable variations in the geometric parameters of features.
A theoretical basis has been developed for deriving CTs from
VBRs, and CTs have been derived for frequently occurring
VBRs.

A number of issues need to be studied further. We have
not provided sufficient conditions for ensuring that a given
procedure to limit fitting surfaces results in surrogate
features. We conjecture that inclusion of the projection of
actual features onto fitting surfaces is sufficient to guarantee
the surrogate property. We have not been able to prove this.
Our attempts to do so have led us to believe that we must
first examine the general properties of visible regions of
surface features, introduced for formalizing the concept of
being on the proper material side of actual surface features.

A general-purpose algorithm for deriving CT zones from
VBRs is not known. In the case of VBRs asserted on a
pattern of simple features (e.g., studs, holes, slabs, or slots),
we believe that the tolerance zones can be computed as
intersections of zones for each member of the pattern.
Deriving the tolerance zones for a simple feature itself is
often difficult, as can be appreciated from the derivation of
the positional tolerance for a single cylindrical feature. In
that case, the problem is reduced to one of finding the
configuration space obstacle [13] for a planar object and a
planar obstacle, both of which are bounded by curves. The
reader is referred to [14] for some recent work on algebraic
algorithms for generating the boundary of configuration
space obstacles for planar objects and obstacles bounded by
algebraic curves and subjected to pure translatory motions.
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