60

Statistical
properties

of selected
recording codes

by Thomas D. Howell

Most recording systems encode their data using
binary run-length-limited (RLL) codes. Statistics
such as the density of 1s, the probabilities of
specific code strings or run lengths, and the
power spectrum are useful in analyzing the
performance of RLL codes in these applications.
These statistics are easy to compute for ideal
run-length-limited codes, those whose only
constraints are the run-length limits, but ideal
RLL codes are not usable in practice because
their code rates are irrational. Implemented RLL
codes achieve rational rates by not using all
code sequences which satisfy the run-length
constraints, and their statistics are different from
those of the ideal RLL codes. Little attention has
been paid to the computation of statistics for
these practical codes. In this paper a method is
presented for computing statistics of
implemented codes. The key step is to develop
an exact description of the code sequences
which are used. A consequence of the code
having rational rate is that all the code-string
and run-length probabilities are rational. The
method is illustrated by applying it to three
codes of practical importance: MFM, (2, 7), and
(1,7).

©Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

THOMAS D. HOWELL

1. Introduction

Most digital magnetic and optical recording systems use
binary run-length-limited (RLL) codes [1-4]. These codes
are described by pairs of run-length limits, (d, k). The
parameter 4 is the minimum number of symbols 0 between
consecutive symbols 1 in the encoded data, and & is the
maximum. The playback system is designed to sense the
presence or absence of 1s in the encoded data. The
parameters (d, k) are chosen to place adjacent 1s far enough
apart to avoid problems with intersymbol interference, yet
close enough together to ensure accurate clock recovery. The
capacity or entropy of a set of run-length constraints is an
upper bound on the rate of any code satisfying those
constraints. Equivalently, it is the maximum number N of
unconstrained bits which can be encoded by each
constrained symbol. Maxentropic (or ideal) codes have rates
equal to the capacity of the constraints, For large &, they use
all allowable code strings of length N about equally often. In
practice, ideal RLL codes cannot be implemented. They can
only be approximated.

It is often necessary to compute statistical properties of the
coded data. Properties such as the frequencies of occurrence
of particular strings of code symbols or of the various
allowable run lengths of 0s are useful in analyzing the
performance of codes in some applications. For example, the
frequency of occurrence of the symbol 1 might be required
in analyzing the performance of a clock recovery system. All
these properties are easy to compute under the assumption
that the code is ideal [5-7]. Some tools for computing
properties of ideal codes are summarized in Section 2.

Practical codes, the ones actually used in digital recording
systems, are not ideal RLL codes. The capacities of all

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1985

interesting ideal RLL codes are irrational. The only

exceptions are d = k with a capacity of zeroand d=0, k=

with a capacity of one bit per symbol (see [8]). Practical
codes have rational rates; they encode m user bits into n
constrained symbols. The integers m and n are typically
quite small. The rate r = m/n must be less than the capacity
C of the original constraints (usually it is only slightly below,
within a few percent). The ratio r/C is the efficiency of the
code. The higher the efficiency, the better the code
approximates the ideal RLL code.

Computing statistical properties for most practical codes is
more difficult than it is for ideal codes. Two approaches are
often taken. One is to compute the analogous quantities for
the ideal code. One then argues that since the rate m/n is
close to the capacity C, the statistical properties should also
be close (see [6, 9, 10]). The second approach is simulation.
One encodes a long string of random data and observes the
statistical properties of the resulting constrained string. Each
of these methods can be useful, but rigorous error bounds
are rarely given.

Practical RLL codes typically do not use all allowable
constrained sequences. Some sequences which satisfy the
(d. k) constraints never appear in encoded data. In many
cases of interest, though, the remaining sequences are used
in the ideal way. That is, every string of a given, sufficiently
large length is used with the same frequency if it is used at
all. Such codes are really ideal codes whose constraints
consist of run-length constraints and other incidental
constraints. This class of codes includes the codes used in
most computer disk drives, magnetic and optical.
Understanding the incidental constraints is the key to
computing the statistics of practical RLL codes. In many
cases the incidental constraints are interesting for other
reasons as well. They describe the set of strings which satisfy
the run-length constraints but are not used in the actual
code. Such strings are sometimes used as markers. They are
readable because they have proper run lengths, but they
never occur in valid data, and the decoder can flag them as
code violations. In Section 3 the incidental constraints for
some important codes are given, and this information is
used to compute statistical properties of the codes.

2. Ideal run-length-limited codes

Ideal run-iength constraints (d, k) may be described by a
labeled directed graph, G(d, k). The graph has nodes labeled
0, 1,---, k. Each node i except i = k has an outgoing edge to
node / + 1 with label 0. Each node i/ with / = d has an
outgoing edge to node 0 with label 1. See Figure 1. The
sequence of edge labels encountered while following any
path in G(d, k) forms a (d, k)-constrained binary sequence.
Conversely, any (d, k)-constrained binary sequence
corresponds to a path in the graph. The label of each node
gives the number of edges labeled 0 traversed since the last
edge labeled 1.

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

C?:@"...L:L?

G(d, k)

Td, k) =k + 1

The graph G(d, k) describing the (d, k) run-length-limited binary

sequences, and its adjacency matrix T(d, k).

The adjacency matrix of G(d, k) will be called T(d, k). Its
entry in row / and column j gives the number of edges from
node i to node j for 0 < i, j < k. Information theory tells us
how to compute statistical properties of the ideal sequences
described by such a graph or adjacency mairix. The
following results are well known. Some of the proofs can be
found in [5], [7], or [11].

1. The capacity of the constraints described by adjacency
matrix T is given by C = log, A bits per constrained
symbol, where X is the largest real eigenvalue of T. When
T is T(d, k), it is easy to show that the characteristic
polynomial is x**' — x* ™ = x* ' — . = x = 1. Its
largest real root is A.

2. Probabilities can be attached to the edges in the
constraint graph in such a way that capacity is achieved

when the probability of a given constrained string is given
by the product of the probabilities assigned to the edges of

the corresponding path in the graph. The probability
assigned to an edge from node i to node j is given by
p;; = (v;/Av;), where v is the right eigenvector for T with
eigenvalue A: Tv = Av. For T = T(d, k), the right
eigenvector is given by*

d+1

o = (AN AT - DT = - D

k k—d—1

N P T) |

The matrix Q whose (i, j) element is g,,= p,t,, gives the

"The superscript' denotes a transpose.

THOMAS D. HOWELL

61

62

The reverse of G(d, k). The probabilities for the edges leaving node 0
are the same as the run-length probabilities for the ideal (d, k) code.

-

The graph G(1, 3) converted to be cyclic of index 2.

e

probability that node j follows node i. It is stochastic:

Zg,=1
J

3. The probability s, associated with node i of the constraint
graph, G, is given by w,v,, where w and v are left and
right eigenvectors for T with eigenvalue A, and Zs5,= 1.
The vector s is also a left eigenvector for Q satisfying
st= sTQ. For T = T(d, k), the left eigenvector, w, is given

by
wh=[N,

and s is given by s = §/Z§,, where 5,.=7\kfor05isd
and

i-d
§=N—3 "

Jj=1

—d—j

ford+1=i=<k

THOMAS D. HOWELL

Given the node and edge probabilities, it is easy to
calculate the probabilities of specific sequences of channel
symbols. As an example, we calculate the probabilities of all
three-symbol strings in the ideal (1, 3) code. We have

p(011) = p(110) = p(111) = 0 from the constraint d = 1, and

D(000) = S, 0y, D> Ds3 =s5, =0.07879,
P(001) = 54y, D13 Pag + S, D13 Pr3 P30 = 5, = 0.19425,
p(010) = s, =5, =0.36348,
p(100) = 5,y D2 =5, =0.19425,

p(101) = 5,y Py = $5,D,0 = 0.16923.

Note that p(001) = p(100).

Ideal RLL codes are symmetrical with respect to reversal.
Reversing the directions of all edges in G(d, k) and reversing
their labels yields a graph whose adjacency matrix is the
transpose of T(d, k). The reversed graph describes the same
set of constrained strings as the original. The node
probabilities in the reversed graph are the same as in the
original graph, but the edge probabilities now depend on the
left eigenvector w. The probability assigned to an edge from
node i to node j in the reversed graph is given by
D,; = (w;/w;X), where w is the left eigenvector for T with
eigenvalue A. It is shown in Appendix A that the
probabilities of any code string and its reversal are equal in a
reversal-symmetric, maxentropic code. The reverse of
G(d, k) is shown in Figure 2.

The reversed graph provides a very simple way to
compute the probabilities of the possible run lengths in an
ideal RLL code. The probability of run length g, d < g <k,
is just the edge probability f,, from node 0 to node g in the
reversed graph. Using the formulas j,; = (wj/w,.))_1 and
w;=A""" from 2) and 3) above, we find j,, = A"**". The
probability of a phrase of length g + 1 consisting of a 1
followed by g 0s starting and ending at node 0 is just ATED,
The probability of any string of independently chosen
phrases whose total length is N is \™". This illustrates that
the given probabilities lead to a code which is indeed
maxentropic.

3. Practical run-length-limited codes

Practical run-length-limited codes operate at code rates of
the form m/n, where m and n are small integers. Since ideal
RLL codes have irrational rates, practical RLL codes are not
ideal. In most cases of interest they differ from ideal RLL
codes by the addition of a few constraints. We will call these
incidental constraints. Once the incidental constraints are
known, the methods of the previous section can be used to
compute node and edge probabilities for the graph
describing the new code. The trick is to define incidental
constraints such that the capacity of the new code is m/n.
When the encoding rules for the code are known, one can
derive the incidental constraints. Otherwise, a lemma of

IBM J. RES. DEVELOP, VOL. 33 NO. 1| JANUARY 1989

Ashley and Siegel [8] is helpful in determining what
incidental constraints might lead to capacity m/n. It states
that any irreducible graph G representing constraints whose
capacity is equal to m/n, where m and n are relatively prime
integers, has the property that the number of edges in every
cycle is a multiple of n. A graph is irreducible if there is a
path from every node to every other node. A cycle is a path
which begins and ends at the same node. We will say that an
irreducible graph for which the greatest common divisor of
the cycle lengths is # is cyclic of index n.

One might hope to construct codes by looking for
incidental constraints with rational capacity m/n. The
lemma of Ashley and Siegel gives a necessary condition
which limits the search to constraints whose graphs are cyclic
of index n. Finding constraints with rational capacity is not
easy even in this very restricted set of graphs. All nontrivial
examples of incidental constraints with rational capacities
have come from analyzing codes constructed by other
methods. In this context, existing code construction methods
can be viewed as ways of searching systematically for
incidental constraints with rational capacities.

Our strategy for computing the statistical properties of
practical RLL codes consists of three steps:

1. Convert G(d, k) to a graph which describes the same
constrained sequences and is cyclic of index #.

2. Modify this new graph according to the incidental
constraints.

3. Compute the node and edge probabilities for the
maxentropic code described by the modified graph.

This process is illustrated by applying it to three codes:
MFM, (1, 7), and (2, 7).

o The MFM code

The MFM (modified frequency modulation) code is a rate
1/2 (1, 3) RLL code. It has several other names, including
“delay modulation” and “Miller code.” It can be analyzed
more simply than is done here, and its properties are known
[3, 12]. It is included to illustrate the techniques which we
extend to the more complicated (1, 7) and (2, 7) codes.

We begin the construction of MFM with G(1, 3). Since we
are aiming for a rate 1/2 code, we need to modify G(1, 3) to
be cyclic of index 2. This is done by interconnecting two
copies of G(1, 3) as shown in Figure 3. The adjacency matrix
of the resulting graph is the Kronecker product of a
permutation matrix corresponding to a 2-cycle with T(1, 3),

¢, ®T(, 3)={T(1° 3 0 3)].

This graph describes the same set of constrained strings as
T(1, 3). Tt is cyclic of index 2 because the subscripts alternate
on the labels of the consecutive nodes reached on any path.
A path can circle back to its starting node only after

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

The modified graph with node 3, deleted.

The MFM constraint graph.

an even number of edges; this property is inherited
by any subgraph, so it is possible that the capacity of the
constraints represented by some subgraph is exactly 1/2. In
fact, the graph produced by deleting node 3, and the edges
incident to it has this property. This modification
corresponds to the incidental constraint that runs of three
zeros beginning at odd-numbered indices are prohibited. The
graph resulting from this modification is shown in Figure 4.
The modified graph can be simplified. Nodes 3, and 2,
have the same outgoing edges, so they can be merged into a
single node. The same process can then be applied to nodes
2, and 1,. The resulting graph is our basic description of the
MFM constraints. The node and edge probabilities can be
computed by the methods of Section 2. Figure 5 shows the

THOMAS D. HOWELL

63

64

0001

The MFM run-length graph.

graph with its associated probabilities. Note that all node and
edge probabilities for MFM are rational numbers, while many
of the corresponding probabilities for the ideal (1, 3) code
are irrational. The fact that node and edge probabilities are
rational for codes with rational rates is proven in Appendix B.

The MFM constraint graph contains all the information
about the statistics of the MFM code. From it we can
compute probabilities of arbitrary strings and probabilities of
the different run lengths. For example, we give the
probabilities of all three-symbol strings for comparison with
those given in Section 2 for the ideal (1, 3) code:

p(000) =5, D, , P, s, = 0.0625,
p(001) = p(100) =(.1875,
p(010) = S, T S0, =0.375,

p(100) = 81,D1,20 F S0, P0,20P203, = 0.1875,
p(101) = s, P, o, F S, Po,2,P200, = 0-1875.

The fact that p(001) = p(100) follows from the fact that the
MFM constraints are symmetrical with respect to reversal.

The run-length probabilities are most easily found by
constructing another graph, the run-length graph. The MFM
run-length graph is the projection of the MFM constraint
graph onto its nodes with labels 0,. It has only two nodes, 0,
and 0,. It has one edge for each path in the MFM constraint
graph that begins at one of these nodes and ends at one of
these nodes without passing through either of these nodes
along the way. The label of such an edge is the

THOMAS D. HOWELL

concatenation of the labels on the edges along the path in
the MFM constraint graph. It always has the form of a run
of zeros followed by a 1. The MFM run-length graph
describes exactly the same set of constrained strings as does
the MFM constraint graph. It highlights the structure of
these strings as sequences of phrases, where each phrase is a
run of zeros terminated by a 1. The node and edge
probabilities for the MFM run-length graph can be
computed directly by the methods of [5]. Alternatively, they
can be determined quite easily from the corresponding
quantities in the MFM constraint graph. The node
probabilities for the run-length graph are the corresponding
node probabilities from the constraint graph, renormalized
so that they sum to one. The edge probabilities in the run-
length graph are the products of the edge probabilities along
the corresponding paths in the constraint graph. The MFM
run-length graph is shown in Figure 6.

The run-length probabilities from each node can be read
directly from the run-length graph. The overall probability of
a given run length is the sum of the probabilities of that run
length from each node, weighted by the node probabilities.
The run-length probabilities for MFM are

12 11 1
POl =33%33"7
12 11 1
PO =33+23=%
12 1
p(0001)—Z§ —-6'.

The power spectrum of a code is the Fourier transform of
its autocorrelation function. It gives the expected power as a
function of frequency in a long random code string. Several
methods of computing the power spectra of codes have been
published [7, 12-16]. A recent paper [17] gives a method for
computing the power spectra of run-length-limited codes
which uses the run-length graph and its associated node and
edge probabilities. Explicit formulas for the power spectra of
both ideal and implemented RLL codes can be obtained by
this method.

The constraint graph and the run-length graph contain all
the information necessary for computing the statistical
properties of a code, but they do not contain any
information about how to map arbitrary data strings into
constrained strings and vice versa, i.e., how to encode and
decode. Before leaving the subject of MFM, we therefore
construct the MFM encoder graph. The encoder graph for a
rate m/n code must have three properties:

1. Each node has exactly 2” outgoing edges.

2. Each edge has an input label and an output label. The
input labels on the 2™ outgoing edges from each node are
the 2™ binary strings of length m. The output labels are
strings of # code symbols.

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

3. The strings obtained by concatenating the output labels of
the edges along any path satisfy the code constraints.

Assume a starting node has been specified in advance.
Encoding is done as follows. Take the first » bits from the
input string. Select the outgoing edge from the current node
whose input label matches the selected m bits. Concatenate
the corresponding output label to the encoded string, and
make the node to which that edge leads the new current
node. Move to the next m-bit block of input bits, and repeat
until the input string is exhausted.

The encoder graph can be constructed from the constraint
graph. First we construct the nth power of the constraint
graph. This is the graph whose adjacency matrix is the nth
power of the adjacency matrix of the constraint graph. It has
an edge for each path of length # in the constraint graph,
and the label on that edge is the concatenation of the labels
on the edges making up the path. For the case of MFM,

m =1 and n = 2. The second power of the MFM constraint
graph is shown in Figure 7. The squared constraint graph
has two connected components because the constraint graph
was cyclic of index 2. We may choose either one from which
to construct the encoder graph. Choosing the one with two
nodes, we see that it has all the required properties. All we
need to do is attach input labels 0 and 1 to the two edges
leaving each node. This can be done arbitrarily, but the
choice in which the input label on each edge matches the
second symbol of the output label is a particularly good one.
It makes decoding trivial. The final MFM encoder graph is
shown in Figure 8. The edge label 1/01 means that 1 is the
input label and 01 is the output label. The operations of
squaring the graph and discarding one component have
destroyed the reversal symmetry of the code when the code
is viewed as a sequence of two-symbol blocks. For example,
the sequence 0001 is allowed, but 1000 is not. After some
graph manipulations, the discarded component can be seen
to be equivalent to the reversal of the other. It allows 1000
but not 0001.

e The (1, 7) code

The (1, 7) run-length constraints have a capacity of about
0.679. Several authors have published practical (1, 7) codes
with a code rate of 2/3 [18-22]. Although these codes have
different encoders and decoders, they are all essentially
equivalent from the point of view of their statistical
properties. The code described in [20] and [21] and the one
described in [22] use the same set of constrained strings; in
other words, their incidental constraints are the same. They
differ only in the mapping of unconstrained user data onto
constrained strings; i.e., the encoders and decoders are
different. The codes described in [18] and [19] differ from
the others in two ways. They use different encoder and
decoder mappings, and the data are divided differently into
three-symbol blocks. If we label their symbols

IBM J. RES. DEVELOP. VOL. 33 NO. t JANUARY 1989

01 00 10
01

-

The square of the MFM constraint graph.

1/01 0/00 0/10

1/01

The MFM encoder graph.

a, biiei ,b, ¢, 4,10, Civy -+, then the string

C;i,a,_b,_, c._,a;b,c,a;, b, - isin the other two
codes. An observer would find it 1mpossible to determine
which of these four codes produced any given string of code
symbols. If the symbols were divided into blocks of three,
then the strings of three-symbol blocks from the first two
codes would be distinguishable from those of the other two.
The division into blocks does not affect the statistical
properties discussed above, so all four codes have the same
statistical properties.

We begin the construction of the 2/3 (1, 7) code by
modifying the graph G(1, 7) to be cyclic of index 3. We do
so by taking the Krénecker product of the permutation
matrix representing a 3-cycle with T(1, 7). The resulting
matrix is

0 TU,7) 0
C,®T(1,7)=| 0 0 T(,7)
T1,7) 0 0

This is the adjacency matrix of the graph shown in Figure 9.

The next step is to introduce the incidental constraints.
The incidental constraints for the 2/3 (1, 7) code take the
form of constraints on the starting points for runs of six and
seven 0s, modulo 3. Let the ith code symbol be the first 0 in
a run of seven. If another run of seven 0s begins at the jth

THOMAS D. HOWELL

65

66

The graph G(1, 7) modified to be cyclic of index 3.

symbol, the incidental constraints require that i = j mod 3.
Similarly, if a run of six 0s begins at the kth code symbol,
the incidental constraints require that k =/ mod 3 or

k = (i + 1) mod 3. These constraints, together with the (1, 7)
constraints, have capacity 2/3. They can be reflected on the
graph by deleting nodes 7,, 7,, and 6,. The resulting graph is
shown in Figure 10. This graph can be simplified: Nodes 5,
6,, and 7, can be combined into one, since they all have the
same outgoing edges. Similarly, we can combine the sets

{405 50601 §32,45,5,1, 12,3, 4.0 115,24, 30, and {1,,2,}.
Figure 11 shows the simplified (1, 7) constraint graph with
its associated node and edge probabilities. The constraint
graph can be used to compute the probabilities of specific

THOMAS D. HOWELL

strings in the (1, 7) code. Note that all the node and edge
probabilities are rational numbers, which means that the
probability of any string is also rational. The (1, 7) incidental
constraints are symmetrical with respect to reversal, so the
reverse of any string has the same probability as the string
itself. As an example, we give the probabilities of all the
three-symbol strings; the corresponding probabilities for the
ideal (1, 7) code are shown for comparison:

p (000) 87, F Sg, T 85,751 Dy 2,02,3,P34,

+Soxp0122p2230p3041 +S00p0011p1122p2230

5
=% = 0.20833 vs.0.23092 forideal code,

p (001) p(100)

= —1—1— = (.18333 vs.0.17975 forideal code,

60
p010) = s, +35, +5,,
73 .
= — = 0.30417 vs.0.29466 forideal code,
240
p(100) = sllpllzz+S01p0|22p2z30+Sozp0230p3041
11
= 5 = 0.18333 vs.0.17975 forideal code,
p(101) = s, D, o+ 5o Po2,P2,0,F 50,P0,3,P350,
= 2 _ 0.12083 vs.0.11491 forideal code.
240

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

The probability of the symbol 1 is the same as the
probability of 010 given above. The average run length
(including the 1) is the reciprocal: (240/73) = 3.28767. The
ideal (1, 7) code has an average run length of 3.39374. The
run-length graph for the 2/3 (1, 7) code is obtained by
projecting the constraint graph onto the three nodes 0,
for i = 0, 1, 2. Its node probabilities are obtained by
renormalizing the node probabilities from the constraint
graph so that they sum to one. The edge probabilities can be
computed from the constraint graph; they can also be found
by computing the edge probabilities for the reverse of the
graph in Figure 10. Each edge in the run-length graph
corresponds to a path in the reversed graph. This path
contains one edge with probability g # 1 from 0, to another
node and several edges with probability 1. So the probability
of the edge in the run-length graph is also ¢. The run-length
graph is shown in Figure 12.

The run-length probabilities from each node can be read
from the run-length graph. The overall probability of a given
run length is the average of the probabilities of that run
length from each node, weighted by the node probabilities.
The run-length probabilities for the (1, 7) code are

p(run length=[23456 7 8])

1

=1168 [464 292 184 116 73 30 9].

The (1, 7) encoder graph can be constructed from the
third power of the constraint graph. There are three
connected components, and any one will do. The encoders
described in [20] and [22] come from the component
{0,,2,,5,}. The encoders in [18] and [19] come from
{055 34, 6,1- Figure 13 shows the cubed constraint graph. The

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

010

THOMAS D. HOWELL

67

68

o .
The reverse of the component {02, 2,, 52} of the cubed (1, 7) con-
straint graph.

01/001

The (1, 7) encoder graph.

7

integers next to the nodes are components of the eigenvector
of the cubed adjacency matrix. They guide the construction

THOMAS D. HOWELL

of the encoder graph as described in [23]. The sum of the
eigenvector components is an upper bound on the number
of nodes in the final encoder graph. Since the constraints are
symmetrical with respect to reversal, the reverses of these
components can also be used to construct encoders. The
reverse of the component {0,,2,,5,] has eigenvector
components [22 1], so it can be made into a five-node
encoder graph by “splitting” the first two nodes. This is
simpler than the encoders which would result from any of
the components of the cubed constraint graph. Figure 14
shows the reverse of this component. The subscripts 2 on the
node labels have been suppressed for simplicity.

A (1, 7) encoder graph can be constructed by “splitting”
the first two nodes. Splitting a node means replacing it with
two (or more) nodes. Each new node has the same incoming
(outgoing) edges as the original node. The outgoing
(incoming) edges from the original node are partitioned
among the new nodes. The resulting graph has the same set
of path labels as the original graph, so it describes the same
set of constrained sequences. However, its nodes have
different numbers of edges. Adler et al. [23] describe a
method for determining a sequence of splittings which
convert a graph into one with the properties of an encoder
graph; i.e., all nodes have the same number of outgoing
edges. The encoder graph derived from Figure 14 is shown
in Figure 15. The nodes resulting from splitting node 0 are
labeled 0' and 02, and node 2 is treated similarly. Each node
has four outgoing edges to which the four two-bit input
labels may be assigned arbitrarily. The input labels shown
are the ones used in [22].

o The (2, 7) code

The (2, 7) run-length constraints have a capacity of about
0.517. Practical (2, 7) codes have a rate of 1/2. The code
used in the IBM 3380 disk storage device is described in
[24-26]; different encoders using the same incidental
constraints (described below) are given in [23] and [27].
Another (2, 7) code with different incidental constraints is
described in [28].

We begin the construction of the 1/2 (2, 7) code by
modifying the graph G(2, 7) to be cyclic of index 2. We do
so by taking the Kronecker product of the permutation
matrix representing a 2-cycle with T(2, 7). The resuiting
matrix is

_ 0 T2, 7)
C,®T(2, 7)_[T(2, 7) 0]

This is the adjacency matrix of the graph shown in Figure
16.

The next step is to introduce the incidental constraints.
One of the incidental constraints for the 1/2 (2, 7) code is a
constraint on the starting points for runs of seven 0s,
modulo 2. Let the ith code symbol be the first 0 in a run of
seven. If another run of seven 0s begins at the jth symbol,

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

the incidental constraints require that /i = j mod 2. In
addition, a run of seven zeros may not be followed
immediately by a run of just two zeros. There is a similar
constraint on certain runs of six zeros. A run of six zeros
starting at index k, where k= + | mod 2, may not be
followed immediately by a run of just two zeros. These
constraints, together with the (2, 7) run-length constraints,
have capacity 1/2. Unlike the MFM and (1, 7) constraints,
the (2, 7) incidental constraints are not symmetrical with
respect to reversal. A run of two zeros may not follow runs
of seven or certain runs of six zeros, but it may precede
them.

The (2, 7) constraint graph is derived from the graph of
Figure 16 by deleting node 7,and duplicating nodes 0, 1,,
and 2,. The edge from the new copy of 2,to 0, is deleted.)
The result is shown in Figure 17. This graph can be
simplified. Nodes 6, and 7, can be combined into one, since
they have the same outgoing edges. Similarly, we can
combine the pairs {5,, 6.}, {4,, 5.}, {30, 45}, {2;, 3,}, and
{1, 24}. Figure 18 shows the simplified (2, 7) constraint
graph with its associated node and edge probabilities. The
constraint graph can be used to compute probabilities of
specific strings in the (2, 7) code. All the node and edge
probabilities are rational numbers, which means that the
probability of any string is also rational. As an example, we

give the probabilities of all the four-symbol strings. These 19
probabilities happen to be reversal-symmetric because they p(0010) = i 0.22619 vs. 0.22081 for ideal code,
are so short, but reversal symmetry fails for long strings. The
corresponding propabllltles for the ideal (2, 7) code are P(0100) = B = 0.22619 vs.0.22081 for ideal code,
shown for comparison: 84

115 . 101 .
p(0000 =72 =0.17113 vs. 0.19206 for ideal code, p(1000) = rh 0.15030 vs. 0.14551 for ideal code,

101 . 17 .
p(0001)=ﬁ =0.15030 vs. 0.14551 for ideal code, p(1001) = 24 0.07589 vs. 0.07530 for ideal code.

69

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989 THOMAS D. HOWELL

000001

The (2, 7) code run-length graph.

)

Writing expressions for these probabilities in terms of the
s;and p,; can be tedious. The following device makes the
process systematic. Let Q = (g,;) be written as the sum of
two parts: Q = Q0 + Ql, where Q0 contains the
contributions from edges labeled 0, and Q1 contains the
contributions from edges labeled 1. Let u be a vector of all
ones. Then p(1001) = STQIQOQ“Ql u, and the probability of
any other string can be obtained in a similar way.

The probability of the symbol 1 is the same as the
probability of 0010 given above. The average run length
(including the 1) is the reciprocal: (84/19) = 4.42105. The
ideal (2, 7) code has an average run length of 4.52879. The
run-length graph for the 1/2 (2, 7) code is obtained by
projecting the constraint graph onto the three nodes 0,, 0,,

i The square of the (2, 7) constraint graph.

70

THOMAS D. HOWELL IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

and 0. Its node probabilities are obtained by renormalizing
the node probabilities from the constraint graph so that they
sum to one. The edge probabilities are computed from the
constraint graph. The run-length graph is shown in Figure
19.

The run-length probabilities from each node can be read
from the run-length graph. The overall probability of a given
run length is the average of the probabilities of that run
length from each node, weighted by the node probabilities.
The run-length probabilities for the (2, 7) code are

1
p(runlength = [345678]) =32 [10278 5539 23 7],

The constraint graph can be simplified further by
combining nodes {0,, 1]}. This could have been done earlier,
but it would have interfered with the construction of the
run-length graph. The (2, 7) encoder graph can be
constructed from the second power of the constraint graph.
There are two connected components, and either one will
work. The encoders described in [25-27] come from the
component {0,,1,,3,,5,, 7,}. We use this component, too,
dropping the subscripts 1 from this point on. Figure 20
shows the squared constraint graph. The integers next to the
nodes are components of the eigenvector of the squared
adjacency matrix for the largest eigenvalue, 2. The encoder
graph is constructed by splitting states in such a way that the
eigenvector components remain integral and the maximum
eigenvector component is reduced. The process is complete
when all eigenvector components are unity, which means
that each state has two outgoing edges. The graph can be
simplified by merging pairs of nodes which have identical
sets of outgoing or incoming edges. Even with the
eigenvector as a guide, there are many ways to complete the
construction of the encoder graph. Figure 21 shows three
different graphs which can be derived from the smaller
component of Figure 20. Each can be made into an encoder
graph by adding input labels.

Figure 22 shows the encoder graph for the (2, 7) code used
in several IBM disk products, including the 3380. It is
derived from alternative (b) of Figure 21. The advantage of
this encoder graph over ones based on alternatives (a) and (c)
of Figure 21 is that alternative (b) has smaller maximum
error propagation in the decoding process. This can be seen
as follows. Consider the received sequence 000010 00,
corresponding to the path in alternative (a) from 0°t100' to
7100' to 7. A single-bit error could change the received
string to 000010 01. This string corresponds to the path
from 0° 10 3* to 5* to 1" to 0°. In order to know how to
decode the first block 00 we need to look ahead three blocks.
Now consider the paths from 0°t03’to 1' and from 3’ to 5°
to 1'. Either the input labels on the edges 0° — 3’and 3’ >
5 coincide, or we need to look back one block to decode
them. Similarly, the paths from 0°t0 0' to 7 and from 3* to
5to7 require that the input labels on 0°>0'and 3’ -5

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

G
The (2, 7) encoder graph.

coincide, or we need to look back one block to decode them.
It is impossible for both pairs to coincide, so we need to look
back one block to decode some edge. The decoding of a
received block involves five blocks: one previous, three
future, and the current block. A single-bit error in the
received data could affect the decoding of five blocks,
propagating it to five errors in the decoded data. It is easy to
see that the decoder for alternative (c) requires four blocks of
look-ahead, so it also propagates errors to five bits. The
decoder for Figure 22 propagates errors to only four bits.

4. Conclusions

A method has been presented for determining statistical
properties of codes. It has been applied to three examples:
the MFM, (1, 7), and (2, 7) codes. The method relies on
constructing a constraint graph which incorporates all the
constraints of the code, both run-length and incidental. The
capacity of the constraints for an implemented code must be
a rational number, m/n, and this fact gives us useful
information for constructing the constraint graph. It requires
that the lengths of all cycles in the constraint graph be
multiples of n.

Statistics such as the probabilities of specific code strings
or the density of 1s are most easily computed from the
constraint graph. Other quantities such as run-length
probabilities and power spectra are more easily computed
from the run-length graph which is derived from the
constraint graph. The mapping of unconstrained input data
to code strings is described by the encoder graph. The
encoder graph may also be constructed from the constraint
graph.

THOMAS D. HOWELL

71

72

In previous work the usual practice was to derive the
encoder graph from the graph G(d, k), describing only the
run-length constraints. Along the way, additional constraints
were added implicitly as nodes and edges were discarded.
These methods did not lead to an understanding of the
incidental constraints, and did not give an easy way to
compute the statistical properties of the final code. The main
idea of this paper, then, is that it is worthwhile to understand
the incidental constraints and to take them into account
explicitly when constructing and analyzing a code.

Appendix A: Reversal symmetry

Let ¢* denote the reverse of a code string ¢. Let G* denote
the reverse of a constraint graph G, produced by reversing
the directions of all edges of G and replacing all edge labels
with their reverses. Let p.(c) denote the probability of the
string ¢ in the maxentropic code described by constraint
graph G.

Lemma
For any code string ¢, pgr(c) = pG(cR).

Proof Consider a path a in G” whose label is ¢. Let the

nodes along the path be s, , s; .-, 5, .5, . The probability

for path a in the maxentropic code is

per(@) =8, Dy P,

Let a” be the reverse of path a. It is a path in G passing
through nodes i St Sipy S By a similar argument,
we find

Wi Vi,
—_—
AY v,

i

pea®) =

Taking the union over all paths whose labels are equal to ¢
completes the proof of the lemma.

Theorem
Let G be the constraint graph for a reversal-symmetric code;
i.e., G and G* describe the same set of code constraints. The
probabilities, pg(c) and pG(cR), of any string ¢ and its reverse
are equal.

Proof We have pg(c) = pgr(c) because G and G* describe
the same constraints. The maxentropic probabilities do not
depend on which description of those constraints is chosen.
By the lemma, pg(c) = pG(c‘R). Combining the two
equations gives the desired result.

THOMAS D. HOWELL

Appendix B: Rational probabilities

Theorem

Let T be the adjacency matrix for an irreducible graph G
with fixed-length edge labels describing a set of code
constraints with rational capacity C = m/#n. Then the node
probabilities 5; and edge probabilities p;; which achieve
capacity in G are rational numbers.

Proof Since T is nonnegative, it has, by the Perron-
Frobenius theorem [29], a positive real eigenvalue A equal to
its spectral radius. Let v and w be the positive real right and
left eigenvectors for A, The following relationships were
given in Sections 2 and 3. The first three can be found in [5],
and the last is from [8]:

1. C=log,A.

2. p,;=(v;/Av;) when (;#0,and p,;=0 otherwise.

3.5, =w)/ T vw.

4. In order to have C = (m/n) with m and » relatively
prime, T must be cyclic of index some multiple of ».

The rest of the proof assumes that T is cyclic of index #.
The proof for the general case is identical with 2 and n
replaced by ¢m and cn for some integer ¢. Because T is cyclic
of index n, we may assume it has the following form, after
reordering the nodes of G if necessary [29]:

T= S . (A1)

n—1.n

The blocks into which T is partitioned correspond to the
connected components of the nth power of G. Let
v=[v" v and w=[w" - w"] be similarly
partitioned. The vectors v and w'" satisfy linear equations
with integer coefficients: T)" v’ = 2”4 and
w' (]": =2"w"" where we have used \" = 2" and
T(lnz =T,,T,,---T,_,,T,,. Therefore, we may normalize
the vectors v and w such that »'"” and w'" have rational (or
integer) components.

The equation T, ,v® = \o'" implies that v/ has
rational entries. The equation T,‘,_,‘kv(k) =" establishes
by induction that v"”/A*"" has rational entries for | < k < n.
Similarly, the equation \4f'(/"”T,‘,.A_+1 = A" shows that
w2\ is rational for 1 <k < n.

The representation of T in (A1) shows that every edge in
G goes from a node / in component (k) to a node j in
component (k + 1), where the component numbers are
treated cyclically: Component (n + 1) is component (1). The
edge probability is

IBM J. RES. DEVELOP. VOL. 33 NO. I JANUARY 1989

k
Y r1>‘

- k-1
Av,

Ar, A
where r; and r, are rational numbers. This establishes that
the edge probabilities are rational.

The node probability is 5; = (v;w;)/ %}, v;w,. Let node i be
in component (k). The product v,w, =r, Ak_‘rzx_(k_”, where
r, and r, are rational numbers, is rational for all /. It follows
that the node probabilities are rational, and the proof is
complete.

The node and edge probabilities in the run-length graph
are rational functions of those for the constraint graph, so
they are rational as well. The requirement for fixed-length
edge labels can be removed. A graph with variable-length
edge labels can be converted to an equivalent graph with
fixed-length edge labels by replacing each edge having a
multi-symbol label by a sequence of edges with single-
symbol labels. The theorem applies to the new graph, and
rational operations on its probabilities yield the node and
edge probabilities for the original graph. The generalization
of the theorem to constraints with rational b-ary capacity,
where b is an integer, is obvious.

An alternative proof of the theorem can be obtained by
inverting the sequence of node splittings and mergings by
which an encoder graph is derived from the constraint graph.
The existence of a suitable sequence of splittings and
mergings is guaranteed by a theorem of Adler et al. [23]. The
encoder graph has edge probabilities 27", and its node
probabilities are rational because they satisfy sQ-n=0.
The proof is completed by showing that node mergings and
splittings change the node and edge probabilities by rational
operations.

References

1. W. Kautz, “Fibonacci Codes for Synchronization Control,”
IEEE Trans. Info. Theory IT-11, 284-292 (1965).

2. P. Franaszek, “Sequence-State Methods for Run-Length-Limited
Coding,” IBM J. Res. Develop. 14, 376-383 (1970).

3. P. Siegel, “Recording Codes for Digital Magnetic Storage,”
1EEE Trans. Magnetics MAG-21, 1344-1349 (1985).

4, K. Schouhamer Immink, “Coding Methods for High Density
Optical Recording,” Philips J. Res. 41, 410-430 (1986).

5. C. Shannon, “A Mathematical Theory of Communication,” Bell
Syst. Tech. J. 27, 379-423 and 623-656 (1948).

6. K. Schouhamer Immink, “Some Statistical Properties of
Maxentropic Runlength-Limited Sequences,” Philips J. Res. 38,
138-149 (1983).

7. E. Zehavi and J. Wolf, “On Run-Length Limited Codes,” IEEE
Trans. Info. Theory 34, 45-54 (1988).

8. J. Ashley and P. Siegel, “A Note on the Capacity of Run-
Length-Limited Codes,” IEEE Trans. Info. Theory IT-33, 601~
605 (1987).

9. P. Siegel, “Applications of a Peak Detection Channel Model,”
IEEE Trans. Magnetics MAG-18, 1250-1252 (1982).

10. P. Shaft, “Bandwidth Compaction Codes for Communication,”
IEEE Trans. Commun. COM-21, 687-695 (1973).

11. D. Tang and L. Bahl, “Block Codes for a Class of Constrained
Noiseless Channels,” /nfo. Control 17, 436-461 (1970).

12. M. Hecht and A. Guida, “Delay Modulation,” Proc. IEEE 57,
1314-1316 (1969).

IBM J. RES, DEVELOP. VOL. 33 NO. I JANUARY 1989

13. J. Lawson and G. Uhlenbeck, Threshold Signals, Boston
Technical Publishers, Lexington, MA, 1964, pp. 42-46.

14. G. Cariolaro and G. Tronca, “Spectra of Block Coded Digital
Signals,” IEEE Trans. Commun. COM-22, 1555-1564 (1974).

15. M. Pelchat and J. Geist, “Surprising Properties of Two-Level
‘Bandwidth Compaction’ Codes,” IEEFE Trans. Commun.
COM-23, 878-883 (1975).

16. D. Lindholm, “Power Spectra of Channel Codes for Digital
Magnetic Recording,” JEEE Trans. Magnetics MAG-14, 321~
323 (1978).

17. A. Gallopoulos, C. Heegard, and P. Siegel, “The Power
Spectrum of Run-Length-Limited Codes,” /EEE Trans.
Commun., in press.

18. T. Horiguchi and K. Morita, “An Optimization of Modulation
Codes in Digital Recording,” IEEE Trans. Magnetics MAG-12,
740-742 (1976).

19. P. Franaszek, “Efficient Code for Digital Magnetic Recording,”
IBM Tech. Disclosure Bull. 23, 4375-4378 (1981).

20. M. Cohn, G. Jacoby, and A. Bates III, “Data Encoding Method
and System Employing Two-Thirds Rate Code with Full Word
Look-Ahead,” U.S. Patent 4,337,458, 1982.

21. G. Jacoby and R. Kost, “Binary Two-Thirds Rate Code with
Full Word Look-Ahead,” IEEE Trans. Magnetics MAG-20,
709-714 (1984).

22. R. Adler, M. Hassner, and J. Moussouris, “Method and
Apparatus for Generating a Noiseless Sliding Block Code for a
(1, 7) Channel with Rate 2/3,” U.S. Patent 4,413,251, 1982.

23. R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for
Sliding Block Codes,” IEEE Trans. Info. Theory IT-29, 5-22
(1983).

24. P. Franaszek, “Run-Length-Limited Variable Length Coding
with Error Propagation Limitation,” U.S. Patent 3,689,899,
1972.

25. J. Eggenberger and P. Hodges, “Sequential Encoding and
Decoding of Variable Length, Fixed Rate Data Codes,” U.S.
Patent 4,115,768, 1978.

26. T. Howell, “Analysis of Correctable Errors in the IBM 3380
Disk File,” IBM J. Res. Develop. 28, 206-211 (1984).

27. K. Norris, “Run-Length-Limited Codes,” Xerox Disclosure J. 5,
647-648 (1980).

28. M. Cohn and G. Jacoby, “Run-Length Reduction of 3PM Code
via Look-Ahead Technique,” IEEE Trans. Magnetics MAG-18,
1253-1255 (1982).

29. R. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1962, pp. 30-39.

Received August 1, 1988; accepted for publication December
15, 1988

Thomas D. Howell 1BM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120. Dr, Howell is a
Research Staff Member at the Almaden Research Center. He is
currently working on signal processing and coding for magnetic
recording channels. Dr. Howell received his B.S. in mathematics
from the California Institute of Technology, Pasadena, in 1973, his
M.S. in computer science from Cornell University in 1975, and his
Ph.D. in computer science in 1976, also from Cornell University.
From 1976 to 1977, he was an IBM Postdoctoral Fellow at the
University of California at Berkeley. Dr. Howell joined IBM at the
San Jose Research Laboratory in 1977, and worked until 1979 on a
performance evaluation tool for computer systems called the VM
Emulator. He joined the recording channel project at San Jose
Research in 1979 and was its manager from 1979 until 1983. Dr.
Howell took a one-year assignment at the IBM Zurich Research
Laboratory in 1983-84. He received an IBM Outstanding Technical
Achievement Award in 1983 for his work on recording channel
modeling. Dr. Howell is a member of the Association for Computing
Machinery, the Institute of Electrical and Electronics Engineers, and

the Mathematical Association of America. 73

THOMAS D. HOWELL

