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Statistical 
properties 
of selected 
recording  codes 

by Thomas D. Howell 

Most  recording  systems  encode  their  data  using 
binary  run-length-limited (RLL)  codes.  Statistics 
such  as  the  density  of Is, the  probabilities of 
specific  code  strings or  run  lengths,  and  the 
power  spectrum  are  useful in analyzing  the 
performance of  RLL codes in these  applications. 
These statistics are  easy to compute  for  ideal 
run-length-limited  codes,  those  whose  only 
constraints  are  the  run-length  limits,  but ideal 
RLL codes  are  not  usable in practice  because 
their  code  rates  are  irrational.  Implemented RLL 
codes  achieve  rational  rates  by  not  using all 
code  sequences  which  satisfy  the  run-length 
constraints,  and  their statistics are  different  from 
those of the ideal RLL  codes. Little attention  has 
been  paid  to  the  computation of statistics for 
these  practical  codes. In this paper a method is 
presented  for  computing statistics of 
implemented  codes. The key  step is to develop 
an  exact  description of the  code  sequences 
which  are  used. A consequence  of  the  code 
having  rational  rate is that all the code-string 
and  run-length  probabilities  are  rational. The 
method is illustrated by  applying it to  three 
codes of practical importance: MFM, (2, 7), and 
(197). 
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1. Introduction 
Most digital magnetic and optical  recording systems use 
binary  run-length-limited (RLL) codes [ 1-41, These  codes 
are described by pairs of run-length  limits, (d, k) .  The 
parameter d is the  minimum  number of symbols 0 between 
consecutive symbols 1 in the encoded data,  and k is the 
maximum.  The playback system is designed to sense the 
presence or absence  of 1s in the encoded data.  The 
parameters (d, k )  are chosen to place adjacent 1s far  enough 
apart  to avoid  problems with intersymbol  interference, yet 
close enough  together to  ensure accurate clock recovery. The 
cupucity or entropy of a set of run-length constraints is an 
upper bound  on  the  rate of any code satisfying those 
constraints.  Equivalently,  it is the  maximum  number N of 
unconstrained  bits which can be encoded by each 
constrained symbol. Maxentropic (or ideal) codes have rates 
equal to  the capacity of the constraints. For large N,  they use 
all allowable code strings of  length N about equally often. In 
practice, ideal RLL codes cannot be implemented. They  can 
only be approximated. 

It is often necessary to  compute statistical properties of the 
coded data. Properties  such  as the frequencies of occurrence 
of particular strings of code  symbols or of the various 
allowable run lengths of Os are useful in analyzing the 
performance of codes in some applications. For example, the 
frequency of occurrence of the symbol 1 might be required 
in  analyzing the performance  of  a clock recovery system. All 
these  properties are easy to  compute  under  the  assumption 
that  the code is ideal [5-71. Some tools for computing 
properties of ideal codes are  summarized  in Section 2. 

systems, are  not ideal RLL codes. The capacities of all 
Practical codes, the ones actually used in digital recording 
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interesting ideal RLL codes are irrational. The only 
exceptions are d = k with a  capacity of zero and d = 0, k = M 

with a capacity of one bit per symbol (see [8]). Practical 
codes have rational rates: they encode m user bits into n 
constrained  symbols. The integers m and n are typically 
quite small. The rate r = m/n must be less than  the capacity 
C of the original constraints  (usually it is only slightly below, 
within  a few percent). The ratio r/C is the efficiency of the 
code. The higher the efficiency, the better the code 
approximates the ideal RLL  code. 

more difficult than it is for ideal codes. Two approaches are 
often  taken. One is to  compute  the analogous quantities for 
the ideal code. One  then argues that since the rate m/n is 
close to the  capacity C, the statistical properties  should also 
be close (see [6,9, IO]). The second  approach is simulation. 
One encodes  a  long  string of random  data  and observes the 
statistical properties of the resulting constrained  string. Each 
of these methods can be useful, but rigorous error  bounds 
are rarely given. 

Practical RLL  codes typically do  not use all allowable 
constrained  sequences.  Some  sequences which satisfy the 
(d, k )  constraints never appear in  encoded data. In many 
cases of  interest, though,  the  remaining sequences are used 
in the ideal way. That is, every string of a given, sufficiently 
large length is  used with the  same frequency if it is used at 
all. Such codes are really ideal codes whose constraints 
consist of run-length  constraints and  other incidental 
constraints. This class of codes  includes the codes used in 
most computer disk drives, magnetic and optical. 
Understanding the incidental constraints is the key to 
computing  the statistics of practical RLL codes. In many 
cases the incidental  constraints are interesting for other 
reasons as well. They describe the set of strings which satisfy 
the run-length  constraints but  are  not used in the actual 
code. Such strings are sometimes used as  markers.  They are 
readable because they have proper run lengths, but they 
never occur  in valid data,  and  the decoder can flag them  as 
code violations. In Section 3 the incidental constraints for 
some  important codes  are given, and this  information is 
used to  compute statistical properties of the codes. 

Computing statistical properties  for  most practical codes is 

2. Ideal run-length-limited codes 
Ideal run-length constraints (d, k) may be described by a 
labeled directed graph, G(d,  k).  The graph has nodes labeled 
0, I ,  . . . , k. Each node i except i = k has an outgoing edge to 
node i + I with label 0. Each node i with i 2 d has an 
outgoing edge to node 0 with label 1. See Figure 1. The 
sequence of edge labels encountered while following any 
path in G(d,  k)  forms  a (d, k)-constrained  binary  sequence. 
Conversely, any (d, k)-constrained  binary  sequence 
corresponds to a  path in the  graph. The label of each node 
gives the  number of edges labeled 0 traversed since the last 
edge labeled 1. 
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T(d, k )  = k + I 

The adjacency  matrix of G(d, k)  will  be called T(d, k). Its 
entry in row i and  column J gives the  number of edges from 
node i to node; for 0 5 i, J 5 k. Information theory tells us 
how to  compute statistical properties of the ideal sequences 
described by such  a  graph or adjacency matrix.  The 
following results are well known.  Some of the proofs  can be 
found  in [SI, [ 7 ] ,  or [ 1 1 1 .  

I .  The capacity  of the  constraints described by adjacency 
matrix T is given by C = log, X bits per  constrained 
symbol, where X is the largest real eigenvalue of T. When 
T is T(d, k), it is easy to show that  the characteristic 

largest real root is X. 

constraint graph in such  a way that capacity is achieved 
when the probability of a given constrained  string is given 
by the  product of the probabilities assigned to  the edges of 
the corresponding  path  in the graph. The probability 
assigned to  an edge from  node i to node; is given by 
P,, = (u,/Xu, ), where u is the right eigenvector for T with 
eigenvalue X :  Tu = Xu. For T = T(d, k ) ,  the right 
eigenvector is given by* 

polynomial is ,$+I - Xk-d - p - 1  - . . . - x -  1. Its 

2. Probabilities can be attached to  the edges in the 

The matrix Q whose (i, j )  element is q,, = p,,t,, gives the 

'The superscnpt'denotes a transpose. 61 
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Given the node and edge probabilities, it is easy to 
calculate the probabilities of  specific sequences of channel 
symbols. As an example, we calculate the probabilities of all 
three-symbol strings in the ideal (1, 3) code. We  have 

~(011) = ~(110) = ~ ( 1 1 1 )  = 0 from the constraint d = 1, and 

62 
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probability that nodej follows node i .  It is stochastic: 

c 4iJ = 1 .  
i 

3. The probability s, associated  with node i of the constraint 
graph, G,  is given  by w,v,, where w and v are left and 
right  eigenvectors  for T with  eigenvalue X, and Zs, = 1. 
The vector s is  also a left  eigenvector  for Q satisfying 
st = stQ. For T = T(d, k ) ,  the left  eigenvector, w, is  given 
by 

k k-1 w + = [ x  x . . .  I], 
and s is  given  by s = 5/25,, where 5, = X k  for 0 I i I d 
and 

il = ~k - 2 X k - d - j  
r-d 

j =  1 

fo rd+  1s i s  k. 

Note that p(OO1) =p(lOO). 
Ideal RLL codes are symmetrical with  respect to reversal. 

Reversing the directions of all edges in G(d, k )  and reversing 
their labels  yields a graph whose adjacency matrix is the 
transpose of T(d,  k) .  The reversed graph describes the same 
set  of constrained strings as the original. The node 
probabilities in the reversed graph are  the same as in the 
original graph, but  the edge probabilities now depend on  the 
left  eigenvector w. The probability assigned to  an edge from 
node i to node j in the reversed graph is given  by 
li, = ( wj/wi X), where w is the left  eigenvector  for T with 
eigenvalue X. It is  shown  in  Appendix A that the 
probabilities of any code string and its reversal are equal in a 
reversal-symmetric, maxentropic code. The reverse of 
G(d, k )  is shown in Figure 2. 

The reversed graph provides a very simple way to 
compute the probabilities of the possible run lengths in an 
ideal RLL code. The probability of run length g, d I g 5 k, 
is just  the edge probability jog from node 0 to node g in the 
reversed graph. Using the formulas p , j  = (wJ/w,)X-l and 

probability of a phrase of length g + 1 consisting of a 1 
followed by g Os starting and ending at node 0 is just 
The probability of any string of independently chosen 
phrases  whose total length  is N is X-N. This illustrates that 
the given probabilities lead to a code which  is indeed 
maxentropic. 

w, = Xk-' from 2)  and 3) above, we find jog = The 

3. Practical  run-length-limited  codes 
Practical run-length-limited codes operate at code rates of 
the form mln, where m and n are small integers. Since ideal 
RLL codes have irrational rates, practical RLL codes are not 
ideal. In most cases  of interest they differ from ideal RLL 
codes by the addition of a few constraints. We  will call  these 
incidental constraints. Once the incidental constraints are 
known, the methods of the previous section can be used to 
compute node and edge probabilities for the graph 
describing the new code. The trick is to define incidental 
constraints such that  the capacity of the new code is mln. 
When the encoding rules for the code are known, one can 
derive the incidental constraints. Otherwise, a lemma of 
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Ashley and Siegel [8] is helpful in  determining what 
incidental constraints might  lead to capacity m/n. It states 
that  any irreducible  graph G representing constraints whose 
capacity is equal  to m/n, where m and n are relatively prime 
integers, has the property that  the  number of edges in every 
cycle is  a  multiple  of n. A graph is irreducible if there is a 
path from every node  to every other node.  A cycle is  a  path 
which begins and  ends  at  the  same node. We will say that  an 
irreducible  graph  for which the greatest common divisor of 
the cycle lengths is n is cyclic of index n. 

One might hope  to  construct codes by looking  for 
incidental constraints with rational  capacity m/n. The 
lemma of Ashley and Siegel gives a necessary condition 
which limits the search to  constraints whose graphs are cyclic 
of index n. Finding  constraints with rational  capacity is not 
easy even  in this very restricted set of  graphs. All nontrivial 
examples  of incidental  constraints with rational  capacities 
have come  from analyzing  codes  constructed by other 
methods. In  this context, existing code construction  methods 
can be viewed as ways of searching systematically for 
incidental constraints with rational capacities. 

practical RLL codes consists of three steps: 
Our strategy for computing  the statistical  properties of 

1. Convert G(d, k )  to a  graph which describes the  same 
constrained  sequences and is cyclic of index n. 

2. Modify this new graph  according to  the incidental 
constraints. 

3. Compute  the  node  and edge probabilities for  the 
maxentropic code described by the modified graph. 

This process is illustrated by applying it  to  three codes: 
MFM, (1, 7), and (2, 7). 

The MFM code 
The  MFM (modified frequency modulation) code  is  a rate 
1/2 ( 1, 3) RLL code. It has several other names,  including 
“delay modulation”  and “Miller  code.” It  can  be analyzed 
more simply than is done here, and its  properties are known 
[3, 121. It is  included to illustrate the techniques which we 
extend to  the  more complicated (1, 7) and (2, 7) codes. 

We begin the  construction of MFM with G( I ,  3). Since we 
are  aiming for  a  rate  1/2  code, we need to modify C( 1, 3) to 
be cyclic of index 2. This is done by interconnecting  two 
copies  of G( 1, 3) as shown in Figure 3. The adjacency  matrix 
of the resulting  graph is the  Kronecker  product of a 
permutation  matrix corresponding to a 2-cycle with T( 1, 3), 

This graph describes the  same set of  constrained  strings as 
T( I ,  3). It is cyclic of  index  2 because the subscripts alternate 
on  the labels of the consecutive  nodes  reached on  any  path. 
A path  can circle back to  its starting node  only after 
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an even number of edges; this property is inherited 
by any subgraph, so it is possible that  the capacity  of the 
constraints represented by some subgraph  is exactly 1/2. In 
fact, the graph produced by deleting node 3, and  the edges 
incident to it has  this property. This  modification 
corresponds to  the incidental constraint  that  runs of three 
zeros beginning at  odd-numbered indices are prohibited. The 
graph resulting from this  modification  is  shown in Figure 4. 

The modified graph can be simplified. Nodes 3, and 2, 
have the  same outgoing edges, so they can  be merged into a 
single node. The  same process can  then be applied to nodes 
2, and 1 ,, . The resulting  graph is our basic description  of the 
MFM constraints. The  node  and edge probabilities can be 
computed by the  methods of Section  2. Figure 5 shows the 
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i The MFM run-length graph. 

graph with its associated probabilities. Note that all node and 
edge probabilities for MFM are rational numbers, while many 
of the corresponding probabilities for the ideal (1, 3 )  code 
are irrational. The fact that node and edge probabilities are 
rational for codes with rational rates is  proven in Appendix B. 

The MFM constraint graph contains all the information 
about the statistics of the MFM code. From it we can 
compute probabilities of arbitrary strings and probabilities of 
the different run lengths. For example, we  give the 
probabilities of all three-symbol strings for comparison with 
those given  in  Section 2 for the ideal ( 1, 3 )  code: 

The fact that p(OO1) = p(100) follows from the fact that  the 
MFM constraints are symmetrical with  respect to reversal. 

The run-length probabilities are most easily found by 
constructing another graph, the run-length graph. The MFM 
run-length graph  is the projection of the MFM constraint 
graph onto its nodes with labels 0,. It has  only two nodes, 0, 
and 0, .  It has one edge  for  each path in the MFM constraint 
graph that begins at one of these nodes and ends at one of 
these  nodes without passing through either of  these nodes 

64 along the way. The label of such an edge is the 
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concatenation of the labels on  the edges along the path in 
the MFM constraint graph. It always has the form of a  run 
of zeros  followed by a 1. The MFM run-length graph 
describes  exactly the same set  of constrained strings as does 
the MFM constraint graph. It highlights the structure of 
these  strings  as sequences of  phrases,  where each phrase  is a 
run of zeros terminated by a 1. The node and edge 
probabilities for the MFM run-length graph can be 
computed directly by the methods of [ 5 ] .  Alternatively, they 
can be determined quite easily from the corresponding 
quantities in the MFM constraint graph. The node 
probabilities for the run-length graph are the corresponding 
node probabilities from the constraint graph, renormalized 
so that they sum to one. The edge probabilities in the run- 
length graph are the products of the edge probabilities along 
the corresponding paths in the constraint graph. The MFM 
run-length graph is  shown in Figure 6. 

The run-length probabilities from each node can be read 
directly from the run-length graph. The overall probability of 
a given run length  is the  sum of the probabilities of that run 
length from each node, weighted by the node probabilities. 
The run-length probabilities for MFM are 

1 2 + 1 1  1 p ( 0 1 )  =--  - - = -  
2 3   2 3  2' 

p(001)  =-- -- = - 1 2 + 1 1  1 
4 3   2 3   3 '  

p(OOO1) = - - l 2  - 1 
" 

4 3  6 '  

The power spectrum of a code is the Fourier transform of 
its autocorrelation function. It gives the expected  power as a 
function of frequency in a long random code string. Several 
methods of computing the power spectra of codes have  been 
published [7,  12-16]. A recent paper [ 171  gives a method for 
computing the power spectra of run-length-limited codes 
which  uses the run-length graph and its associated node and 
edge probabilities. Explicit formulas for the power spectra of 
both ideal and implemented RLL codes can be obtained by 
this method. 

The constraint graph and the run-length graph contain all 
the information necessary for computing the statistical 
properties of a code, but they do not contain any 
information about how to  map arbitrary data strings into 
constrained strings and vice  versa, i.e., how to encode and 
decode. Before  leaving the subject of MFM, we therefore 
construct the MFM encoder graph. The encoder graph for a 
rate m/n code must have three properties: 

1. Each node has  exactly 2" outgoing edges. 
2.  Each  edge  has an  input label and  an  output label. The 

input labels on  the 2" outgoing edges from each node are 
the 2" binary strings of  length m. The output labels are 
strings of n code symbols. 
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3. The strings obtained by concatenating the  output labels  of 
the edges along any path satisfy the code constraints. 

Assume a starting node has  been  specified in advance. 
Encoding is done as  follows. Take the first m bits from the 
input string.  Select the outgoing edge from the  current node 
whose input label matches the selected m bits. Concatenate 
the corresponding output label to the encoded string, and 
make the node to which that edge  leads the new current 
node. Move to the next m-bit block  of input bits, and repeat 
until the  input string is exhausted. 

The encoder graph can be constructed from the constraint 
graph. First we construct the nth power of the constraint 
graph. This is the graph whose  adjacency matrix is the nth 
power  of the adjacency matrix of the constraint graph. It has 
an edge  for  each path of length n in the constraint graph, 
and  the label on that edge is the concatenation of the labels 
on the edges making up the path. For the case of MFM, 
m = 1 and  n = 2. The second power of the MFM constraint 
graph is  shown in Figure 7. The squared constraint graph 
has two connected components because the constraint graph 
was  cyclic  of index 2. We may  choose either one from which 
to construct the encoder graph. Choosing the  one with  two 
nodes, we  see that it has all the required properties. All  we 
need to do is attach input labels 0 and 1 to the two edges 
leaving  each node. This can be done arbitrarily, but the 
choice in which the  input label on each edge matches the 
second symbol  of the  output label is a particularly good one. 
It makes decoding trivial. The final MFM encoder graph  is 
shown in Figure 8. The edge label 1/01 means that 1 is the 
input label and 01 is the  output label. The operations of 
squaring the graph and discarding one component have 
destroyed the reversal symmetry of the code when the code 
is  viewed  as a sequence of two-symbol  blocks. For example, 
the sequence 0001 is  allowed, but 1000 is not. After some 
graph manipulations, the discarded component can be  seen 
to be equivalent to the reversal  of the other. It allows 1000 
but not 0001. 

The (I, 7)  code 
The (1, 7) run-length constraints have a capacity of about 
0.679. Several authors have published practical (1,  7) codes 
with a code rate of 2/3 [ 18-22].  Although these codes have 
different encoders and decoders, they are all  essentially 
equivalent from the point of  view  of their statistical 
properties. The code described in [20] and [21] and the one 
described in [22]  use the same set  of constrained strings; in 
other words, their incidental constraints are the same. They 
differ  only in the mapping of unconstrained user data  onto 
constrained strings; i.e., the encoders and decoders are 
different. The codes described in [ 181 and [ 191  differ from 
the others in two ways. They use  different encoder and 
decoder mappings, and the data are divided differently into 
three-symbol blocks. If  we label their symbols 
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' . 1 a i ~ , b i ~ l c i ~ l  a,b,ci a l+ lb l+ l~ l+ ,  . ' . , then the string 
' - . ci-pi- I bi- I ci- I ai bi cia, I b, I . . ' is in the other two 
codes.  An  observer  would  find  it impossible to determine 
which of these four codes produced any given string of code 
symbols. If the symbols were divided into blocks  of three, 
then the strings  of three-symbol blocks from the first two 
codes would  be distinguishable from those of the other two. 
The division into blocks does not affect the statistical 
properties discussed above, so all four codes have the same 
statistical properties. 

We  begin the construction of the  2/3 (1,  7)  code by 
modifying the graph C( 1, 7)  to be  cyclic  of index 3.  We do 
so by taking the Kronecker product of the permutation 
matrix representing a 3-cycle  with T( I ,  7). The resulting 
matrix is 

C,@T(1, 7 ) =  0 0 TU, 7 1 1 .  

This is the adjacency matrix of the graph shown in Figure 9. 
The next step is to introduce the incidental constraints. 

The incidental constraints for the  2/3 (1, 7 )  code take the 
form of constraints on  the starting points for runs of  six and 
seven Os, modulo 3. Let the ith code symbol be the first 0 in 
a  run of seven. If another run of  seven Os begins at t he j  th 

[ 
0 T(1, 7 )  0 

T(1, 7 )  0 0 
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s p  0 0 0  0 0 0  

1 1 1  1 1 1  

t l  1 J i  J J 

The graph G( 1, 7) modified to be cyclic of index 3 

! The ( 1 ,  7) constraint graph before simplification. 

symbol, the incidental constraints require that i = j mod 3. 
Similarly, if a run of six 0s begins at the kth code symbol, 
the incidental constraints require that k 5 i mod 3 or 
k = (i + 1) mod 3. These constraints, together with the ( I ,  7) 
constraints, have capacity 213. They can be reflected on the 
graph by deleting nodes 7,, 7,, and 6,. The resulting graph is 
shown in Figure 10. This graph can be simplified: Nodes 5 , , 
6, ,  and 7, can be combined into one, since they all have the 
same outgoing edges. Similarly, we can combine the sets 
VO, So, % I 3  (3,, 4,, 5,L PI,  3,, 4,1, I lo, 2,, 3,L and I 1 ,, 2, I .  
Figure 11 shows the simplified ( I ,  7) constraint graph with 
its associated node and edge probabilities. The constraint 
graph can be used to compute the probabilities of specific 

The (1,7) constraint graph. 

strings in the (1, 7) code. Note that all the node and edge 
probabilities are rational numbers, which means that the 
probability of any string is also rational. The ( I ,  7) incidental 
constraints are symmetrical with respect to reversal, so the 
reverse of any string has the same probability as the string 
itself. As an example, we give the probabilities of all the 
three-symbol strings; the corresponding probabilities for the 
ideal ( 1, 7) code are shown for comparison: 

p(OO1) = p(100) 

- _ -  1 1  = 0.18333 vs.O.17975 foridealcode, 
60 

_ - -  - 73 - 0.30417 vs.0.29466foridealcode, 
240 

p (100) = ~lla1122+~01Po,2,P2,3,+~0,P023,~3,41 

= 0.18333 vs.0.17975 foridealcode, 
11 
60 

= -  

P (101 1 = SI ,PI , 0, + sOlP0, z,P2,0, + ~ 0 , ~ 0 , 3 0 ~ 3 , 0 ,  

29 
240 

= - = 0.12083 vs. 0.1 149 1 for ideal code. 
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The probability of the symbol 1 is the  same  as  the 
probability of 010 given above. The average run length 
(including the 1) is the reciprocal: (240/73) = 3.28767. The 
ideal ( I ,  7)  code  has an average run length  of 3.39374. The 
run-length  graph  for the 2/3 (1, 7) code is obtained by 
projecting the  constraint graph onto  the  three nodes 0, 
for i = 0, 1, 2. Its node probabilities are  obtained by 
renormalizing the node  probabilities from  the  constraint 
graph so that they sum  to  one.  The edge probabilities  can be 
computed from the  constraint graph;  they can also be  found 
by computing  the edge probabilities  for the reverse of the 
graph  in Figure IO. Each edge in  the run-length  graph 
corresponds to a path in the reversed graph. This path 
contains  one edge with probability q # 1 from 0, to  another 
node  and several edges with probability 1. So the probability 
of the edge in  the run-length  graph is also q. The run-length 
graph is shown  in Figure 12. 

The run-length  probabilities  from  each node  can be read 
from  the run-length  graph. The overall probability  of a given 
run length is the average of the probabilities  of that  run 
length from  each  node, weighted by the  node probabilities. 
The run-length  probabilities  for the ( I ,  7) code are 

p(run  length = [ 2  3  4 5 6  7 81) 

=- [464  292 184 116 73 30 91. 
1 

1 I68 

The ( 1, 7 )  encoder graph can be constructed  from the 
third power of the  constraint graph. There  are  three 
connected components,  and  any  one will do.  The encoders 
described in [20] and [22] come  from  the  component 
{02, 2 , ,  5 2 ] .  The  encoders in [ 181 and [ 191 come  from 
IO,,, 3,, 60]. Figure 13 shows the cubed constraint graph. The 
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integers next to  the nodes  are components of the eigenvector 
of the cubed  adjacency  matrix.  They  guide the  construction 

of the  encoder graph as described in [23]. The  sum of the 
eigenvector components is an  upper  bound  on  the  number 
of nodes in  the final encoder  graph.  Since the  constraints  are 
symmetrical with respect to reversal, the reverses of these 
components can also be used to  construct encoders. The 
reverse of the  component {O,, 2,, 5 , )  has eigenvector 
components  [22  I], so it can  be  made  into a five-node 
encoder  graph by “splitting” the first two nodes. This is 
simpler than  the encoders which would result from any of 
the  components of the  cubed  constraint graph. Figure 14 
shows the reverse of this component.  The subscripts  2 on  the 
node labels have been suppressed for simplicity. 

A ( 1, 7)  encoder  graph can  be constructed by “splitting” 
the first two  nodes.  Splitting  a node  means replacing it with 
two (or more) nodes. Each new node  has the  same  incoming 
(outgoing) edges as the original  node. The outgoing 
(incoming) edges from  the original node  are partitioned 
among  the new nodes. The resulting graph  has the  same set 
of path labels as  the original graph, so it describes the  same 
set of constrained  sequences.  However,  its  nodes have 
different numbers of edges. Adler et al. [23] describe a 
method for determining a  sequence of splittings which 
convert  a  graph into  one with the properties of an  encoder 
graph; Le., all nodes  have the  same  number of outgoing 
edges. The encoder  graph  derived  from Figure 14 is shown 
in Figure 15. The nodes resulting from  splitting  node 0 are 
labeled 0’ and 02,  and  node 2 is treated similarly. Each node 
has four  outgoing edges to which the  four two-bit input 
labels may be assigned arbitrarily. The  input labels shown 
are  the  ones used in  [22]. 

The (2, 7 )  code 
The (2, 7) run-length constraints have a  capacity of about 
0.517.  Practical (2, 7 )  codes have a  rate of 1/2. The code 
used in the IBM 3380 disk storage device is described in 
[24-261; different encoders using the  same incidental 
constraints  (described below) are given in [23] and  [27]. 
Another  (2, 7 )  code with different incidental  constraints is 
described in [28]. 

We begin the  construction of the  1/2 (2, 7) code by 
modifying the graph G(2,  7)  to be cyclic of index 2. We do 
so by taking  the  Kronecker  product of the  permutation 
matrix  representing  a 2-cycle with T(2, 7) .  The resulting 
matrix is 

This is the adjacency  matrix of the graph  shown  in Figure 
16. 

The next  step is to  introduce  the incidental  constraints. 
One of the incidental constraints for the 1/2 (2,  7) code is a 
constraint  on  the starting points for runs of seven Os, 
modulo 2. Let the  ith code  symbol be the first 0 in  a run of 
seven. If another  run of seven Os begins at  the j t h  symbol, 

THOMAS D. HOWELL IBM J .  RES. DEVELOP. VOL. 33 NO, I JANUARY 1989 



i The graph G(2,7) modified to be cyclic of index 2. 

the incidental constraints require that i = j mod 2. In 
addition, a run of seven zeros may  not be followed 
immediately by a run of just two zeros. There is a  similar 
constraint on certain runs of six zeros. A run of six zeros 
starting at index k,  where k = i + 1 mod 2, may not be 
followed immediately by a run of just two zeros. These 
constraints,  together with the (2, 7 )  run-length  constraints, 
have capacity 1 /2. Unlike the MFM and ( 1, 7)  constraints, 
the (2, 7) incidental  constraints are  not symmetrical with 
respect to reversal. A run of two zeros may not follow runs 
of seven or certain runs of six zeros, but it  may  precede 
them. 

The (2, 7) constraint graph is derived from  the graph  of 
Figure 16 by deleting  node 7, and duplicating  nodes O,, 1 ,, 
and 2,. The edge from  the new copy of 2, to 0, is deleted. 
The result is shown in Figure 17. This graph can be 
simplified. Nodes 6 I and  7,  can  be  combined  into one,  since 
they have the  same outgoing edges. Similarly, we can 
combine  the pairs {5,, 6,), {4,, 5 , } ,  {3,, 4,}, {2, ,  3,},  and 
{ I,, 2;}. Figure 18 shows the simplified (2, 7) constraint 
graph with its associated node  and edge probabilities. The 
constraint graph can  be used to  compute probabilities of 
specific strings in  the (2, 7) code. All the  node  and edge 
probabilities are rational numbers, which means  that  the 
probability  of any string is also rational. As an example, we 
give the probabilities  of all the four-symbol strings. These 
probabilities happen  to be reversal-symmetric because they 
are so short, but reversal symmetry fails for  long strings. The 
corresponding  probabilities for the ideal (2, 7) code are 
shown for comparison: 

~(0000)  = - = 0.17 1 13 vs. 0.19206  for  ideal  code, 
115 
672 

101 
672 

p(0001)=-=0.15030vs.0.14551 foridealcode, 
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~(0010)  = - = 0.22619 VS. 0.2208 1 
19 
84 

19 
84 

101 
672 

~(0100)  = - = 0.226  19 VS. 0.2208 1 

~ ( 1 0 0 0 )  = - = 0 . 1 5 0 3 0 ~ ~ . 0 . 1 4 5 5 1  

for  ideal  code, 

for ideal  code, 

for  ideal  code, 

~ ( 1 0 0 1 )  = - = 0.07589 vs. 0.07530 for  ideal  code. 
17 

224 
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(b) 

r 10 10 
Writing  expressions  for  these  probabilities in  terms of the 

s, and p, ,  can be tedious. The following device  makes the 
process systematic. Let Q = (q,, ) be written  as the  sum of 
two parts: Q = Qo + Q1, where Qo contains  the 

01 contributions  from edges labeled 0, and Q' contains  the 
01 

2 
01 10 contributions  from edges labeled 1. Let u be a vector of all 

ones. Then p(1001) = stQ1Q0QoQ'u, and  the probability of 
any  other string can be obtained in  a  similar way. 

The probability of the symbol 1 is the  same as the 
probability of 0010 given above. The average run length 

1 (including the 1) is the reciprocal: (84/19) = 4.42105. The 
ideal (2,  7) code  has an average run length  of 4.52879. The 
run-length  graph for the 1/2 (2, 7 )  code is obtained by 
projecting the  constraint graph onto  the  three nodes O,, 0, , 70 
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and 0;. Its node probabilities are  obtained by renormalizing 
the  node probabilities  from the  constraint graph so that they 
sum  to one. The edge probabilities are  computed from the 
constraint graph. The run-length  graph is shown in Figure 
19. 

The run-length  probabilities from each node  can be read 
from  the run-length  graph. The overall probability of a given 
run length is the average of the probabilities of that  run 
length  from  each  node, weighted by the  node probabilities. 
The run-length  probabilities  for the (2, 7) code are 

p(run  length = [ 3  4 5 6 7 81) = - [ 102  78 5 5  39  23 71. 
I 

304 

The  constraint graph  can be simplified further by 
combining nodes I O , ,  1 1. This could  have  been done earlier, 
but it  would  have  interfered  with the  construction of the 
run-length  graph. The (2, 7)  encoder graph can be 
constructed from  the second  power  of the  constraint graph. 
There  are two  connected components,  and  either  one will 
work. The  encoders described in [25-271 come  from  the 
component (01, 1 , , 3 , , 5 , ,   7 , } .  We use this component,  too, 
dropping  the subscripts 1 from  this  point  on. Figure 20 
shows the  squared  constraint  graph.  The integers next to  the 
nodes are  components of the eigenvector of the squared 
adjacency  matrix  for the largest eigenvalue, 2. The encoder 
graph is constructed by splitting  states  in  such  a way that  the 
eigenvector components  remain integral and  the  maximum 
eigenvector component is reduced. The process is complete 
when all eigenvector components  are unity, which means 
that each  state  has  two  outgoing edges. The graph can be 
simplified by merging pairs of nodes which have  identical 
sets of  outgoing or incoming edges. Even with the 
eigenvector as  a  guide,  there are  many ways to complete the 
construction of the encoder graph. Figure 21 shows three 
different graphs which can be derived  from the smaller 
component of  Figure 20. Each can be made  into  an encoder 
graph by adding  input labels. 

Figure 22 shows the  encoder graph  for the (2, 7 )  code used 
in several IBM disk  products,  including the 3380. It is 
derived from alternative  (b) of Figure 2 1. The advantage  of 
this encoder  graph  over ones based on alternatives  (a) and (c) 
of  Figure 2 1 is that alternative  (b)  has  smaller maximum 
error propagation  in the decoding process. This  can  be seen 
as follows. Consider the received sequence 00 00 10 00, 
corresponding to  the  path in  alternative  (a) from 0' to 0' to 
7 to 0' to 7. A single-bit error  could change the received 
string to 00 00 10 01. This string  corresponds to  the path 
from 0' to 33 to 5' to 1 I to 0'. In  order  to know  how to 
decode  the first block 00 we need to look ahead  three blocks. 
Now consider the  paths  from 0' to 33 to 1 I and  from 33 to 5' 
to 1 I. Either the  input labels on  the edges 0' + 33 and 33 + 

5* coincide, or we need to look  back one block to decode 
them. Similarly, the paths from 0' to 0' to 7 and  from 33 to 
5' to 7 require that  the  input labels on 0' + 0' and 33 + 5* 

coincide, or we need to look back one block to decode them. 
It is impossible for both pairs to coincide, so we need to look 
back one block to decode some edge. The decoding  of  a 
received block involves five blocks: one previous, three 
future, and  the  current block. A single-bit error in the 
received data could affect the decoding of five blocks, 
propagating it  to five errors  in  the decoded data. It is easy to 
see that  the decoder for alternative  (c)  requires four blocks  of 
look-ahead, so it also propagates errors  to five bits. The 
decoder  for Figure 22 propagates errors  to only four bits. 

4. Conclusions 
A method has been presented  for determining statistical 
properties  of codes. It has been  applied to  three examples: 
the MFM, (1,  7),  and (2, 7) codes. The  method relies on 
constructing  a constraint graph which incorporates all the 
constraints of  the code, both run-length and incidental. The 
capacity  of the  constraints for an  implemented code must be 
a  rational number, m/n, and  this fact gives us useful 
information for constructing  the  constraint graph. It requires 
that  the lengths of all cycles in the  constraint graph be 
multiples of n. 

or  the density  of 1 s are  most easily computed  from  the 
constraint graph. Other  quantities such  as  run-length 
probabilities and power spectra are  more easily computed 
from  the run-length  graph which is  derived from  the 
constraint graph. The  mapping of unconstrained  input  data 
to code  strings is described by the encoder  graph. The 
encoder  graph may also be constructed from  the  constraint 
graph. 

Statistics such  as the probabilities  of specific code  strings 
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In previous work the usual practice was to derive the 
encoder graph  from the graph G(d, k ) ,  describing only the 
run-length  constraints. Along the way, additional  constraints 
were added  implicitly  as  nodes and edges were discarded. 
These methods  did  not lead to  an  understanding of the 
incidental  constraints, and  did  not give an easy way to 
compute  the statistical properties  of the final code. The  main 
idea of this  paper, then, is that it is worthwhile to  understand 
the incidental  constraints and to take  them  into  account 
explicitly when constructing and analyzing  a  code. 

Appendix A: Reversal symmetry 
Let cR denote  the reverse of a  code  string e. Let GR denote 
the reverse of a constraint graph G,  produced by reversing 
the directions of all edges of G and replacing all edge labels 
with their reverses. Let pc(c )  denote  the probability  of the 
string c in the maxentropic  code described by constraint 
graph G .  

Lemma 
For  any code  string C, pc.(c) = pC(CR),  

Proof Consider  a  path a in G R  whose label is e. Let the 
nodes  along the path be s , ~ ,  s,,, . . . , srk-l, slk.  The probability 
for path a in the maxentropic  code is 

U' v 
10 '0  W9 

W 
=--...- '4 

c W l V 1  Awlo * I k - ,  

I 

- VIo Wlk - 
X' W,V,  ' 

I 

Let aR be the reverse of path a. It is a  path  in G passing 
through nodes s , ~ ,  q - , ,  . . . , s,~, sz0. By a  similar argument, 
we find 

I 

Taking the union over all paths whose labels are equal to c 
completes the proof of the  lemma. 

Theorem 
Let G be the  constraint graph  for  a reversal-symmetric code; 
i.e., G and G R  describe the  same set of code  constraints. The 
probabilities, pc(c)  and pC(cR),  of any string c and its reverse 
are  equal. 

Proof We have pc(c )  = p G R ( c )  because G and GR describe 
the  same constraints. The maxentropic  probabilities do  not 
depend on which description of those constraints is chosen. 
By the  lemma, pCR(c )  = pG(cR) .  Combining  the two 
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Appendix B: Rational  probabilities 

Theorem 
Let T be the adjacency matrix  for an irreducible  graph G 
with fixed-length edge labels describing a set of code 
constraints with rational  capacity C = m/n. Then  the  node 
probabilities s, and edge probabilities p,, which achieve 
capacity in G are  rational numbers. 

Proof Since T is nonnegative,  it has, by the Perron- 
Frobenius theorem [29], a positive real eigenvalue X equal to 
its spectral radius. Let v and w be the positive real right and 
left eigenvectors for X. The following relationships were 
given in  Sections 2 and 3. The first three can be found  in [ 5 ] ,  
and  the last is from [8]: 

1. c = log,X. 

3. SI = (V,U', ) /C,  V,U',. 

2 .  p,, = (v , /Xv , )  when t,, # 0, and p,, = 0 otherwise. 

4. In order  to have C = (m/n)  with m and n relatively 
prime, T must be cyclic of index some multiple of n. 

The rest of the proof  assumes that T is cyclic of index n. 
The proof for the general case is identical with m and n 
replaced by cm and en for some integer e. Because T is cyclic 
of index n, we may assume  it  has the following form,  after 
reordering the nodes of G if necessary [29]: 

The blocks into which T is partitioned  correspond to  the 
connected components of the  nth power of G .  Let 

partitioned. The vectors v ( I '  and w " )  satisfy linear equations 
with integer coefficients: T : ~ ~ v " '  = 2" v (I '  and 
MI T I , ]  = 2'n1v(1)t, where we have used X" = 2'". and 
T I , ,  = T,,2T2,, . . . Tn-l,nTn,l. Therefore, we may  normalize 
the vectors v and IT such that v ( I )  and w")  have rational (or 
integer) components. 

rational  entries. The  equation T,-,,,v"' = establishes 
by induction  that v( ' ) /X" '  has  rational  entries for I I k I n. 
Similarly, the  equation K<(~) 'T~ , ,+ ,  = X U * ( ~ + ' ) ~  shows that 

~1 = [v"' . . . vcn) ]  and w = [ 1 ~ ' ~ '  . . . ~ ' ( ~ ' 1  be similarly 

(1)t ( n )  

( n )  

The  equation T, , ,V(~ '  = Xu''' implies that v("/X has 

, , , ( h )  h - I  , X IS  rational for 1 5 k 5 n. 
The representation of T in (A I )  shows that every edge in 

G goes from  a node i in component ( k )  to a  node; in 
component ( k  + I ) ,  where the  component  numbers  are 
treated cyclically: Component ( n  + 1) is component ( I ) .  The 
edge probability is 
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u, rlXk 
I’ xu, xr, x k - 1  ’ 

p =-=- 

where rl  and r2 are rational numbers.  This establishes that 
the edge probabilities  are  rational. 

The node  probability is si = (v, w , ) / C ,  viw,. Let node i be 
in component (k ) .  The  product v,  w, = rl Ak-1r2A-(k-1), where 
rI  and r, are rational numbers, is rational  for all i. It follows 
that  the node  probabilities are rational, and  the proof is 
complete. 

The node and edge probabilities in  the run-length  graph 
are rational functions of those  for the  constraint graph, so 
they are rational  as well. The  requirement for fixed-length 
edge labels can be removed.  A  graph with variable-length 
edge labels can be converted to  an equivalent  graph with 
fixed-length edge labels by replacing each edge having  a 
multi-symbol label by a  sequence of edges with single- 
symbol labels. The  theorem applies to  the new graph, and 
rational  operations on its probabilities yield the  node  and 
edge probabilities  for  the  original graph.  The generalization 
of the  theorem  to constraints  with  rational b-ary capacity, 
where b is an integer, is obvious. 

An alternative  proof of the  theorem  can  be  obtained by 
inverting the sequence of node splittings and mergings by 
which an encoder  graph is derived  from the  constraint  graph. 
The existence of  a  suitable  sequence  of  splittings and 
mergings is guaranteed by a theorem of Adler et al. [ 2 3 ] .  The 
encoder  graph has edge probabilities 2-“, and its  node 
probabilities are rational because they satisfy st(Q - I )  = 0. 
The proof  is completed by showing that  node mergings and 
splittings  change the node and edge probabilities by rational 
operations. 
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