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The  performance of interactive  paging  systems 
in  general  and  Virtual  Machine/System  Product 
(VM/SP) systems  with  the  High  Performance 
Option  (HPO)  in  particular  depends  upon  locality 
of reference. This  storage-management 
dependency,  often  considered  in  the  context of 
individual  programs,  extends  in  fact  to  a 
significant degree  across  most  virtual-machine 
transactions.  This  paper  investigates  strategies 
to exploit  locality of reference  at  the system 
level by analyzing  page-reference strings 
gathered  from  live  systems.  Alternative 
strategies are evaluated using  trace-driven 
simulations. 

Introduction 
The concept of working sets has  usually  been applied to 
individual programs and their data. Experience with time- 
sharing systems, such as IBM’s Virtual Machine/System 
Product (VM/SP),  suggests that  the concepts of  locality  of 
reference and working  sets apply similarly to series of 
interactions with the system, where  each interaction invokes 
a program. In interactive sessions,  users  issue many different 
commands, invoking programs and referencing a large 
variety  of  system and user data. The VM/SP system  with the 
High Performance Option (HPO) uses a real-storage 
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management policy that is a close approximation to a 
detuned working-set  policy [I].  The primary purpose of this 
real-storage management is to identify groups of  pages that 
can be “block paged” together. To implement the policy, the 
real-storage management system must keep track of the 
reference behavior of the virtual machines. The 
VM/Monitor makes some of  these  reference data available 
for  analysis. 

The second section discusses some concepts that are 
necessary  as background for the paper. The next  section 
describes the tools used in the data-collection and data- 
reduction processes. The fourth section shows the interaction 
between  locality  of  reference and  the algorithms used  in 
HPO. We then discuss the degree to which the  data show 
possibilities  for improving the real-storage management 
algorithms. The final section summarizes the most 
important points of the paper. 

Overview  of concepts 
In the areas of modeling program behavior and measuring 
the memory demands of programs, much work  has  been 
done [ 1-31 that makes use  of the concept of the working 
set-the collection of segments (or pages) recently referenced 
by the program. 

The data for this study have  been  collected from the IBM 
VM/SP  system  with the High Performance Option. The 
window  size  is assumed to equal the  time during which a 
virtual machine remains in the multiprogramming set. 
Because members of the multiprogramming set are kept in a 
queue, the  time in the multiprogramming set is sometimes 
called a queue stay. Normally a queue stay corresponds to a 
single  user interaction. In some cases the scheduler divides a 
transaction into multiple queue stays,  using a standard CPU 
time slice to determine the  time in queue. 51 
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Introduction to HPO paging and scheduling 
The HPO paging algorithms tie real-storage management to 
scheduling. The following material discusses HPO scheduling 
with only the degree of detail needed  for this paper. For 
additional background information, Koeppel [4]  provides an 
overview of resource management in VM systems,  Miles [5] 
gives a more complete review  of HPO scheduling, and 
Tetzlaff and Beretvas  [6]  offer an overview  of  paging in all 
VM operating systems. 

The VM scheduler moves virtual machines among the 
categories Q1, Q2, 43 ,  E 1, and E2. The broadest distinction 
among these  categories consists of three sets: a) those virtual 
machines that are in  queue (Q 1, Q2, Q3), b) those eligible 
for a queue (E 1, E2), and c) those that are idle (neither Q, 
nor E,,). If a machine is in queue, either it is  ready to run or 
it has  recently been run and is expected to be  ready to run 
soon. The virtual machines that are in a queue constitute the 
multiprogramming set. All machines in queue are sorted 
into a single  list according to  an internally assigned priority. 
The list  is searched by the dispatcher, which  selects the 
highest-priority machine that is able to  run. If a virtual 
machine has  work to process but there is  insufficient main 
storage, it  is not placed in queue; rather, it is given  eligible 
status. If a virtual machine is idle, it will not  run until some 
event occurs, such as an  input from a terminal or a message 
from another virtual machine. 

The virtual machines in queue are classified into three 
categories. The system attempts to place short transactions 
in Q 1, longer-running transactions in Q2, and very long- 
running transactions in Q3. This is accomplished by starting 
transactions in Q1 and then moving them to 4 2  and 4 3  as 
they consume resources. Q 1 is intended as a means by which 
interactive users doing short transactions can be identified 
and given  good  response time. A virtual machine is placed in 
Q 1 after a long idle period, which normally corresponds to 
the beginning of a transaction. 

Virtual-machine storage concepts 
The virtual address space  of a virtual machine is a set of 
addresses  whose total memory space  is that of the virtual 
machine. This address space is divided into segments of 64K 
bytes. A segment is divided into pages of  4096 bytes each. 
Segment tables and page tables describe the mapping of the 
virtual addresses into real  storage; this mapping is not 
necessarily contiguous. A page table shows whether a page is 
in real  storage and correlates virtual addresses  with  real- 
storage  addresses. A segment table describes  which  page 
tables, each describing one segment, a virtual machine uses 
for its storage. These tables are updated by the VM control 
program (CP) and reflect the allocation of virtual-storage 
pages to blocks of real  storage. 

The initial and maximum storage sizes  of a virtual 
machine are defined as part of the virtual-machine 
configuration in the system directory. The user can redefine 52 
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the virtual-storage  size to any multiple of 4K not greater 
than the maximum value  defined in the directory. 

Storage in the real machine is  logically and physically 
divided into 4096-byte pageframes. If there is a shortage of 
available  real storage, CP will try to keep only referenced 
virtual-storage pages in real storage, making use  of the 
paging (and swapping) mechanism described in the 
remainder of this section. 

VMIHPO paging  and block paging 
Paging and block  paging are done by components of the 
HPO Control Program (CP). The basic objective of the HPO 
block-paging algorithms [7] is to improve interactive 
response time by reducing page  waits and reducing the CPU 
overhead, especially  for  large  systems. In addition, blocking 
techniques are used to reduce the number of times paging 
paths are used. 

110 operations that move only a single  page are not very 
efficient  for the (disk)  paging  devices or for the CPU. 
Therefore, the algorithms try to move  several  pages in one 
1/0 operation whenever  possible. This block paging exploits 
the high data-transfer-rate capability of disks. The cost to the 
system  is the same as if one large  page  were transferred with 
a single 1/0 operation. Grouping several  pages into one large 
page  yields a granularity advantage over using  larger  pages. 
The components of this “big  page” are changed with time as 
the contents of the working  set change; this would not be 
true for a single  large  page. The block-paging concept 
reduces both seek and rotational latency, as well as the  CPU 
overhead  of  paging. 

For a physical  swap, the working-set  pages  of a virtual 
machine are organized into swap sets. The working set of a 
machine may require several  swap  sets. When a physical 
swap  is  necessary, one or several  swap  sets, but not 
necessarily  all  swap sets belonging to a machine, will  be 
written to  the swap data sets. Thus, a machine can be 
partially swapped. If this is the case, the next  physical  swap- 
out operation forces another swap-out for this virtual 
machine, since all the logically  swapped  pages  of a machine 
are swapped out before another machine is selected from the 
swap  list  as a candidate for  physical  swapping. 

Swap-set affinities 
At queue-drop, HPO identifies all  pages that have  been 
referenced during  the previous queue stay. These can be 
considered the working-set  pages, since the queue slice 
defines the reference interval. Regardless  of whether these 
referenced  pages are changed or unchanged, they are 
logically  swapped. The unreferenced pages are trimmed from 
the working set and moved to a “flush  list.” 

When physical  swapping takes place,  swap sets are formed 
by grouping the logically  swapped  pages  of a given virtual 
machine in order of their virtual addresses into swap  sets. 
Thus, swap  sets are related by virtual address and by time of 
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reference, since all the pages in a swap  set  were  referenced 
during the same queue stay. The collection of  pages forming 
a swap  set  is constructed for a swap-out, and the swap  set 
exists on DASD until it  is  swapped in, after which the 
affinity of  pages is lost.  After each new queue stay, swap  sets 
are formed afresh  for swap-out, and  the pages in them may 
be different than before. Note that not all  swap sets of a 
virtual machine necessarily come from the same queue stay 
or working set. 

HPO systems analyze the references to pages within each 
interaction or  time slice to predict which  pages  will  be  used 
together in later interactions or  time slices. When sufficient 
real memory is  available, the entire working  set of the 
machine will  be left loaded for the next transaction (this 
amounts to full  working-set preloading). In the event that 
real  storage must be made available, one or more swap sets 
will be  paged out together. Because the pages in a swap  set 
will  all  be brought in together when one page is referenced, it 
is important  that  the grouping algorithm predict which  pages 
will be  used together in a future interaction. This operation 
is  called swap faulting or demand swapping. 

Pages that are either logically or physically  swapped in, 
but are not subsequently referenced, are paged out at a later 
time. Because the paging rate of  system-owned  pages and 
shared pages is quite low, the page-out rate of the system  is a 
measure of the failures to predict the working set. In turn, 
the page-reads represent later reference to these same pages. 

The goal of block  paging  is to  do the best  possible job of 
predicting future working  sets.  Perfect prediction would 
mean that all  pages that have been logically or physically 
swapped  in  will  be  referenced; this would  have the effect  of 
reducing the paging rate to zero. The thrust of this paper is 
to analyze the predictive capability of the HPO algorithms. 

Available data 
All data presented in the following sections were recorded at 
three different installations from interactive (CMS) [SI user 
sessions or from service machines running CMS. One 
installation is at an educational institution, another supports 
a manufacturing plant, and  the third is in a service industry. 
All three installations were running VM/HPO 3.4 [7] at the 
time of  recording, and from each installation we analyzed 
the  data of  five virtual machines running CMS. In the data 
collection and reduction process, we  used the tools described 
below. 

Data collection: VM/Monitor 
All the  data used in our analysis of paging behavior are 
available through the VM/Monitor [9], which is a standard 
part of the VM system control program. 

This paper used trace data recorded at logical swap-out 
and  at voluntary queue-drop events. Since trimming of 
unreferenced pages  also occurs at involuntary queue drops, 
for  which  reference data are not available, the reference 

strings  used  for this analysis are not totally complete. For 
transactions that complete in Q1, however, the reference 
information is complete. 

Data reduction 

GRIN 
For the reduction of VM/Monitor data, we  used a special 
data-reduction package  developed at the IBM T. J. Watson 
Research Center, known  as the Generalized Reduction of 
Information (GRIN) program [lo]. This program is a 
program generator that has been  designed to increase the 
productivity and effectiveness  of performance analysis by 
allowing analysts to spend more time on analysis and less 
time on either defining or writing data-reduction programs. 

GRAFSTAT 
After we extracted the relevant data from the VMJMonitor 
files  using the GRIN package, we  used the GRAFSTAT 
system [ 1 11 to analyze the  data  and present them 
graphically. GRAFSTAT is an interactive APL  system that 
combines the versatility of APL with a high-level,  full-screen 
user interface, many built-in statistical routines, and a high- 
resolution storage display. Much of the preliminary data 
analysis and all of the plots in the final paper were done 
using GRAFSTAT. 

Data presentation 

Data selection 
We analyzed three tapes with VM/Monitor data, one from 
each of the three installations. From each tape we selected 
five virtual machines for a preliminary analysis. This 
included viewing the page-reference pattern and some 
statistical analysis. From these  reviews  of  fifteen machines, 
we selected  six  for detailed analysis  in this paper. 

Page-reference pattern 
Figure 1 shows the page-reference pattern of a virtual 
machine running CMS. The x-axis dimension represents 
virtual page numbers. The reference data are collected  using 
the reference bit provided by the hardware for  each 4K page 
of  storage. Therefore, the resolution of the virtual address 
referenced  is in units of  page  size.  Each point along the 
x-axis represents one page  of  storage  of the virtual machine, 
sorted in the order of the virtual addresses  of the pages. The 
user  whose  reference pattern is shown by the graph has a 
virtual machine with 256 pages, or one megabyte, of storage. 

The points on  the y-axis represent queue stays. The VMJ 
Monitor records the reference data only at the  end of queue 
stays that cause  logical  swaps, that is,  stays in either Q1 or 
Q2 that terminate with voluntary queue drops. The sequence 
of reference within a queue stay is not recorded. This limits 
the resolution of the sequence of  reference to units of queue 53 
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stays. Since each  user interaction ends with a voluntary 
queue drop, each point on the y-axis corresponds to one user 
interaction. The references  shown are the references in the 
last queue stay of the interaction. The user represented in the 
graph experienced 267 queue stays during the measurement 
period. The number of queue stays  is not proportional to 
real time, but  it is approximately proportional to  the virtual 
time of the user's virtual machine. The user's think time is 
not included in this approximation. 

Each dot in the graph represents a page  reference. A 
vertical line shows all of the queue stays during which a 
particular page has been referenced. A horizontal line depicts 
the pages that were  referenced during the corresponding 
queue stay. The HPO algorithm that sorts the pages into 
swap sets by virtual addresses  is an excellent  choice, as the 
reference patterns show. 

Relation of reference pattern to  CMS virtual-storage use 
In another paper [ 121 the authors have studied the reference 
patterns of these same six  users and have come to a number 
of conclusions. 

Table 1 Overview of working-set  statistics. 

The reference behavior of  highly interactive systems under 
VM is dominated by the system structure of the virtual 
operating system, and by the users' behavior, rather than by 
the behavior of the individual application programs. There 
are  several  specific areas that each have their own 
characteristic reference patterns. As individual transactions 
get more computation-intensive, the related application will 
probably start to dominate  the reference pattern. The fact 
that  data  are recorded for only one queue stay  of a 
transaction masks this effect. 

In the environment we studied, the  data references  have a 
far larger impact on  the overall reference pattern than  the 
code references.  Most  of the code references are to shared 
code segments. The  data structures for such shared code 
must be  defined  very  carefully, since their impact on system 
performance increases with the degree  of sharing. 

Analysis 
In the remainder of this paper, the selected  reference traces 
are analyzed to help us to better understand the HPO 
working-set predictions. We  first consider those pages that 
are not predicted by HPO to be in a particular future 
working  set. Second, we analyze those pages that are 
incorrectly predicted to be in a particular working  set. Third, 
we consider the affinity  of  pages that  are placed in swap  sets. 
Finally, we evaluate the possibility  of creating swap  sets out 
of unreferenced (trimmed) pages. 

the virtual machines analyzed. The Comment column helps 
us to relate the  data more easily to  the discussion in the 
preceding section. The VM size column gives the virtual 
machine size in megabytes. The column headed Queue drops 
shows the total number of queue drops the virtual machines 
experienced during the recording interval. The column WS 
size  mean pages gives the mean working-set  size in pages as 
estimated by the Scheduler. In order to illustrate how the 
working-set  size  varies, the next column, WS size stdevlmean 
WS shows the standard deviation of the working-set  size 
divided by the mean. The columns refemng to working-set 
change show the difference from one queue drop  to another 
in the pages that  are in the working set. The first  of the two 
columns, WS change mean chglrnean WS, shows the mean 

Table 1 gives an overview  of some working-set statistics of 

Comment VM size Queue WS size WS change 
(Mbytes) drops mean stdevl mean chgl stdevl 

pages mean  mean WS mean WS ws 
VM 1 Initial example 1 296 37.2  0.68 0.67  1.12 
VM 2 Interactive application 2 425 29.2  0.65 0.43  1.63 
VM 4 Service machine 3 553 54.4  0.08 0.09 1 .oo 
VM 7 Typical example 4 298 95.4  0.47 0.35  1.60 
VM 8 Example of phases 7  357 83.7  0.35 0.17  2.18 
VM 9 Service machine 1 400 38.3 0.20 0.35  0.7 1 
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number of  pages exchanged as a fraction of the mean 
working-set  size. The second column, WS change stdevfmean 
WS, shows the standard deviation of the working-set  change 
as a fraction of the mean of the working-set  change. 

Trimming considerations 
At the end of voluntary and involuntary queue drops, the 
HPO real-storage management algorithms trim the working 
sets. They remove from the working set the pages that have 
not been rekrenced in the preceding queue stay, and move 
them onto  the flush list. Table 2 gives the mean number of 
pages trimmed at a queue drop. 

Generally, the number of  pages trimmed is small 
compared to th% number of  pages  referenced. For a 
particular page to be trimmed frequently over the course of a 
session, that page must be referenced and dropped from 
reference frequently. To this extent, the trimming frequency 
follows the reference frequency. But if a page  is  referenced 
very frequently, it cannot be trimmed very frequently, so 
there is no direct correlation between the trim and the 
reference frequencies. 

The trimming algorithm works optimally if it trims 
precisely the pages that will not be  used in the next queue 
stay, but this is not possible without perfect  foresight. The 
current trimming algorithm is an approximation. It assumes 

1. That pages that have not been referenced in the current 
queue stay  will not be referenced in the next queue stay. 

2. That if a page has been  referenced  in the  current queue 
stay, it  will  likely  be  referenced again. 

How  realistic are these assumptions? 

referenced in queue stay i, assumption 1 is violated. This 
effect  of trimming too many pages  is  called the over-trim 
error. Table 2 shows the mean over-trim error per queue 
stay, which is about 5 percent of the working  set. This in 
itself is not very much. Figure 2 shows the distribution of the 
behavior of the over-trim error over time for VM 1, VM 2, 
and VM I .  

The distribution of the over-trim error is  highly  skewed. 
Most of the over-trim errors are very small, but for a small 
number of queue stays, the error is  very large.  It  would  be 
interesting to be able to detect the large over-trim cases and 
prevent them. However, we could not find a way to predict 
them,  and  the potential gain from reducing the over-trim 
error is probably not very large. 

If a page has been trimmed in queue stay i - 1 and is then 

Block-paging considerations 
In a block-paging  system, certain pages are grouped together 
when they are written to external storage. At a later time 
they are brought back into real  storage. Some of those pages 
that  are read  back into memory in advance of their reuse 
will not be reused at all. The movement of  these  pages into 
real memory constitutes an error. 
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Table 2 Mean number of pages  trimmed and mean over-trim 
error per queue stay. 

V M l  V M 2  V M 4  V M 7  V M 8  V M 9  

Referenced  pages 32.9 27.8 52.3 97.6 83.1 38.4 
Trimmedpages 12.5 6.3 2.5 16.6 7.4 6.6 
Over-trim  error 2.3 1.0 0.8 4.8 1.0 1.9 

In a system that preloads whole  working  sets, the 
preloaded but unreferenced pages  would be termed under- 
trim errors. This terminology is consistent with the over-trim 
concept. However, in the early  stages of experimenting with 
the HPO 3.4 algorithms, preloading of  full  working  sets  was 
discarded [ 131. 

In a system that loads swap  sets into memory on demand, 
the pages that are preloaded but not referenced are called 
pre-page errors. The algorithm predicts that all pages within 
the swap  set  will  be  used together, but inevitably some of the 
pages are not. This error has much more to  do with the 
swap-set creation process than with the trimming process. 

While  it might seem natural to swap entire working sets, 
the experience of the prototype developers indicated that it 
should not be done. The cost of  full  working-set preloading 
is higher  in terms of  real-storage requirements and more I f 0  
traffic.  Swapping  swap  sets reduces the storage waste,  even 
though it does not completely eliminate it. Demand paging 
would  give the best storage economy. But demand swapping 
has some significant advantages over pure demand paging. 
First, the total elapsed time to bring pages into memory is 
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We simulated the swap  algorithms using recorded 
reference data  to  determine  the percentage of swapped-in 
pages that  are referenced. We also simulated the swapping of 20 

15 
10 entire  working  sets to  obtain  their reference percentage. 
5 Table 3 shows the page-reference percentages  for the virtual 
0 

machines  analyzed  in  this  study. Pure  demand paging would 
result in 100 percent page reference. 

eight pages is somewhat closer to  the percentage for 

VM 2 The reference percentage  for  swapping  swap sets with 
3 3 0 -  1 , A. 1~ + 
2 20 - 
F 3 

lo-&* swapping  working sets than  to  the ideal percentage  of 100. If v1 
0 

0 100 200 300 400 
the swap-set sizes were decreased, the percentages  would 
move  toward 100 percent. If the swap-set sizes were 
increased, the percentages would  move toward full working- 
set swapping. The  optimal swap-set size for  a  particular 
workload  would be a function of real memory size, and of 

VM 7 

30 
20 
10 swapping and paging throughput capacity. 
0 

0 50 100 150 200 The swap-set approach is  a compromise between swapping 
working sets and performing pure  demand paging. The 
swap-set size determines  the  point between the two  extremes 
at which a  particular implementation lies. In practice,  a 

Queue drop number 

(measured in  queue stays) from  the  point  at which the swap 
sets are created to  the  point  at which they are brought  back 

Table 3 Page-reference  percentages  under  swap-set  swapping 
and  working-set  swapping. Most of the swap sets are reused at  the  queue stay 

to  memory. 

following their creation, but  the  portion of the swap sets that 
VM 1 VM 2 VM 4 VM 7 VM 8 VM 9 are used later is still significant. The  importance of  later 

reuse is greater  for  those  virtual machines with more 
Demand paging Only ':: 't! ':: 't! ':: irregular reference behavior.  Keeping  swap sets for  later use Swapping  swap sets 
Swapping  working sets 65 75 94 8 1  9  1 82 is another advantage of Swapping swap Sets  Over Swapping 

entire  working sets. 

Table 4 Swap-set  reuse distance. 

Reuse distance Number of swap sets 
(Queue stays) 

V M 1   V M 2   V M 4  V M 7  V M 8  V M 9  

x = 1 97 1 1502 3200 2466 3228 1  1 18 
x =  2 54 58 34 71 26 14 

2 < x 5  5 83 65 15 83 61 13 
5 < x 5  10 34 13 0 23 19 9 

1 o < x  36 46 0 42 51 9 

% x >  1  17.5  10.8  1.5  8.1  4.6  3.8 

Figure 3 shows the  development  during  the  measurement 
interval of the total number of swap sets in  the system and 
the  number of swap sets swapped in for  VM 1, VM 2, and 
VM 7. The  data  are results of the  simulations  mentioned 
above. Like any  simulation  data, they show start-up effects 
for the  time  the  simulation takes to reach equilibrium. All 
three graphs appear  to  be  in  equilibrium after about 50 
queue drops.  Despite the fact that  some swap sets are being 
reused in later  transactions, the total number of swap  sets in 
existence is relatively stable. The distance between the two 
curves remains relatively constant for all three virtual 
machines. This distance corresponds  to  the  number  of swap 
sets not referenced during a queue stay. 

much shorter.  Second, the  CPU overhead  per page for both Page-aflnity criteria 
swap-out and swap-in is much less. These  advantages are The affinity criterion determines how the pages in  a  working 
paid for with slightly higher real-storage and I/O-bandwidth set  get ordered into swap sets. Since swapping  swap  sets gives 
cost. Swapping  swap sets instead  of the  entire working set a significantly higher reference  percentage than swapping 
maintains most of the advantages  of blocking, while working sets, there  must be some locality of reference within 
significantly reducing the disadvantages. the swap sets. The goal of the affinity criterion  is to achieve  a 56 
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higher locality within  a  swap set than within the  entire 
working set. When reference affinity does not exist, a page is 
swapped out  and back  in  again  without a reference. The 
system subsequently  must devote real memory  to a page that 
is not referenced, and  that page is  ultimately trimmed  and 
paged out.  In  this way, the success of the affinity criterion 
clearly affects system performance. 

most recently  referenced (or sequence of last reference), 
sequence ofJirst reference in  a queue stay, and virtual 
address. 

There  are  three obvious affinity criteria that  one might try: 

Most recently referenced would be a true  LRU (Least- 
Recently-Used)  algorithm. The  current  management 
algorithms do  not provide the  time of last reference at a 
granularity  smaller than a queue stay, but since  recording 
that  time  more accurately  would be extremely expensive, 
this is clearly not a practical  alternative. 

stay would require action  only once for  each of the pages 
referenced in a queue stay. Pages would be set valid in  the 
page tables  only  after  their first reference, so that each page 
would incur  the page fault  needed to record  its reference 
sequence number. Unlike the  current algorithm, this 
approach would incur overhead  for  recording the first 
references of pages that were brought  in “for free” by swap 
faults, but this overhead  would not  be prohibitively 
expensive. There  are  no indications, however, as  to  the swap- 
set locality this affinity would  produce. 

HPO chose  virtual-address affinity, the  approach  that 
appeared to be the  most obvious and also the least costly. 
This affinity exploits the piecewise sequential nature of many 
references by programs using and  running  under CMS. This 
is an extension of the successful strategy of CPU caching 
(which depends  upon affinity within  a  cache line), and 
paging (which depends  upon affinity within  a 4K page). It 
seems  reasonable to assume that virtual-address affinity 
would continue  to exist at granularity  above the page. At the 
same time,  it  requires no  extra  information for  its 
implementation. All of the discussion in this paper so far is 
based on  the virtual  address  criterion; i.e., pages are grouped 
in their virtual-address  ascending order.  The address affinity 
proved to work very well, so alternatives were not tried in 
developing the HPO 3.4 algorithms. 

It is  nonetheless  legitimate to  determine how important 
the choice of affinity criterion  actually is. There  are  no time- 
of-reference data available that would allow us to  simulate 
any of the  other two  criteria mentioned earlier, so we used 
random ajinity and considered it a lower bound. We 
simulated swap-set algorithms  using the recorded reference 
strings and  grouping  them  into swap sets at  random. 

The  data in Table 5 and Figure 4 show that  the affinity 
criterion clearly affects the reference percentage  of the 
swapped-in pages. The  random affinity has a reference 
percentage very close to  the reference percentage of swapping 

Affinity according to sequence of first reference in a queue 
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Table 5 Page-reference  percentages under random-affinity 
criterion. 

Swap  granularity VM 1 V M 2  V M 4  VM 7 V M 8  VM 9 

Single  pages 100 100 100 100 100 100 
Swap  sets, address affinity 78 83 95 88 95 84 
Swap sets, random affinity 68 78 95 82 91 82 
Working  sets 65 75 94 81 91 82 

entire  working sets. The address affinity clearly creates 
improved locality in  the swap sets. This proves that  the 
affinity criterion is important  for  the performance  of the 
algorithms. It also supports  the conjecture, based on  the 
shapes  of the reference patterns, that  many of the page 
references are sequential.  Considering the  options available, 
address affinity is clearly the superior  choice. 

Creating trim sets 
If swap sets are a  good  idea that exploits locality of reference, 
would trim sets also be a  good idea? To create trim sets, the 
trimming algorithm  would collect the  trimmed pages into 
trim sets and swap them  out  as sets. On reference, they 
would be swapped  in as sets. To investigate this question, we 
used the recorded reference patterns  to  simulate this 
modified trim algorithm. 

The trim-set reference percentage (Table 6) is far lower 
than  the working-set reference percentage. This clearly shows 
that  there is far less locality of reference in  the  trim sets, and 
that it  is  correct to  treat  them very differently from  the swap 
sets that  contain  the working-set pages. 
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Table 6 Trim-set  reusage. 

V M I   V M 2   V M 4   V M 7   V M 8   V M 9  

Trim-set reference  percentage 43 40 98 44 51 33 
Mean trim-set  size 6.14 5.34 1.94 6.02 4.01 6.30 
Mean pages  referenced 2.64 2.14 1.90 2.65 2.05 2.08 

Another indication of the  random nature of the references 
to pages  in the trim sets is the total number of trim sets in 
the system. These numbers were  also produced by the 
simulations. Figure 5 shows that  during  the simulation, the 
number of trim sets in existence increases monotonically, 
never reaching equilibrium. 

reference percentage did not change noticeably. This, and 
the fact that  the  number of trim sets  increases,  shows that 
most trim sets are never  swapped  back in. The few trim sets 
that  are swapped in are related to the over-trim error, and 
are swapped in very soon after their creation. 

The authors thus conclude that  it is inappropriate to 
attempt  to block trim pages. The dichotomy between  paging 
and swapping seems to be a necessary characteristic of 
swapping  systems. 

During the simulation, the size  of the trim sets and their 

Conclusions 

Trimming 
There is some over-trim error and some under-trim error. It 
appears that neither type of error can be reduced without 
extensive additional reference history. 58 
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Use of swap sets 
Use  of swap  sets and swap faulting is an effective 
compromise between demand paging and swapping entire 
working  sets. The HPO swap sets show a good  locality  of 
reference. This is a requirement for  successful  blocking  of 
pages into swap  sets. The locality of reference in the swap 
sets  is a function of both the reference behavior of the virtual 
machines and  the affinity criterion used to create swap  sets. 

Swap-set afinity 
The swap-set  affinity  is important in creating a higher 
locality  of  reference within a swap  set than within the entire 
working  set. Virtual-address affinity  is much better than 
random affinity. The  data do not allow any conclusions on 
other affinity criteria. 

Swap-set reuse 
Typically about 90 percent of the swap  sets are reused in the 
transaction following their creation. The total number of 
swap  sets in the system remains fairly constant. 

Trim  sets 
Sets created from trimmed pages tend to be  small and have 
poor affinity. Their rereference behavior is  clearly  different 
from that of  swap  sets. Demand-paging them appears to be 
the correct choice. 
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