Analysis of
block-paging
strategies

by W. H. Tetzlaff
M. G. Kienzle
J. A. Garay

The performance of interactive paging systems
in general and Virtual Machine/System Product
(VM/SP) systems with the High Performance
Option (HPO) in particular depends upon locality
of reference. This storage-management
dependency, often considered in the context of
individual programs, extends in fact to a
significant degree across most virtual-machine
transactions. This paper investigates strategies
to exploit locality of reference at the system
level by analyzing page-reference strings
gathered from live systems. Alternative
strategies are evaluated using trace-driven
simulations.

Introduction

The concept of working sets has usually been applied to
individual programs and their data. Experience with time-
sharing systems, such as IBM’s Virtual Machine/System
Product (VM/SP), suggests that the concepts of locality of
reference and working sets apply similarly to series of
interactions with the system, where each interaction invokes
a program. In interactive sessions, users issue many different
commands, invoking programs and referencing a large
variety of system and user data. The VM/SP system with the
High Performance Option (HPO) uses a real-storage

©Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

management policy that is a close approximation to a
detuned working-set policy [1]. The primary purpose of this
real-storage management is to identify groups of pages that
can be “block paged” together. To implement the policy, the
real-storage management system must keep track of the
reference behavior of the virtual machines. The
VM/Monitor makes some of these reference data available
for analysis.

The second section discusses some concepts that are
necessary as background for the paper. The next section
describes the tools used in the data-collection and data-
reduction processes. The fourth section shows the interaction
between locality of reference and the algorithms used in
HPO. We then discuss the degree to which the data show
possibilities for improving the real-storage management
algorithms. The final section summarizes the most
important points of the paper.

Overview of concepts

In the areas of modeling program behavior and measuring
the memory demands of programs, much work has been
done [1-3] that makes use of the concept of the working
set—the collection of segments (or pages) recently referenced
by the program.

The data for this study have been collected from the IBM
VM/SP system with the High Performance Option. The
window size is assumed to equal the time during which a
virtual machine remains in the multiprogramming set.
Because members of the multiprogramming set are kept in a
queue, the time in the multiprogramming set is sometimes
called a queue stay. Normally a queue stay corresponds to a
single user interaction. In some cases the scheduler divides a
transaction into multiple queue stays, using a standard CPU
time slice to determine the time in queue. 51

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY




52

& Introduction to HPO paging and scheduling

The HPO paging algorithms tie real-storage management to
scheduling. The following material discusses HPO scheduling
with only the degree of detail needed for this paper. For
additional background information, Koeppel [4] provides an
overview of resource management in VM systems, Miles [5]
gives a more complete review of HPO scheduling, and
Tetzlaff and Beretvas [6] offer an overview of paging in all
VM operating systems.

The VM scheduler moves virtual machines among the
categories Q1, Q2, Q3, El, and E2. The broadest distinction
among these categories consists of three sets: a) those virtual
machines that are in queue (Q1, Q2, Q3), b) those eligible
for a queue (E1, E2), and ¢) those that are idle (neither Q,
nor E,). If a machine is in queue, either it is ready to run or
it has recently been run and is expected to be ready to run
soon. The virtual machines that are in a queue constitute the
multiprogramming set. All machines in queue are sorted
into a single list according to an internally assigned priority.
The list is searched by the dispatcher, which selects the
highest-priority machine that is able to run. If a virtual
machine has work to process but there is insufficient main
storage, it is not placed in queue; rather, it is given eligible
status. If a virtual machine is idle, it will not run until some
event occurs, such as an input from a terminal or a message
from another virtual machine.

The virtual machines in queue are classified into three
categories. The system attempts to place short transactions
in Q1, longer-running transactions in Q2, and very long-
running transactions in Q3. This is accomplished by starting
transactions in Q1 and then moving them to Q2 and Q3 as
they consume resources. Q1 is intended as a means by which
interactive users doing short transactions can be identified
and given good response time. A virtual machine is placed in
QI after a long idle period, which normally corresponds to
the beginning of a transaction.

Virtual-machine storage concepts
The virtual address space of a virtual machine is a set of
addresses whose total memory space is that of the virtual
machine. This address space is divided into segments of 64K
bytes. A segment is divided into pages of 4096 bytes each.
Segment tables and page tables describe the mapping of the
virtual addresses into real storage; this mapping is not
necessarily contiguous. A page table shows whether a page is
in real storage and correlates virtual addresses with real-
storage addresses. A segment table describes which page
tables, each describing one segment, a virtual machine uses
for its storage. These tables are updated by the VM control
program (CP) and reflect the allocation of virtual-storage
pages to blocks of real storage.

The initial and maximum storage sizes of a virtual
machine are defined as part of the virtual-machine
configuration in the system directory. The user can redefine

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY

the virtual-storage size to any multiple of 4K not greater
than the maximum value defined in the directory.

Storage in the real machine is logically and physically
divided into 4096-byte page frames. If there is a shortage of
available real storage, CP will try to keep only referenced
virtual-storage pages in real storage, making use of the
paging (and swapping) mechanism described in the
remainder of this section.

VM/HPO paging and block paging

Paging and block paging are done by components of the
HPO Control Program (CP). The basic objective of the HPO
block-paging algorithms [7] is to improve interactive
response time by reducing page waits and reducing the CPU
overhead, especially for large systems. In addition, blocking
techniques are used to reduce the number of times paging
paths are used.

1/O operations that move only a single page are not very
efficient for the (disk) paging devices or for the CPU.
Therefore, the algorithms try to move several pages in one
1/0 operation whenever possible. This block paging exploits
the high data-transfer-rate capability of disks. The cost to the
system is the same as if one large page were transferred with
a single I/O operation. Grouping several pages into one large
page yields a granularity advantage over using larger pages.
The components of this “big page” are changed with time as
the contents of the working set change; this would not be
true for a single large page. The block-paging concept
reduces both seek and rotational latency, as well as the CPU
overhead of paging.

For a physical swap, the working-set pages of a virtual
machine are organized into swap sets. The working set of a
machine may require several swap sets. When a physical
swap is necessary, one or several swap sets, but not
necessarily all swap sets belonging to a machine, will be
written to the swap data sets. Thus, a machine can be
partially swapped. If this is the case, the next physical swap-
out operation forces another swap-out for this virtual
machine, since all the logically swapped pages of a machine
are swapped out before another machine is selected from the
swap list as a candidate for physical swapping.

Swap-set affinities

At queue-drop, HPO identifies all pages that have been
referenced during the previous queue stay. These can be
considered the working-set pages, since the queue slice
defines the reference interval. Regardless of whether these
referenced pages are changed or unchanged, they are
logically swapped. The unreferenced pages are trimmed from
the working set and moved to a “flush list.”

When physical swapping takes place, swap sets are formed
by grouping the logically swapped pages of a given virtual
machine in order of their virfual addresses into swap sets.
Thus, swap sets are related by virtual address and by time of

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989




reference, since all the pages in a swap set were referenced
during the same queue stay. The collection of pages forming
a swap set is constructed for a swap-out, and the swap set
exists on DASD until it is swapped in, after which the
affinity of pages is lost. After each new queue stay, swap sets
are formed afresh for swap-out, and the pages in them may
be different than before. Note that not all swap sets of a
virtual machine necessarily come from the same queue stay
or working set.

HPO systems analyze the references to pages within each
interaction or time slice to predict which pages will be used
together in later interactions or time slices. When sufficient
real memory is available, the entire working set of the
machine will be left loaded for the next transaction (this
amounts to full working-set preloading). In the event that
real storage must be made available, one or more swap sets
will be paged out together. Because the pages in a swap set
will all be brought in together when one page is referenced, it
is important that the grouping algorithm predict which pages
will be used together in a future interaction. This operation
is called swap faulting or demand swapping.

Pages that are either logically or physically swapped in,
but are not subsequently referenced, are paged out at a later
time. Because the paging rate of system-owned pages and
shared pages is quite low, the page-out rate of the system is a
measure of the failures to predict the working set. In turn,
the page-reads represent later reference to these same pages.

The goal of block paging is to do the best possible job of
predicting future working sets. Perfect prediction would
mean that all pages that have been logically or physically
swapped in will be referenced; this would have the effect of
reducing the paging rate to zero. The thrust of this paper is
to analyze the predictive capability of the HPO algorithms.

Available data

All data presented in the following sections were recorded at
three different installations from interactive (CMS) [8] user
sessions or from service machines running CMS. One
installation is at an educational institution, another supports
a manufacturing plant, and the third is in a service industry.
All three installations were running VM/HPO 3.4 [7] at the
time of recording, and from each installation we analyzed
the data of five virtual machines running CMS. In the data
collection and reduction process, we used the tools described
below.

e Data collection: VM/Monitor

All the data used in our analysis of paging behavior are
available through the VM/Monitor [9], which is a standard
part of the VM system control program.

This paper used trace data recorded at logical swap-out
and at voluntary queue-drop events, Since trimming of
unreferenced pages also occurs at involuntary queue drops,
for which reference data are not available, the reference

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

strings used for this analysis are not totally complete. For
transactions that complete in Q1, however, the reference
information is complete.

e Data reduction

GRIN

For the reduction of VM/Monitor data, we used a special
data-reduction package developed at the IBM T. J. Watson
Research Center, known as the Generalized Reduction of
Information (GRIN) program [10]. This program is a
program generator that has been designed to increase the
productivity and effectiveness of performance analysis by
allowing analysts to spend more time on analysis and less
time on either defining or writing data-reduction programs.

GRAFSTAT

After we extracted the relevant data from the VM/Monitor
files using the GRIN package, we used the GRAFSTAT
system [11] to analyze the data and present them
graphically. GRAFSTAT is an interactive APL system that
combines the versatility of APL with a high-level, full-screen
user interface, many built-in statistical routines, and a high-
resolution storage display. Much of the preliminary data
analysis and all of the plots in the final paper were done
using GRAFSTAT.

Data presentation

e Data selection

We analyzed three tapes with VM/Monitor data, one from
each of the three installations. From each tape we selected
five virtual machines for a preliminary analysis. This
included viewing the page-reference pattern and some
statistical analysis. From these reviews of fifteen machines,
we selected six for detailed analysis in this paper.

o Page-reference pattern
Figure 1 shows the page-reference pattern of a virtual
machine running CMS. The x-axis dimension represents
virtual page numbers. The reference data are collected using
the reference bit provided by the hardware for each 4K page
of storage. Therefore, the resolution of the virtual address
referenced is in units of page size. Each point along the
x-axis represents one page of storage of the virtual machine,
sorted in the order of the virtual addresses of the pages. The
user whose reference pattern is shown by the graph has a
virtual machine with 256 pages, or one megabyte, of storage.
The points on the y-axis represent queue stays. The VM/
Monitor records the reference data only at the end of queue
stays that cause logical swaps, that is, stays in either Q1 or
Q2 that terminate with voluntary queue drops. The sequence
of reference within a queue stay is not recorded. This limits
the resolution of the sequence of reference to units of queue 53

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY




54

3 : Lo
e 150 ! C e—
=
= | [
g 100 i g o
g ! i e
© TR -
50 th: iq
0 Lt —3 L -| , __ﬂt y
0 50 100 150 200 250
Page number

Page-reference pattern of VM 1.

stays. Since each user interaction ends with a voluntary
queue drop, each point on the y-axis corresponds to one user
interaction. The references shown are the references in the
last queue stay of the interaction. The user represented in the
graph experienced 267 queue stays during the measurement
period. The number of queue stays is not proportional to
real time, but it is approximately proportional to the virtual
time of the user’s virtual machine. The user’s think time is
not included in this approximation.

Each dot in the graph represents a page reference. A
vertical line shows all of the queue stays during which a
particular page has been referenced. A horizontal line depicts
the pages that were referenced during the corresponding
queue stay. The HPO algorithm that sorts the pages into
swap sets by virtual addresses is an excellent choice, as the
reference patterns show,

e Relation of reference pattern to CMS virtual-storage use
In another paper [12] the authors have studied the reference
patterns of these same six users and have come to a number
of conclusions.

Table 1 Overview of working-set statistics.

The reference behavior of highly interactive systems under
VM is dominated by the system structure of the virtual
operating system, and by the users’ behavior, rather than by
the behavior of the individual application programs. There
are several specific areas that each have their own
characteristic reference patterns. As individual transactions
get more computation-intensive, the related application will
probably start to dominate the reference pattern. The fact
that data are recorded for only one queue stay of a
transaction masks this effect.

In the environment we studied, the data references have a
far larger impact on the overall reference pattern than the
code references. Most of the code references are to shared
code segments. The data structures for such shared code
must be defined very carefully, since their impact on system
performance increases with the degree of sharing.

Analysis

In the remainder of this paper, the selected reference traces
are analyzed to help us to better understand the HPO
working-set predictions. We first consider those pages that
are not predicted by HPO to be in a particular future
working set. Second, we analyze those pages that are
incorrectly predicted to be in a particular working set. Third,
we consider the affinity of pages that are placed in swap sets.
Finally, we evaluate the possibility of creating swap sets out
of unreferenced (trimmed) pages.

Table 1 gives an overview of some working-set statistics of
the virtual machines analyzed. The Comment column helps
us to relate the data more easily to the discussion in the
preceding section. The VM size column gives the virtual
machine size in megabytes. The column headed Queue drops
shows the total number of queue drops the virtual machines
experienced during the recording interval. The column WS
size mean pages gives the mean working-set size in pages as
estimated by the Scheduler. In order to illustrate how the
working-set size varies, the next column, WS size stdev/mean
WS shows the standard deviation of the working-set size
divided by the mean. The columns referring to working-set
change show the difference from one queue drop to another
in the pages that are in the working set. The first of the two
columns, WS change mean chg/mean WS, shows the mean

Comment VM size Queue WS size WS change
(Mbytes) drops mean stdev/ mean chg/ stdev/
pages mean mean WS mean WS
ws
VM 1 Initial example 1 296 37.2 0.68 0.67 1.12
VM 2 Interactive application 2 425 29.2 0.65 0.43 1.63
VM 4 Service machine 3 553 54.4 0.08 0.09 1.00
VM 7 Typical example 4 298 95.4 0.47 0.35 1.60
VM 8 Example of phases 7 357 83.7 0.35 0.17 2.18
VM 9 Service machine 1 400 38.3 0.20 0.35 0.71

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989




number of pages exchanged as a fraction of the mean
working-set size. The second column, WS change stdev/mean
WS, shows the standard deviation of the working-set change
as a fraction of the mean of the working-set change.

o Trimming considerations

At the end of voluntary and involuntary queue drops, the
HPO real-storage management algorithms trim the working
sets. They remove from the working set the pages that have
not been referenced in the preceding queue stay, and move
them onto the flush list. Table 2 gives the mean number of
pages trimmed at a queue drop.

Generally, the number of pages trimmed is small
compared to tHt number of pages referenced. For a
particular page to be trimmed frequently over the course of a
session, that page must be referenced and dropped from
reference frequently. To this extent, the trimming frequency
follows the reference frequency. But if a page is referenced
very frequently, it cannot be trimmed very frequently, so
there is no direct correlation between the trim and the
reference frequencies.

The trimming algorithm works optimally if it trims
precisely the pages that will not be used in the next queue
stay, but this is not possible without perfect foresight. The
current trimming algorithm is an approximation. It assumes

1. That pages that have not been referenced in the current
queue stay will not be referenced in the next queue stay.

2. That if a page has been referenced in the current queue
stay, it will likely be referenced again.

How realistic are these assumptions?

If a page has been trimmed in queue stay i — 1 and is then
referenced in queue stay i, assumption 1 is violated. This
effect of trimming too many pages is called the over-trim
error. Table 2 shows the mean over-trim error per queue
stay, which is about 5 percent of the working set. This in
itself is not very much. Figure 2 shows the distribution of the
behavior of the over-trim error over time for VM 1, VM 2,
and VM 7.

The distribution of the over-trim error is highly skewed.
Most of the over-trim errors are very small, but for a small
number of queue stays, the error is very large. It would be
interesting to be able to detect the large over-trim cases and
prevent them. However, we could not find a way to predict
them, and the potential gain from reducing the over-trim
error is probably not very large.

& Block-paging considerations

In a block-paging system, certain pages are grouped together
when they are written to external storage. At a later time
they are brought back into real storage. Some of those pages
that are read back into memory in advance of their reuse
will not be reused at all. The movement of these pages into
real memory constitutes an error.

IBM J. RES. DEVELOP. VOL. 33 NO. { JANUARY 1989

Over-trim error

100 150

Queue stay number

Over-trim error history for VM 1, VM 2, and VM 7.

Table 2 Mean number of pages trimmed and mean over-trim
error per queue stay.

VM1 VM2 VM4 VM7 VM8 VM9

Referenced pages 329 278 523 976 831 384
Trimmed pages 12.5 6.3 2.5 166 7.4 6.6
Over-trim error 2.3 1.0 0.8 4.8 1.0 1.9

In a system that preloads whole working sets, the
preloaded but unreferenced pages would be termed under-
trim errors. This terminology is consistent with the over-trim
concept. However, in the early stages of experimenting with
the HPO 3.4 algorithms, preloading of full working sets was
discarded [13].

In a system that loads swap sets into memory on demand,
the pages that are preloaded but not referenced are called
pre-page errors. The algorithm predicts that all pages within
the swap set will be used together, but inevitably some of the
pages are not. This error has much more to do with the
swap-set creation process than with the trimming process.

While it might seem natural to swap entire working sets,
the experience of the prototype developers indicated that it
shouid not be done. The cost of full working-set preloading
is higher in terms of real-storage requirements and more I/O
traffic. Swapping swap sets reduces the storage waste, even
though it does not completely eliminate it. Demand paging
would give the best storage economy. But demand swapping
has some significant advantages over pure demand paging.
First, the total elapsed time to bring pages into memory is

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY




56

VM1

20
15
10

T—T T T

Swap sets

VM7
30 F
201
10 |
0 L f L "
0 50 100 150 200

Queuve drop number

Total number of swap sets vs. swap sets swapped in.

Table 3 Page-reference percentages under swap-set swapping
and working-set swapping.

VM1 VM2 VM4 VM7 VM8 VM9

Demand paging only 100 100 100 100 100 100
Swapping swap sets 78 83 95 88 95 84
Swapping working sets 65 75 94 81 91 82

Table 4 Swap-set reuse distance.

Reuse distance
(Queue stays)

Number of swap sets

VM1 VM2 VM4 VM7 VM8 VMY

x= 1 971 1502 3200 2466 3228 1118
x= 2 54 58 34 71 26 14
2<x=s 5§ 83 65 15 83 61 13
S5<x=10 34 13 0 23 19 9
10<x 36 46 0 42 51 9

% x> 1 17.5 10.8 1.5 8.1 4.6 3.8

much shorter. Second, the CPU overhead per page for both
swap-out and swap-in is much less. These advantages are
paid for with slightly higher real-storage and I/O-bandwidth
cost. Swapping swap sets instead of the entire working set
maintains most of the advantages of blocking, while
significantly reducing the disadvantages.

W. H. TETZLAFF, M. G. KIENZLE, AND J. A, GARAY

We simulated the swap algorithms using recorded
reference data to determine the percentage of swapped-in
pages that are referenced. We also simulated the swapping of
entire working sets to obtain their reference percentage.
Table 3 shows the page-reference percentages for the virtual
machines analyzed in this study. Pure demand paging would
result in 100 percent page reference.

The reference percentage for swapping swap sets with
eight pages is somewhat closer to the percentage for
swapping working sets than to the ideal percentage of 100. If
the swap-set sizes were decreased, the percentages would
move toward 100 percent. If the swap-set sizes were
increased, the percentages would move toward full working-
set swapping. The optimal swap-set size for a particular
workload would be a function of real memory size, and of
swapping and paging throughput capacity.

The swap-set approach is a compromise between swapping
working sets and performing pure demand paging. The
swap-set size determines the point between the two extremes
at which a particular implementation lies. In practice, a
swap-set size of eight pages proved very effective.

Some of the swapped-in swap sets originate from queue
stays much earlier than the immediately preceding queue
stay. Table 4 provides some insight into the time distance
(measured in queue stays) from the point at which the swap
sets are created to the point at which they are brought back
to memory.

Most of the swap sets are reused at the queue stay
following their creation, but the portion of the swap sets that
are used later is still significant. The importance of later
reuse is greater for those virtual machines with more
irregular reference behavior. Keeping swap sets for later use
is another advantage of swapping swap sets over swapping
entire working sets.

Figure 3 shows the development during the measurement
interval of the total number of swap sets in the system and
the number of swap sets swapped in for VM 1, VM 2, and
VM 7. The data are results of the simulations mentioned
above. Like any simulation data, they show start-up effects
for the time the simulation takes to reach equilibrium. All
three graphs appear to be in equilibrium after about 50
queue drops. Despite the fact that some swap sets are being
reused in later transactions, the total number of swap sets in
existence is relatively stable. The distance between the two
curves remains relatively constant for all three virtual
machines. This distance corresponds to the number of swap
sets not referenced during a queue stay.

o Page-affinity criteria

The affinity criterion determines how the pages in a working
set get ordered into swap sets. Since swapping swap sets gives
a significantly higher reference percentage than swapping
working sets, there must be some locality of reference within
the swap sets. The goal of the affinity criterion is to achieve a

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989



higher locality within a swap set than within the entire
working set. When reference affinity does not exist, a page is
swapped out and back in again without a reference. The
system subsequently must devote real memory to a page that
is not referenced, and that page is ultimately trimmed and
paged out. In this way, the success of the affinity criterion
clearly affects system performance.

There are three obvious affinity criteria that one might try:
most recently referenced (or sequence of last reference),
sequence of first reference in a queue stay, and virtual
address.

Most recently referenced would be a true LRU (Least-
Recently-Used) algorithm. The current management
algorithms do not provide the time of last reference at a
granularity smaller than a queue stay, but since recording
that time more accurately would be extremely expensive,
this is clearly not a practical alternative.

Affinity according to sequence of first reference in a queue
stay would require action only once for each of the pages
referenced in a queue stay. Pages would be set valid in the
page tables only after their first reference, so that each page
would incur the page fault needed to record its reference
sequence number. Unlike the current algorithm, this
approach would incur overhead for recording the first
references of pages that were brought in “for free” by swap
faults, but this overhead would not be prohibitively
expensive. There are no indications, however, as to the swap-
set locality this affinity would produce.

HPO chose virtual-address affinity, the approach that
appeared to be the most obvious and also the least costly.
This affinity exploits the piecewise sequential nature of many
references by programs using and running under CMS, This
is an extension of the successful strategy of CPU caching
(which depends upon affinity within a cache line), and
paging (which depends upon affinity within a 4K page). It
seems reasonable to assume that virtual-address affinity
would continue to exist at granularity above the page. At the
same time, it requires no extra information for its
implementation. All of the discussion in this paper so far is
based on the virtual address criterion; i.e., pages are grouped
in their virtual-address ascending order. The address affinity
proved to work very well, so alternatives were not tried in
developing the HPO 3.4 algorithms.

It is nonetheless legitimate to determine how important
the choice of affinity criterion actually is. There are no time-
of-reference data available that would allow us to simulate
any of the other two criteria mentioned earlier, so we used
random affinity and considered it a lower bound. We
simulated swap-set algorithms using the recorded reference
strings and grouping them into swap sets at random.

The data in Table 5 and Figure 4 show that the affinity
criterion clearly affects the reference percentage of the
swapped-in pages. The random affinity has a reference
percentage very close to the reference percentage of swapping

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

77777
7777

Page-reference percentages under random-affinity criterion: D,
demand paging; A, swap sets with address affinity; R, swap sets with
random affinity; W, working sets.

Table 5 Page-reference percentages under random-affinity
criterion.

Swap granularity VM1 VM2 VM4 VM7 VM8 VM9

Single pages 100 100 100 100 100 100
Swap sets, address affinity 78 83 95 88 95 84
Swap sets, random affinity 68 78 95 82 91 82
Working sets 65 75 94 81 91 82

entire working sets. The address affinity clearly creates
improved locality in the swap sets. This proves that the
affinity criterion is important for the performance of the
algorithms, It also supports the conjecture, based on the
shapes of the reference patterns, that many of the page
references are sequential. Considering the options available,
address affinity is clearly the superior choice.

o Creating trim sets

If swap sets are a good idea that exploits locality of reference,
would trim sets also be a good idea? To create trim sets, the
trimming algorithm would collect the trimmed pages into
trim sets and swap them out as sets. On reference, they
would be swapped in as sets. To investigate this question, we
used the recorded reference patterns to simulate this
modified trim algorithm.

The trim-set reference percentage (Table 6) is far lower
than the working-set reference percentage. This clearly shows
that there is far less locality of reference in the trim sets, and
that it is correct to treat them very differently from the swap
sets that contain the working-set pages.

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY

57




58

120 ¢

80 [

40 F

o L Ao oA AR PY.N. SNV ULINY.0 Y T Vo
0 50 100 150 200 250
VM2

§
E
&

LA sl & -y
0 50 100 150 200

Queue stay number

Total number of trim sets and number of trim sets swapped in.

Table 6 Trim-set reusage.

VMIVM2VMA4VM7 VM8 VMY

Trim-set reference percentage 43 40 98 44 51 33
Mean trim-set size 6.14 534 194 6.02 4.01 6.30
Mean pages referenced 264 2.14 190 2.65 2.05 2.08

Another indication of the random nature of the references
to pages in the trim sets is the total number of trim sets in
the system. These numbers were also produced by the
simulations. Figure 5 shows that during the simulation, the
number of trim sets in existence increases monotonically,
never reaching equilibrium.

During the simulation, the size of the trim sets and their
reference percentage did not change noticeably. This, and
the fact that the number of trim sets increases, shows that
most trim sets are never swapped back in. The few trim sets
that are swapped in are related to the over-trim error, and
are swapped in very soon after their creation.

The authors thus conclude that it is inappropriate to
attempt to block trim pages. The dichotomy between paging
and swapping seems to be a necessary characteristic of
swapping systems.

Conclusions

o Trimming

There is some over-trim error and some under-trim error. It
appears that neither type of error can be reduced without
extensive additional reference history.

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY

o Use of swap sets

Use of swap sets and swap faulting is an effective
compromise between demand paging and swapping entire
working sets. The HPO swap sets show a good locality of
reference. This is a requirement for successful blocking of
pages into swap sets. The locality of reference in the swap
sets is a function of both the reference behavior of the virtual
machines and the affinity criterion used to create swap sets.

o Swap-set affinity

The swap-set affinity is important in creating a higher
locality of reference within a swap set than within the entire
working set. Virtual-address affinity is much better than
random affinity. The data do not allow any conclusions on
other affinity criteria.

o Swap-set reuse

Typically about 90 percent of the swap sets are reused in the
transaction following their creation. The total number of
swap sets in the system remains fairly constant.

o Trim sets

Sets created from trimmed pages tend to be small and have
poor affinity. Their rereference behavior is clearly different

from that of swap sets. Demand-paging them appears to be
the correct choice.

Acknowledgments

We would like to express our appreciation to Tom Beretvas,
Larry Brenner, Paul Van Leer, and Jerry Spivak. Through
their discussions of the algorithms, the analysis, and the
results, they contributed greatly to this paper. We would also
like to thank David Potter, who helped us untiringly in
dealing with the VM/Monitor data and with his support of
the GRIN system.

References and note

1. P. J. Denning, “Working Sets Past and Present,” JEEE Trans.
Software Eng. SE-6, No. 1, 64-84 (January 1980).

2. M. C. Easton and B. T. Bennett, “Transient-Free Working-Set
Statistics,” Commun. ACM 20, 93-99 (February 1977).

3. A. P. Batson and W. Madison, “Measurements of Major
Locality Phases in Symbolic Reference Strings,” Proceedings,
ACM Sigmetrics and IFIPS W.G. 7.3 Conference, March 1976,
pp. 75-84.

4. K. W. Peter Koeppel, “Measuring VM Systems—An
Introduction to a Systems Perspective,” Computer Measurement
Group Trans. 14, No. 53, 27-40 (1986).

5. Richard J. Miles, “VM/HPO Scheduler Overview,” Computer
Measurement Group Trans. 14, No. 53, 41-44 (1986).

6. William Tetzlaff and Thomas Beretvas, “Paging in VM/370
Operating Systems,” Computer Measurement Group Trans. 14,
No. 53, 65-76 (1986).

7. T. Beretvas and W. Tetzlaff, “Paging Enhancements in VM/SP
HPO 3.4,” Technical Bulletin GG22-9367, IBM Washington
Systems Center, Gaithersburg, MD, May 1984.

8. The Conversational Monitor System (CMS) is a conversational
operating system designed to run under the VM control
program (CP).

IBM J. RES. DEVELOP. VOL. 33 NO. { JANUARY 1989




9. VM/SP HPO System Programmer’s Guide, Order No. SC19-
6224, available through IBM branch offices.

10. D. Potter and W. Tetzlaff, “Generalized Reduction of
Information,” Research Report RC-6676, IBM T. J. Watson
Research Center, Yorktown Heights, NY, June 1977.

11. G. Burkland, P. Heidelberger, P. Welch, L. Wu, and M.
Schatzoff, “An APL System for Interactive Scientific-
Engineering Graphics and Data Analysis,” Proceedings of APL
84, Finland, June 1984.

12. M. G. Kienzle, J. A. Garay, and W. H. Tetzlaff, “Analysis of
Page-Reference Strings of an Interactive System,” IBM J. Res.
Develop. 32, No. 4, 523-535 (July 1988).

13. W. Tetzlaff. T. Beretvas, W. Buco, J. Greenberg, D. R.
Patterson, and G. A. Spivak, “A Page-Swapping Prototype for
VM/HPO,” IBM Syst. J. 26, No. 2, 215-230 (1987).

Received May 13, 1987, revised manuscript received August
29, 1988; accepted for publication November 9, 1988

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

William H. Tetzlaff /BM Research Division, T. J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598.
Mr. Tetzlaff joined the Service Bureau Corporation in 1966. In 1969,
he joined the IBM Research Division. He has done research in the
areas of information retrieval, system performance, capacity
planning, file systems, and paging subsystems. Mr. Tetzlaff has
published many papers on that research, and has received two IBM
Outstanding Contribution Awards for his work, the first for the
Statistics Generating Package and the second for a prototype page-
swapping subsystem for VM. He is a frequent speaker on system
performance and paging at SHARE, GUIDE, and CMG meetings.
Mr. Tetzlaff studied engineering sciences at Northwestern University,
and he is a graduate of the IBM Systems Research Institute. He is
currently Manager of Operating System Structure and File Systems
in the Computer Sciences Department.

Martin G. Kienzle /BM Research Division, T. J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York 10598.
Mr. Kienzle received a Diplom in Informatik from the University of
Karlsruhe in 1976, and an M.Sc. in computer science from the
University of Toronto in 1977. He joined IBM in 1978 at the T. J.
Watson Research Center in Yorktown Heights, where he has been
working on performance measurements for operating systems, and
on operating-system structures. Mr. Kienzle is currently the manager
of the Supervisor Kernel Studies group. His main interests are in
operating-system structures and primitives for multiprocessors. Mr.
Kienzle is a member of the Association for Computing Machinery
and the Institute of Electrical and Electronics Engineers.

Juan A. Garay Computer Science Department, The Pennsylvania
State University, University Park, Pennsylvania 16802. Mr. Garay
received the degree of Electrical Engineer from the Universidad
Nacional de Rosario in Rosario, Argentina, in 1975, and the Master
of Electronic Engineering degree from the Netherlands Universities
Foundation in Eindhoven, the Netherlands, in 1981. He also worked
for IBM in Argentina as a systems engineer. At present, he is a
doctoral candidate in computer science at The Pennsylvania State
University. In 1985, he spent six months at the IBM T. J. Watson
Research Center, Yorktown Heights, New York, working on the
page-reference-pattern problem.

59

W. H. TETZLAFF, M. G. KIENZLE, AND J. A. GARAY




