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The  use  of a  cache to improve  the  performance 
of computing  systems is becoming  very 
pervasive,  from  microprocessors to high-end 
systems.  The  general  approach  has  traditionally 
been to use  ordinary fast RAM chips  and 
interface  these  close to the  processor  for  speed. 
However, this is far  from  the  ideal  solution. The 
stringent  and  often  conflicting  requirements  on 
the  cache  bandwidth  for  servicing  the  processor 
and  minimizing  reload  time  can  severely limit 
attainable  performance. The cache  need  not  be 
the  performance-limiting  factor if a  properly 
integrated  functional  cache  chip is used.  This 
paper  defines  the  basic  requirements of a  cache 
subsystem  and  shows  how  these  have  been  or 
could  be  implemented in typical systems. 
Subsequently,  the  functional  requirements  of  an 
optimal  cache chip design  are  presented  and 
illustrated. 

Cache  subsystem  overview:  Cache  or  no  cache? 
The access times of  high-density memory chips are 
beginning to approach the cycle time of many current high- 
performance processors [ 11. Under such circumstances, one 
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All  of these elements lead to the processor  design  being 
driven by the memory design.  Because the natural 
evolutionary path is  for the processors to get faster, the gap 
between  processor and memory cycle time tends to widen. 
When this happens, the processor throughput becomes 
limited entirely by the main memory [ 2 ] .  Since the processor 
and main memory will likely be built from different 
technologies, or at least by different processes, the processor 
speed can increase and main memory can stay constant at 
any point in time. Since the cache chip can be produced 15 

IBM 1. RES. DEVELOP. VOL. 33 NO. I JANUARY 1989 RICHARD E. MATICK 

could consider building a reasonably high-performance 
microprocessor without a cache, using instead the static 
column capability of  typical memory chips as a type of 
simple cache.  While this is a distinct possibility,  it has 
certain inherent fundamental limitations which may not be 
acceptable. For systems over which a range  of cost and 
performance is desired, a cache should be an inherent part of 
the system organization and architecture. Some of the 
limitations of a cacheless  design are  the following: 

The system organization is dominated by the memory 
organization; e g ,  adding a cache later requires significant 
redesign or else  is  very  inefficient. 
The system  cycle time is  likewise  very  strongly 
determined by the speed and organization of the memory 
chips. 
As the memory capacity increases, it is  increasingly 
difficult to maintain the same processor  cycle time. 
If adequate system  busing  is not provided from the start, 
it  is difficult and costly to change later. 



16 

(Word) CPU-cache data bus 

1 Schematic of a late-select,  four-way set-associative cache organization. 

from the  same technology as the processor, the cache speed 
can  track the processor speed. Hence, the use of cache allows 
the system performance to be only loosely dependent  on  the 
memory performance. 

With  a  cache, we can devise one system architecture and a 
general system organization which can  continually improve 
in  performance  as the processor (and cache) chip improves 
[3-61. This eliminates the performance gap dependency 
between processor cycle time  and  main  memory cycle time 
which continually  occurs  over time.  This has been the 
historical trend, occurring repeatedly for fundamental 
reasons: namely, faster processors require more  main 
memory,  and larger memory is slower in the  same 
technology. Any given system will migrate  toward the largest 
memory affordable (see [2], Chapter 1). 

Fundamentals of cache-accessing  requirements 
There are  a number of conflicting requirements which a 
cache  array must fulfill in order  to provide the necessary 
functions with high performance. Achieving these with 
standard  array designs typically leads to a rather complex 
system. The complexity and resulting high cost can be 
substantially  reduced by understanding  the  functions which 
are  required and properly  integrating them  into  the array 
chips. In order  to  understand this, let us  consider the 
fundamental accessing problems and typical methods of 
implementation.  To  do this, we  use a very common type  of 
cache  organization  as an example, implemented with 

relatively simple, single-port array chips, then a slightly more 
complex but still single-ported array chip, followed by a 
structure which is similar but uses a true two-port array (can 
support two simultaneous accesses to different addresses). 
This clearly shows the external  complexity  required to 
implement  the full cache  array structure. It is then shown 
how various  parts  of this complexity can be simplified by a 
more judicious design of the cache chip  and, with the final 
embodiment, a simplification which can  be used for  micro-, 
mini-, or large computers. It will be seen that  not only is a 
two-port array  not needed, but also that a  two-port array 
without other  functions is inadequate  as well as costly, and 
therefore  a poor design/performance trade-off. (Note: The 
implicit assumption is that  the  path between cache and  CPU 
is one word per cycle. For complex structures where multiple 
arguments  are fetched simultaneously on  the  same cycle, a 
two-port array  may be useful, but  does  not change the design 
issues with respect to  the integrated functions  for reload and 
performance  as discussed here.) 

We consider  a late-select cache,  organized  as four-way set- 
associative, with an overall structure  as shown  schematically 
in Figure 1. During a normal read access, part of the virtual 
address  is used to select the  four possible words that could be 
correct,  namely the congruence class, which  consists of one 
word from each of sets A, B, C, and D.' Simultaneously, the 
' These definitions make  a sei orthogonal io a congruence class and have  been used 
widely  for  many  years  within IBM. They differ from those sometimes used in  the 
literature,  where  a  congruence class is called  a sei, which  leads io confusion. See [7] 
for a definition of congruence class. 

VO. I JANUARY 1989 RICHARD E. MATICK IBM J .  RES, DEVELOP. VOL. 33 I 



total  virtual  address is translated via the translation  look- 
aside buffer (TLB)  and cache directory to see which set, if 
any, is the correct one. If one is chosen, then “late”  in  the 
cycle the correct word is enabled  from one of these sets by 
the  appropriate late-select signal A, B, C, or D, and placed 
on  the CPU-cache data bus. 

Typically, the  data-out ports of any  chip  are implemented 
with tri-state  drivers, so the  four words  can be dot-ORed 
together as shown.  These  drivers  have  a  DATA ENABLE 
input signal, allowing any  one word to be selected and 
placed on the CPU-cache data bus. During a write access, a 
problem is encountered. Typically high-speed static FET 
memory chips  require that  the  data be valid at  the  chip 
boundary before the  ctip access is initiated  (this is also 
typically true for dynamic  memory chips which might be 
used in  a “main  memory” version of this  concept). For a 
late-select cache design, this  presents  a  problem, since we 
wish to start the  chip accesses in parallel with the translation, 
and  the  data  cannot possibly be valid until the translation is 
complete. Typical caches use a read-modify-write operation 
which requires  two  cache cycles and reduces system 
performance.  Functionally,  it is desirable to have  a  cache 
which can perform  a late-write operation. This  can be done 
without  impacting the cache  performance, but requires 
special design of the chip. 

the cache block must be fetched from  main  memory  and 
reloaded into  the cache.  For  complex-instruction-set 
computers (CISC), which require  a relative large number of 
processor cycles per  instruction  executed, there  are often 
enough free cycles to allow this reload process to be 
relatively slow, with a (barely) tolerable  degradation  of 
system performance.  However, the  trend in processor design 
has been to reduce the  number of processor cycles per 
instruction  executed, and such designs place severe demands 
on the overall memory subsystem bandwidth. For instance, 
Figure 6 of [8] shows that for  a  high-performance processor 
pipeline designed to achieve an average of approximately 
1.25 cycles per  instruction  executed,  assuming an ideal 
memory system (e.g., infinite cache), the reload penalty for a 
finite cache at a typical design point  can be an average of 5 
percent  reduction  in  millions of instructions per second 
(MIPS) for each additional cycle of reload required. Thus, for 
high-performance systems this typically requires that  the 
reload take place as quickly as possible. Since the memory 
access time is generally some fixed value, additional 
performance is obtained by reloading  multiple words on 
each cycle, once  the first main  memory access has started. 
Loading  multiple  words into  the cache on a miss presents 
several problems.  First, the reload requires that all the words 
be placed into contiguous logical locations  in the “same  set”; 
Le., all the words  go to set  A, or all to set B, etc. For 
instance, if  we reload four words on each cache cycle as  in 
Figure 2, all the four-word 1 /0  ports  of  Figure 1 must now 

Whenever the address  translation  indicates  a  cache miss, 

Main memory Main memory 

Reload  path 

4 words 4 words 4 words 4 words 

Cache 

be connected somehow  to set A (or set B, C, or D if the 
replaced block is in that set). There  are  some  additional 
complicating  requirements; e.g., on a miss, the reload should 
start on  the word that caused the miss so that it can be 
“loaded through”  to  the  CPU for processing in parallel with 
the  reload. All of these requirements  are very different from 
the  normal access in Figure 1, where one word from “each 
set” is accessed, on a  word boundary. These  conflicting 
accessing requirements create some problems in cache 
design. We now  consider  how  these requirements  can be and 
have been met, starting with simple  arrays and progressing to 
more sophisticated designs and finally the  “functionally 
integrated” design proposed here. 

Case I: Single-port, single-word cache array 
modularity 
Suppose we have  available  cache array chips which allow an 
array design of one word per unit  chip as  shown  in Figure 3, 
where the unit  making up  the word can be one chip,  as in 
part (a), or several chips, as, for  example, four  chips  in  part 
(b). The  number of  chips and  the partitioning used to  obtain 
a word are a  function  of the cache size and  chip  modularity 
which is not  important here. In  the following discussions, for 
simplicity, we use the representation  of  Figure 3(a) as a “chip 17 
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1 Schematic of chip unit comprising system logical word of 32 bits. (a) 
u Chip unit = one logical word to/from CPU; nc = number of chips in 
.1 chip unit. (b) Chip unit of n, = 4 chips, 8 bits per chip. 

unit” which supplies one word  of 1/0 to or from  the  CPU, 
but it  should be understood that  more  than  one  chip can be 
implied, and in  various  configurations. 

With such  a chip  unit, it is possible to build  a four-way 
set-associative, late-select cache which can also reload 
multiple words on each  cache cycle (e.g., two,  four, or more 
words  per cycle). The  manner  in which this is achieved is a 
function of the relation of the required overall cache 
capacity and  number of bits  per chip  that  the technology can 
provide, i.e., the  modularity of the  chips  and system. In 
order to understand  the problems and trade-offs, suppose we 
have a single-port chip  unit as in Figure 3(a) with a  one- 
word 1 /0  port. Further suppose that  the desired  total  cache 
capacity and available chip  unit density are such that a  total 

18 of eight chip  units  are required. If the set associativity is 
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four-way, these eight chip  units will map  to two chip  units 
per set of the associativity, as  shown in Figure 4. In such  a 
case, it is possible to reload a maximum of two words  per 
reload cycle, since each set has  two chip  units  and hence two 
independent 1 /0  ports  available to  main  memory.  On a 
normal  CPU access, the word  address  bit accesses one  of  the 
two rows of chip units, and  one word from each  of  these four 
chip units is accessed and held at  the edge of  the  chip  unit, 
one word  for  each of the  four sets, Le., the congruence class. 
The late-select signal selects one of these  four, and it is 
placed on  the  CPU  data  bus via the  CPU  MUX 
(multiplexor). This  MUX is obviously necessary, since the 
1/0 lines out of each chip  unit  cannot be dot-ORed except as 
shown, even though  they are  from tri-state drivers. The 
reason for  this is obvious: namely,  for  reload, two separate 
words traverse between main  memory  and  the array, one 
word for each row. Thus  the off-chip MUX is necessary. Of 
course, one serious  drawback is that  this  structure  cannot 
support a simultaneous reload and  CPU access because of 
the  one-port design of the  chip units. This results in access 
interferences and degradation of performance, which can be 
reduced by a  separate  interface to  main  memory for reload. 
However, another  limitation which is not a  result of the  one- 
port design is that this  configuration cannot  support  any 
more than  two words of reload per cycle. For instance, in 
Figure 4, if a reload of four words per reload cycle were 
desirable, this configuration  could not  support it,  even if the 
chip units were two-ported  arrays with one of the ports used 
for a  separate bus  to  main  memory for  reload. This results 
from the fact that each set A, B, C, or D is contained  on 
only two chip units,  with  one-word 1/0 per chip  unit or two 
words maximum per set for reload. Thus, a  simple way to 
increase the reload path width would be  to  add  additional 
chip units. The use of 16 chip  units with four per set would 
provide a  four-word reload path  as desired. However, the 
cache capacity  has been doubled, which increases the cost, 
package size, and delay, and is not typically acceptable. The 
fundamental design problem is that technology 
improvements increase the  array bit  density  per chip faster 
than  the system has  increased the required  cache  capacity. 
The net result is that  the number of chip units per system has 
greatly decreased with time, and  this trend will continue. 
Thus,  the designer of the  “next” system typically has fewer 
chip units  available and a  potentially  smaller  reload  path. 
For instance,  suppose that for the next-generation design of 
the cache in Figure 4 the  chip density  increased by a  factor 
of four, while the cache  capacity  increased by a factor  of 
two.  Hence, only  four  chip  units  are required  instead  of 
eight, so the organization of Figure 4 would  provide only a 
one-word reload path, which is very undesirable.  Obviously, 
if the 1 /0  path  of  each chip  unit were increased from  one  to 
two words, a  two-word reload path would be possible. 
However, this would be achieved at considerable  expense, 
since only  a  one-word  path to  the  CPU is desired, thus 
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wasting the most important  parameter, cache  bandwidth. 
Other solutions are desirable and possible, as will be seen 
below. 

Notice in Figure 4 that  there  are a  total  of eight chip units, 
so that  during reload there  are six potential 1/0 ports which 
are sitting idle. These  could be used for  increasing the reload 
path width if we could  spread the words of  each set over 
each chip  unit.  Then,  during reload, one word  could be 
reloaded to each chip  unit for  a maximum of eight possible 
words  reloaded  per cycle in  this case. (Of course, fewer could 
be reloaded if desired.) However, this  improvement requires 
a special type of mapping of the logical cache  blocks  (the 
replaceable unit) to the physical array structure,  sometimes 
referred to as "Latin-square'' mapping2 [9, IO]. This 
mapping, using the cache chip  unit of Figure 3(a), is shown 
in Figure 5 for  a four-way associative, late-select cache 
design which requires  only four  chip units.  (Additional 
groups  of  four,  similar to  that  in Figure 4, could be added 
above  these with appropriate interfaces.) The need  for  this 
rather complex mapping arises from  the lack of an  adequate 
reload interface  coupled with the small number of chip units 
needed for a  typical cache. The design point  at which such  a 
mapping is  required can be specified as follows. Let 

column a permutation of the  elements. 
A Latin  square of order m is a m X m square array of m elements, wlth each row and 

Ncu = total number of chip units in cache, 
n,, = number of words reloaded to each chip  unit per reload 

W,, = total reload path to cache  in words per cycle, 
S = set associativity of cache  organization. 

cycle, 

A late-select cache will require the Latin-square-type map- 
ping of Figure 5 if 

For instance,  in  Figure 5 ,  Ncu = 4, n,, = 1 ,  W,, = 4, and 
S = 4. When  these are substituted into  Equation ( I ) ,  the left- 
hand side yields 1, which is less than Wr, which is 4; hence 
the Latin-square mapping is needed. Note  that  this would 
still be true even if the set associativity were reduced to 
S = 2. The reload path width  of four words can be obtained 
without  this mapping only by increasing the  number of chip 
units or by decreasing the set associativity. For example,  in 
Figure 4, there  are eight chip  units  and  the reload path is 
only two words, so N,, = 8, n,, = 1, S = 4, and W,, = 2. 
Substituting  these into  Equation (1 )  yields four for the left- 
hand side, which exactly equals Wr,. Thus a  Latin-square 
mapping  is not needed, as shown  in  Figure 4. 19 
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Notation: Sb,ock.word: e.g., A,, = Set A, block 1, word 3 

The  mapping of  Figure 5 is used in the following manner. 
During  normal accesses, the  same address is applied to all 
chip units in  order  to access the congruence class, composed 
of the corresponding  word from each set, e.g., word 1 from 
each of sets A,  B, C, and D. Thus, these four words must be 
at  the  same address on each chip unit, and  the  same is true 
for  word 2 ,  3, 4, etc.  However, during reload,  only one word 
can  be written to each chip  unit,  and if  we wish to reload, 
say word AQ, Al ,  A2, and A3 on  the  same cycle, obviously 
this can be done only if each of these  words is on a different 
chip  unit.  The  same holds true for all other groups of four 
words. The  mapping of Figure 5 provides the proper 
distribution of words on  the  chip units, but two  problems are 

20 encountered  during reload.  First, because contiguous words 

of any given block are stored at different addresses on  each 
chip, each chip  must receive a different (partially different) 
address. Since the starting  address depends  on which set is 
being reloaded, the addressing logic and  bus for reload are 
more  complex.  A further complication arises in  that a given 
word from  main  memory, e.g., word 1, can reside on  any of 
the chip units,  depending on  the set being  reloaded;  hence,  a 
ring-shift data aligner is required between the cache and 
main memory as  shown in Figure 6. Additional  complexity 
is introduced in  the late-select logic. Since the words of  any 
set can be on  any  chip  unit,  the late-select signal must not 
only  choose the set, but also match  the  appropriate word 
and set according to  the  mapping, as  shown  in Figure 5 ,  in 
order to enable the correct chip  unit. A final complication 
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arises from  the single-word data  path  into/out of  each chip 
unit.  During  normal access, the  four words must merge into 
one word to/from  the  CPU.  On reload, the  four words must 
be separate, allowing one-word 1/0 to each chip unit. For 
the assumed chip  unit of Figure 3(a), this would  require an 
off-chip multiplexor  of some sort,  such  as that shown by the 
MUX in  Figure 6. While there  are  many ways and places for 
providing this  function, it must  be included  somewhere. If 
this  function is placed on a  separate  chip, the  extra  chip 
crossing and multiplexor logic delay are  added in the most 
critical access path, which is extremely  undesirable. Ideally 
this multiplexor function should be done  on  the existing 
chips, and  the delay should be overlapped  with other, 
unavoidable delays. The proposed  functionally  integrated 
chip totally eliminates  this  multiplexor and delay, as will be 
seen  later. 

The  additional circuitry  required by this organization  for 
accessing is only  one aspect  of the total  problem. Another 
problem is that even though  the reload bandwidth has  been 
improved,  it still is far  from ideal. Since there is only one 
1/0 port  on each  chip, then only one access, either  for  a 
normal  CPU cycle or for a reload cycle, is possible on each 
system clock period.  A miss and subsequent reload typically 
start  at  the word  causing the miss-this word is immediately 
loaded through  to  the  CPU  and  the  CPU resumes 
processing. If the next CPU cycle requires  a  cache access, 
either the  CPU  or  the reloading must wait,  with appropriate 
logic for sensing and restarting. Regardless of which 
alternative is chosen,  either CPU  or reload-wait, the overall 
system performance is degraded.  A further degradation is 
encountered  from  the  same access interference  problem if a 
store-in  cache is used. This  term  means  that  the cache 
contains  the latest copy of the correct data, so if any changes 
have been made  to a block, it must first be written back to 
main  memory before it  can  be removed from  the cache. 
With  high-performance systems, store-in  cache is a  better 
cost performance design, so this produces many  more 
opportunities for access interference and degradation. Let us 
now  consider how we might improve  on  the above design, 
first with simple additions  to  the cache  chip. 

Case 11: Single-port,  single-word  array access 
with  on-chip  bus  multiplexing and load-through 
To minimize  critical  path electrical delay while simplifying 
the overall busing, a few simple functions  can be added to 
the cache chips without  disturbing the  array design; Le., the 
functions  are  added entirely on  the periphery of the array 
boundary.  From  the above  discussion,  it is clear that  adding 
the multiplexor function of Figure 6, as well as the related 
“load-through” path, will substantially help to remove some 
of the  limitations of the above  organization. For instance, 
the  chip unit  in Figure 7 has a  one-word bus  to  main 
memory  and a  separate  one-word bus to  the  CPU; however, 
the storage array itself is still only  a one-port design to 
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minimize cost and maximize  bit  density. The small amount 
of multiplexing necessary to achieve  this is included on-chip 
as  shown. (Note  that  the ring-shift aligner  shown in Figure 6 
is not  on  the  chip  but is part of the  main  memory interface.) 
In addition, if a  load-through buffer (LTB)  is also added, as 
in  Figure 7,  additional  improvement  can be obtained in 
some limited cases. For instance, if a “read” access to word 
A0 causes  a  miss and each chip  has a  load-through buffer, 
then  the  four words AO, Al ,  A2, and A3 are loaded into 
both the  array  and  the buffer. Thus, these  words are 
available from  these buffers on  subsequent cycles. Note  that 
since four words are reloaded  each cycle, only  the first group 
of four is loaded into  the LTBs; the  subsequent words  go 
only to  the array. If sufficient logic is included to identify 
these first four words, any of them could be loaded through 
to  the  CPU via the load-through path, as needed. On the 
next cycle after  loading-through word AO, if the  CPU 
accesses word AI, A2, or A3, it can be fetched from  the  LTB 
on the  appropriate chip, without interfering with  the reload 
of the second group of four words from  main  memory  to  the 
cache. Of  course, if the  CPU writes to  any of  these words, or 
if the access is to a  word other  than  one in any of the LTBs, 

~ ~~ ~ 
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i Modified static RAM chip for cache applications. 

an interference is encountered.  Such LTBs can be valuable 
for instruction fetches, which tend  to be sequential;  since 
data fetches tend  to be more  random,  the load-through 
buffer will be of some, but limited, value. Even for 
sequential I-fetches, the  LTB  does  not necessarily eliminate 
interference between reloading and CPU accesses. For 
instance,  suppose the word  causing the miss was A3. A 
subsequent reload will put AO, A 1, A2, and A3 into  the 
LTBs. A sequential I-fetch will next access A4, which is not 
in any  LTB  and  must wait for the next reload cycle and 
access to  the  array itself. The next I-fetch to word A5 will 
not have  this  word in  the LTB,  hence an interference.  Of 
course,  complex logic could be used to latch the second set 
of four reloading  words into  the LTBs in  this case, but  the 
cost is high and  the reward is small. The functionally 
integrated  cache is a  better design, as will be seen. In all 22 
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cases,  if access is permitted  to partially  loaded blocks, word- 
valid flags and logic in the CPU are required in  order  to 
know which words are accessible. 

Case 111: True  two-port  array  with  single-word 
access on each port 
It should be clear from  the above  discussions that  the 
interface between cache and  main  memory is quite different 
from that between cache and CPU. Since  these two 
interfaces are best satisfied with two buses operating with 
different addresses, it  would  seem appropriate  to use an 
array which is truly  two-ported, allowing two  simultaneous 
random accesses to  the array. While this is possible, we  will 
see that  this provides more  than what  is  required  for some of 
the problems, but  not  enough  to solve all the problems; in 
other words, it is not  the ideal solution. 
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A cache  organized similarly to  that of Figure 6 but using a 
two-port chip unit  is  shown  in Figure 8, with one port 
interfaced to  main memory  for reload and  the  other 
interfaced to  the  CPU for normal accesses. For reload,  a 
separate ring-shift data aligner and shift logic, plus  a  separate 
address bus per chip unit with address logic, are still 
required, much  as before. Since each 1/0 port has a  separate 
address input,  the  CPU address can be separate, with one 
bus  to all chip units as shown. The two  ports  have 
eliminated the need for  separate  multiplexors on  the  data 
bus-they are built into  the additional  complexity  of the 
cells and separate  word/bit  lines and decoders. The load- 
through buffers of Figure 7 are  no longer needed,  since  once 
a  word has been loaded, we have random access to it via the 
CPU port if  we maintain logic in the  CPU for specifying 
which words have been reloaded.  However, the load-through 
path  in Figure 7 may still be needed, even though  a two- 
ported  array is used. The reason is that a  two-port cell design 
is considerably  simpler if a write and  simultaneous read are 
not permitted to  the same cells, i.e., do  not read and write to 

the  same word. If this is the case, then  either a  separate  load- 
through  path is required, or an extra cycle of delay is 
encountered before the  CPU  can restart. In  addition,  the 
logic for comparing  the addresses for  the  two ports and 
granting access must be done  in  the CPU-the cache  is  a 
slave and will produce  errors if used improperly. The store- 
back of modified blocks which added  to  the reload time of 
the case of Figure 7 is no different for the two-port 
organization of Figure 8. Considering the fact that a  two-port 
cell/array design itself, without  including the  additional 
drivers, decoders, and  other logic which is necessary, 
consumes approximately 30 to 50 percent more  area  than a 
one-port design and is slower, we have paid an  enormous 
price and have  gained very little  in return.  Thus,  this type  of 
two-port design is definitely a poor choice. 

Simplification of reload path 
In all the cases above, it should be clear that  one  major 
obstacle is the complex requirements of the reload path. In a 
typical, ordinary RAM chip  there is only  one decoder which 
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selects the bit lines. As a  result, there is only one fixed 
interface to  the external world for any  and all accesses. A 
RAM chip used for a cache, as described previously, requires 
a  typical type of interface  when communicating with the 
CPU, but a very different interface  when  reloading to/from 
main  memory. A substantial improvement  can be achieved 
by proper  integration of the essential functions directly into 
the cache  chip. In  order  to achieve  this,  a different and 
special mapping of the words and blocks to  the physical 
arrays is required and used in  conjunction with  a  cache array 
having an  additional, relatively simple  bit-line  decoder. This 
mapping is special in  that a physical word (row) address 
must access the multiple  words  of any given congruence 
class for normal access, and multiple  words  from the  same 
set for  reload. This  requires-that multiple  words from each 
set must reside at  the  same row  address. Figure 9 shows this 
mapping for two  chip configurations,  each  having x + 1 
cache blocks with p + 1 words per block. In Figure 9(a), any 

given block resides at only one row address, while in Figure 
9(b) any block resides at  two adjacent row addresses. In 
Figure 9, any row address to a single chip will select the 
same bytes of the  same words of each set (i.e., the 
congruence class). In  addition,  the  same row address also 
accesses some  portion of  a  cache block from each set as 
required  for reload. The  minimum  number of bits  per row 
required to achieve this  mapping is a function of the cache 
organization, system, and  chip parameters,  as will be seen 
below. This mapping,  when  properly  integrated onto  the 
chip, allows a four-way set-associative, late-select design with 
multiple-word  reload, the  actual  number  depending  on  the 
number of pins  and decoding  provided on  the chip. This 
mapping  can be used with  either  a  one- or two-port 
cell/array design, although  the  latter will be seen to be 
unnecessary unless, of course, the CPU itself needs to access 
two  separate words. When properly implemented,  this 
mapping eliminates the reload ring-shift data aligner, 
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requires  only one address bus connecting all chips, and lends 
itself to inclusion  of other simple functions on-chip to 
significantly assist reload, at small cost, with essentially no 
additional delay, and using a  one-port array design. 

The  mapping of Figure 9 can be used with various levels 
of complexity on  the cache chip  to  improve performance. At 
the lowest level, an  additional bit-line  decoder can  be  added 
to eliminate the ring-shifter and  the separate  address per chip 
unit.  One simple  example  illustrating  how this  can be 
achieved is shown in Figure 10. The bit-sense lines are 
connected on each end  to a different bit  decoder. The  top 
bit-line  decoder  interfaces to  main  memory for reloading, 
while the  bottom  one interfaces to  the  CPU for normal 
accessing. Note  that while the  chip itself has  two  separate 
data buses, one  to  main  memory  and  one  to  the  CPU,  the 
cells and arrays are single-ported. This requires that both 
buses cannot  be busy simultaneously (we later  remove  this 
restriction). 

The  importance of the  mapping  and its implementation 
requires  considerably more detail.  Suppose  a 64K-byte, four- 
way set-associative, late-select cache is implemented  from 

128K-bit chips,  arranged  as  256 rows (physical  word lines) 
by 512 columns (bits per  word line) as in Figure 10. It is 
further  assumed that  the  bottom  column decoder on each 
chip decodes 4 X 16 bits out of 5 12, where each  group of 16 
bits is one half-word from each of the  four sets, A B  C D (Le., 
the congruence class). These four half-words are held in  the 
output latches until  the late-select signal selects one of the 
four  and  dumps it on the  CPU  data  bus  through tri-state 
drivers. Each chip supplies half the word  for a 32-bit logical 
word. The  bottom decoder  provides the selection for  a 
maximum of four-way set associativity. The  same physical 
structure could  provide  a two-way associative cache-the 
sets on each chip would be mapped A  A B B or A B A B 
rather  than A B C D, and  the late-select signal would have to 
be combined externally with the  appropriate logical word 
address (similarly for the reload path). The  same  chip in  a 
modified organization  could  provide eight-way associativity, 
but is usually not necessary. The  top decoder  provides 
32 out of 5 12, where the 32 bits are all contiguous bits 
and represent two contiguous half-words from  the  same 
set. 

Main  memory 

I Oddword I Oddword 
Y 

., I 16 bits 16 bits 

One  word \ \one word 

I 
16 bits 
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For this  assumed  configuration,  a 32-bit logical word 
length  requires two  chips per chip  unit in Figure 3(a), and 
this  chip  unit has the capacity to reload two  words  per cycle 
from  main  memory.  The total number of words which can 
be reloaded per cycle depends  on  the  number of chip  units 
in the cache.  Assume that  two  chip  units  are required,  as in 
Figure 10, for a  total cache capacity of  64K bytes. The 
reload path  can  then  be  four words wide. One reasonable 
arrangement for  reloading from  main  memory would be to 
put even words on  one  chip  unit  and  odd words on  the  other 
(any other  arrangement is also workable). The ring-shift 
alignment is done by the 32 out of 5 12 bit  decoders on each 
chip. The need  for  a  separate  address bus to each chip is 
eliminated by the use of  the  mapping of  Figure 9 with a 
control signal indicating  “reload” or “normal access,” since 
only  one or the  other  path  can be active at  one  time.  The 
same address bus is  used  for CPU accesses and reload. For a 
reload, the  upper decoder is activated on each  chip, and  the 
bit address selects four consecutive  words on  the  four chips, 
where all these  words  are  within one set as  required. For a 
normal access, the lower decoder is activated and  four words 
of 32 bits each, one  from each  set, are selected on  one or the 
other of the two chip units, as  determined by the  even/odd 
word address. The late-select signal enables one of these 
to/from  the CPU data bus. 

exact mapping shown  in  Figure 9. In fact, the  minimum 
number of bits per physical word  (row) on each chip is 128 
(i.e., 4 X 32) bits  in  this case. The required minimum 
number of bits per row can be related to  the  other 
parameters as follows. Refemng  to Figure 9, let 

Note  that  the organization of Figure I O  need not use the 

b, = number of bits per row on each  chip, 
L,, = number of  bits per logical word (32 bits  in our 

examples), 
W,, = total number of logical words  reloaded  per cycle, 
N, = total number of chips in  cache, 
S = set associativity. 

For  the configuration  of  Figure 10, the minimum number of 
bits per row on each chip is given by 

Of  course,  as the  chip configuration is changed, the bit-line 
decoders must be changed accordingly. If the reload path is 
decreased to two  words  per cycle, while the set associativity 
remains at  four, with four chips, from  Equation (2) the 
minimum  number of bits now  becomes 64 bits per  row. The 
1 / 0  path  to  main  memory is likewise reduced to 16 bits  per 
chip. 

While the  implementation of Figure I O  is workable, 
neither  the store-back of a modified cache  block nor  the 
reload can take place simultaneously with normal accesses 
because of address-bus  as well as array-access contention, so 

there will be interference and significant performance 
degradation. The key is to design a chip using a one-port 
array while providing all the  functions  and  not 
compromising  the speed. All of  these requirements  can be 
achieved in  the organization of Figure 10 by the inclusion  of 
two very simple registers on-chip,  namely  a  store-back buffer 
and a  cache-reload buffer, along with a simplification of the 
top bit-line  decoder, all described below. 

Functionally integrated  cache chip 
A  schematic of a  cache chip  unit which properly  integrates 
all the above  functions, while still using  a one-port  array 
design and requiring  only one address bus to all chips, is 
given in Figure 11 (only data-flow shown). This is achieved 
by the use of the  mapping of Figure 9, properly  integrated 
bit-line decoders, and  two special buffers with associated 
addressing logic. In Figure I 1, each chip  unit interfaces to 
the CPU data bus via a  bit-line  decoder  which selects one 
word from each  of the  four sets within the array, followed by 
a  multiplexor which uses the late-select signals to select one 
of these four words, identical to Figure 10. However, the 
interface to  main  memory shown in Figure 10 is significantly 
improved  as follows. The bit-line decoder  at  the  top of the 
array selects, for any given set and block address, the total 
portion of that block which resides on  that  chip  unit  rather 
than  just  the  one word  decoded  in  Figure 10. This requires 
less decoding than  the  top decoder  in  Figure 10. 
Furthermore,  the  data  bus  in  and  out of this decoder does 
not go directly to  main  memory  but  rather is dot-ORed  to 
the store-back buffer and cache-reload buffer as  shown  in 
Figure I 1. These two buffers interface to  main  memory  on 
one bus per chip  unit  as  shown.  The  operation of these 
buffers can be made nearly transparent  and  can give the  chip 
an  appearance of a  two-port array by including  some of the 
controls on the chip. The special functions  on this  cache 
chip  are  the following: 

1. Store-back buffer (SBB); since the cache is a  “store-in” 
cache, a  cache miss requires that  any modified block be 
rewritten back to  main  memory.  On  one cache cycle, any 
block can be fully written into  this  temporary buffer to 
allow reload to proceed as fast as possible. The cache 
controller issues the necessary signals to achieve this 
action.  These signals enable  the  top set of bit switches as 
well as the SBB, and  the latter  latches  whatever data  are 
on  the SBB/CRB array bus. During reload,  these data just 
remain latched  in  this buffer. After reload is completed, 
the SBB is written back to  main  memory, while the CPU 
can simultaneously access the cache array.  The writeback 
is performed under  the guidance  of the cache  controller 
in conjunction with some  on-chip  controls such as a  two- 
bit counter which points  to  the next entry  and is 
automatically incremented for  each unload cycle. 

2. (a)  Load-through path;  on a  cache miss, the first word 
fetched from main  memory  and passed to  the cache is 

EVELOP. VOL. 33 NO. I J ANUARY I 989 



Tolfmm  main  memory 

t 

Store- 
buffer 

Late-select - 
enables 

I Decode 256 out of B. 

I Decode 4 X 32 out of B,,, 

t Select 1 of 4 words I 

- Cache- 
reload 
buffer 

One  chip  unit 
One word 

CPU-cache 
data bus 

the word which caused the miss (either read or write 
miss). The cache  chips will pass this first word from 
the  main  memory  data  bus directly to  the  CPU  data 
bus via the load-through  path  for an  immediate load 
on the  same cycle.  If the miss was for  a write, the 
simplest design is still to place the  data on the  bus  but 
not have  it  latched by any unit-this could be 
changed to load-through  for  only  a  read miss but is 
unnecessary. Only the first word is loaded  through. 
Subsequent words can be obtained from the cache- 
reload buffer after  they  have been reloaded. Note  that 
if W,, words are reloaded on each cycle, on  the cycle 
after the first word is loaded  through, any of these Wrl 
words are available to  the  CPU.  The  functions 

required  for  load-through control  can all be placed 
on-chip since they are  quite simple. 

For a WRITE miss, the word which caused the 
miss must first be loaded into  the  CRB, after which it 
can be overwritten as described below. 

(b) Cache-reload buffer (CRB);  reloading  words from 
main memory go first into  the  CRB. While this is 
taking place, the  CPU  may read or overwrite any 
words which have  already  been  loaded into  the  CRB 
via the CRB access path, or any  other  data already 
resident  within the cache  array. The  additional 
controls  required for these  features are  not very large 
nor complex. Some or all of them  can be placed on 
the cache  chip,  depending on the system pipeline, 27 
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technology available  for the cache, and  the 
performance  required. In general, higher performance 
is obtained by placing more of the  controls directly 
on the  chip  to give the  chip  an external appearance of 
being a  two-port  array. In  other words, simultaneous 
accesses from both the  memory side and  CPU side 
are handled by the  chip, which decides whether the 
information is in the  CRB or array, and delivers it 
with minimal outside control.  The basic functions 
which must be provided,  either  on-chip or elsewhere, 
are  as follows: 

Reload  address register (RAR), a register which 
holds the address of the block and word-group W,, 
being reloaded. 
Set ID register, which holds the ID of a set which is 
being reloaded and  contains either S bits  (decoded, 
direct set enable) or s encoded bits, where s = log$ 

master/slave register which holds one valid flag for 
each word-group  in  a  cache block; if there  are W,, 
words per cache block, then  there  are a  total of 
Wh,f Wr, word-groups and  an equal number of such 
flags to specify which of the word-groups have been 
reloaded. If two words are reloaded each cycle and 
the cache block contains  four words, then two  such 
flags are required. 

automatically selecting the  CRB or array as 
appropriate.  The details of such control  are 
technology- and design-dependent, thus  are  not 
shown, but are relatively straightforward. 

0 Word-group valid flag register (WGVF), a Wrl- 

Compare  and  CRB  control circuits for 

The overall functioning of this  chip unit is as follows. 
Suppose  a  cache access miss occurred and  the block to be 
replaced has  been modified. Assuming  a  store-in  cache,  this 
block must be removed  from the cache before the new block 
overwrites it.  However, if this block were totally written back 
to main memory before the reload process started,  a very 
significant performance  degradation would result, especially 
as the  CPU design attempts  to reduce the average number  of 
cycles per instruction. Thus two  actions are initiated 
simultaneously; first, the reload request to  main memory is 
started, and  at  the  same  time  the modified cache block 
which is to be replaced is temporarily  stored  in the store- 
back buffer (SBB) (the latter  action  only  requires one cycle). 
As soon as main memory can  start the reload, the  incoming 
words are placed in the cache-reload buffer (CRB). The 
preferred design is a CRB which can hold an  entire cache 
block, although  a partial-block design is also feasible. A full- 
block design is assumed. Since typically only  a part of a 
block is reloaded on each cycle, several cycles and  some 
addressing/decoding are necessary to properly access the 
CRB.  This is done by a very simple  decoder which can be 
located on-chip or elsewhere. The address  for the reloading 

words need be only the higher-order  bits of the block index 
bits, which will typically be two to  four bits and  thus  four  to 
sixteen cycles for reload.  These bits and  other necessary bits 
are stored in  the reload address register (RAR). Because 
these bits were present on  the CPU-cache  address bus  at  the 
time a miss occurred, they contain  the address of the word 
that caused the miss and hence is used for control of both 
the load-through buffer and  the  CRB.  Once  the  CRB has 
been fully loaded,  it  requires one cache cycle to load  this 
into  the  array.  This  can be done immediately, or, preferably, 
after another miss is encountered.  The latter can be done 
during  the cache idle time while the next block is being 
fetched from  main memory,  thus avoiding  a lost cycle. 

Minimum mapping for,functional chip 
For the configuration and  assumptions used above, the chip- 
unit  configuration  requires  a minimum of one  entire block 
from each of four sets to reside at each row address. This 
results from the size of the cache block, the set associativity, 
and  the specification that  the SBB will be loaded from  the 
array on  one cycle and likewise that  the  CRB will be 
unloaded to  the  array  on  one cycle. We could relieve this 
restriction by specifying that  the SBB be loaded from  the 
array and  CRB be unloaded to  the  array  in multiple cycles, 
since there will typically be two or more cycles idle for  each 
of these. If  we choose  two cycles for this, one  entire block 
from each set can reside at two row addresses. This provides 
more flexibility in the overall  cache specifications but  adds a 
small amount  to  the  on-chip controls. Note  that  the  number 
of cycles to load the SBB could be different from  that  to 
unload the  CRB  to  the array, but this  has  little  advantage 
since the  same decoder is used for both  functions. The 
minimum  number of bits per row on each chip for a 
generalized functional cache  of the type in Figure 1 1 can be 
specified as follows. In Figure  9, let 

b, = number of bits per row on each chip, 
CY = number of cycles to load  SBB/unload CRB  to  the 

b,, = total number of bits per  cache  block, 
N ,  = total number of chips in cache, 
S = set associativity. 

For this general case, the minimum number of bits  per row 
on each chip is thus given by 

array = number of rows per block, 

x bhl b, 2 - 
a X N,' 

For the ideal case, a value of CY = I is preferred if possible. 
For  such  a case, and with a four-way set associativity, 64 
bytes (8 X 64 bits) per cache block, and  four chips  total, 
Equation (3) specifies a minimum of 5 12 bits  per  row. If we 
allow (Y to be two cycles, which maps  to two rows per block 
as given by the  mapping of Figure 9(b), or alternatively 
reduce the cache block to 32 bytes, a minimum of  256  bits 
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per row are required. Obviously, a  choice of both a = 2 and 
a 32-byte block reduces the  minimum  number of bits per 
row to 128. In this  manner,  the  chip designer is given more 
flexibility in choosing the  more  optimal  array configuration 
for speed and layout, which is important. 

Cache chip implementation 
Although the  above  functions can be implemented with 
macros on a relatively standard  array design, the highest 
possible performance will require  a custom design. Such a 
custom integrated approach will have many trade-offs in 
terms of circuit design, timing, and partitioning, which are 
highly technology-dependent.  However, the logical structure 
of the  chip will be basically the same, although  the actual 
values of individual  parameters will change. A very general 
logical partitioning  in terms of islands which incorporates all 
the above functions is shown in Figure 12 for  a single chip. 

Each set, or  portion thereof, is mapped  to  one or more 
islands of this chip, and  one or more chips as needed to form 
a chip unit.  Assuming the cache  capacity  in bytes, C, set 
associativity, S, the technology  in terms of bytes per  chip, 
Bc, and hence number of chips in  the cache, N,, the length 
of the logical word, L,,, the  number of pins  (bits)  per chip 
for the  CPU  data bus, PC, and  the  number of pins (bits) per 
chip for the main memory  data  bus Pm, have been specified, 
various  relations among  the  remaining  parameters for logical 
partitioning and reload path are as follows. 

As defined previously, each chip  unit is organized to 
supply one logical word to  the  CPU.  The total number of 
chip  units for  each independent  bank is 

The average number of words  reloaded per reload cycle, 
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W,, = N, X - In words per cycle. ( 5 )  

For a chip which is configured from  independent islands 
such  as that shown in Figure 12, the islands must be grouped 
into island units, ZU, to  match  the given chip  pin  constraint, 
PC, to  the  CPU  and  the set associativity, S. Ideally, there 
should be one island unit per set on each chip, and this will 
specify the  amount of decoding  needed per island and island 
unit. Note that  an island unit is defined  per  chip, so for  a 
partitioning which requires more  than  one  chip per chip  unit 
(Le., per logical word) as  in Figure IO, a logical word can be 
spread  over  multiple  islands and multiple  chips. In such  a 
case, the  bottom decoder on each island unit  in Figure 12 
which services the  CPU  must decode PC out of b, bits per 
logical island unit. 

The island decoding on  the  top of the arrays  in  Figure 12 
must take into  account  that  the interface is to  the SBB/CRB, 
which has a wider bus width than  the individual chip  bus 
width, P,,,, to  main  memory. Ideally, each SBB/CRB will be 
spread  over all Nc chips, so each chip will contain  only b,,/N, 
bits of the cache  block. If the SBB/CRB are  loaded/unloaded 
to  the  array in (Y cycles, where (Y 2 I ,  the  top decoder on 

each island unit  must decode bbl/(a X N,)  out of b, bits. Note 
that  no  top decoding is necessary per island unit if bi exactly 
equals b,,/(a X N,) .  Ideally, it is desirable to have (Y = 1. 
However, if the  maximum allowable island unit  array bit 
width, bi, is for instance one half of b,,/N,, using a  value  of 
(Y = 2 will exactly match  the two  requirements. 

Cache system:  Partitioning example 
An example of how  a  cache  might be partitioned  onto  the 
preferred custom  layout of  Figure 11 is given below. It is 
assumed that a  64K-byte, two-way set-associative, late-select 
cache  organization using 64 bytes per block  (replaceable 
unit) is implemented with static, functional cache chips 
having 64K bits  per  chip, with a 16-bit primary  data  path  to 
the  CPU, a 16-bit path to  the  main  memory for  reload, and 
a 32-bit logical word to  the  CPU.  Thus,  the required 
parameters are C = 64K bytes, b,, = 5 12 bits, S = 2, B, = 8K 
bytes per  chip, PC = 16 pins, P,,, = 16 pins, and N, = 8 chips 
total.  Substituting  these parameters  into  the above equations, 
we find that  the  chip  unit consists of two such  chips, which 
gives a  total  of N,, = four  chip  units for this  bank of 64K 
bytes. Since each chip has a 16-pin interface  for reloading, 
the  entire cache can have a four-word  interface to  main 
memory  for  reload,  as  shown  in Figure 13. Since the 
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SBB/CRB are distributed  over all chips,  each chip will only 
contain  64 bits (8 bytes) of each 64-byte block. For  optimum 
performance, the  array configuration on each chip should 
have a bit width 6, of at least 128 bits to  match  the 64-bit 
SBB/CRB in a two-way set-associative design. A four-way 
set-associative design under  the  same  conditions would 
require 256 bits. The remaining overall structure is logically 
equivalent to those of Figures 1 1 and 12, with appropriate 
partitioning to  match  the given chip parameters. 

Conclusions 
The above  discussions have shown that a  cache system 
operates  in  two  distinct modes-normal access and reload. 
During normal access, a typical high-performance processor 
can require, on average, between one- and two-word access 
per processor cycle at a continuous rate.  Whenever an access 
miss occurs, the system bandwidth requirement becomes  a 
single burst of multiple words (equal  to  the block size) 
loaded on  one  main  memory cycle and  occumng 
infrequently, at  random intervals.  Unfortunately, the latter 
requirement is very difficult and costly to  implement, 
resulting in  performance  degradation in actual systems. This 
has led to various  cache  organizations  in an  attempt  to 
reduce the reload penalty. Unfortunately, ordinary static 
RAM chips are optimized  for normal access and  introduce 
considerable  complexity in  the reload path.  This complexity 
takes several forms  due  to  the various functions which must 
be performed  for  reload,  in combination with the cache 
organization.  Various pieces of this complexity can be 
removed by identification  of the proper function  and its 
implementation. By judicious organization and 
implementation of the cache chip,  most of the reload process 
can be made  to  appear as if occumng  on  one  memory cycle, 
while still allowing a set-associative, late-select cache 
organization. The internal array need be only  a one-port cell 
design, and  the  additional  functions  are easily integrated 
with the proper  choice of mapping of the cache  blocks to  the 
physical array. The cache chip specified in this paper 
incorporates all of these  features and achieves an  optimal 
trade-off between the  array/chip design and  the functional 
requirements of the overall system. 

Appendix A: Nomenclature 
N = number of cycles to load  SBB/unload CRB  to  the 

b, = island unit  array bit-width in bits per  island unit 
6, = number of bits per row address on each chip 
b,, = total number of bits per  cache block 
Bb, = number of bytes per cache block 
B, = number of bytes per chip 
B, = total number of bits per row on a chip  unit or ncb, 
C = capacity of  each independent cache bank  in bytes 
L,, = length of logical word in bits per word ( 3 2  bits  in 

array = number of rows per block in  Figure 9 

our examples) 

I ,  = number of islands per chip 
IU = number of  island units per chip 
N, = total number of chips in cache  over which a block is 

distributed, Le., the smallest independent  unit of a 
total  cache 

n, = total number of  chips  in  each chip  unit 
N,, = total number of chip  units in  cache 
PC = number of data  pins  on each chip for CPU  bus 
P,,, = number of pins  on each chip  for reload bus from main 

memory 
S = set associativity 
n,, = number of words  reloaded to each chip  unit per cycle 
W,, = total reload path  to cache  in words per cycle 
W,, = b,,/L,, = total number of logical words  per  cache block 
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