Functional cache
chip for improved
system
performance

by Richard E. Matick

The use of a cache to improve the performance
of computing systems is becoming very
pervasive, from microprocessors to high-end
systems. The general approach has traditionally
been to use ordinary fast RAM chips and

interface these close to the processor for speed.

However, this is far from the ideal solution. The
stringent and often conflicting requirements on
the cache bandwidth for servicing the processor
and minimizing reload time can severely limit
attainable performance. The cache need not be
the performance-limiting factor if a properly
integrated functional cache chip is used. This
paper defines the basic requirements of a cache
subsystem and shows how these have been or
could be implemented in typical systems.
Subsequently, the functional requirements of an
optimal cache chip design are presented and
illustrated.

Cache subsystem overview: Cache or no cache?
The access times of high-density memory chips are
beginning to approach the cycle time of many current high-
performance processors [1]. Under such circumstances, one

©Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be:copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

could consider building a reasonably high-performance
microprocessor without a cache, using instead the static
column capability of typical memory chips as a type of
simple cache. While this is a distinct possibility, it has

certain inherent fundamental limitations which may not be
acceptable. For systems over which a range of cost and
performance is desired, a cache should be an inherent part of
the system organization and architecture. Some of the
limitations of a cacheless design are the following:

1. The system organization is dominated by the memory
organization; e.g., adding a cache later requires significant
redesign or else is very inefficient.

2. The system cycle time is likewise very strongly
determined by the speed and organization of the memory
chips.

3. As the memory capacity increases, it is increasingly
difficult to maintain the same processor cycle time.

4. If adequate system busing is not provided from the start,
it is difficult and costly to change later.

All of these elements lead to the processor design being

driven by the memory design. Because the natural

evolutionary path is for the processors to get faster, the gap

between processor and memory cycle time tends to widen.

When this happens, the processor throughput becomes

limited entirely by the main memory [2]. Since the processor

and main memory will likely be built from different

technologies, or at least by different processes, the processor

speed can increase and main memory can stay constant at

any point in time. Since the cache chip can be produced 15

RICHARD E. MATICK

16

R)

Virtual address]

Cache congruence class address

XM

| . 7 7 4
- Z Address translation é Z Z
Instruction General- Z i Iy SN g 7 |
‘ 7 7
prefetch purpose Z Translation | Cache 7 | 7
] registers é _look-aside _ directory 2 Z é
[Z buffer Z é Z
7
2 ——— Word A |1 7 7
Late-select Tri-state [7 7
i signals drivers [} 7 7
D(C[BIA_, »\ TSD /
(Word) CPU-cache data bus

from the same technology as the processor, the cache speed
can track the processor speed. Hence, the use of cache allows
the system performance to be only loosely dependent on the
memory performance.

With a cache, we can devise one system architecture and a
general system organization which can continually improve
in performance as the processor (and cache) chip improves
[3-6]. This eliminates the performance gap dependency
between processor cycle time and main memory cycle time
which continually occurs over time. This has been the
historical trend, occurring repeatedly for fundamental
reasons: namely, faster processors require more main
memory, and larger memory is slower in the same
technology. Any given system will migrate toward the largest
memory affordable (see [2], Chapter 1).

Fundamentals of cache-accessing requirements
There are a number of conflicting requirements which a
cache array must fulfill in order to provide the necessary
functions with high performance. Achieving these with
standard array designs typically leads to a rather complex
system. The complexity and resulting high cost can be
substantially reduced by understanding the functions which
are required and properly integrating them into the array
chips. In order to understand this, let us consider the
fundamental accessing problems and typical methods of
implementation. To do this, we use a very common type of
cache organization as an example, implemented with

RICHARD E. MATICK

Schematic of a late-select, four-way set-associative cache organization.

relatively simple, single-port array chips, then a slightly more
complex but still single-ported array chip, followed by a
structure which is similar but uses a true two-port array (can
support two simultaneous accesses to different addresses).
This clearly shows the external complexity required to
implement the full cache array structure. It is then shown
how various parts of this complexity can be simplified by a
more judicious design of the cache chip and, with the final
embodiment, a simplification which can be used for micro-,
mini-, or large computers. It will be seen that not only is a
two-port array not needed, but also that a two-port array
without other functions is inadequate as well as costly, and
therefore a poor design/performance trade-off. (Note: The
implicit assumption is that the path between cache and CPU
is one word per cycle. For complex structures where multiple
arguments are fetched simultaneously on the same cycle, a
two-port array may be useful, but does not change the design
issues with respect to the integrated functions for reload and
performance as discussed here.)

We consider a late-select cache, organized as four-way set-
associative, with an overall structure as shown schematically
in Figure 1. During a normal read access, part of the virtual
address is used to select the four possible words that could be
correct, namely the congruence class, which consists of one

1 .
word from each of sets A, B, C, and D.” Simultaneously, the
! These definitions make a set orthogonal 10 a congruence class and have been vsed
widely for many years within IBM. They differ from those sometimes used in the

literature, where a congruence class is called a set, which leads to confusion. See [7]
for a definition of congruence class.

IBM J. RES. DEVELOP. VOL. 33 NO. 1| JANUARY 1989

total virtual address is translated via the translation look-
aside buffer (TLB) and cache directory to see which set, if
any, is the correct one. If one is chosen, then “late” in the
cycle the correct word is enabled from one of these sets by
the appropriate late-select signal A, B, C, or D, and placed
on the CPU-~cache data bus.

Typically, the data-out ports of any chip are implemented
with tri-state drivers, so the four words can be dot-ORed
together as shown. These drivers have a DATA ENABLE
input signal, allowing any one word to be selected and
placed on the CPU-cache data bus. During a write access, a
problem is encountered. Typically high-speed static FET
memory chips require that the data be valid at the chip
boundary before the ckip access is initiated (this is also
typically true for dynamic memory chips which might be
used in a “main memory” version of this concept). For a
late-select cache design, this presents a problem, since we
wish to start the chip accesses in parallel with the translation,
and the data cannot possibly be valid until the translation is
complete. Typical caches use a read-modify-write operation
which requires two cache cycles and reduces system
performance. Functionally, it is desirable to have a cache
which can perform a late-write operation. This can be done
without impacting the cache performance, but requires
special design of the chip.

Whenever the address translation indicates a cache miss,
the cache block must be fetched from main memory and
reloaded into the cache. For complex-instruction-set
computers (CISC), which require a relative large number of
processor cycles per instruction executed, there are often
enough free cycles to allow this reload process to be
relatively slow, with a (barely) tolerable degradation of
system performance. However, the trend in processor design
has been to reduce the number of processor cycles per
instruction executed, and such designs place severe demands
on the overall memory subsystem bandwidth. For instance,
Figure 6 of [8] shows that for a high-performance processor
pipeline designed to achieve an average of approximately

1.25 cycles per instruction executed, assuming an ideal
memory system (e.g., infinite cache), the reload penalty for a
finite cache at a typical design point can be an average of 5
percent reduction in millions of instructions per second
(MIPS) for each additional cycle of reload required. Thus, for
high-performance systems this typically requires that the
reload take place as quickly as possible. Since the memory
access time is generally some fixed value, additional
performance is obtained by reloading multiple words on
each cycle, once the first main memory access has started.
Loading multiple words into the cache on a miss presents
several problems. First, the reload requires that all the words
be placed into contiguous logical locations in the “same set”;
i.e., all the words go to set A, or all to set B, etc. For
instance, if we reload four words on each cache cycle as in
Figure 2, all the four-word I/O ports of Figure 1 must now

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

Y222
B

Main memory

T

[Word0 | word 1 | Word2 | word 3 | /

Reload path

4 words 4 words 4 words 4 words

g 222z

222 (728

TS

LAY

Set

Y

Cache

Main memory—cache data path for reload of four words each cycle.

be connected somehow to set A (or set B, C, or D if the
replaced block is in that set). There are some additional
complicating requirements; e.g., on a miss, the reload should
start on the word that caused the miss so that it can be
“loaded through” to the CPU for processing in parallel with
the reload. All of these requirements are very different from
the normal access in Figure 1, where one word from “each
set” 1s accessed, on a word boundary. These conflicting
accessing requirements create some problems in cache
design. We now consider how these requirements can be and
have been met, starting with simple arrays and progressing to
more sophisticated designs and finally the “functionally
integrated” design proposed here.

Case I: Single-port, single-word cache array
modularity

Suppose we have available cache array chips which allow an
array design of one word per unit chip as shown in Figure 3,
where the unit making up the word can be one chip, as in
part (a), or several chips, as, for example, four chips in part
(b). The number of chips and the partitioning used to obtain
a word are a function of the cache size and chip modularity
which is not important here. In the following discussions, for
simplicity, we use the representation of Figure 3(a) as a “chip

RICHARD E. MATICK

17

18

(L zzZzzz77zzzzqzqzazigkgz2q2zz

N\

B, = ncbr bits

Array

Row decoder

Decode one logical word

T U SR

A

y

32-bit logical word
to/from CPU

()

R 22

L2 LI S I LIS T OL A III 7.

AN AN AAAN RN

b, bits

 AEEEIREAARKREERARRAN AN

Array

Row decoder

Decode 8 bits

TR TATTLREAV TR RRR RN RNV

32-bit logical word
to/from CPU

(b)

Schematic of chip unit comprising system logical word of 32 bits. (a)
Chip unit = one logical word to/from CPU; n, = number of chips in
chip unit. (b) Chip unit of n_ = 4 chips, 8 bits per chip.

unit” which supplies one word of I/O to or from the CPU,
but it should be understood that more than one chip can be
implied, and in various configurations.

With such a chip unit, it is possible to build a four-way
set-associative, late-select cache which can also reload
multiple words on each cache cycle (e.g., two, four, or more
words per cycle). The manner in which this is achieved is a
function of the relation of the required overall cache
capacity and number of bits per chip that the technology can
provide, i.e., the modularity of the chips and system. In
order to understand the problems and trade-offs, suppose we
have a single-port chip unit as in Figure 3(a) with a one-
word 1/O port. Further suppose that the desired total cache
capacity and available chip unit density are such that a total
of eight chip units are required. If the set associativity is

RICHARD E. MATICK

four-way, these eight chip units will map to two chip units
per set of the associativity, as shown in Figure 4. In such a
case, it is possible to reload a maximum of two words per
reload cycle, since each set has two chip units and hence two
independent I/O ports available to main memory. On a
normal CPU access, the word address bit accesses one of the
two rows of chip units, and one word from each of these four
chip units is accessed and held at the edge of the chip unit,
one word for each of the four sets, i.e., the congruence class.
The late-select signal selects one of these four, and it is
placed on the CPU data bus via the CPU MUX
(multiplexor). This MUX is obviously necessary, since the
1/0 lines out of each chip unit cannot be dot-ORed except as
shown, even though they are from tri-state drivers. The
reason for this is obvious: namely, for reload, two separate
words traverse between main memory and the array, one
word for each row. Thus the off-chip MUX is necessary. Of
course, one serious drawback is that this structure cannot
support a simultaneous reload and CPU access because of
the one-port design of the chip units. This results in access
interferences and degradation of performance, which can be
reduced by a separate interface to main memory for reload.
However, another limitation which is not a result of the one-
port design is that this configuration cannot support any
more than two words of reload per cycle. For instance, in
Figure 4, if a reload of four words per reload cycle were
desirable, this configuration could not support it, even if the
chip units were two-ported arrays with one of the ports used
for a separate bus to main memory for reload. This results
from the fact that each set A, B, C, or D is contained on
only two chip units, with one-word 1/O per chip unit or two
words maximum per set for reload. Thus, a simple way to
increase the reload path width would be to add additional
chip units. The use of 16 chip units with four per set would
provide a four-word reload path as desired. However, the
cache capacity has been doubled, which increases the cost,
package size, and delay, and is not typically acceptable. The
fundamental design problem is that technology
improvements increase the array bit density per chip faster
than the system has increased the required cache capacity.
The net result is that the number of chip units per system has
greatly decreased with time, and this trend will continue.
Thus, the designer of the “next” system typically has fewer
chip units available and a potentially smaller reload path.
For instance, suppose that for the next-generation design of
the cache in Figure 4 the chip density increased by a factor
of four, while the cache capacity increased by a factor of
two. Hence, only four chip units are required instead of
eight, so the organization of Figure 4 would provide only a
one-word reload path, which is very undesirable. Obviously,
if the I/O path of each chip unit were increased from one to
two words, a two-word reload path would be possible.
However, this would be achieved at considerable expense,
since only a one-word path to the CPU is desired, thus

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

A BC D
Late-select
enable signals

SetB SetC SetD
— "
Two-word
reload path
D / 22
{ One word | One word
B
=]
- S
Q
=
e}
; Main
memory
B D
[One word [One word -
* b b
<]
=
ad 15
=
o
3

51 e

wasting the most important parameter, cache bandwidth.
Other solutions are desirable and possible, as will be seen
below.

Notice in Figure 4 that there are a total of eight chip units,
so that during reload there are six potential I/O ports which
are sitting idle. These could be used for increasing the reload
path width if we could spread the words of each set over
each chip unit. Then, during reload, one word could be
reloaded to each chip unit for a maximum of eight possible
words reloaded per cycle in this case. (Of course, fewer could
be reloaded if desired.) However, this improvement requires
a special type of mapping of the logical cache blocks (the
replaceable unit) to the physical array structure, sometimes
referred to as “Latin-square” mapping’ [9, 10]. This
mapping, using the cache chip unit of Figure 3(a), is shown
in Figure 5 for a four-way associative, late-select cache
design which requires only four chip units. (Additional
groups of four, similar to that in Figure 4, could be added
above these with appropriate interfaces.) The need for this
rather complex mapping arises from the lack of an adequate
reload interface coupled with the small number of chip units
needed for a typical cache. The design point at which such a
mapping is required can be specified as follows. Let

? A Latin square of order m is a m X m square array of m elements, with each row and
column a permutation of the elements.

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

§ Late-select, four-way set-associative cache organized using single-port chip units with two-word reload path, requiring two chip units per set.

s

N, = total number of chip units in cache,

n, = number of words reloaded to each chip unit per reload
cycle,
W, = total reload path to cache in words per cycle,

S = set associativity of cache organization.

Tl

A late-select cache will require the Latin-square-type map-
ping of Figure 5 if

N _Xn
(—S—‘—) <W,.)
For instance, in Figure 5, N, =4, n,=1, W, = 4, and
S = 4. When these are substituted into Equation (1), the left-
hand side yields 1, which is less than W, which is 4; hence
the Latin-square mapping is needed. Note that this would
still be true even if the set associativity were reduced to
S = 2. The reload path width of four words can be obtained
without this mapping only by increasing the number of chip
units or by decreasing the set associativity. For example, in
Figure 4, there are eight chip units and the reload path is
only two words, so N, =8, n,=1,S=4,and W, = 2.
Substituting these into Equation (1) yields four for the left-
hand side, which exactly equals W,. Thus a Latin-square
mapping is not needed, as shown in Figure 4.

RICHARD E. MATICK

19

20

Chip unit 1
Q2072722222

Chip unit 2
A 5,

4 4

_______ | [P w1

7 Z

Bx3 / Cx3 %

T é T é

5 % —7< é

-2 et /

B, — 1 < U

5 % g .

v X Y

Bos é Word Cos z

T, é D é

-——_Cx;_- % _-—-——BX-;— é

T 7 T 2

: é : %

%1 5, |

IR b, 1

Cos Z Dos Z

o S] [Ve Bm 1

D % A %

| _ s _ 1

Dxl é Axl %

T Z T Z

) Z —1

—_— s Y I 7

[5 7 A, U

11 % %

[_ P _ O | _ A

Word Dm Z Word A01 é

Word Ay Z ____%__é

A B Z

— Z — é

: é ; - z

L Au . IR T

Word Ay % Word B %

Word Ay, é Word By, é

EZ Word By Y
One-word 1/0 One-word I/0

Notation: Sblock.word: e.g., A13 = Set A, block 1, word 3

words per block and x blocks total.

The mapping of Figure 5 is used in the following manner.
During normal accesses, the same address is applied to all
chip units in order to access the congruence class, composed
of the corresponding word from each set, e.g., word 1 from
each of sets A, B, C, and D. Thus, these four words must be
at the same address on each chip unit, and the same is true
for word 2, 3, 4, etc. However, during reload, only one word
can be written to each chip unit, and if we wish to reload,
say word A0, Al, A2, and A3 on the same cycle, obviously
this can be done only if each of these words is on a different
chip unit. The same holds true for all other groups of four
words. The mapping of Figure 5 provides the proper
distribution of words on the chip units, but two problems are
encountered during reload. First, because contiguous words

RICHARD E. MATICK

Chip unit 3
7777722222228

Chip unit 4
2772224

Z

Ax3 %

7

T /

E—

______ T

Ay %

7

___________ N

Word Aog %

1

——————— TR

T é

——1

A IR T

5

—— e s]

B 7

02 é

C.xS %

—————— -

x1 /

i é

——1

15 P

—————— ~ Twed S U

Word 11 é

______ %]

Word C()[z

Dx4 %

—————— %

D, %

‘ %

___________ u b

Word Dy %

7

Word Dy, Z

————— Word Dy Y
One-word 1/O One-word I/O

Logical-to-physical mapping for spreading each block across each chip unit in a late-select, four-way set-associative cache with eight logical

of any given block are stored at different addresses on each
chip, each chip must receive a different (partially different)
address. Since the starting address depends on which set is
being reloaded, the addressing logic and bus for reload are
more complex. A further complication arises in that a given
word from main memory, e.g., word 1, can reside on any of
the chip units, depending on the set being reloaded; hence, a
ring-shift data aligner is required between the cache and
main memory as shown in Figure 6. Additional complexity
is introduced in the late-select logic. Since the words of any
set can be on any chip unit, the late-select signal must not
only choose the set, but also match the appropriate word
and set according to the mapping, as shown in Figure 5, in
order to enable the correct chip unit. A final complication

IBM J. RES. DEVELOP. VOL. 33 NO. ! JANUARY 1989

arises from the single-word data path into/out of each chip
unit. During normal access, the four words must merge into
one word to/from the CPU. On reload, the four words must
be separate, allowing one-word I/O to each chip unit. For
the assumed chip unit of Figure 3(a), this would require an
off-chip multiplexor of some sort, such as that shown by the
MUX in Figure 6. While there are many ways and places for
providing this function, it must be included somewhere. If
this function is placed on a separate chip, the extra chip
crossing and multiplexor logic delay are added in the most
critical access path, which is extremely undesirable. Ideally
this multiplexor function should be done on the existing
chips, and the delay should be overlapped with other,
unavoidable delays. The proposed functionally integrated
chip totally eliminates this multiplexor and delay, as will be
seen later.

The additional circuitry required by this organization for
accessing is only one aspect of the total problem. Another
problem is that even though the reload bandwidth has been
improved, it still is far from ideal. Since there is only one
I/0 port on each chip, then only one access, either for a
normal CPU cycle or for a reload cycle, is possible on each
system clock period. A miss and subsequent reload typically
start at the word causing the miss—this word is immediately
loaded through to the CPU and the CPU resumes
processing. If the next CPU cycle requires a cache access,
either the CPU or the reloading must wait, with appropriate
logic for sensing and restarting. Regardless of which
alternative is chosen, either CPU or reload-wait, the overall
system performance is degraded. A further degradation is
encountered from the same access interference problem if a
store-in cache is used. This term means that the cache
contains the latest copy of the correct data, so if any changes
have been made to a block, it must first be written back to
main memory before it can be removed from the cache.
With high-performance systems, store-in cache is a better
cost performance design, so this produces many more
opportunities for access interference and degradation. Let us
now consider how we might improve on the above design,
first with simple additions to the cache chip.

Case ll: Single-port, single-word array access
with on-chip bus multiplexing and load-through
To minimize critical path electrical delay while simplifying
the overall busing, a few simple functions can be added to
the cache chips without disturbing the array design; i.e., the
functions are added entirely on the periphery of the array
boundary. From the above discussion, it is clear that adding
the multiplexor function of Figure 6, as well as the related
“load-through” path, will substantially help to remove some
of the limitations of the above organization. For instance,
the chip unit in Figure 7 has a one-word bus to main
memory and a separate one-word bus to the CPU; however,
the storage array itself is still only a one-port design to

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

Main memory

L P L 17

Four-word ring-shift aligner

%
7
7
Z
7
Z
i
Z
2
Z

Load-through [

MUX
S
SF—==
CPU-cache /
data bus MUX | | MUX MUX | | MUX
B, C, D, A,
%3 D, Ay B,
D, A B, <
A By S Dy,

:

Some additional functions required to achieve an improved reload
path via the mapping of Figure 5.

minimize cost and maximize bit density. The small amount
of multiplexing necessary to achieve this is included on-chip
as shown. (Note that the ring-shift aligner shown in Figure 6
is not on the chip but is part of the main memory interface.)
In addition, if a load-through bufter (L TB) is also added, as
in Figure 7, additional improvement can be obtained in
some limited cases. For instance, if a “read” access to word
AQ causes a miss and each chip has a load-through buffer,
then the four words A0, Al, A2, and A3 are loaded into
both the array and the buffer. Thus, these words are
available from these buffers on subsequent cycles. Note that
since four words are reloaded each cycle, only the first group
of four is loaded into the LTBs; the subsequent words go
only to the array. If sufficient logic is included to identify
these first four words, any of them could be loaded through
to the CPU via the load-through path, as needed. On the
next cycle after loading-through word AQ, if the CPU
accesses word Al, A2, or A3, it can be fetched from the LTB
on the appropriate chip, without interfering with the reload
of the second group of four words from main memory to the
cache. Of course, if the CPU writes to any of these words, or
if the access is to a word other than one in any of the LTBs,

RICHARD E. MATICK

21

22

o Reload g
-E out
m] Reload
in E2 ¥ Y E1
0) &
Main W » é Storage array
memory
data bus @ | =
A ‘
¥ i E A Write (normal)
r Data-in e
5 buffer - Data-out LS
5 a buffers ~F Late-select
<z |5 <—|
Al = -
Enable E o
load-through LTB @ @
buffer input @
o y Y __El
-t CS (chip select)
A MUXOUT ~- Read (normal)
E3
/
Tri-state -
drivers
E E2
Enable Enable direct
CPU-~cache LT buffer load-through
data bus data

Modified static RAM chip for cache applications.

an interference is encountered. Such LTBs can be valuable
for instruction fetches, which tend to be sequential; since
data fetches tend to be more random, the load-through
buffer will be of some, but limited, value. Even for
sequential I-fetches, the LTB does not necessarily eliminate
interference between reloading and CPU accesses. For
instance, suppose the word causing the miss was A3. A
subsequent reload will put A0, Al, A2, and A3 into the
LTBs. A sequential I-fetch will next access A4, which is not
in any LTB and must wait for the next reload cycle and
access to the array itself. The next I-fetch to word A5 will
not have this word in the LTB, hence an interference. Of
course, complex logic could be used to latch the second set
of four reloading words into the LTBs in this case, but the
cost is high and the reward is small. The functionally
integrated cache is a better design, as will be seen. In all

RICHARD E. MATICK

cases, if access is permitted to partially loaded blocks, word-
valid flags and logic in the CPU are required in order to
know which words are accessible.

Case lll: True two-port array with single-word
access on each port

1t should be clear from the above discussions that the
interface between cache and main memory is quite different
from that between cache and CPU. Since these two
interfaces are best satisfied with two buses operating with
different addresses, it would seem appropriate to use an
array which is truly two-ported, allowing two simultaneous
random accesses to the array. While this is possible, we will
see that this provides more than what is required for some of
the problems, but not enough to solve all the problems; in
other words, it is not the ideal solution.

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

A cache organized similarly to that of Figure 6 but using a
two-port chip unit is shown in Figure 8, with one port
interfaced to main memory for reload and the other
interfaced to the CPU for normal accesses. For reload, a
separate ring-shift data aligner and shift logic, plus a separate
address bus per chip unit with address logic, are still
required, much as before. Since each I/O port has a separate
address input, the CPU address can be separate, with one
bus to all chip units as shown. The two ports have
eliminated the need for separate multiplexors on the data
bus—they are built into the additional complexity of the
cells and separate word/bit lines and decoders. The load-
through buffers of Figure 7 are no longer needed, since once
a word has been loaded, we have random access to it via the
CPU port if we maintain logic in the CPU for specifying
which words have been reloaded. However, the load-through
path in Figure 7 may still be needed, even though a two-
ported array is used. The reason is that a two-port cell design
is considerably simpler if a write and simultaneous read are
not permitted to the same cells, i.e., do not read and write to

the same word. If this is the case, then either a separate load-
through path is required, or an extra cycle of delay is
encountered before the CPU can restart. In addition, the
logic for comparing the addresses for the two ports and
granting access must be done in the CPU—the cache is a
slave and will produce errors if used improperly. The store-
back of modified blocks which added to the reload time of
the case of Figure 7 is no different for the two-port
organization of Figure 8. Considering the fact that a two-port
cell/array design itself, without including the additional
drivers, decoders, and other logic which is necessary,
consumes approximately 30 to 50 percent more area than a
one-port design and is slower, we have paid an enormous
price and have gained very little in return. Thus, this type of
two-port design is definitely a poor choice.

Simplification of reload path

In all the cases above, it should be clear that one major
obstacle is the complex requirements of the reload path. In a
typical, ordinary RAM chip there is only one decoder which

Main memory

20 LIIIIII S IIIIIIIIILY,

L ANANKNNNNNANNNRNNNN

Ls CELIIIEIIS LIS IILIVAIP”

I Four words
. jp— .
lsok:glg Ring shifter
‘Word] Word 41 Word l Word
Reload Address buses / / \
address > 7
logic
} Port2

41 1ALIIISS 2 S PIIIIIII 179/ PR R s

N\
N\

L INNRNNNNNNNNNNNNN N

D NNNNANNNNNNANNNNNN
L ANANNNNNNNENNNNNNS,

B I y] }Portl

Address
bus [port 1)

CPU-~cache
¥ data bus [port 1]

One word

Late-select, four-way set-associative cache using true two-port arrays with single-word/chip unit access on each port and word reload via mapping

of Figure 5.

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

RICHARD E. MATICK

23

24

Block 0 [Yo,0[Yo,1

iz iz 27z

\

T HETITTIIMNN

RN

Set C SetD

SetB

- B W N -
£
- — - [- —

®
<

|
|
v,
T
|
'
v
[wx,ﬁ W0 Vel ,wx,ﬂ v,

L NARNERRRN

x,1 m wx.O

Block0| Woo | Wou [--+

W\

WO,B

MNT.

|
|
W i
1] %o | Y “E;—I |
1 Vg1 | Mipes w, '
2 2 B
- Set A SetB > SetC -

2 P iy, I
. R 2

Rl

NUOLIMTEHETIITIIIINN

a2y

R
il 4
1

v,

4

é

v 7

x| w Bl | w ! 7

x0 2 %0 | 7

W W Y é

x| TxBtl Ve xB+1 LA xB+1 V.8 Z
2 2 ’ 2 !

Notation: Whlock, word ®

3 oy v

selects the bit lines. As a result, there is only one fixed
interface to the external world for any and all accesses. A
RAM chip used for a cache, as described previously, requires
a typical type of interface when communicating with the
CPU, but a very different interface when reloading to/from
main memory. A substantial improvement can be achieved
by proper integration of the essential functions directly into
the cache chip. In order to achieve this, a different and
special mapping of the words and blocks to the physical
arrays is required and used in conjunction with a cache array
having an additional, relatively simple bit-line decoder. This
mapping is special in that a physical word (row) address
must access the multiple words of any given congruence
class for normal access, and multiple words from the same
set for reload. This requires.that multiple words from each
set must reside at the same row address. Figure 9 shows this
mapping for two chip configurations, each having x + 1
cache blocks with 8 + 1 words per block. In Figure 9(a), any

RICHARD E. MATICK

Mapping of sets, blocks, and words to chip units for late-select, four-way set-associative cache having x + 1blocks of 8 + 1 words per block for
(a) one and (b) two rows per congruence class.

given block resides at only one row address, while in Figure
9(b) any block resides at two adjacent row addresses. In
Figure 9, any row address to a single chip will select the
same bytes of the same words of each set (i.e., the
congruence class). In addition, the same row address also
accesses some portion of a cache block from each set as
required for reload. The minimum number of bits per row
required to achieve this mapping is a function of the cache
organization, system, and chip parameters, as will be seen
below. This mapping, when properly integrated onto the
chip, allows a four-way set-associative, late-select design with
muiltiple-word reload, the actual number depending on the
number of pins and decoding provided on the chip. This
mapping can be used with either a one- or two-port
cell/array design, although the latter will be seen to be
unnecessary unless, of course, the CPU itself needs to access
two separate words. When properly implemented, this
mapping eliminates the reload ring-shift data aligner,

IBM J. RES. DEVELOP. VOL. 33 NO. { JANUARY 1989

requires only one address bus connecting all chips, and lends
itself to inclusion of other simple functions on-chip to
significantly assist reload, at small cost, with essentially no
additional delay, and using a one-port array design.

The mapping of Figure 9 can be used with various levels
of complexity on the cache chip to improve performance. At
the lowest level, an additional bit-line decoder can be added
to eliminate the ring-shifter and the separate address per chip
unit. One simple example illustrating how this can be
achieved is shown in Figure 10. The bit-sense lines are
connected on each end to a different bit decoder. The top
bit-line decoder interfaces to main memory for reloading,
while the bottom one interfaces to the CPU for normal
accessing. Note that while the chip itself has two separate
data buses, one to main memory and one to the CPU, the
cells and arrays are single-ported. This requires that both
buses cannot be busy simultaneously (we later remove this
restriction).

The importance of the mapping and its implementation
requires considerably more detail. Suppose a 64K-byte, four-
way set-associative, late-select cache is implemented from

A

Main memory

Even word [Evenword }

I8y /1
/7 QoL iz
i

128K-bit chips, arranged as 256 rows (physical word lines)
by 512 columns (bits per word line) as in Figure 10. It is
further assumed that the bottom column decoder on each
chip decodes 4 X 16 bits out of 512, where each group of 16
bits is one half-word from each of the four sets, ABCD (i.e.,
the congruence class). These four half-words are held in the
output latches until the late-select signal selects one of the
four and dumps it on the CPU data bus through tri-state
drivers. Each chip supplies half the word for a 32-bit logical
word. The bottom decoder provides the selection for a
maximum of four-way set associativity. The same physical
structure could provide a two-way associative cache—the
sets on each chip would be mapped AABBor ABAB
rather than A BCD, and the late-select signal would have to
be combined externally with the appropriate logical word
address (similarly for the reload path). The same chip in a
modified organization could provide eight-way associativity,
but is usually not necessary. The top decoder provides

32 out of 512, where the 32 bits are all contiguous bits

and represent two contiguous half-words from the same

set.

| Oddword | "Odd word

7

One word One word
Chip unit 1
Decode 32 out of 512
Reload » Decode 32 out of 512
© 512 bits per row ——»]
v
§ % 256 rows (physical of 512
2 = word lines) 2 ‘
Normal
access »1 Decode 4 X 16 out of 512
Late-select 1 of
Late-select select 1 of4
16 bits 16 bits

One word One word
Chip unit 2
Decode 32 out of 512
Decode 32 out of 512
Y
_§\o - 512 bits per row ———
el
o
3% 256rows of 512
a2 Y
- #] Decode 4 X 16 out of 512
Late-select 1 of 4
16 bits

word

32-bit a—s—18
T

CPU-cache data bus

Elimination of ring-shift data aligner and data bus multiplexor by proper mapping and on-chip decoding, in a 64K byte, four-way set-associative,

i late-select cache with a four-word reload path.

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

RICHARD E. MATICK

25

26

For this assumed configuration, a 32-bit logical word
length requires two chips per chip unit in Figure 3(a), and
this chip unit has the capacity to reload two words per cycle
from main memory. The total number of words which can
be reloaded per cycle depends on the number of chip units
in the cache. Assume that two chip units are required, as in
Figure 10, for a total cache capacity of 64K bytes. The
reload path can then be four words wide. One reasonable
arrangement for reloading from main memory would be to
put even words on one chip unit and odd words on the other
(any other arrangement is also workable). The ring-shift
alignment is done by the 32 out of 512 bit decoders on each
chip. The need for a separate address bus to each chip is
eliminated by the use of the mapping of Figure 9 with a
control signal indicating “reload” or “normal access,” since
only one or the other path can be active at one time. The
same address bus is used for CPU accesses and reload. For a
reload, the upper decoder is activated on each chip, and the
bit address selects four consecutive words on the four chips,
where all these words are within one set as required. For a
normal access, the lower decoder is activated and four words
of 32 bits each, one from each set, are selected on one or the
other of the two chip units, as determined by the even/odd
word address. The late-select signal enables one of these
to/from the CPU data bus.

Note that the organization of Figure 10 need not use the
exact mapping shown in Figure 9. In fact, the minimum
number of bits per physical word (row) on each chip is 128
(i.e., 4 X 32) bits in this case. The required minimum
number of bits per row can be related to the other
parameters as follows. Referring to Figure 9, let

b, = number of bits per row on each chip,

L, = number of bits per logical word (32 bits in our
examples),

W, = total number of logical words reloaded per cycle,

N, = total number of chips in cache,

S = set associativity.

For the configuration of Figure 10, the minimum number of

bits per row on each chip is given by
SXL,XW,

b = ——

: N

c

2

Of course, as the chip configuration is changed, the bit-line
decoders must be changed accordingly. If the reload path is
decreased to two words per cycle, while the set associativity
remains at four, with four chips, from Equation (2) the
minimum number of bits now becomes 64 bits per row. The
I/0 path to main memory is likewise reduced to 16 bits per
chip.

While the implementation of Figure 10 is workable,
neither the store-back of a modified cache block nor the
reload can take place simultaneously with normal accesses
because of address-bus as well as array-access contention, so

RICHARD E. MATICK

there will be interference and significant performance
degradation. The key is to design a chip using a one-port
array while providing all the functions and not
compromising the speed. All of these requirements can be
achieved in the organization of Figure 10 by the inclusion of
two very simple registers on-chip, namely a store-back buffer
and a cache-reload buffer, along with a simplification of the
top bit-line decoder, all described below.

Functionally integrated cache chip

A schematic of a cache chip unit which properly integrates
all the above functions, while still using a one-port array
design and requiring only one address bus to all chips, is
given in Figure 11 (only data-flow shown). This is achieved
by the use of the mapping of Figure 9, properly integrated
bit-line decoders, and two special buffers with associated
addressing logic. In Figure 11, each chip unit interfaces to
the CPU data bus via a bit-line decoder which selects one
word from each of the four sets within the array, followed by
a multiplexor which uses the late-select signals to select one
of these four words, identical to Figure 10. However, the
interface to main memory shown in Figure 10 is significantly
improved as follows. The bit-line decoder at the top of the
array selects, for any given set and block address, the total
portion of that block which resides on that chip unit rather
than just the one word decoded in Figure 10. This requires
less decoding than the top decoder in Figure 10.
Furthermore, the data bus in and out of this decoder does
not go directly to main memory but rather is dot-ORed to
the store-back buffer and cache-reload buffer as shown in
Figure 11. These two buffers interface to main memory on
one bus per chip unit as shown. The operation of these
buffers can be made nearly transparent and can give the chip
an appearance of a two-port array by including some of the
controls on the chip. The special functions on this cache
chip are the following:

1. Store-back buffer (SBB); since the cache is a “store-in”
cache, a cache miss requires that any modified block be
rewritten back to main memory. On one cache cycle, any
block can be fully written into this temporary buffer to
allow reload to proceed as fast as possible. The cache
controller issues the necessary signals to achieve this
action. These signals enable the top set of bit switches as
well as the SBB, and the latter latches whatever data are
on the SBB/CRB array bus. During reload, these data just
remain latched in this buffer. After reload is completed,
the SBB is written back to main memory, while the CPU
can simultaneously access the cache array. The writeback
is performed under the guidance of the cache controller
in conjunction with some on-chip controls such as a two-
bit counter which points to the next entry and is
automatically incremented for each unload cycle.

2. (a) Load-through path; on a cache miss, the first word

fetched from main memory and passed to the cache is

IBM J. RES. DEVELOP. VOL. 33 NO. I JANUARY 1989

To/from main memory

Y e 32}—-'32]—-[32]—-L33_

Select 1 of 4 words

S

Late-select -
enables

Y

| |
l A
Load-through 32b

CRB access path

- - Qverwrite \

“ a

Store-back 1 §
L - % -t -»- Lt § g:xl?fi‘:

Decode 256 out of B, §

N\

- B, bitsirow o= §

) N

: \

: \

a N

\

N

\

\

Decode 4 X 32 out of BW §

N

\

N\

N\

\

\

N\

\

N\

\

N

N\

\

\

\

A O

One chip unit
meciup One word

CPU-cache
data bus

Functionally integrated chip unit using one-port array cells.

the word which caused the miss (either read or write required for load-through control can all be placed
miss). The cache chips will pass this first word from on-chip since they are quite simple.

the main memory data bus directly to the CPU data For a WRITE miss, the word which caused the

bus via the load-through path for an immediate load miss must first be loaded into the CRB, after which it
on the same cycle. If the miss was for a write, the can be overwritten as described below.

simplest design is still to place the data on the bus but (b) Cache-reload buffer (CRB); reloading words from
not have it latched by any unit—this could be main memory go first into the CRB. While this is
changed to load-through for only a read miss but is taking place, the CPU may read or overwrite any
unnecessary. Only the first word is loaded through. words which have already been loaded into the CRB
Subsequent words can be obtained from the cache- via the CRB access path, or any other data already
reload buffer after they have been reloaded. Note that resident within the cache array. The additional

if W, words are reloaded on each cycle, on the cycle controls required for these features are not very large
after the first word is loaded through, any of these W, nor complex. Some or all of them can be placed on
words are available to the CPU. The functions the cache chip, depending on the system pipeline, 27

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989 RICHARD E. MATICK

28

technology available for the cache, and the

performance required. In general, higher performance

is obtained by placing more of the controls directly
on the chip to give the chip an external appearance of
being a two-port array. In other words, simultaneous
accesses from both the memory side and CPU side
are handled by the chip, which decides whether the
information is in the CRB or array, and delivers it
with minimal outside control. The basic functions
which must be provided, either on-chip or elsewhere,
are as follows:

& Reload address register (RAR), a register which
holds the address of the block and word-group W,
being reloaded.

& Set ID register, which holds the ID of a set which is
being reloaded and contains either .S bits (decoded,
direct set enable) or s encoded bits, where s = log,S.

e Word-group valid flag register (WGVF), a W~
master/slave register which holds one valid flag for
each word-group in a cache block; if there are W,
words per cache block, then there are a total of
W, /W, word-groups and an equal number of such
flags to specify which of the word-groups have been
reloaded. If two words are reloaded each cycle and
the cache block contains four words, then two such
flags are required.

& Compare and CRB control circuits for
automatically selecting the CRB or array as
appropriate. The details of such control are
technology- and design-dependent, thus are not
shown, but are relatively straightforward.

The overall functioning of this chip unit is as follows.
Suppose a cache access miss occurred and the block to be
replaced has been modified. Assuming a store-in cache, this
block must be removed from the cache before the new block
overwrites it. However, if this block were totally written back
to main memory before the reload process started, a very
significant performance degradation would result, especially
as the CPU design attempts to reduce the average number of
cycles per instruction. Thus two actions are initiated
simultaneously; first, the reload request to main memory is
started, and at the same time the modified cache block
which is to be replaced is temporarily stored in the store-
back buffer (SBB) (the latter action only requires one cycle).
As soon as main memory can start the reload, the incoming
words are placed in the cache-reload buffer (CRB). The
preferred design is a CRB which can hold an entire cache
block, although a partial-block design is also feasible. A full-
block design is assumed. Since typically only a part of a
block is reloaded on each cycle, several cycles and some
addressing/decoding are necessary to properly access the
CRB. This is done by a very simple decoder which can be
located on-chip or elsewhere. The address for the reloading

RICHARD E. MATICK

words need be only the higher-order bits of the block index
bits, which will typically be two to four bits and thus four to
sixteen cycles for reload. These bits and other necessary bits
are stored in the reload address register (RAR). Because
these bits were present on the CPU-cache address bus at the
time a miss occurred, they contain the address of the word
that caused the miss and hence is used for control of both
the load-through buffer and the CRB. Once the CRB has
been fully loaded, it requires one cache cycle to load this
into the array. This can be done immediately, or, preferably,
after another miss is encountered. The latter can be done
during the cache idle time while the next block is being
fetched from main memory, thus avoiding a lost cycle.

© Minimum mapping for functional chip

For the configuration and assumptions used above, the chip-
unit configuration requires a minimum of one entire block
from each of four sets to reside at each row address. This
results from the size of the cache block, the set associativity,
and the specification that the SBB will be loaded from the
array on one cycle and likewise that the CRB will be
unloaded to the array on one cycle. We could relieve this
restriction by specifying that the SBB be loaded from the
array and CRB be unloaded to the array in multiple cycles,
since there will typically be two or more cycles idle for each
of these. If we choose two cycles for this, one entire block
from each set can reside at two row addresses. This provides
more flexibility in the overall cache specifications but adds a
small amount to the on-chip controls. Note that the number
of cycles to load the SBB could be different from that to
unload the CRB to the array, but this has little advantage
since the same decoder is used for both functions. The
minimum number of bits per row on each chip for a
generalized functional cache of the type in Figure 11 can be
specified as follows. In Figure 9, let

b, = number of bits per row on each chip,

« = number of cycles to load SBB/unload CRB to the
array = number of rows per block,

b,, = total number of bits per cache block,

N, = total number of chips in cache,

S = set associativity.

For this general case, the minimum number of bits per row
on each chip is thus given by

S X by,
o ————

b'_axNC' &

For the ideal case, a value of a = | is preferred if possible.
For such a case, and with a four-way set associativity, 64
bytes (8 X 64 bits) per cache block, and four chips total,
Equation (3) specifies a minimum of 512 bits per row. If we
allow « to be two cycles, which maps to two rows per block
as given by the mapping of Figure 9(b), or alternatively
reduce the cache block to 32 bytes, a minimum of 256 bits

IBM). RES. DEVELOP. VOL. 33 NO. i JANUARY 1989

Pm pins (to main memory)
R

Uigaarrizriiiiiziziiiiiiizinzziizziéid

DA

3

MMM

%
SBB CRB]
by /N bits b, /N bits Z
] Hl
- 2 Z
;|
1N
@ %

&)

b .JoN
outors, e oot of %
g <f—bi bits—1 | 3~ *—bf—l—"’ L b %
S) ,§ | |t] %
R 4 " SetA o8 SetB ™9 Set__ %
g é ‘ U-1 5 £ 1U-2 s IU-S %
Decode P, P outof b, %
out of bi ¢ ! %
T %
| # .
| .
! .
Y %
SRRT { %
Late-select —» Late-select Overwrite %
enables Bi Di MUX CRBMUX %
I | Z
| .
%d’ll:?'s‘ate I [P receivers] %
VErs ¢ %
|
P_pins to/from CPU

e

General chip structure and partitioning for an island-type design showing path widths at each interface.

T o e &

per row are required. Obviously, a choice of both « = 2 and
a 32-byte block reduces the minimum number of bits per
row to 128. In this manner, the chip designer is given more
flexibility in choosing the more optimal array configuration
for speed and layout, which is important.

o Cache chip implementation

Although the above functions can be implemented with
macros on a relatively standard array design, the highest
possible performance will require a custom design. Such a
custom integrated approach will have many trade-offs in
terms of circuit design, timing, and partitioning, which are
highly technology-dependent. However, the logical structure
of the chip will be basically the same, although the actual
values of individual parameters will change. A very general
logical partitioning in terms of islands which incorporates all
the above functions is shown in Figure 12 for a single chip.

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

Each set, or portion thereof, is mapped to one or more
islands of this chip, and one or more chips as needed to form
a chip unit. Assuming the cache capacity in bytes, C, set
associativity, S, the technology in terms of bytes per chip,
B._, and hence number of chips in the cache, N_, the length

of the logical word, L,,,, the number of pins (bits) per chip
for the CPU data bus, P, and the number of pins (bits) per
chip for the main memory data bus P_, have been specified,
various relations among the remaining parameters for logical
partitioning and reload path are as follows.

As defined previously, each chip unit is organized to
supply one logical word to the CPU. The total number of
chip units for each independent bank is

—Sl==x==. ()

The average number of words reloaded per reload cycle,

RICHARD E. MATICK

29

30

Main memory
(Z=integer 1,2, ---)

Word 1Z ‘Word 2Z
32 bits 32

Word 3Z ‘ Word 4Z

16: 16 16

i

CRB CRB [
iz 64 p———r
Z ’
] Set |
B |
64K -bit 7 ’
chip 7 7
P, 1 Ti6

16 7y

P16 16

S41EII AL, LIS IETL IS5,

SBB

s
SBB
64b

Set

R Y
R R R R

AN R

Y
.

32-bit
CPU data bus

ot

and SBB/CRB distributed across all eight chips.

assuming all P, ports are used, is

W, =N_X -1—)3 in words per cycle. (5
w

For a chip which is configured from independent islands
such as that shown in Figure 12, the islands must be grouped
into island units, U, to match the given chip pin constraint,
P, to the CPU and the set associativity, S. Ideally, there
should be one island unit per set on each chip, and this will
specify the amount of decoding needed per island and island
unit. Note that an island unit is defined per chip, so for a
partitioning which requires more than one chip per chip unit
(i.e., per logical word) as in Figure 10, a logical word can be
spread over multiple islands and multiple chips. In such a
case, the bottom decoder on each island unit in Figure 12
which services the CPU must decode P, out of b, bits per
logical island unit.

The island decoding on the top of the arrays in Figure 12
must take into account that the interface is to the SBB/CRB,
which has a wider bus width than the individual chip bus
width, P_, to main memory. Ideally, each SBB/CRB will be
spread over all NV, chips, so each chip will contain only /N,
bits of the cache block. If the SBB/CRB are loaded/unloaded
to the array in a cycles, where a = 1, the top decoder on

RICHARD E. MATICK

Partitioning of a 64K-byte cache using 64K-bit chips in a two-way set-associative, late-select design, with a four-word reload path: 64-byte blocks

each island unit must decode b,,/(a X N_) out of b, bits. Note
that no top decoding is necessary per island unit if b, exactly
equals by /(a X N_). Ideally, it is desirable to have a = 1.
However, if the maximum allowable island unit array bit
width, b,, is for instance one half of b,,/N_, using a value of

a =2 will exactly match the two requirements.

Cache system: Partitioning example

An example of how a cache might be partitioned onto the
preferred custom layout of Figure 11 is given below. It is
assumed that a 64K-byte, two-way set-associative, late-select
cache organization using 64 bytes per block (replaceable
unit) is implemented with static, functional cache chips
having 64K bits per chip, with a 16-bit primary data path to
the CPU, a 16-bit path to the main memory for reload, and
a 32-bit logical word to the CPU. Thus, the required
parameters are C = 64K bytes, b, = 512 bits, S=2, B,=8K
bytes per chip, P. = 16 pins, P, = 16 pins, and N, = 8 chips
total. Substituting these parameters into the above equations,
we find that the chip unit consists of two such chips, which
gives a total of N, = four chip units for this bank of 64K
bytes. Since each chip has a 16-pin interface for reloading,
the entire cache can have a four-word interface to main
memory for reload, as shown in Figure 13. Since the

IBM J. RES. DEVELOP. VOL. 33 NO. 1 JANUARY 1989

SBB/CRB are distributed over all chips, each chip will only
contain 64 bits (8 bytes) of each 64-byte block. For optimum
performance, the array configuration on each chip should
have a bit width b, of at least 128 bits to match the 64-bit
SBB/CRB in a two-way set-associative design. A four-way
set-associative design under the same conditions would
require 256 bits. The remaining overall structure is logically
equivalent to those of Figures 11 and 12, with appropriate
partitioning to match the given chip parameters.

Conclusions

The above discussions have shown that a cache system
operates in two distinct modes—normal access and reload.
During normal access, a typical high-performance processor
can require, on average, between one- and two-word access
per processor cycle at a continuous rate. Whenever an access
miss occurs, the system bandwidth requirement becomes a
single burst of multiple words (equal to the block size)
loaded on one main memory cycle and occurring
infrequently, at random intervals. Unfortunately, the latter
requirement is very difficult and costly to implement,
resulting in performance degradation in actual systems. This
has led to various cache organizations in an attempt to
reduce the reload penalty. Unfortunately, ordinary static
RAM chips are optimized for normal access and introduce
considerable complexity in the reload path. This complexity
takes several forms due to the various functions which must
be performed for reload, in combination with the cache
organization. Various pieces of this complexity can be
removed by identification of the proper function and its
implementation. By judicious organization and
implementation of the cache chip, most of the reload process
can be made to appear as if occurring on one memory cycle,
while still allowing a set-associative, late-select cache
organization. The internal array need be only a one-port cell
design, and the additional functions are easily integrated
with the proper choice of mapping of the cache blocks to the
physical array. The cache chip specified in this paper
incorporates all of these features and achieves an optimal
trade-off between the array/chip design and the functional
requirements of the overall system.

Appendix A: Nomenclature
a = number of cycles to load SBB/unload CRB to the
array = number of rows per block in Figure 9

b, = island unit array bit-width in bits per island unit
b, = number of bits per row address on each chip

b,, = total number of bits per cache block

B,, = number of bytes per cache block

B. = number of bytes per chip

B,, = total number of bits per row on a chip unit or n_b,
C = capacity of each independent cache bank in bytes
L,, =length of logical word in bits per word (32 bits in

our examples)

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

I. = number of islands per chip

IU = number of island units per chip

N, =total number of chips in cache over which a block is
distributed, i.e., the smallest independent unit of a

total cache

n, = total number of chips in each chip unit

N_, = total number of chip units in cache

P_ = number of data pins on each chip for CPU bus

P, = number of pins on each chip for reload bus from main
memory

S =set associativity

n, = number of words reloaded to each chip unit per cycle

W, = total reload path to cache in words per cycle

W,, = b,/L,, = total number of logical words per cache block

Acknowledgments
The author wishes to thank F. T. Tong and S. Chuang for
their support and helpful discussions.

References

1. S. Schuster, B. Chappell, R. Franch, P. Greier, S. Klepner, F.-S.
Lai, P. Cook, R. Lipa, R. Perry, W. Pokorny, and M. Roberge,
“A 15-ns CMOS 64K RAM,” IEEE J. Solid State Circuits
SC-21, No. 5, 704-711 (1986).

2. R. E. Matick, Computer Storage Systems and Technology, John
Wiley & Sons, Inc., New York, 1977.

3. D. Fier, R. Caulk, P. Torgerson, D. Breid, R. Bradley, and K.
LeClair, “A 36/72b CMOS Micro-Mainframe Chip Set,” Digest
of Technical Papers, IEEE International Solid State Circuits
Conference, February 1986, p. 26.

4. D. Alpert, D. Carberry, M. Yamamura, Y. Chow, and P. Mak,
“32 Bit Processor Chip Integrates Major System Functions,”
ELECTRONICS, pp. 113-119 (July 14, 1983).

5. T. Watanabe, “An 8K Byte Intelligent Cache Memory,” Digest
of Technical Papers, IEEE International Solid State Circuits
Conference, February 1987, p. 266.

6. C. Alsing, K. Holberger, C. Holland, E. Rasala, and S. Wallach,
“Minicomputer Fills Mainframe’s Shoes,” ELECTRONICS, pp.
130-137 (May 22, 1980).

7. R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM Syst. J.
9, No. 2, 78-117 (1970).

8. R. E. Matick and D. T. Ling, “Architecture Implications in the
Design of Microprocessors,” IBM Syst. J. 23, No. 3, 264-280
(1984); (Figure 6).

9. H. B. Mann, Analysis and Design of Experiments, Dover
Publications, New York, 1949.

10. M. Y. Hsiao, D. Bossen, and R. T. Chien, “Orthogonal Latin
Square Codes,” IBM J. Res. Develop. 14, No. 4, 390-394
(1970).

Received July 7, 1988, accepted for publication October 3,
1988

Richard E. Matick /BM Research Division, T. J. Watson

Research Center, P.O. Box 218, Yorktown Heights, New York 10598.

Dr. Matick received his B.S., M.S,, and Ph.D. degrees in electrical

engineering from Carnegie Mellon University, Pittsburgh, in 1955, 31

RICHARD E. MATICK

32

1956, and 1958. He joined IBM in October 1958 and worked in the
areas of thin magnetic films, memories, and ferroelectrics. As
manager of the Magnetic Film Memory Group from 1962 to 1964,
he received an Outstanding Invention Award for the invention and
development of the thick-film read-only memory. He spent six
months at IBM Hursley, England, developing this read-only memory
for System/360 applications. Dr. Matick joined the technical staff of
the IBM Director of Research in 1965 and remained until 1972,
serving in various staff positions that included coordinator of
Research Division plans and Technical Assistant to the Director of
Research. He took a sabbatical in 1972 to teach at the University of
Colorado and at IBM Boulder. During the summer of 1973 he
taught at Stanford University while doing research there. He is
currently working in the areas of VLSI functional memory chip and
microprocessor design. In 1986 Dr. Matick received an IBM
Outstanding Innovation Award as co-inventor of “video RAM,” a
new memory chip that is becoming popular for use in bit-buffered
displays and is also used in the high-resolution display announced
with the IBM PC RT. Dr. Matick is the author of the books
Transmission Lines for Digital and Communication Networks and
Computer Storage Systems and Technology. He is also the author of
chapters on memories in Introduction to Computer Architecture and
Electronics Engineers’ Handbook, Second Edition. Dr. Matick has
written numerous papers on magnetic devices and memories,
semiconductor circuits, memory and logic, as well as virtual memory
chips and systems. He is the holder of numerous patents and patent
publications, and is a member of Eta Kappa Nu and a senior
member of the Institute of Electrical and Electronics Engineers.

RICHARD E. MATICK

IBM J. RES. DEVELOP. VOL. 33 NO. | JANUARY 1989

