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The kinetics

of fast steps on

crystal surfaces

and its application
to the molecular
beam epitaxy

of silicon

by R. Ghez
S. S. lyer

Crystal growth by molecular beam epitaxy (MBE)
occurs under conditions of high supersaturation.
The classic growth theory of Burton, Cabrera,
and Frank (BCF) is based on the assumption
that surface steps move slowly. Consequently, it
requires modifications to be applicable to MBE
because the velocities of surface steps may be
large. In addition, because such steps are
asymmetric structures, as observed
experimentally by field ion microscopy, capture
probabilities from above and from below a step
must differ markedly. Hence the adatom
concentration distribution cannot be at
equilibrium at steps; there, it also suffers a
discontinuity. We propose a model that treats
surface step motion as a Stefan problem and
that also respects its physical asymmetry.
Calculations are presented which extend and
complete recently published results that had
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imposed the restrictive condition of local
equilibrium at steps. Step velocity is estimated
as a function of supersaturation, degree of
asymmetry, and step density. Concentration
profiles are then computed; they are found to be
generally skewed. In all cases, we show that the
behavior of the growing crystal is convective
rather than diffusive when the supersaturation is
large. Consequently, we can understand the
extraordinary insensitivity of the MBE of Si to
changes in growth temperature and orientation.

1. Background and motivation

The crystal-growth theory of Burton, Cabrera, and Frank
[1-3] explains the structure of crystal surfaces, the role of
dislocations in the formation of some types of surface steps,
and the rate of advance of these steps over close-packed
terraces. Although not every crystal grows by a layer
mechanism, there is now ample evidence for its relevance,
for example, to epitaxial growth on vicinal semiconductor
surfaces. Monoatomic steps have been detected on Si and
GaAs surfaces by transmission electron microscopy [4],
Nomarski phase contrast microscopy [5-8], and scanning
tunneling microscopy [9, 10]. Moreover, the production of
very smooth surfaces, required for submicron device
processing, would be improbable if mechanisms other than
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step motion were dominant. This, of course, begs the
question regarding the source of steps. Although that
question remains generally unresolved, it appears, today,
that steps can originate from misorientation and crystal
edges, in addition to line imperfections and edges of nuclei,
as proposed by BCF.

It is, perhaps, useful to recall a simplified argument that
illustrates the main assumptions of the BCF theory and that
introduces relevant notation. Figure 1 shows a computer-
generated surface element [11] that is composed of terraces,
ledges, and kinks [12]. Atoms [13] from the volume phase
come raining onto the surface with flux F. Once adsorbed on
terraces, these loosely bound atoms can execute two types of
jumps: to adjacent surface sites or backto the volume phase.
The first type is characterized by a surface diffusivity D,,
whereas a surface lifetime 7, describes the second. (Processes
that favor adatom capture by steps are described later.)
According to BCF, the product of these quantities serves to
define a length scale,

x,=+vDr,, )

also called the mean surface diffusion distance. This is a
fundamental quantity because, in many cases, one expects
surface concentration distributions n(x, ¢) to vary over
distances of the order of x,. Figure 2 illustrates such a
distribution around an isolated step. In its immediate
vicinity, the step, if it is an efficient sink [14], can maintain
the concentration at its equilibrium value #,. On the other
hand, the adatom population far from the step is in
equilibrium with the supersaturated volume phase.
Introducing the (relative) supersaturation ratio ¢ and the
equilibrium value F, of the flux F, we must have the
equalities n(+, t)/n, = F/F, =1+ ¢. Next, if v is the step
velocity and if n, is the areal density of reticular sites, the
convective flux #,v due to the motion of the step must equal
the sum of the two surface fluxes +D.dn/dx to that step.
Estimating these fluxes over the distance x, and introducing
the equilibrium coverage 6, = n./n_, we easily get the BCF
expression for the velocity of an isolated step,

v, =200.D,/x,, 2

which we now briefly discuss.

First, this expression is the product of a driving force ¢6,
(not merely the supersaturation) and what may be called a
surface diffusion velocity D,/x,. Thus, the question “What is
a fast step?” depends on the magnitude of the dimensionless
ratio vx,/D,, known as the Péclet number. For example,
Equation (2) indicates that small driving forces imply slow
steps. Second, it is evident from Figure 2 that not all of the
area of the adjacent terraces is efficient for the collection of
adatoms. Only the strip of width 2., (equivalent to a capture
cross section) that contains a step is active. And last, it
should be physically obvious that Equation (2) represents the
maximum possible velocity of a step when diffusion is the
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Computer simulation of a growing vicinal crystal surface (courtesy of
G. H. Gilmer, AT&T Bell Laboratories, cf. [11]), showing the
terrace-ledge-kink structure of the surface and, schematically, the
main paths for mass transport.

> UBCF
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Schematic representation of a section through an isolated step and the
adsorbed concentration distribution on the adjacent terraces. Note
that here we assume local equilibrium at the step.
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only transport mechanism. Additional restrictions such as
competing, curved, or nonequilibrium steps will decrease
this estimate, Analytically, the right-hand side of Equation
(2) must be multiplied by an appropriate function f
whose magnitude is less than unity. For example, BCF
estimate that a train of parallel steps, spaced a distance /
apart, will travel at the rate

Upcr = ¥, tanh (#2x,). 3)

In short, the BCF theory provides estimates of crystal growth
rates for monocomponent systems when steps move slowly
and are efficient sinks, when steady-state conditions exist,
when transport occurs by surface diffusion alone, and when
volume diffusion is not rate-limiting,

Many authors have offered extensions and clarifications of
the BCF theory. With no claim to completeness, we mention
the important work of Chernov {15, 16] in which he
introduces a “kinetic coefficient” designed to describe
deviations from equilibrium at steps, as well as his treatment
of macrosteps [17]. Nonequilibria were further elucidated in
Temkin’s random-walk calculations along ledges [18] and by
Schwoebel [19], who recognized that Chernov’s kinetic
coefficient should depend on the direction from which
adatoms approach a step. Chernov also provided the first
estimate of growth-rate limitations by direct volume
diffusion to steps [16]. This problem has an immediate
electrostatic analog, and, consequently, its solution contains
a well-known logarithmic singularity at steps. This singular
behavior was removed in the work of Ghez, Gilmer, and
Cabrera [20, 21], in which volume — surface — step
transitions were required. More recently, van der Eerden has
considered the combination of both these approaches [22].
There have been few attempts to model multicomponent
systems. Noteworthy are the efforts of Mandel [23], Takata
and Ookawa [24], and Chernov and Papkov [25, 26].
Questions relating to high coverage were addressed by Ghez
[27] and by Aleksandrov and Entin [28]. The stability of
step trains and their time-dependent behavior were
investigated by Gilmer, Bennema, Sunagawa, and Janssen-
van Rosmalen [29-31], and Miiller-Krumbhaar addressed
the general problem of nonuniform supersaturations [32].
Finally, the present status of the BCF theory and its position
in general theories of crystal growth and habit have been
admirably reviewed in monographs by Miiller-Krumbhaar
[33] and by Chernov [34, 35].

Close to forty years have elapsed since the original BCF
publications, and, as just seen, many aspects of this theory
have been thoroughly investigated. Under these
circumstances, one may ask, not without reason, if this field
is not closed. There is, however, one aspect of the BCF
theory that merits further consideration. That theory, it will
be recalled, dealt with the motion of steps under low
supersaturations and thus with slow steps, slow in the sense
that was discussed following Equation (2). Then, the surface
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diffusion field can be computed as if steps are immobile, and
their motion follows from a local mass balance argument
that is used implicitly for the derivation of Equation (2).
This procedure is well documented in the literature on
“Stefan problems” [36]. With the advent of MBE, however,
and its truly enormous operating supersaturations, it is
possible that fast-moving steps are more common than
generally thought. There exist at least three earlier
investigations of this problem. In 1963, Mullins and Hirth
[37] considered the question of an isolated fast step that is in
local equilibrium, but they deemed such behavior unlikely.
A few years later, in 1972, Ghez presented similar
calculations for parallel step arrays that, furthermore, need
not satisfy local equilibrium [38]. These results remained
unpublished because MBE was then a largely unrecognized
technique. More recently, Voigtlaender, Risken, and Kasper
[39] analyzed the problem of step arrays, with the additional,
restrictive, BCF-like proviso that steps be locally at
equilibrium. (Reference [40] essentially duplicates these
results.) This restriction is not at all trivial because it is
known that steps are not symmetric structures with respect
to attachment-detachment processes at ledges. Field ion
microscopy has demonstrated unambiguously that atoms,
diffusing toward a step along an “upper” terrace of a facet,
are often repelled at the boundary step [41-44].
Consequently, not only should one consider potential
barriers around a step that represent nonequilibrium
conditions, but also, as Schwoebel had noted [19], these
barriers need not be symmetric.

This paper exhumes and extends Ghez’s earlier
calculations [38] and presents them, it is hoped, in a form
that will be useful to practitioners of MBE. They may,
perhaps, even serve those who lean toward the various forms
of chemical vapor deposition in those cases where
intermediate surface reaction steps are fast. The main
assumptions are not very different from those in the original
BCF publications: steady-state conditions, equidistant
straight step trains, fast diffusion in the volume phase and on
ledges, an adequate density of kinks, the restriction to
monocomponent systems, and, thus, no occurrence of
surface reactions other than adsorption. Special care,
however, will be given to the boundary conditions at a step
that characterize its nonequilibrium state.

2. The diffusion-convection problem and its
solution
Consider a section of a vicinal surface, as depicted in Figure
3(a). It consists, essentially, of an equidistant array of
straight steps. The one-dimensional, steady-state
concentration n(x) of adatoms on terraces, measured in a
coordinate frame that moves with the velocity v of the steps,
obeys the differential equation

d’n dn n

en e =0. 4
D, =S+ = +F=0 (4a)

Ts
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Here, D,, 7, and F have exactly the same meaning as
previously [45]. This statement of mass conservation on
terraces is identical to the BCF equation, save for the second
(convective) term. There are several consequences of this
form. First, it must hold for all states, including equilibrium,
for which the concentration is spatially constant. Therefore,

(4b)

e=TsFe

is an expression of detailed balance between equilibrium
values. Next, the actual impingement flux F is related to the
supersaturation ¢ through

F=F( +a), (4c)

a form which, inserted into Equation (4a), is compatible
with the equilibrium state o = 0. Last, multiplying Equation
(4a) throughout by r, and remembering the definition (1), we
recognize with BCF that the mean diffusion distance x, is a
natural length scale and, consequently, that the Péclet
number vx /D, measures the relative dominance of
convection over diffusion.

We now inquire into the boundary conditions at a given
step. Figure 3(b) shows a schematic potential energy diagram
for adatoms that diffuse on terraces in the periodic lattice
potential. As these adatoms approach a step, however, they
experience barriers that are due to the net breaking of more
bonds than required for surface diffusion, and, as noted
above, the barrier to the left is, most likely, higher than that
to the right. In Appendix A we analyze attachment-
detachment processes at ledges, and we show that these
kinetics can be represented through “radiation” boundary
conditions

(5a,b)

dn
il)s d_x |0:=k:[n|0:_ne]

that hold on the positive and negative sides of each step.
[The notation 0+ has the usual meaning of right and left
limits as x — 0.] Here, k, and k_ are the corresponding
reaction constants for capture at a step; these need not be at
all equal. Their values control the deviation of the adatom
concentration, just below and above the step, from its
equilibrium value n,. Furthermore, we also show in
Appendix A that local mass balance at a step demands the
following “Stefan condition”:

0+
nv= [Ds dn + vn] . 6)

0—
The problem represented by Equations (4)-(6) is formally
quite simple, for we have nothing but an ordinary linear
differential equation with constant coeflicients (4) together
with two boundary conditions (5) that are linear in
concentration. On the other hand, Equation (6) will yield a
transcendental equation for the step velocity v because that
quantity already appears in the differential equation (4a)
and, therefore, in its solution.
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(a) Adatom distribution between two steps of an array. Note that the
concentration is discontinuous at steps if these are not at local
equilibrium. (b) Potential energy plot for adatoms in the vicinity of a
step. The barriers on its left and right need not be equal, i.e., the
capture rates k, can differ.

Before outlining this solution, it may be well to discuss the
physical content of the previous equations. In the first place,
Equations (4) (identical, except for notational differences, to
those proposed by Mullins and Hirth [37]) are the natural
extension of the BCF equations [1, 3]. The only difference
resides in the convective term vdn/dx that stems from the
motion of the coordinate frame. Calculations are often
easiest in that frame, particularly since the velocity vis a
constant for steady-state problems. Next, the rate constants
k,, in Equations (5), control deviations from equilibrium.
They allow a continuous transition from local equilibrium
(k — =) to a “blocking” condition (k — 0). In addition, as
noted above, a given step is not necessarily symmetric, so
that, for example, one side may be at equilibrium while the
other may be blocking. In this regard, we note that the
convective term of Equation (4a) introduces a further
measure of asymmetry—formally, that equation is not
invariant under reversals of the x-axis—which indicates
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simply that, all other conditions being equal, growth and
evaporation occur at different rates. And last, the reader may
have noticed an important difference between the
concentration distributions on Figures 2 and 3: In the latter,
the concentration, as well as the flux, generally experiences a
jump discontinuity at steps. This behavior is due to the
causes of asymmetry that were just noted. Consequently, the
second terms vn |, in condition (6) do not cancel except
when 7 is anchored to its equilibrium value #, at steps. For
convenience, we now write these equations in dimensionless
form.

First, in accordance with our previous remarks on the
mean diffusion distance x,, all lengths (running coordinate .x,
step distance /, etc.) are measured in this scale, and,
henceforth, primes will mean differentiation with respect to
the scaled coordinate x/x,. Next, we recognize that n/n_is
exactly the definition of the coverage §, and Equation (4a)
then becomes

6" + (vx,/D,)8" — 6+ 0,(1 + o) = 0. (7

Again following BCF, this form suggests the introduction of
a new unknown function

Vv=90,—(0-0) t))]

which measures deviations from the driving force of,. It
renders homogeneous the previous equation (7), and
Equations (5)-(7) then become

Y+ 2 -y =0, )
$hi‘pl I01+¢I01=0033 (10a, b)
20 =[¢ + 20y, . a1

Here, the Péclet number

2V=vx,/D, (12a)
and the dimensionless rate constants [46]

h,=D/xk, (12b)

compare the step’s velocity v and capture-rate constants k,
to the diffusion velocity D, /x, [47]. With these definitions,
for example, 4, = 0 and A_ = » imply local equilibrium and
blocking condition of a step with its leading and trailing
terrace, respectively. Likewise, the BCF result (2) for isolated
steps is simply V,, = ¢6,. Finally, for future reference, it is
convenient to define the sum and difference of these
dimensionless rate constants:

h=3(h,+h)) and d=5(h, —h). (12¢)

The steps were assumed equidistant. Consequently, we can
now solve Equations (9)-(11) in the periodic region (0, ¢),
which means that conditions just before the step, at x = 0—,
are exactly the same as those at x = /—. It is easily verified
that the general solution of Equation (9) has the form
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—Vx
e

sinh 3/

v(x) = [p sinh B(/ — x) + qew sinh Bx], (13a)
where p and q are the as-yet-unknown y-values on either
side of steps

p=¥(0+) and g=y¢(0-)=y¥(-), (13b)
and where g stands for the abbreviation

g=v1+V. (13¢)

This form (13a) is convenient because it expresses the
arbitrary integration constants in terms of physically
meaningful quantities. Now, the derivative ¢’ of Equation
(13a) is also linear in p and g, so that its insertion into the
three conditions (10) and (11) yields a system for the three
unknowns: p, ¢, and V. We can either solve this nonlinear
system directly or, considering V as a parameter, we can take
advantage of its linearity with respect to p and ¢ [i.e., the

2 x 2 system of Equations (10)] to get first

vt

e
p(Afab.) =1+ h_(BcothBi—V)+ h, B m—/, (14a)
—Vt
e
q(Aleb) =1+ h (BcothBl+ VY+ h_ B Tk (14b)

with the abbreviation
A=14+hh_+(h +h_)BcothBl+(h, —h )V
= (h + B tanh 38¢)(h + B coth ;8¢) — (d— V)'  (l4c)

for the determinant of the system (10). [Note the use of
definitions (12c) and of the identity 2 coth 2z =

tanh z + coth z in the second form of Equation (14c¢).] To get
the velocity, we need only apply similar steps to Equation
(11) and then eliminate p and g with Equations (14). After
some algebraic manipulations, we get

V[AE:%I-I—EIJ = B(1 + 2dV)(cosh B¢ — cosh V?)

+ h(8 — V)’sinh B¢
+ 2hVB(sinh B/ — sinh V), (15)

i.e., a transcendental equation for ¥ as a function of the
physical parameters ¢f,, 4, , and / The problem is now
completely solved because, from the solution of Equation
(15), we determine the boundary values (14) and, therefore,
the concentration through Equations (8) and (13a). We
discuss this solution in the next sections.

3. Analytic content and limiting cases

We have just seen that the solution of the previous
diffusion—-convection problem rests entirely on the solution
of Equation (15) for the velocity V. It has the form

V= a8, f(V), (16)
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where the function f(V'), always positive, also depends on
the parameters 4, and / [48]. On the other hand, this
function is independent of the driving force of,. Does
Equation (16) always have a solution, and if so, is that
solution unique? We proceed heuristically by investigating
the behavior of f(V’) for small and large values of V. We
then examine the limiting cases of small and large step
distance / In all these cases we inquire into the effect of
capture kinetics /1, .

We begin with a few general observations. First, we
recognize that Equation (16) is precisely of the form
discussed after Equation (2); namely, the (dimensioniess)
velocity V is the product of a driving force and of a function
that describes all other reasons for change [49]. This has an
immediate interpretation in terms of equivalent circuits
because, graphically, the solution of Equation (16) is the
intersection of the function f(¥) with the straight line V/o#,.
Figure 4 shows how this occurs for two different cases, to be
discussed shortly, of the function f. If we think of the driving
force as a voltage, and of the velocity as due to a (mass)
current, then f'is the analog of a (nonlinear) admittance or
response function. The graphical solution is precisely its
intersection with a “load line,” whose slope (on a linear plot)
is inversely proportional to the driving force o6,. This should
not be too surprising since, after all, the diffusion—
convection problem is linear. Next, we observe that our
general expressions (15), (16) contain earlier-published
results as special cases. In fact, if equilibrium holds on both
sides of steps, 4, = 0, we obtain the result of Voigtlaender,
Risken, and Kasper [39],

_ cosh 8/— cosh ¥/
V=odb.8 sinh 8/
sinh 3(8 + V)¢sinh 5(8 — V)¢
sinh %ﬂlcosh éﬁl '

17)

As these authors had noted, this reduces, in the limit /— oo,
to the expression obtained by Mullins and Hirth [37],

V=08,/(1—c62)" (18)

for isolated steps. This expression is generalized in Appendix
B when equilibrium does not hold at isolated steps. The last
observation relates to an earlier remark, following Equation
(6), regarding the physical asymmetry of the problem. If we
write out, in full, the parameter dependence of the response
function f(V'| 4 k., h_), then Equation (15) shows that f is
invariant under the transformation V' — -V, h, ~ h_, and
h_— h,. Since the A’s, in fact, distinguish the two sides of a
given step, these substitutions show that Equation (16) is not
invariant under equal and opposite driving forces. This
asymmetry between growth and evaporation will be explored
elsewhere.

We next examine the behavior of the function ffor small
values of V. A Taylor expansion yields
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Graphical solution of Equation (16). The load line intersects two
cases for the response function f{(V) at points V, and V;. The full lines
are the labeled response functions when ¢/2x, = 2, and the dashed
lines correspond to their estimate [Equation (B3)] when /— . These
two cases correspond to an asymmetric step that is essentially
blocking on one side and is at equilibrium on its other side. Both
solutions tend to Schwoebel’s solution V; = 6, f{0) when the driving
force is small. Increasing the driving force is equivalent to decreasing
the slope of the load line. On a log-log plot, such as this one, the load
line has unit slope, and an increase in driving force corresponds to its
downward parallel shift.

fVy=f+fV+0(), (19)
where

fo(£) = (tanh 3¢+ h)/A,, (20a)
£,(¢)=2d tanh 3/(h tanh 3¢+ h* + d*)/A] (20b)
Ao(f) = (h + tanh 5)(h + coth 3¢) — d°, (20c)

and where, evidently, the determinant (20c) is exactly the
expression (14¢) evaluated at ¥ = 0. The first point to notice
is that Equation (16), when evaluated in the limit of very
small velocities, vields exactly Schwoebel’s expression [19]

V= b, f, @1

for generally unequal capture kinetics [50]. The BCF limit
(3) then emerges when equilibrium holds on both sides of all
steps, i.e., when s, — 0. Thus, it should be clear that these
results obtain when the load line V/os#, is very steep, namely,
when the driving force is very small. The next point
concerns the sign of £, in the expansion (19). This coefficient
has the sign of d = %(h+ — h_) because the inequality |d| < &
is always true. For example, during growth, the condition

h, > h_ means that the trailing side of a step is closer to
equilibrium than is the leading side and, therefore, that
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Velocity as a function of step distance (or misorientation) for three
values of the driving force o'6,. The steps are assumed at equilibrium
on their left, o_ = 0,and they suffer sluggish kinetics, 2, = 20, on
their right. The dashed lines (identical except for a parallel shift)
represent Schwoebel’s solution (21). This solution is evidently valid
either for small values of #/x, or for small values of o'6,.
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Normalized concentration distribution of adatoms between steps
under the same supersaturation and kinetic conditions as in Figure 5.
The step distance is small: //2x, = 0.2. Note the large deviations
from estimates that neglect convection (Schwoebel, dashed line)
whenof, 2 1.

n(0+) > n(0-). It follows that a step, moving in the positive
x-direction, encounters adatoms at high concentration levels,
and that it recedes from adatoms at low levels. Thus, the
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convective term in Equation (6) contributes a positive
amount over the diffusion term, and we expect that the
velocity, labeled ¥, in Figure 4, will always be larger than
Schwoebel’s estimate V. Opposite conclusions (V < V) are
reached when /, < 4_, and the initial behavior (19) should
be evident in the two cases shown in Figure 4. In sum, for
small driving forces of, we recover BCF-like results to zeroth
order, with first-order corrections that depend markedly on
the relative values of the capture coefficients.

On the other hand, for large velocities and finite step
distance, the function f always tends toward the constant 3.
More precisely, for | V|~ « ¢« 2| V|, the asymptotic
behavior of f'is

1+2Vh, o 7

[ | TFmer2ny T T

Sy ~5x (22)
2 __1-2¥h for Vo —x
1+ h_(h, - 2V) -

From a practical point of view, this means that for large
(positive or negative) driving forces, i.e., when the load line
is very shallow, we must have the remarkably simple resuit
Vb, 2 (23)
[ 2 ’

regardless of step kinetics. This central result is discussed
further in Section 5, but, for our purposes here, it shows that
Equation (16) always has at least one solution. Moreover, in
the case discussed above, 4, < h_; i.e., when the response
function has a minimum in Figure 4, Equation (16) may
have up to three real roots, some of which may be unstable.
This question will be explored elsewhere.

Interestingly, this last estimate (23) also holds for small
step distance, as a Taylor expansion in /shows. For 8/ « 1,
Equation (15) yields

¢ h+ (1 +2dv)yt
2h+ (0 +h —d*+2dV)5t

V)= (24)
and the result (22) is always valid for large velocities. Thus,
for small step distance and for any driving force, the load
line intersects the response function at an ordinate that is
never very far from %l. In fact, one can visualize changes in /
as shifts, up or down, of the response function f(V), because
both f(0) and f(e) are monotonically increasing functions of
¢. The estimates (22) and (24) also show that Equation (16)
reduces, in these limits, to quadratic equations in ¥ whose
physical solutions are essentially Equation (23). Rather than
continue our analytic discussion, let us turn to numerical
examples.

4. Graphical illustrations

The numerical solution of Equation (16) and the evaluation
of the concentration distributions (8) and (13) are standard
problems. In passing, although we have found it more
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efficient to use the “bisection” method, Equation (16) also
lends itself to a one-step iteration method, namely,

Vo= f(V) i=12---. (25)

Note that if the initial guess is the origin ¥, = 0, then
Schwoebel’s result (21), which holds for small enough
driving force, is given precisely by the first iterate ¥, of
Equation (25). In this section, we begin by examining the
same physical cases that were chosen for Figure 4, namely,
asymmetric steps that are at equilibrium on one side and
that are essentially blocking on the other side. Next, we
investigate the case of symmetric steps.

Consider first the case where exchanges with the trailing
terrace occur at equilibrium (4_ = 0), but where the kinetics
of exchange with the leading terrace are sluggish (4, = 20).
Then, as predicted from Figure 4, we expect the velocity
always to be larger than the estimate (21). Figure 5 displays
the velocity as a function of step distance for three values of
the driving force. The dashed lines correspond to
Schwoebel’s result (21), and we see large deviations from his
estimate when the driving force and the step distance are
large [51]. In fact, for ¢6, = 1 we observe approximately
linear behavior of the velocity, in accordance with Equation
(23). The next figures show the adatom concentration
distribution for two different step distances. Figure 6, for
/= 0.4x,, clearly shows a low flux condition at the right of
steps and the equilibrium condition at their left. All three
curves have the same qualitative behavior, but it should be
noted that they differ widely, in absolute terms, because they
are scaled by o0, in this and the next figures. As seen in
Figure 7, convection begins to dominate, for large enough
driving force, if the distance between steps is increased by an
order of magnitude. For o6, = 10 we see that the distribution
is essentially linear, and the other two curves on that figure
cannot exactly maintain a low flux condition at x = 0.

The opposite case of sluggish trailing and equilibrium
leading exchange kinetics (h_ = 20, h, = 0) is displayed in
the next three figures. These should be compared to Figures
5-7. Figure 8 shows how the velocity varies with step
distance and with driving force. Now, however, it is less than
Schwoebel’s result (21), again shown dashed, when o6, < 1.
Notable differences appear, however, for larger driving
forces. For example, the “dip” in the curve for o6, = 10 is
closely related to the same feature in Figure 4, and the linear
asymptotic behavior (23) again holds when V is large
enough. [This happens, according to Equation (22), when
V> %h_ = 10.] Figure 9, for small step distance, is almost
the mirror image of Figure 6, except that the order of the
curves is reversed because the leading terrace is now the
more efficient supplier of adatoms. On the other hand, the
case / = 4x,, in Figure 10, shows that the already skewed
distributions become yet more skewed when ¢6, 2 10. In
that case the coverage exceeds unity. While our model treats
the profile of the adatom distribution correctly, the physical
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significance of this result is open to interpretation. We note
the appearance of a boundary layer at x = 0 because of the
compromise of the concentration distribution between a
fixed value (¢ = 6,) at that boundary and a fast-moving step
which experiences a large convective flux. Indeed, for large
V, our problem is amenable to singular perturbation
techniques.
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| the leading edge that develops for larger driving forces.

All of our discussions have centered, thus far, on
asymmetric steps, i.e., those for which the capture
coefficients /2, and /_ differ. Let us now consider steps that
are physically symmetric; for example, take the case
h, = h_=1. This represents steps whose capture-rate
constants, from either side, are roughly equal to the diffusion
velocity. Figure 11 shows the concentration distribution
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between such steps. We note that the concentration values at
the steps can deviate from equilibrium, as they should. For
small driving forces, o0, < 0.1, the distributions are
symmetric, but they become increasingly skewed for larger
driving forces. Consequently, concentration values on either
side of steps now differ because of the additional asymmetry
brought about by fast step motion. This figure thus illustrates
again that there are two distinct causes of asymmetry, one
due to the capture kinetics and another due to the motion of
the steps themselves. In sum, unless equilibrium strictly
prevails at steps, there is always a jump discontinuity in
concentration at steps which contributes to the growth rate
through the convective term in the Stefan condition (6).

5. Application to the growth rate of silicon by
MBE, and discussion

The epitaxial growth of silicon layers by MBE is of
considerable current interest because it is a low-temperature
process that allows the formation of very sharp junctions
[52] and the fabrication of novel structures [53-57].
Reference [58] gives an historical perspective. In this section
we apply our results to this growth mode of undoped Si, but
they should also apply, unchanged, to any monocomponent
system.

The MBE growth kinetics of Si are remarkable. It is
found, experimentally, that Si films of satisfactory crystalline
perfection can be grown by MBE at temperatures below
500°C [59]. It is also agreed [60] that the growth rate is quite
insensitive (<1% change) to substrate temperatures in the
range 500-900°C, but that it is linear with the incident
silicon flux F. In fact, this flux itself is often used to calibrate
the thickness of grown films in this temperature range [45].
Moreover, in this same temperature range, the growth rate
appears largely independent of substrate orientation for the
(100), (111), and (110) close-packed orientations and within
5° misorientation thereof.

The technological advantages of these effects are evident,
and it is tempting to explain them on the basis of the
Wilson-Frenkel model [61, 62]. This perhaps crudest of
crystal-growth models simply postulates that almost every
atom impinging on a surface will immediately incorporate
into the crystal. In other words, every surface site must be a
kink, and the growth rate

Ryr=QUF-F), (26)

where Q is the atomic volume, is then merely proportional to
the difference between the incident flux and the desorption
flux from kinks. It is true, if the desorption rate is relatively
small, that such a model can account for the insensitivity of
the growth rate to temperature and orientation, but the high
degree of crystal perfection that can be obtained by MBE
demands high mobilities on smooth terraces—where there
are no kinks—and it thus requires the existence of step
trains. Regardless of the origin of the steps, growth then
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occurs because of their motion, and BCF showed by simple
kinematic considerations that the normal growth rate of the
crystal R is related to the average step velocity v through

R=uc/t, (27)

where c is the step height and where / is, henceforth, the
average dimensional distance between steps [63]. In view of
Equations (12a), (16), and (27), the note in Reference [47],
and the obvious relation @ = ¢/n,, we have a general
expression for the growth rate

Qn_ g0,

2x

: 7 flx,/D,| ¥4x,, D,/x.k.), (28)
in which, because of Equations (4b, c), the “prefactor”
Qn_a6, /7, is exactly the Wilson-Frenkel growth rate (26).

But it would appear that we are impaled on the dual horns
of a dilemma. First, how are we to understand a Wilson-
Frenkel behavior of the growth rate, yet due to moving
steps? Does this not deny rate limitations due to surface
diffusion and to capture by steps? Second, as a function of
misorientation {63], Equation (27) shows that the growth
rate is proportional to the step velocity divided by /. Since al/
BCF-like models [3, 15, 16, 19-27] call for saturation
behavior of v(¢) for small misorientations (i.e., for large /;
see the dashed lines in Figures 5 and 8), it follows that none
of these models can predict orientation insensitivity to
growth rate, unless the average distance between steps /
always remains smaller than the mean diffusion distance x,.
This would mean that there is a lower bound on
misorientation below which the growth rate suddenly
decreases. This is not observed, and we must now see
whether our present calculations are, at least qualitatively, in
line with observations.

There are two distinct ways in which expression (28)
reduces to the Wilson-Frenkel law (26). First, if ¢6, < 1,
then Figures 5 and 8 clearly show that the step velocity v
tracks the BCF-like models. In addition, v or f increases
linearly with step distance if / < x, and Equation (28)
reduces to Equation (26). This is a well-known result that is
expressed analytically in Equation (24). From a physical
point of view, adjacent steps that are sufficiently close [51]
can ensure an adequate supply of kinks, regardless of the
other kinetic limitations of the adsorbate, i.e., independently
of the values of the kinetic coefficients &, . But there is also a
second way in which Equation (28) reduces to the Wilson-
Frenkel law. We note on Figures 5 and 8 an essentially linear
dependence v(/) for almost all step distances when #, is
large enough. This too occurs independently of the details of
adatom capture kinetics. We have seen this result,
analytically, in Equations (22) and (23). From a physical
point of view, a fast-moving step sweeps up all adatoms on
adjacent terraces, whether or not these atoms diffuse
significantly or incorporate sluggishly. Kinks in fast-moving
steps are therefore just as effective for capture as a
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Normalized concentration distribution for symmetric, mildly
nonequilibrium steps: o_ = h, = 1. Note the skew that develops
with increasing o6, and the jump discontinuity in concentration at the
steps. This latter is absent for Schwoebel’s model (dashed line).

completely kinked surface or one containing closely spaced
steps. In other words, as the driving force increases, the
Stefan problem associated with the motion of steps becomes
largely convective rather than diffusive in character.

Both of these cases are represented schematically in Figure
12. Part (a) shows how the step velocity depends on
misorientation when the driving force is either small or large;
it should be compared to Figures 5 and 8. Figure 12(b)
shows how the growth rate depends on these same
parameters. For small ¢6,, the velocity saturates [cf.
Equation (20a)] at a value f(®) = (1 + A)/[(1 + hY’ — d°],
which depends on kinetics at steps. Then, the limit of
Wilson-Frenkel behavior occurs when ¢ = x,, but a sharper
estimate also depends on the values of capture-rate constants
at steps [29]. On the other hand, for large ¢6, the behavior of
the velocity is essentially linear, and R = Ry, for almost all
¢, regardless of the values of k, .

Our view of the MBE growth of Si may be questioned
because of recent RHEED intensity oscillation studies
[64, 65], although certain details of image interpretation (in
particular, dependence of monolayer or bilayer growth mode
on the beam azimuth) remain unclear [66]. These authors
suggest that growth occurs by repeated two-dimensional
nucleation. It should be noted, however, that RHEED
oscillations occur mainly at temperatures well below the
usual conditions for MBE growth, and that a high-
temperature pretreatment of buffer layers is often necessary.
In other words, the surface must be somehow “prepared,”
perhaps precisely by creating step trains. In addition, even if
the nucleation rate is a significant factor, the motion of
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competing nuclei edges—which are steps—must also
contribute to the observed growth rate. This motion, too,
will be fast if ¢6, is large.

It is pertinent to comment on the predictive power (and
limitations) of the growth theory formulated in this paper.
From an applications standpoint, our interest also clearly lies
in delineating useful regimes of crystal growth. Toward that
end, a short digression on numerical estimates is now
needed. All along we have seen that the driving force o6,
[67] is an essential physical parameter, together, of course,
with the mean diffusion distance x,. We emphasize again
that this driving force for MBE growth is not merely the
supersaturation o, but rather it is the product of the actual
flux imbalance ¢ and the surface’s “receptivity” 6, to
adsorbed atoms. With Equations (4b, c), we also have its
expression o6, = (7,/n )(F — F,) as the ratio of the net flux to
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the maximum conceivable desorption flux, i.e., from a
completely flat, singular surface. Further, as is well known
(1,3, 16, 18], ,, D,, n,, and hence x,, and F, can be
estimated for materials whose cohesive properties depend
mainly on pair interactions. These estimates are collected in
Appendix C. Such a description, if applied to silicon

[35, 39, 40, 59, 60}—and this may not be valid—indicates
that certain low-temperature MBE conditions would yield
very large values of ¢6,. At T = 600°C, for example,
Equations (C4) and (C5) show that a typical flux
F=2x10" cm ™" would produce an enormous
supersaturation ¢ = 1.5 x 10'' which is evidently
orientation-independent. Then, using Equation (C2), 46,
would be approximately 200 and 0.007 for the (100) and
(111) orientations, respectively [68], because of the strong
orientation dependence of the equilibrium coverage. Under
these conditions, with Equation (C6), x, would be of the
order of 1.3 x 10’ and 800 times the jump distance a for the
same (100) and (111) orientations, respectively. On the other
hand, there is no simple way to estimate the capture
coefficients k, because these depend on the detailed structure
of a step [18] and on the averaging process (cf. Appendix A)
necessary for a one-dimensional calculation.

These numbers, even if not accurate, are suggestive. First,
growth on the Si(111) orientation probably occurs through
the motion of slow steps because o8, is small for most MBE
conditions. One would expect orientation sensitivity at low
enough misorientation angles. In that case, small changes in
the local step density imply changes in the step velocity. Step
trains could bunch and be more easily pinned by impurities
[4]. Studies of growth kinetics on this orientation, however,
are more likely to illuminate the details of adatom kinetics.
In contrast, the (100) orientation supports large driving
forces: Steps move quickly, the growth rate is more stable,
and the exposed terraces are less prone to contamination.
This orientation, as is observed experimentally, hosts
epitaxial layers of higher quality, although carbon
contamination and dislocation generation cannot be ruled
out [69].

Summarizing, we have shown that if the growth of Si by
MBE occurs through the motion of steps, there exist growth
conditions for which these steps move at velocities that are
large compared to the diffusion velocity on terraces. Under
these circumstances, the overall growth rate is largely
independent (1) of the temperature of the substrate, (2) of
the orientation of the substrate, and (3) of the details of
capture kinetics at steps. In addition, we would expect that
fast step trains, in a clean environment, are relatively stable
toward perturbations of the distance between steps. It
follows, however, that other mechanisms that pin or retard
step propagation cause a decrease in crystal quality, even
when the driving force is large. This can occur either because
of unintentional contamination (mainly SiC microcrystallites)
or because of interference by a dopant adlayer, Practitioners
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of MBE would agree today that atomically clean starting
surfaces and an impeccable vacuum during growth are
essential. In addition, it is well known that high dopant
concentrations (mainly Ga and Sb) can severely degrade
crystal quality. Extensions of our model are thus required to
treat both the stability of fast step trains and the effects due
to an adsorbed second component. Finally, because the
surfaces of most semiconductors undergo reconstructions
which persist during growth, and because these
reconstructions involve substantial numbers of surface
atoms, a complete theory of MBE growth would have to
account, not only for adatom kinetics on these surfaces, as
does this paper, but also for the continuous transformation
of the surface structure into the bulk crystal structure.

Appendix A: Boundary conditions at steps

Here we outline the proof of the Stefan condition (6). Next,
we justify the boundary conditions (5). Consider a step,
shown schematically in Figure 13, and a laboratory
coordinate frame (x, y, z) with its unit vectors (i, j, k). If
ny(x, y, t) and n,(y, t) are the surface and ledge densities of
adatoms, and if J, J,, and J, are the volume, surface, and
ledge diffusion fluxes, respectively, mass conservation in any
continuous region of the terraces and ledges demands that

on,

5=V kT (A1)
an .

5 =-V =i LA (A2)

Furthermore, if (£, n) are the coordinates of a kink moving
at velocity v, = 4 due to attachment, there, of adatoms, then
the position of the step increases by one unit a in the
x-direction whenever a kink passes the origin of coordinates.
This implies a normal step velocity

v=uvafl, (A3)

where 4 is the average distance between kinks.

Consider now the number of adsorbed particles N, in an
arbitrary, fixed region 2 that instantaneously encloses a
kink. That region, however, is the union of two regions
whose boundaries do move. For example, 2, the region to
the left of the step, is bounded by the fixed line .S, and by
the kinked edge .S, that moves upward in Figure 13. We then
have

N,(t)= ? UD, n, dxdy + J;,l n, dy, (A4)
and there are two different ways to evaluate the time rate of
change N,. First, that number changes because of all sources,
interior to 2, and because of all fluxes along the boundaries
of 2 and S,. Second, one differentiates Equation (A4)
directly, taking moving boundaries into account and using
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Plan view of a step and a kink, coordinate system, and domains for
the mass balance calculations of Appendix A. The fixed domain
D = D U D,encloses asingle kink. The fluxes J,, J, and J, are all
directed toward their respective sinks: terrace, ledge, and kink.

Equations (A1) and (A2), together with the divergence
theorem. Comparing these two procedures, we get the
expression

t+a
fon,—j- T2+ J; v, dx=r, (AS)
where r represents the reaction rate (the kink is a sink) of the
reaction, adatom — crystal, at kinks. This expression is
nothing more than a local mass balance of the adsorbate
around kinks. A second expression arises from counting the
number of atoms in the crystalline phase. This number,
evaluated over 2, is simply

N_(t) = const. + (n — ,)/b, (A6)

where b represents the size of an adatom in the y-direction
and where y, is the coordinate of the “lower” intersection of
the boundary of  with the y-axis. Again, measuring its rate
of change because of the reaction step r, and differentiating
Equation (A6), we get the mass balance law at kinks

r=u,/b. (A7)

Eliminating r between Equations (AS) and (A7), and
recognizing that the integral in (A5) can be approximated,
we obtain the result

v /b=[vnm—j-J,+avn(t, v, t)];;,_ . (A8)

In many cases, however, one may be more interested in the
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average behavior of the distributions 7, and »,, rather than in
a detailed two-dimensional computation. This is particularly
true if ledge diffusion and kink capture are fast processes.
Consequently, we define the averages in the y-direction as

Y2
ax, ty=14 ! f n, dy (A9a)

4|

and

Y2
=" f n, dy, (A9b)

»

where the distance y, — y, is chosen equal to the periodic
interkink distance 4. Using the basic equations (A1) and
(A2), we find that the averaged quantities satisfy similar
relations, namely,

o, 8, _

i =Y (10
ﬁ/ —1 7+ = right

_d? = ,k [vknl - J[.y n— - Js,x left * (Al 1)

Now, if it is assumed that the averaged ledge distribution is
approximately at steady state, one can use Equation (A11) to
eliminate the jump discontinuity of n,and J, , from the
Stefan condition (A8). Further, the jump in 7, at a kink can
represent its average jump along a step if the y-dependence
of n, is weak. Finally, remembering Equation (A3) and that
the reticular density #, is precisely 1/ab, we obtain the
averaged Stefan condition

no=[vi,~ J ]t (A12)

All the previous results are independent of constitutive
relations. For example, nowhere was Fick’s law for the
various J’s [e.g., J, = —D,Vn,] ever invoked. Of greater
importance, perhaps, are the analytic expressions of the flux
near boundaries. For example, our analysis in Equations (4)
manifestly assumes that the exchange flux —k . J, on
terraces has the form of a first-order process F — n,/7,. The
same can be assumed for exchanges between terraces and
ledges, thus leading to the phenomenological relations on
either side of steps,

—i-J|, =k,nl, —nir,. (Al13a, b)

Here, for example, 1/7,, is proportional to the transition rate
of adatoms from the ledge to immediately adjacent positions
on the terrace to its right. Relations such as Equation (A13)
can be understood on the basis of nonequilibrium
thermodynamics of surfaces [70]. The four coefficients k,
and 7,, are not independent because the fluxes (A13) vanish
at equilibrium, and we obtain “partitioning”

nl,e = Tltks:; ns,e (Al4)

in a manner similar to Equation (4b). If, now, we assume
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that the edge distribution #, is never very different from
equilibrium, then, using Equations (A 14), the boundary
conditions (A 13) express the exchange fluxes in terms of
differences between #; and the equilibrium value #,. This is
precisely what we have expressed in Equations (5) if by n(x)
we understand the quasi-steady-state spatial average of

n(x, y). In the same way, we can correlate Equation (A12)
and the Stefan condition (6).

Appendix B: Isolated nonequilibrium steps
If steps are far apart, then one should get their behavior, in
the limit /— oo, from the results of Section 2. It is easier,
however, to solve the problem anew. Here, we outline this
solution.

If r, = —V + 8 are the roots of the characteristic
polynomial, FP+2Vr—1= 0, associated with the differential
equation (9), then

_ Jpe for x>0,
vx)= {qex'* for x<0,

X7

(B1)

where 8, p, and ¢ have the same meaning as in Section 2.
Furthermore, because 7, 7_ = —1, it follows that the “decay
lengths” (in dimensional form) of the exponentials are x,r, .
Thus, for growth (¢6, > 0), the concentration distribution
tends to sharpen in front of a moving step and to flatten on
its trailing side, and conversely for evaporation. Inserting
Equation (B1) into boundary conditions (10), (11) yields,

first,
b,
SR XCERO) B2
of,
TR G- ®2
and then an equation of the form (16), with
)= %[1 ¥ Z;ﬁt N1+ f_J(rﬁV— V)] ‘ (B3)

This, we note, increases without bound as V' — *c. The
function (B3) is shown as dashed lines on Figure 4. In the
case of step equilibrium we get /(V') = 8, and we recover the
result obtained by Mullins and Hirth (18).

Appendix C: Vapor pressure and derived
parameters

Here, we collect some results that are useful in estimating
the parameters of our model. First, from the kinetic theory
of gases and the principle of detailed balance, we express the
equilibrium flux of Si as

F.=p |V2amkT (C1)

in terms of its equilibrium vapor pressure p, and its mass m;
kT has its usual meaning. Next, from simple bond
arguments [1, 3, 35] we have the Arrhenius behavior,
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no=ne """ (C2)
and
17, = ve ", (C3)

for the equilibrium adatom concentration and its desorption
probability. The activation energies W, and W represent
barriers for kink-to-terrace and terrace-to-vapor transitions,
respectively, and v is the frequency of normal vibrations.
These three quantities are related through Equation (4b);
hence

F,=npe ", (C4)

where W= W_+ W/ is the sublimation energy. Neither W
nor the product n, v should depend on orientation, but the
latter is probably temperature-dependent. Indeed, vapor
pressure data reported by Honig and Kramer [71] show no
indication of deviation from purely Arrhenius behavior, and
P.(T) has a sublimation energy W of 4.61 eV and a pre-
exponential of 2.4 x 10" torr [65]. Therefore, combining
Equations (C1) and (C4), we must have

nv=F~NT,|T, (C5)

where T, = 1685 K is the melting point of Si and where the
reference flux F, = 3.88 x 10* cm ™5™ is estimated from the
“pre-exponential” term of the vapor expression for the vapor
pressure. The equilibrium flux (C4) is thus entirely
determined. If W is estimated from bond-breaking [—; and -;
of W for the (111) and (100) orientations, respectively], then
we can also estimate both the equilibrium coverage,
according to Equation (C2), and the driving force o4,.
Finally, if the activation energy U of the surface diffusivity is
known (1.3 eV, according to recent measurements [72, 73]),
Equation (1) yields the estimate

X, = ae™" W,—U)/2kT (C6)

for the mean diffusion distance.
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