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The  kinetics 
of fast steps on 
crystal surfaces 
and its application 
to the  molecular 
beam epitaxy 
of silicon 

by R. Ghez 
S.  S. lyer 

Crystal  growth  by  molecular  beam  epitaxy (MBE) 
occurs  under  conditions of high  supersaturation. 
The classic  growth  theory  of Burton,  Cabrera, 
and  Frank  (BCF) is based  on  the  assumption 
that  surface  steps  move  slowly.  Consequently, it 
requires  modifications to be applicable to MBE 
because the velocities  of  surface  steps may be 
large. In addition,  because  such  steps  are 
asymmetric  structures, as observed 
experimentally by field ion microscopy,  capture 
probabilities from  above  and  from  below  a  step 
must  differ  markedly.  Hence  the  adatom 
concentration  distribution  cannot be at 
equilibrium  at  steps;  there, it also  suffers  a 
discontinuity. We propose  a  model  that  treats 
surface  step  motion  as  a  Stefan  problem  and 
that  also  respects its physical  asymmetry. 
Calculations  are  presented  which  extend  and 
complete  recently  published  results  that  had 
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imposed  the restrictive condition  of local 
equilibrium  at  steps.  Step  velocity is estimated 
as  a  function of supersaturation,  degree  of 
asymmetry,  and  step  density.  Concentration 
profiles are  then  computed;  they  are  found to be 
generally  skewed. In all cases,  we  show  that  the 
behavior  of  the  growing crystal is convective 
rather  than  diffusive  when  the  supersaturation is 
large.  Consequently,  we  can  understand the 
extraordinary insensitivity of the MBE  of  Si to 
changes in growth  temperature  and  orientation. 

1. Background  and  motivation 
The crystal-growth theory of Burton, Cabrera, and Frank 
[ 1-31 explains the structure of crystal  surfaces, the role  of 
dislocations in the formation of some types of surface  steps, 
and the rate of advance of these  steps over close-packed 
terraces.  Although not every crystal  grows  by  a  layer 
mechanism, there is  now ample evidence for its relevance, 
for  example, to epitaxial growth on vicinal semiconductor 
surfaces. Monoatomic steps have  been detected on Si and 
GaAs surfaces by transmission electron microscopy [4], 
Nomarski phase contrast microscopy [5-81, and scanning 
tunneling microscopy [9, 101. Moreover, the production of 
very smooth surfaces, required for submicron device 
processing,  would  be improbable if mechanisms other than 
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step motion were dominant. This, of course, begs the 
question regarding the source of steps.  Although that 
question remains generally  unresolved, it appears, today, 
that steps can originate from misorientation and crystal 
edges, in addition to line imperfections and edges  of  nuclei, 
as proposed by  BCF. 

It is,  perhaps,  useful to recall a simplified argument that 
illustrates the main assumptions of the BCF theory and  that 
introduces relevant notation. Figure 1 shows a computer- 
generated surface element [ 1 I ]  that is composed of terraces, 
ledges, and kinks [ 121. Atoms [ 131 from the volume phase 
come raining onto the surface  with  flux F. Once adsorbed on 
terraces,  these  loosely bound atoms can execute  two  types of 
jumps: to adjacent surface  sites or backZo the volume phase. 
The first  type  is characterized by a surface  diffusivity D,, 
whereas a surface lifetime T~ describes the second. (Processes 
that favor adatom capture by steps are described later.) 
According to BCF, the product of these quantities serves to 
define a length  scale, 

also  called the mean surface  diffusion distance. This is a 
fundamental quantity because, in many cases, one expects 
surface concentration distributions n(x, t )  to vary  over 
distances of the order of x,. Figure 2 illustrates such a 
distribution around an isolated step. In its immediate 
vicinity, the step, if it is  an  efficient sink [ 141, can maintain 
the concentration at its equilibrium value ne. On the other 
hand, the adatom population far from the step is in 
equilibrium with the supersaturated volume phase. 
Introducing the (relative) supersaturation ratio u and  the 
equilibrium value Fe of the flux F, we must have the 
equalities n(+w, t)/ne = F/Fe = 1 + U. Next, if v is the step 
velocity and if n,  is the areal density of reticular sites, the 
convective flux n,v due to the motion of the step must equal 
the sum of the two  surface  fluxes &D,an/ax to that step. 
Estimating these  fluxes  over the distance x, and introducing 
the equilibrium coverage Be = n, /n , ,  we  easily  get the BCF 
expression for the velocity  of an isolated step, 

u, = 2aeeD,/x,, (2) 

Computer simulation of a growing vicinal crystal surface (courtesy of 
x G. H. Gilmer, AT&T Bell Laboratories,  cf. [ll]). showing  the [ terrace-ledge-kink structure of the surface and, schematically, the 
i main paths for mass transport. 
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which  we  now  briefly  discuss. 

I 
'BCF (not merely the supersaturation) and what  may be called a 

I First, this expression  is the product of a driving force d e  

I 

surface  diffusion  velocity D,/x,. Thus, the question "What  is 
a fast step?" depends on the magnitude of the dimensionless 0 x\ X 

ratio vxJD,, known as the Pklet number. For example, 
Equation ( 2 )  indicates that small driving forces imply slow 

I 

J 

adatoms. Only the strip of width 2xs (equivalent to a capture 2 Schematic representation of a section through an isolated step and the 

cross section) that contains a step is active. And last, it : adsorbed concentration distribution on the adjacent terraces. Note 

should be  physically  obvious that Equation ( 2 )  represents the $s*tt4,c%p*, 
' that here we assume local equilibrium at the step. 

maximum possible  velocity  of a step when  diffusion is the g W & 2 8  
&?* $ 805 
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only transport mechanism. Additional restrictions such as 
competing, curved, or nonequilibrium steps will decrease 
this estimate. Analytically, the right-hand side of Equation 
(2) must be  multiplied by an  appropriate  functionf 
whose magnitude is  less than unity. For example, BCF 
estimate that a train of parallel  steps,  spaced  a distance I 
apart, will travel at the rate 

vm = v, tanh ( 4 2 ~ ~ ) .  (3) 

In short, the BCF theory provides estimates of crystal  growth 
rates for monocomponent systems  when  steps move slowly 
and are efficient  sinks,  when  steady-state conditions exist, 
when transport occurs by surface  diffusion alone, and when 
volume  diffusion is not rate-limiting. 

Many authors have offered extensions and clarifications of 
the BCF theory. With no claim to completeness, we mention 
the important work  of Chernov [ 15, 161 in which he 
introduces a “kinetic coefficient”  designed to describe 
deviations from equilibrium at steps, as well as his treatment 
of macrosteps [ 171. Nonequilibria were further elucidated in 
Temkin’s random-walk calculations along  ledges [ 181 and by 
Schwoebel [ 191, who  recognized that Chernov’s kinetic 
coefficient should depend on the direction from which 
adatoms approach a  step. Chernov also  provided the first 
estimate of growth-rate limitations by direct volume 
diffusion to steps [ 161. This problem has an immediate 
electrostatic analog, and, consequently, its solution contains 
a  well-known logarithmic singularity at steps. This singular 
behavior was  removed in the work of Ghez, Gilmer, and 
Cabrera [20,21], in which volume + surface + step 
transitions were required. More recently, van der Eerden  has 
considered the combination of both these approaches [22]. 
There have been few attempts to model multicomponent 
systems. Noteworthy are the efforts  of Mandel[23], Takata 
and Ookawa  [24], and Chernov and Papkov [25,26]. 
Questions relating to high  coverage  were  addressed  by Ghez 
[27] and by Aleksandrov and Entin [28]. The stability of 
step trains and their time-dependent behavior were 
investigated by Gilmer, Bennema, Sunagawa, and Janssen- 
van Rosmalen [29-311, and Muller-Krumbhaar addressed 
the general problem of nonuniform supersaturations [32]. 
Finally, the present status of the BCF theory and its position 
in general theories of crystal  growth and habit have  been 
admirably reviewed in monographs by Miiller-Krumbhaar 
[33] and by Chernov [34, 351. 

Close to forty years  have  elapsed  since the original  BCF 
publications, and, as just seen, many aspects  of this theory 
have  been thoroughly investigated. Under these 
circumstances, one may  ask, not without reason, if this field 
is not closed. There is,  however, one aspect of the BCF 
theory that merits further consideration. That theory, it will 
be  recalled, dealt with the motion of  steps under low 
supersaturations and thus with slow steps,  slow in  the sense 

806 that was discussed  following Equation (2). Then, the surface 

diffusion  field can be computed as if steps are immobile, and 
their motion follows from a  local  mass balance argument 
that is  used implicitly for the derivation of Equation (2). 
This procedure is well documented in  the literature on 
“Stefan problems” [36]. With the advent of MBE,  however, 
and its truly enormous operating supersaturations, it is 
possible that fast-moving steps are more common than 
generally thought. There exist at least three earlier 
investigations of this problem. In 1963, Mullins and Hirth 
[37] considered the question of an isolated  fast step that is in 
local equilibrium, but they deemed such behavior unlikely. 
A few years later, in 1972, Ghez presented similar 
calculations for parallel step arrays that, furthermore, need 
not satisfy  local equilibrium [38]. These results remained 
unpublished because MBE  was then a  largely  unrecognized 
technique. More  recently,  Voigtlaender,  Risken, and Kasper 
[39]  analyzed the problem of step arrays, with the additional, 
restrictive,  BCF-like  proviso that steps be  locally at 
equilibrium. (Reference [40] essentially duplicates these 
results.) This restriction is not at all trivial because it is 
known that steps are not symmetric structures with  respect 
to attachment-detachment processes at ledges.  Field ion 
microscopy has demonstrated unambiguously that atoms, 
diffusing toward a step along an “upper” terrace of a  facet, 
are often repelled at the boundary step [41-441. 
Consequently, not only should one consider potential 
barriers around a step that represent nonequilibrium 
conditions, but also, as Schwoebel had noted [ 191, these 
bamers need not be symmetric. 

calculations [38] and presents them, it is hoped, in a form 
that will be useful to practitioners of MBE. They  may, 
perhaps,  even  serve those who lean toward the various forms 
of chemical vapor deposition in those cases  where 
intermediate surface reaction steps are fast. The main 
assumptions are not very  different from those in  the original 
BCF publications: steady-state conditions, equidistant 
straight step trains, fast  diffusion in the volume phase and  on 
ledges, an adequate density of kinks, the restriction to 
monocomponent systems, and, thus, no occurrence of 
surface reactions other than adsorption. Special  care, 
however,  will  be  given to the boundary conditions at a step 
that characterize its nonequilibrium state. 

This paper exhumes and extends Ghez’s earlier 

2. The diffusion-convection problem and  its 
solution 
Consider a  section of a  vicinal  surface, as depicted in Figure 
3(a). It consists,  essentially, of an equidistant array of 
straight  steps. The one-dimensional, steady-state 
concentration n(x) of adatoms on terraces, measured in a 
coordinate frame that moves  with the velocity v of the steps, 
obeys the differential equation 

D S - + + - - - + F ~ O .  d2n dn n 
d x 2  dx 7, 
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Here, Ds, T,, and F have  exactly the same meaning as 
previously  [45]. This statement of mass conservation on 
terraces is identical to the BCF equation, save for the second 
(convective) term. There are several consequences of this 
form. First, it must hold for  all  states, including equilibrium, 
for  which the concentration is spatially constant. Therefore, 

ne = rSFe (4b) 

is an expression of detailed balance between equilibrium 
values.  Next, the actual impingement flux F is  related to the 
supersaturation u through 

F =  Fe(l + u), ( 4 4  

a form which, inserted into Equation (4a), is compatible 
with the equilibrium state u = 0. Last, multiplying Equation 
(4a) throughout by T~ and remembering the definition (l), we 
recognize  with  BCF that the mean diffusion distance x, is  a 
natural length  scale and, consequently, that  the Pklet 
number ux,/D, measures the relative dominance of 
convection over diffusion. 

We  now inquire into the boundary conditions at a  given 
step. Figure 3(b) shows  a schematic potential energy diagram 
for adatoms that diffuse on terraces in the periodic lattice 
potential. As these adatoms approach a  step,  however, they 
experience barriers that are due to the net breaking of more 
bonds than required for surface  diffusion, and, as noted 
above, the barrier to the left  is,  most  likely,  higher than that 
to the right. In Appendix A we analyze attachment- 
detachment processes at ledges, and we  show that these 
kinetics can be  represented through “radiation” boundary 
conditions 

that hold on the positive and negative  sides  of  each step. 
[The notation O& has the usual meaning of right and left 
limits as x + 0.1 Here, k+ and k- are the corresponding 
reaction constants for capture at a step; these  need not be at 
all equal. Their values control the deviation of the adatom 
concentration, just below and above the step, from its 
equilibrium value ne. Furthermore, we also show in 
Appendix  A that local  mass balance at a step demands the 
following  “Stefan condition”: 

r - o+ 

nrv= D, - + v n  . L 2 1,- 
The problem represented by Equations (4)-(6)  is  formally 
quite simple, for we have nothing but an ordinary linear 
differential equation with constant coefficients (4) together 
with two boundary conditions (5) that are linear in 
concentration. On the other hand, Equation (6) will  yield  a 
transcendental equation for the step velocity u because that 
quantity already appears in the differential equation (4a) 
and, therefore, in its solution. 
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(a) Adatom distribution between two steps of  an array. Note that the 
concentration is discontinuous  at  steps if these  are not at  local 
equilibrium. (b) Potential energy plot for adatoms in the vicinity of a 
step. The barriers on its left and right need not be equal,  i.e., the 
capture rates k ,  can  differ. 

Before outlining this solution, it may  be  well to discuss the 
physical content of the previous equations. In the first  place, 
Equations (4) (identical, except for notational differences, to 
those proposed  by Mullins and  Hirth  [37]) are the natural 
extension of the BCF equations [ 1,3].  The only difference 
resides in the convective term vdnldx that stems from the 
motion of the coordinate frame. Calculations are often 
easiest in  that frame, particularly since the velocity u is  a 
constant for steady-state problems. Next, the rate constants 
k,, in Equations (5), control deviations from equilibrium. 
They  allow  a continuous transition from local equilibrium 
(k  + a) to a  “blocking” condition (k  + 0). In addition, as 
noted above,  a  given step is not necessarily symmetric, so 
that, for example, one side  may be at equilibrium while the 
other may  be  blocking. In this regard, we note that  the 
convective term of Equation (4a) introduces a further 
measure of  asymmetry-formally, that equation is not 
invariant under reversals of the x-axis-which indicates 
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simply that, all other conditions being equal, growth and 
evaporation occur at different  rates.  And  last, the reader  may 
have  noticed an important difference  between the 
concentration distributions on Figures 2 and 3: In the latter, 
the concentration, as well as the flux,  generally  experiences a 
jump discontinuity at steps. This behavior is due to the 
causes of asymmetry that were just noted. Consequently, the 
second terms un 1 o* in condition (6) do not cancel  except 
when n is anchored to its equilibrium value ne at steps. For 
convenience, we  now write  these equations in dimensionless 
form. 

First, in accordance with our previous remarks on the 
mean diffusion distance x,, all  lengths (running coordinate x, 
step distance 1, etc.) are measured in this scale, and, 
henceforth, primes will mean differentiation with  respect to 
the scaled coordinate xlx,. Next, we recognize that nln, is 
exactly the definition of the coverage 8, and Equation (4a) 
then becomes 

e” + (vx,/qe’ - e + e,(l + .) = 0. (7 1 
Again  following  BCF, this form suggests the introduction of 
a new unknown function 

+ = .e, - (e  - e,) (8) 

which  measures deviations from the driving force dl,. It 
renders homogeneous the previous equation (7), and 
Equations (5)-(7) then become 

+” + 2V+‘ - + = 0, (9) 

Th*+’ lo* + + lo* = 00, 9 ( 1 Oa, b) 

2V= [+’ + 2V&. (1 1) 

Here, the Piclet number 

2 V = ux,/D, (124 

and the dimensionless rate constants [46] 

h, = D,/x,k, ( 12b) 

compare the step’s  velocity v and capture-rate constants k, 
to the diffusion  velocity DJx, [47]. With  these definitions, 
for example, h, = 0 and h- = t~ imply local equilibrium and 
blocking condition of a step with its leading and trailing 
terrace, respectively.  Likewise, the BCF result (2) for isolated 
steps is simply V, = dl,. Finally, for future reference, it is 
convenient to define the sum and difference of these 
dimensionless rate constants: 

h = ;(A+ + h-)  and d = f(h+ - h-). ( 1 2 4  

The steps were assumed equidistant. Consequently, we can 
now  solve Equations (9)-( 1 1) in  the periodic region (0, 1), 
which means that conditions just before the step, at x = 0-, 
are exactly the same as those at x = I-. It is  easily  verified 
that the general solution of Equation (9) has the form 

- vx 
+(x) = - [ p  sinh p( l  - x) + qe“ sinh @x], (1 3a) 

sinh p1 
e 

where p and q are the as-yet-unknown +values on either 
side of steps 

p = J.(O+) and q = +(O-) = +(C-), 

and where /3 stands for the abbreviation 

This form (1 3a)  is convenient because it expresses the 
arbitrary integration constants in terms of physically 
meaningful quantities. Now, the derivative $’ of Equation 
(1  3a)  is  also linear in p and q, so that its insertion into the 
three conditions (10) and (1 1) yields a system for the three 
unknowns: p ,  q, and V. We can either solve this nonlinear 
system  directly or, considering Vas a parameter, we can take 
advantage of its linearity with  respect to p and q [i.e., the 
2 x 2 system  of Equations (lo)]  to get first 

p ( A l u ~ , )  = 1 + h-(P coth PC- V )  + h,B w, 
q(A/aO,) = 1 + h+(P coth PC+ V )  + h-P a, 
with the abbreviation 

A = 1 + h+h- + (h,  + h-)P coth PC+ (h, - h-)V 

e vt 

- V f  e 

= ( h  + p tanh fp/)(h + /3 coth fpf) - (d- V)’ (144 

for the determinant of the system (10). [Note the use of 
definitions (12c) and of the identity 2 coth 2z = 
tanh z + coth z in the second form of Equation (14c).] To get 
the velocity, we  need only  apply similar steps to Equation 
(1  1) and then eliminate p and q with Equations (1  4). After 
some  algebraic manipulations, we  get 

V[-]  = p( 1 + 2dV)(cosh pC - cosh VC) 

+ h(p - V)’sinh pC 

+ 2hV@(sinh PC - sinh VC), 

i.e., a transcendental equation for Vas a function of the 
physical parameters d e ,  h,, and 1. The problem is  now 
completely  solved  because, from the solution of Equation 
(1  5),  we determine the boundary values ( 14) and, therefore, 
the concentration through Equations (8) and (1 3a).  We 
discuss this solution in the next  sections. 

3. Analytic  content  and  limiting cases 
We  have just seen that the solution of the previous 
diffusion-convection problem rests entirely on the solution 
of Equation ( 15)  for the velocity V. It has the form 

V = .e, f( V ) ,  
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where the functionf( V ) ,  always  positive,  also depends on 
the parameters h, and ! [48]. On the other hand, this 
function is independent of the driving force d e .  Does 
Equation (16)  always  have a solution, and if so, is that 
solution unique? We proceed  heuristically by investigating 
the behavior off( V )  for small and large  values  of V. We 
then examine the limiting cases of small and large step 
distance /, In  all  these  cases we inquire into the effect  of 
capture kinetics h, . 

We  begin with a few general  observations.  First, we 
recognize that Equation (16) is  precisely  of the form 
discussed after Equation (2);  namely, the (dimensionless) 
velocity Vis the product of a driving force and of a function 
that describes  all other reasons for change  [49]. This has an 
immediate interpretation in terms of equivalent circuits 
because,  graphically, the solution of Equation ( 16)  is the 
intersection of the functionf( V )  with the straight line V/u8,. 
Figure 4 shows  how this occurs for  two  different  cases, to be 
discussed shortly, of the function$ If  we think of the driving 
force as a voltage, and of the velocity as due to a (mass) 
current, thenfis the analog of a (nonlinear) admittance or 
response function. The graphical solution is  precisely its 
intersection with a “load line,” whose  slope (on a linear plot) 
is  inversely proportional to the driving force u0,. This should 
not be too surprising since, after all, the diffusion- 
convection problem is linear. Next, we observe that our 
general  expressions ( 1 3 ,  ( 16) contain earlier-published 
results a5 special  cases. In fact, if equilibrium holds on both 
sides of steps, h, = 0, we obtain the result of Voigtlaender, 
Risken, and Kasper  [39], 

v= .e$ C05h pe- C05h ve 
sinh p! 

sinh ;(/3 + V)Psinh f(P - V ) /  

sinh  iplcosh ipt‘ 
= u0,p (17) 

As these authors had noted, this reduces, in the limit !+ 00, 
to the expression obtained by Mullins and Hirth [37], 

2 2 112 v= UOJl - u 0,) (18) 

for  isolated  steps. This expression  is  generalized in Appendix 
B when equilibrium does not hold at isolated  steps. The last 
observation relates to  an earlier remark, following Equation 
(6),  regarding the physical asymmetry of the problem. If  we 
write out, in full, the parameter dependence of the response 
functionf( V I 4 h,,  h-), then Equation (1  5) shows thatfis 
invariant under the transformation V+ -V, h, + h-, and 
h- + h,. Since the h’s, in fact,  distinguish the two  sides of a 
given step, these substitutions show that Equation (16) is not 
invariant under equal and opposite driving forces. This 
asymmetry between  growth and evaporation will  be explored 
elsewhere. 

We next examine the behavior of the functionffor small 
values of V. A Taylor expansion yields 
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V = uxs12D5 

f (V)  =f, +.A v+ W 2 ) ,  (19) 

where 

&(/) = (tanh;/+ h)/A,  , (204  

.A(/) = 2dtanhf/(h  tanh f /+ h2 + d 2 ) / A i ,  (20b) 

A,(/) = ( h  + tanh $‘)(A + coth f/) - d2, (204 

and where,  evidently, the determinant (20c)  is  exactly the 
expression ( 14c) evaluated at V = 0. The first point to notice 
is that Equation ( 16),  when evaluated in  the limit of  very 
small velocities,  yields  exactly  Schwoebel’s  expression [ 191 

vs = GOe f, (21) 

for  generally unequal capture kinetics [50]. The BCF limit 
(3) then emerges  when equilibrium holds on both sides  of  all 
steps,  i.e.,  when h, -+ 0. Thus, it should be clear that these 
results obtain when the load line V/uO, is very steep, namely, 
when the driving force  is  very  small. The next point 
concerns the sign off, in  the expansion (19). This coefficient 
has the sign  of d = f(h, - h-)  because the inequality I d I 5 h 
is  always true. For example, during growth, the condition 
h, > h- means that the trailing side of a step is  closer to 
equilibrium than is the leading  side and, therefore, that 
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0.1 1 10 

Velocity as  a function of step  distance (or misorientation) for three 
values of the driving force u0,. The steps are assumed at equilibrium 
on their left, h- = 0,and they suffer sluggish kinetics, h, = 20, on 
their right. The dashed lines (identical except  for  a parallel shift) 
represent Schwoebel’s solution (21). This solution is evidently valid 
either for small values of //xs or for small values of u0,. 

0.08 I I 

xi e 

Normalized  concentration  distribution of adatoms between steps 
under the same supersaturation and kinetic conditions as in Figure 5. 
The step distance is small: //2xs = 0.2. Note the large deviations 
from  estimates that neglect convection  (Schwoebel,  dashed line) 
when u0, 2 1 .  

convective term in Equation (6) contributes a  positive 
amount over the diffusion term, and we expect that the 
velocity,  labeled V, in Figure 4 ,  will always  be  larger than 
Schwoebel’s estimate Vs. Opposite conclusions (V,, < Vs) are 
reached  when h, < h-, and the initial behavior (19) should 
be evident in the two cases shown in Figure 4. In sum, for 
small driving forces d e  we recover  BCF-like  results to zeroth 
order, with  first-order corrections that depend markedly on 
the relative  values of the capture coefficients. 

On the other hand, for large  velocities and finite step 
distance, the function f always tends toward the constant i f .  
More  precisely, for I VI -’ e< I <e 2 I VI , the asymptotic 
behavior off is 

I 1 + 2 V h .  

From a practical point of view, this means that for large 
(positive or negative) driving forces,  i.e.,  when the load line 
is  very  shallow,  we must have the remarkably simple result 

regardless  of step kinetics. This central result is  discussed 
further in Section 5 ,  but, for our purposes here, it shows that 
Equation ( 16)  always has at least one solution. Moreover, in 
the case  discussed  above, h, < h-; i.e., when the response 
function has a minimum in Figure 4,  Equation ( 16) may 
have up  to three real  roots, some of which  may  be unstable. 
This question will  be explored  elsewhere. 

Interestingly, this last estimate (23)  also holds for small 
step distance, as a Taylor expansion in I shows. For << 1, 
Equation ( 15) yields 

e h + ( 1  + 2 d V ) f t  

2 h + ( l + h 2 - d 2 + 2 d V ) i !  
f(V) = - ’ 

and the result (22)  is  always  valid for large  velocities. Thus, 
for small step distance and for any driving force, the load 
line intersects the response function at  an ordinate that is 
never  very far from i f .  In fact, one can visualize  changes in I 
as shifts, up  or down, of the response fimctionf( V) ,  because 
bothf(0) andf(m) are monotonically increasing functions of 
I. The estimates (22) and (24) also  show that Equation (16) 
reduces, in these limits, to quadratic equations in V whose 
physical solutions are essentially Equation (23).  Rather than 
continue our analytic discussion,  let us turn  to numerical 
examples. 

n(O+) > n(0-). It follows that a step, moving in  the positive 
x-direction, encounters adatoms at high concentration levels, 
and that it recedes from adatoms at low  levels. Thus, the 

4. Graphical  illustrations 
The numerical solution of Equation ( 16) and the evaluation 
of the concentration distributions (8 )  and (1 3)  are standard 
problems. In passing, although we have found it more 
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efficient to use the “bisection” method, Equation (16) also 
lends itself to a one-step iteration method, namely, 

v,,, = .e,f(v,) i = 1, 2 , .  . . (25) 

Note that if the initial guess  is the origin V, = 0, then 
Schwoebel’s result (2 l), which holds for small enough 
driving force,  is  given  precisely by the first iterate V, of 
Equation (25). In this section, we  begin  by examining the 
same physical  cases that were chosen for Figure 4, namely, 
asymmetric steps that are at equilibrium on one side and 
that are essentially  blocking on the other side. Next, we 
investigate the case of symmetric steps. 

Consider first the case  where  exchanges  with the trailing 
terrace occur at equilibrium (h- = 0), but where the kinetics 
of exchange  with the leading terrace are sluggish (h, = 20). 
Then, as predicted from Figure 4, we expect the velocity 
always to be  larger than the estimate (21). Figure 5 displays 
the velocity as a function of step distance for three values of 
the driving force. The dashed lines correspond to 
Schwoebel’s result  (21), and we  see large deviations from his 
estimate when the driving force and the step distance are 
large [5  I]. In fact, for a@, k 1 we observe approximately 
linear behavior of the velocity, in accordance with Equation 
(23). The next  figures  show the adatom concentration 
distribution for  two  different step distances. Figure 6, for 
1 = 0.4xs, clearly  shows a low  flux condition at the right of 
steps and the equilibrium condition at their left. All three 
curves  have the same qualitative behavior, but it should be 
noted that they  differ  widely, in absolute terms, because  they 
are scaled by 00, in this and the next  figures. As seen in 
Figure 7, convection  begins to dominate, for  large enough 
driving force, if the distance between  steps  is  increased by an 
order of magnitude. For 00, = 10  we  see that the distribution 
is essentially linear, and the other two  curves on that figure 
cannot exactly maintain a low  flux condition at x = 0. 

The opposite case  of  sluggish trailing and equilibrium 
leading  exchange kinetics (h- = 20, h, = 0) is  displayed in 
the next three figures.  These should be compared to Figures 
5-1. Figure 8 shows  how the velocity  varies  with step 
distance and with driving force.  Now,  however, it is  less than 
Schwoebel’s result (2 I), again  shown dashed, when d3, < 1. 
Notable differences appear, however,  for  larger driving 
forces. For example, the “dip” in  the curve for d e  = 10 is 
closely  related to the same feature in Figure 4, and  the linear 
asymptotic behavior (23) again holds when Vis large 
enough. [This happens, according to Equation (22), when 
I/>> ih- = 10.1 Figure 9, for small step distance, is almost 
the mirror image of Figure 6, except that the order of the 
curves  is  reversed  because the leading terrace is  now the 
more efficient supplier of adatoms. On the other hand, the 
case 1 = 4xs, in Figure 10, shows that the already skewed 
distributions become  yet more skewed  when u0,Z 10. In 
that case the coverage  exceeds unity. While our model treats 
the profile of the adatom distribution correctly, the physical 
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//2x, 1 ,  and the subsequent approach to linear behavior For larger C 
reversed: h- = 20 and h, = 0. Note the “dip” when a0 = 10 and 

significance  of this result  is open to interpretation. We note 
the appearance of a boundary layer at x = 0 because of the 
compromise of the concentration distributlon between a 
fixed value (0 = e,) at that boundary and a fast-moving step 
which  experiences a large convective flux. Indeed, for  large 
V, our problem  is amenable to singular perturbation 
techniques. 
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4 the leading edge that develops for larger driving forces. 

All  of our discussions  have centered, thus far, on 
asymmetric steps,  i.e., those for which the capture 
coefficients h, and h- differ.  Let  us  now consider steps that 
are physically symmetric; for example, take the case 
h, = h- = 1. This represents steps whose capture-rate 
constants, from either side, are roughly equal to the diffusion 
velocity. Figure 11 shows the concentration distribution 

between such steps. We note that the concentration values at 
the steps can deviate from equilibrium, as they should. For 
small driving forces, dl, 5 0.1, the distributions are 
symmetric, but they  become  increasingly  skewed  for  larger 
driving  forces. Consequently, concentration values on either 
side of steps  now  differ  because  of the additional asymmetry 
brought about by  fast step motion. This figure thus illustrates 
again that there are two distinct causes of asymmetry, one 
due to the capture kinetics and another due to the motion of 
the steps  themselves. In sum, unless equilibrium strictly 
prevails at steps, there is  always a jump discontinuity in 
concentration at steps  which contributes to the growth rate 
through the convective term in the Stefan condition (6). 

5. Application  to  the  growth rate of silicon by 
MBE, and  discussion 
The epitaxial growth of silicon  layers by  MBE  is  of 
considerable current interest because it is a low-temperature 
process that allows the formation of  very sharp junctions 
[52] and the fabrication of novel structures [53-571. 
Reference  [58]  gives an historical  perspective. In this section 
we apply our results to this growth mode of undoped Si, but 
they should also apply, unchanged, to any monocomponent 
system. 

The MBE growth  kinetics of  Si are remarkable. It is 
found, experimentally, that Si  films  of  satisfactory crystalline 
perfection can be  grown  by  MBE at temperatures below 
500'C [59]. It is  also  agreed [60] that  the growth rate is quite 
insensitive ( 4 %  change) to substrate temperatures in  the 
range  500-900"C, but that it is linear with the incident 
silicon  flux F. In fact, this flux  itself  is often used to calibrate 
the thickness of  grown  films in this temperature range  [45]. 
Moreover, in this same temperature range, the growth rate 
appears largely independent of substrate orientation for the 
(IOO), (1 1 l), and (1 10)  close-packed orientations and within 
5" misorientation thereof. 

The technological advantages of these effects are evident, 
and it is tempting to explain them on the basis of the 
Wilson-Frenkel  model [61,62]. This perhaps crudest of 
crystal-growth  models simply postulates that almost every 
atom impinging on a surface will immediately incorporate 
into the crystal.  In other words,  every  surface  site must be a 
kink, and the growth rate 

where Q is the atomic volume, is then merely proportional to 
the difference  between the incident flux and the desorption 
flux from kinks. It is true, if the desorption rate is  relatively 
small, that such a model can account for the insensitivity of 
the growth rate to temperature and orientation, but the high 
degree  of  crystal  perfection that can be obtained by MBE 
demands high mobilities on smooth terraces-where there 
are no kinks-and it thus requires the existence of step 
trains. Regardless of the origin of the steps,  growth then 
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occurs because of their motion, and BCF  showed  by  simple 
kinematic considerations that the normal growth rate of the 
crystal R is related to the average step velocity u through 

R = Vc/e, (27) 

where c is the step height and where f is, henceforth, the 
average dimensional distance between  steps  [63]. In view  of 
Equations (12a), (16), and  (27), the note in Reference [47], 
and the obvious relation Q = c/n,, we  have a general 
expression for the growth rate 

in which,  because of Equations (4b, c), the “prefactor” 
Qn,at9,/7, is  exactly the Wilson-Frenkel  growth rate (26). 

of a dilemma. First, how are we to understand a Wilson- 
Frenkel  behavior of the growth rate, yet due to moving 
steps?  Does this not deny rate limitations due to surface 
diffusion and to capture by steps?  Second, as a function of 
misorientation [63], Equation (27) shows that the growth 
rate is proportional to the step velocity  divided by f. Since all 
BCF-like  models [3, 15, 16,  19-27]  call for saturation 
behavior of u ( l )  for  small misorientations (i.e., for large l ;  
see the dashed lines in Figures 5 and 8), it follows that none 
of these  models can predict orientation insensitivity to 
growth rate, unless the average distance between  steps l 
always remains smaller than the mean diffusion distance x,. 
This would mean that there is a lower bound on 
misorientation below  which the growth rate suddenly 
decreases. This is not observed, and we must now  see 
whether our present calculations are, at least qualitatively, in 
line with  observations. 

But it would appear that we are impaled on the dual horns 

There are two distinct ways in which  expression (28) 
reduces to the Wilson-Frenkel  law  (26). First, if u0,5 1, 
then Figures 5 and 8 clearly  show that the step velocity u 
tracks the BCF-like  models. In addition, u or f increases 
linearly  with step distance if l cc x,, and Equation (28) 
reduces to Equation (26). This is a well-known  result that is 
expressed  analytically in Equation (24). From a physical 
point of view, adjacent steps that are sufficiently  close [5  11 
can ensure an adequate supply of kinks, regardless of the 
other kinetic limitations of the adsorbate, i.e., independently 
of the values of the kinetic coefficients k, . But there is  also a 
second way in which Equation (28) reduces to the Wilson- 
Frenkel law.  We note on Figures 5 and 8 an essentially linear 
dependence u( l )  for almost all step distances when at9, is 
large enough. This too occurs independently of the details of 
adatom capture kinetics. We have  seen this result, 
analytically, in Equations (22) and (23). From a physical 
point of  view, a fast-moving step sweeps up all adatoms on 
adjacent terraces,  whether or not these atoms diffuse 
significantly or incorporate sluggishly. Kinks in fast-moving 
steps are therefore just as effective  for capture as a 
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completely kinked surface or one containing closely  spaced 
steps. In other words, as the driving force  increases, the 
Stefan problem associated  with the motion of steps becomes 
largely  convective rather than diffusive in character. 

Both of these  cases are represented schematically in Figure 
12. Part (a) shows  how the step velocity depends on 
misorientation when the driving force  is either small or large; 
it should be compared to Figures 5 and 8.  Figure 12(b) 
shows  how the growth rate depends on these same 
parameters. For small aO,, the velocity saturates [cf. 
Equation (20a)l at a valuef,(w) = ( 1  + h) / [ (  1 + h f  - dz], 
which depends on kinetics at steps. Then, the limit of 
Wilson-Frenkel behavior occurs when I = x,, but a sharper 
estimate also depends on the values of capture-rate constants 
at steps  [29]. On the other hand, for large ut9, the behavior of 
the velocity  is  essentially linear, and R = R, for almost all 
f, regardless  of the values of k, . 

Our view  of the MBE growth of  Si may  be questioned 
because of recent RHEED intensity oscillation studies 
[64,65], although certain details of image interpretation (in 
particular, dependence of monolayer or bilayer  growth mode 
on the beam azimuth) remain unclear [66]. These authors 
suggest that growth occurs by repeated two-dimensional 
nucleation. It should be noted, however, that RHEED 
oscillations occur mainly at temperatures well  below the 
usual conditions for MBE growth, and that a high- 
temperature pretreatment of  buffer layers  is often necessary. 
In other words, the surface must be  somehow “prepared,” 
perhaps  precisely  by creating step trains. In addition, even if 
the nucleation rate is a significant factor, the motion of 813 
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Schematic  behavior (a) of the velocity vxJ2DSuOe and (b) of the 
growth rate RIR,, as a function of step distance N2xs .  (All variables 
are normalized.) The Wilson-Frenkel law is clearly always obeyed 
when the distance between steps is small enough. It also  holds, 
regardless of step distance, when the driving force is large enough. 

competing nuclei edges-which are steps-must  also 
contribute to the observed  growth rate. This motion, too, 
will  be  fast  if u0, is  large. 

It is pertinent to comment on the predictive  power (and 
limitations) of the growth theory formulated in this paper. 
From an applications standpoint, our interest also  clearly  lies 
in delineating useful  regimes of crystal  growth. Toward that 
end, a short digression on numerical estimates is  now 
needed. All along we  have seen that the driving force u0, 

[67] is an essential  physical parameter, together, of course, 
with the mean diffusion distance x,. We emphasize again 
that this driving force for MBE  growth  is not merely the 
supersaturation u, but rather it is the product of the actual 
flux imbalance u and  the surface's  "receptivity" Be to 
adsorbed atoms. With Equations (4b, c), we also  have its 
expression u0, = ( T , / ~ , ) ( F  - F,) as the ratio of the net flux to 

the maximum conceivable desorption flux,  i.e., from a 
completely  flat, singular surface. Further, as is well known 
[ 1, 3, 16,  181, T,, D,, ne, and hence x,, and F, can be 
estimated for materials whose  cohesive properties depend 
mainly on pair interactions. These estimates are collected in 
Appendix  C.  Such  a description, if applied to silicon 
[35,39,40,59,60]-and this may not be valid-indicates 
that certain low-temperature MBE conditions would  yield 
very  large  values  of u0,. At T = 600"C, for example, 
Equations (C4) and (CS) show that a  typical  flux 
F = 2 X l O I 5  cm-*s-' would produce an enormous 
supersaturation u z 1.5 X 10" which  is  evidently 
orientation-independent. Then, using Equation (C2), u0, 

would  be approximately 200 and 0.007 for the (100) and 
(1 1 1) orientations, respectively  [68],  because of the strong 
orientation dependence of the equilibrium coverage. Under 
these conditions, with Equation (C6), x, would be of the 
order of 1.3 X lo5 and 800 times the jump distance a for the 
same (100) and (1 1 1) orientations, respectively. On the other 
hand, there is no simple way to estimate the capture 
coefficients k, because  these depend on the detailed structure 
of a step [ 181 and on the averaging  process  (cf.  Appendix A) 
necessary for a one-dimensional calculation. 

These numbers, even  if not accurate, are suggestive. First, 
growth on the Si( 1 1 1) orientation probably occurs through 
the motion of slow steps  because 00, is small for most  MBE 
conditions. One would  expect orientation sensitivity at low 
enough misorientation angles. In that case, small changes in 
the local step density imply changes in  the step velocity. Step 
trains could bunch and be more easily pinned by impurities 
[4].  Studies  of  growth kinetics on this orientation, however, 
are more likely to illuminate the details of adatom kinetics. 
In contrast, the (100) orientation supports large driving 
forces: Steps  move  quickly, the growth rate is more stable, 
and the exposed  terraces are less prone to contamination. 
This orientation, as  is  observed experimentally, hosts 
epitaxial  layers of higher quality, although carbon 
contamination and dislocation generation cannot be ruled 
out [69]. 

Summarizing, we have  shown that if the growth of  Si  by 
MBE occurs through the motion of steps, there exist  growth 
conditions for which  these steps move at velocities that are 
large compared to the diffusion  velocity on terraces. Under 
these circumstances, the overall  growth rate is largely 
independent (1) of the temperature of the substrate, (2) of 
the orientation of the substrate, and (3) of the details of 
capture kinetics at steps. In addition, we would  expect that 
fast step trains, in a clean environment, are relatively stable 
toward perturbations of the distance between  steps. It 
follows,  however, that other mechanisms that pin or retard 
step propagation cause  a  decrease in crystal quality, even 
when the driving force  is  large. This can occur either because 
of unintentional contamination (mainly Sic microcrystallites) 
or because of interference by a dopant adlayer. Practitioners 
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of  MBE  would agree  today that atomically  clean starting 
surfaces and an impeccable vacuum during growth are 
essential. In addition, it is well known that high dopant 
concentrations (mainly Ga and Sb) can severely  degrade 
crystal quality. Extensions of our model are thus required to 
treat both the stability of  fast step trains and  the effects due 
to  an adsorbed second component. Finally,  because the 
surfaces of most semiconductors undergo reconstructions 
which  persist during growth, and because  these 
reconstructions involve substantial numbers of surface 
atoms, a complete theory of  MBE growth  would  have to 
account, not only for adatom kinetics on these  surfaces, as 
does this paper, but also  for the continuous transformation 
of the surface structure into the bulk crystal structure. 

Appendix A Boundary  conditions at  steps 
Here we outline the proof of the Stefan condition (6). Next, 
we justify the boundary conditions (5). Consider a step, 
shown  schematically in Figure 13, and a laboratory 
coordinate frame (x, y,  z )  with its unit vectors (i, j, k). If 
n,(x, y ,  t )  and n,( y ,  t )  are the surface and ledge  densities  of 
adatoms, and if J,,  J,, and J, are the volume, surface, and 
ledge  diffusion  fluxes,  respectively,  mass conservation in any 
continuous region of the terraces and ledges demands that 

Furthermore, if ( t ,  7) are the coordinates of a kink moving 
at velocity vk = + due to attachment, there, of adatoms, then 
the position of the step increases by one unit a in the 
x-direction  whenever a kink passes the origin of coordinates. 
This implies a normal step velocity 

v = vka/lk,  643) 

where lk is the average distance between  kinks. 

arbitrary, fixed  region a that instantaneously encloses a 
kink. That region,  however,  is the union of two  regions 
whose boundaries do move. For example, a,, the region to 
the left  of the step, is bounded by the fixed line SI and by 
the kinked edge S, that moves  upward in Figure  13.  We then 
have 

Consider now the number of adsorbed particles N, in an 

and there are two  different ways to evaluate the time rate of 
change N,. First, that number changes  because of  all  sources, 
interior to 3, and because of  all  fluxes along the boundaries 
of 3 and 3,. Second, one differentiates Equation (A4) 
directly, taking moving boundaries into account and using 

Y I 
I 
I 
I 

TL-? 

Plan view of a  step  and  a  kink,  coordinate  system, and domains  for 
the  mass  balance  calculations of Appendix A.  The  fixed  domain 
3 = B, U LEJ2 encloses a single  kink.  The  fluxes J,,  J,, and J, are all 
directed  toward  their  respective  sinks:  terrace,  ledge,  and  kink. 

where r represents the reaction rate (the kink is a sink) of the 
reaction, adatom -+ crystal, at kinks. This expression  is 
nothing more than a local  mass  balance of the adsorbate 
around kinks. A second  expression  arises from counting the 
number of atoms in  the crystalline phase. This number, 
evaluated over 3, is simply 

N,(t) = const. + (7 - y,)/b, ('46) 

where b represents the size  of an adatom in the y-direction 
and where y ,  is the coordinate of the "lower" intersection of 
the boundary of 3 with the y-axis.  Again, measuring its rate 
of change  because of the reaction step r, and differentiating 
Equation (A6), we  get the mass balance law at kinks 

r = vk /b. ('47) 

Eliminating r between Equations (A5) and (A7),  and 
recognizing that  the integral in (A5) can be approximated, 
we obtain the result 

In many cases,  however, one may be more interested in the 815 
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average behavior of the distributions n, and nI,  rather than in that the edge distribution n, is  never  very  different  from 
a detailed two-dimensional computation. This is  particularly equilibrium, then, using Equations (A14), the boundary 
true if  ledge  diffusion and kink capture are fast  processes. conditions (A  13)  express the exchange  fluxes in terms of 
Consequently, we define the averages in the y-direction as differences  between n, and the equilibrium value ne. This is 

Y2 precisely  what we  have  expressed in Equations ( 5 )  if  by n(x) 
fi,(x, Q = 4 n, dY (A9a) we understand the quasi-steady-state spatial average of 

n,(x, y). In the same way,  we can correlate Equation (A12) 
and the Stefan condition (6). 

and 

where the distance y, - y2 is  chosen equal to the periodic 
interkink distance lk. Using the basic equations (Al) and 
(A2),  we  find that the averaged quantities satisfy similar 
relations, namely, 

Now,  if it is assumed that the averaged  ledge distribution is 
approximately at steady state, one can use Equation (A1 1)  to 
eliminate the jump discontinuity of n, and .TI,, from the 
Stefan condition (AS). Further, the jump in n, at a kink can 
represent its average jump along a step if the y-dependence 
of n, is  weak.  Finally, remembering Equation (A3) and that 
the reticular density n, is  precisely I/& we obtain the 
averaged  Stefan condition 

n,v = [ve, - 4 , x ~  . (A 12) 

All the previous results are independent of constitutive 
relations. For example,  nowhere was  Fick‘s  law for the 
various J’s [e.g., J, = -D,Vn,] ever invoked. Of greater 
importance, perhaps, are the analytic expressions of the flux 
near boundaries. For example, our analysis in Equations (4) 
manifestly  assumes that the exchange flux -k . J, on 
terraces has the form of a first-order  process F - n,/r,. The 
same can  be assumed for exchanges  between terraces and 
ledges, thus leading to the phenomenological relations on 
either side of steps, 

Here, for example, 1 / ~ / +  is proportional to the transition rate 
of adatoms from the ledge to immediately adjacent positions 
on the terrace to its right. Relations such as Equation (A13) 
can be understood on the basis  of nonequilibrium 
thermodynamics of surfaces [70]. The four coefficients k,, 
and T,* are not independent because the fluxes (A13) vanish 
at equilibrium, and we obtain “partitioning” 

n1.e = ~ l * k s * n s , e  (A 14) 

in a manner similar to Equation (4b).  If,  now, we assume 

Appendix B: Isolated  nonequilibrium  steps 
If steps are far apart, then one should get their behavior, in 
the limit !+ m, from the results of Section 2. It is  easier, 
however, to solve the problem  anew. Here, we outline this 
solution. 

polynomial, r2 + 2 Vr - 1 = 0, associated  with the differential 
equation (9), then 

If r* = - V & p are the roots of the characteristic 

where p ,  p ,  and q have the same meaning as in Section 2. 
Furthermore, because r+ r- = - 1,  it  follows that the “decay 
lengths”  (in dimensional form) of the exponentials are xsr*. 
Thus, for growth ( d e  > 0), the concentration distribution 
tends to sharpen in front of a moving step and to flatten on 
its trailing  side, and conversely  for evaporation. Inserting 
Equation (B 1) into boundary conditions (lo), (1  1) yields, 
first, 

a’e 

I + h+(B + V )  ’ 

00, 
1 + h-(P - V )  ’ 

P =  

q =  

and then an equation of the form (16),  with 

f(v) = 1[ 1 + :+;; V )  + 1 + h-(p - V )  1. P + v  

This, we note, increases without bound as V-, fa. The 
function (B3) is  shown as dashed lines on Figure 4. In the 
case  of step equilibrium we getf( V )  = p ,  and we recover the 
result obtained by Mullins and Hirth (1 8). 

Appendix C: Vapor  pressure  and  derived 
parameters 
Here, we collect some results that are useful in estimating 
the parameters of our model.  First, from the kinetic theory 
of  gases and the principle of detailed balance, we express the 
equilibrium flux  of  Si as 

in terms of its equilibrium vapor pressure pe and its mass m ; 
kT has its usual  meaning.  Next,  from simple bond 
arguments [ 1,  3, 351  we have the Arrhenius behavior, 
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ne = n,e - W,/kT 

and 

117, = ve , -W;/kT 

for the equilibrium adatom concentration and its desorption 
probability. The activation energies W, and Wi represent 
bamers for kink-to-terrace and terrace-to-vapor transitions, 
respectively, and v is the frequency of normal vibrations. 
These three quantities are related through Equation (4b); 
hence 

F,=n,ve , 
where W = W, + Wi is the sublimation energy. Neither W 
nor the product n,v should depend on orientation, but the 
latter is  probably temperature-dependent. Indeed, vapor 
pressure data reported by Honig and Kramer [7 I ]  show no 
indication of deviation from  purely Arrhenius behavior, and 
p,( 7‘) has a sublimation energy W of 4.6 1 eV and a pre- 
exponential of 2.4 X 10” torr [65]. Therefore, combining 
Equations (Cl) and (C4), we must have 

n,v = F o m ,  (C5) 

where T, = 1685 K is the melting point of  Si and where the 
reference flux Fo = 3.88 X lo3’ crn-’s-l is estimated from the 
“pre-exponential” term of the vapor expression  for the vapor 
pressure. The equilibrium flux (C4) is thus entirely 
determined. If W, is estimated from bond-breaking [f and f 
of W for the (1 1 1) and (1 00) orientations, respectively], then 
we can also estimate both the equilibrium coverage, 
according to Equation (C2), and  the driving force 00,. 
Finally, if the activation energy U of the surface  diffusivity  is 
known (1.3 eV, according to recent measurements [72,73]), 
Equation (1)  yields the estimate 

x, EZ ae 

for the mean  diffusion  distance. 

- W/kT 
(C4) 

( W-  W,-U)/ZkT 
(C6) 
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