796

From the

fractal dimension
of the intermiss
gaps to the
cache-miss ratio

by Dominique Thiébaut

This work extends a model proposed by
Voldman, Mandelbrot, et al. on the fractal nature
of the gaps separating cache misses, and
shows how the fractal dimension of the gap
distribution can be used to predict the miss ratio
experienced by the program that has generated
the series of cache misses. This result supports
the thesis that the fractal dimension of the
distribution of the intermiss gaps is a potentially
powerful measure for program characterization.

1. Introduction

Voldman, Mandelbrot, et al. have studied the activity of
several programs in memory caches, and have shown that
the seemingly erratic occurrences of gaps separating two
consecutive cache misses very closely fit the model of fractal
elements. Mandelbrot first introduced and then developed a
complete theory of fractal geometry with an astonishing
number of applications to natural and physical phenomena
[2]. In particular, if we define the gap between two cache
misses (referred to as the intermiss gap in the remainder of
this paper) as the number of consecutive cache hits occurring
between two cache misses plus one, and if we call G the
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random variable whose values are the successive gaps
experienced by some program P, then, over the whole
execution of program P, the probability distribution
Pr[G > u] is hyperbolic and closely follows a curve of
equation

Pr[G > u] = Au™, (1)

where 6 is introduced by Mandelbrot as the fractal
dimension. This property is very easily recognizable when
the distribution is plotted with a doubly logarithmic scale, as
the curve then becomes linear with slope .

In this paper, we verify that programs running on
computers of a much smaller size than that of the computer
used by Voldman and Mandelbrot for their analysis also
exhibit a memory access pattern giving rise to a fractal
intermiss-gap distribution, and that we can evaluate the
cache-miss of a program from certain particular knowledge
of the fractal dimension 8 of its intermiss-gap pattern. This
evaluation, however, is not exact. It is based on the
assumption that the intermiss-gap distribution follows
Equation (1). As a result the approximation is directly
related to the degree with which the intermiss-gap
distribution fits the fractal model.

Others have attempted to predict miss ratios by different
means. Laha, Patel, and Iyer [3] propose a statistically based
scheme in which sampling techniques are applied while the
address trace of the workload under study is being generated.
Agarwal, Horowitz, and Hennessy [4] propose a hybrid
method based on both trace analysis and analytical modeling
for the prediction of the miss ratio of a given workload.
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Strecker [5] extends work by Easton and Fagin on the cold-
start miss ratio [6], and proposes a cache-reload transient
model for the prediction of the miss ratio of interleaved
programs based on the continuous-flow model. This
approach requires the analysis of a trace of the workload
under consideration for different cache sizes, from which
several parameters representative of the workload are
extracted, allowing for the prediction of the miss ratio for
cache sizes other than those studied.

All of these authors base their computation of the miss
ratio on an analysis of the trace representing the workload
under investigation. Laha et al. rely on sampling techniques,
while the other authors generally filter the whole trace. In
their analysis they try to describe, through the use of several
parameters, the erratic dynamics characterizing the behavior
of programs and, indirectly, the associated miss ratios.

Our contribution in this paper is an attempt to predict the
miss ratio with only one parameter, also derived from an
analysis of a program trace but carrying what we believe is a
very powerful measure of program behavior. This approach
requires that a trace of a given program be fed to a cache
simulator. Instead of recording the number of misses as a
function of the total number of cache accesses, we record the
gaps between consecutive misses. Hence, the goal of this
paper is not so much to present a more efficient
methodology for computing the miss ratio of a given trace in
a fixed-size cache. It is rather to further stress the extreme
richness of the fractal parameter in information about the
behavior of the program, and in particular, the possibility of
predicting the cache-miss ratio of the program from
knowledge of the fractal dimension of the intermiss gaps.
This ability of the fractal parameter to model program
behavior in memories has been reported recently in [7],
where it is shown that, when modeled as a fractal random
walk through the memory lattice, the memory access pattern
of computer programs exhibits a fractal dimension, and that
knowledge of this alone can be used to predict the miss ratio
of the programs in fully associative caches of any size.

In the next section we derive an approximation of the
cache-miss ratio from the knowledge of the intermiss-gap
distribution. In the third section we apply this result to traces
of computer programs and show the relationship between
the real miss ratio and the one computed using the fractal
model, when one or two fractal dimensions are introduced.
The fourth section concludes this paper.

2. Derivation of the cache-miss ratio
To show how the miss ratio is related to the plot of the
intermiss-gap distribution Pr{G > u], we show by example
how such a plot is derived, and then how the components of
the miss ratio can easily be computed.

Let us assume that we have recorded the series of gaps
separating cache misses during the execution of program P,
and further that this record is the realization of a random
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variable G. We denote this series of events as {G}. From {G}
we generate a sorted list {G,, N,} of the gaps, such that the
gaps are sorted in ascending order by their length G, over the
range i =1, - - -, p, and such that each unique length G, is
associated with a number N, representing the total number
of gaps of length G, in the series {G}. The following equation
is always true:

P

3 N,=Card({G}) =N,

i=1
where Card(.) represents the total number of elements in the
series {G'}. It is straightforward to derive the probability
distribution Pr[G > G,], where G is the random variable and
G, a realization of G:

Pr{G>G,]1=P1[G = G,]
+Pi{G=G,,]+ - +PrG=G),)

Nisy +ﬁp
N

N

N
5.,
SN

where p is the index of the longest gap(s) in the sorted list
{G;, N}. Since we denote the smallest gap as G|, p is also the
number of unique gaps in the series {G}:

p=Card({G,, N,}).

Assuming that the series of intermiss gaps indeed exhibits
a fractal behavior, the probability distribution Pr[G > G,] is
hyperbolic, and can be written as
>N
Pr{G>G,]= ;—j-
N,

Jj=1"7j
=4'G/", )

where 4’ and @ are positive real numbers. Since the
denominator of Equation (2) is constant for any given series
{G'}, we can, without any loss of generality, shift from the
probabilities to the distribution of the N,,

N,=4G". 3)
The cache-miss ratio associated with the series {G} is defined
as follows:

number of misses
number of misses + number of hits’

miss ratio =

Since each intermiss gap is measured between two cache
misses, the total number of misses is simply equal to the
total number of gaps in the series {G} plus one. This simple
relationship is illustrated in Figure 1.
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As a result, we have the following two equations:

p

number of misses=1+ Y N, 4)
i=1
and
r
number of accesses=1+ Y, N,G,. (5)

i=1

From Equations (3) and (4) we deduce a simple expression
for the number of misses in terms of A4, 8, and the length of
the shortest gap recorded:

number of misses=1+ AG,_". (6)

The second term of Equation (5) is simply the area of the
rectangles under the hyperbolic curve defined by 4 and 4, as
shown in Figure 2(a). (Note: We abandon the log/log scale
in Figure 2, since we are interested in the area under the
hyperbolic curve.) We refer to this area as .S,. We compute
an approximation of S, from the areas S,, S,, and S;, shown
in Figure 2(b), in the following manner:

?
So= X NG,

=AG,™; (7)

Gp
S, = f Ag™ dg
G,

A - -
=15, -G) ®
and S, is approximated by the following quantity:

-1

= E M(GH-I - Gi)
i=1

(assuming that G, , — G, =1 for any i)

=—AG,’ + AG}"
In combination, Equations (7), (8), and (9) yield

Sy=AG)”" + % G,"-6") - % AGT -G,
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Combining this result with Equation (5), we get the total
number of cache accesses,

number of accesses

-8 1-¢ 1-8 -8
(G0 G S (10)
2 1-6 1-6" 2 /)

Finally, the miss ratio is computed as the ratio of Equation
(6) to Equation (10):

1+ 4G
G G, G G

——, (11)
1 14 V4
+ — — U
! A(z I—g 1-0°" 2>

miss ratio =

which we can further approximate as

. G’ )
miss ratio = —=; = = .
G, %6 G |G
2 1—-6 1-6 2

This final equation is interesting because it does not depend
(in our approximation) on the constant 4, but on 6, G|, and
G,. Since the smallest gap recorded will most probably be
equal to 1, Equation (12) can be simplified by replacing G,
with 1. We can further simplify it by assuming that the
longest gap recorded, G, will occur only once in the series
{G}, in which case N, = 1 and G, is given directly by
Equation (3),

-8

AG,'=N, =1, (13)
or

G,=4". (14)

In this case the miss-ratio expression can take the following
simple form:

. , 2
miss ratio = . (15)

=% (2%,
=9 Fo\T—¢*

3. Experimental verification

We tested the validity of Equation (12) by plotting the
intermiss-gap distribution of several programs and by
applying a least-squares fit to obtain the values of 4 and ¢
best representing the empirical data. The analysis is based on
traces of the execution of several programs. The traces
contain the addresses of consecutive memory accesses
generated by different programs while fetching both data and
code information stored in memory. The tracer that we
developed for this purpose captures all memory accesses
generated by the programs’ instructions, with the exception
of instructions imbedded in critical sections (uninterruptible
code). The programs were captured on an Intel 8088/8086-
based computer, with 512K bytes of main memory and
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Basic interpreter: Intermiss-gap distribution (solid curve, true
distribution; dashed curve, regression).

nonvirtual memory management. The programming was a
uniprogramming environment. It included a Pascal compiler
(Turbo Pascal®', Version 2), a Basic interpreter (Microsoft®l
Basica), a spell checker (IBM WordProof ™ 1), and a text
editor (Turbo Pascal editor) executing a string search. The
cache simulated is a 128-congruence-class, eight-way-
associative cache, with a line size of eight words. Each
congruence class is managed by a least recently used (LRU)
algorithm. The selection of the congruence class is
performed by taking the modulo of the line address with
respect to the number of congruence classes.

The plots of the intermiss-gap distributions along with the
hyperbolic curves obtained by linear regression are shown in
Figures 3-6. The miss ratios obtained and the relative error
of prediction are summarized in Table 1.

The difference between the predicted and true miss ratios
stems from several factors. The first, most obvious factor is
that all four programs tested show a “knee” in their
intermiss-gap distribution. Such a phenomenon also appears
in the study by Voldman and Mandelbrot, and they show
that the knee corresponds to gaps equal to half the size of the
cache. We refer to this knee as the cache-size knee. The
second factor in the observed difference is linked to the
regression algorithm. Because the regression algorithm is
applied to the totality of the points defining our
m registered trademark of Borland International, Inc., Scotts Valley,

CA. Microsoft is a registered trademark of Microsoft Corporation, Seattle, WA.
WordProof is a trademark of International Business Machines Corporation.
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String search program: Intermiss-gap distribution (solid curve, true
distribution; dashed curve, regression).
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experimental distribution, the hyperbolic curve never
completely fits the flat portion of the experimental
distribution. Instead, its slope is always steeper than the
longest, flattest portion of the experimental curve. Voldman
and Mandelbrot similarly point out that the determination
of the slope ¢ of the experimental curve is critical, but they
do not detail their algorithm for its computation.

The curves also show a second, much smoother, knee
around the gap value of eight. Even though the knee is slight,
its influence is critical, because it is located at the high end of
the ordinate logarithmic scale, and any variation from the
linear interpolation curve in this area translates into large
numbers. This in turn translates into a significant error in
our approximation of the miss ratio. We conjecture that the
location of this knee is related to the size of the cache lines,
and we refer to this knee as the line-size knee. It appears that
this soft knee is more accentuated when the cache has a low
degree of associativity.

The influence of the line size on the number of misses,
and in our case, on the gaps between misses, can be
explained in the following way. Assume that a program
accesses, in a completely random fashion, all 16 memory
items located from address 100 to 10F (hexadecimal). If we
assume a line size of one word, and that none of the items
are in the cache to start with, the 16 accesses result in 16
misses separated by a gap of length one. If we now assume
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that the line has a size of eight words, then the same 16
accesses will produce only two misses, one miss when the
first item in the range 100 to 107 is accessed, the other miss
when the first item in the range of 108 to 10F is accessed.
Some of the information relating to the access pattern is thus
“masked” by the line size. This information, were it known,
would contribute to the frequency of occurrence of gaps of
length one to seven. Instead, a gap of length between one
and eight2 is recorded. Therefore, we can expect the
frequency counters associated with the gaps of lengths one to
seven to be the ones most affected by the masking
introduced by the line size. To compensate for this line-size
effect, we conducted two experiments.

In the first experiment, we recorded only gaps of length
greater than or equal to eight. As the program trace was fed
to caches of different sizes, only those gaps between misses
separated by at least seven memory accesses contributed to
the total number of misses and to the individual frequency
counters associated with each possible gap length. We refer
to this experiment as the truncation experiment.

In the second experiment, we recorded all gaps, including
gaps of length less than eight, but this time we did not
maintain individual frequency counters for these gaps.
Instead, we maintained a single counter for all of them. We
chose to associate that counter with a gap length of eight. A
short example will clarify this concept. Assume that
frequency counters for gaps of length 8 to some large
number are all initialized to 0. Assume furthermore that
when the trace of a given program is fed to the cache, we
observe misses separated by the following gaps: {1, 1,2, 1, 9,
3,5,8,9, 15,-- .. After the gap of length 15 is analyzed, the
counter of the total number of misses contains 10; the
frequency counters associated with gaps of length 8, 9, and
15 contain 7, 2, and 1, respectively. We have, in essence,
collapsed all the gaps of lengths 1 to 8 into one category, and
decided that its length would be 8.

In both experiments, the first step consists in applying a
regression algorithm to compute two values of 6, respectively
called ¢, and 4,. ¢, represents the slope of the intermiss-gap
distribution on the left side of the cache-size knee, while 9,
represents the slope of the distribution on the right side of
the same knee. The location of the knee varies with every
cache simulated. As Voldman has shown, this location is
usually in the vicinity of twice the size of the cache
considered. Our algorithm for finding 8, and 6, can be
summarized as follows:

& Select a cache of size C lines, where one line contains eight
memory words, and where the number of congruence
classes is selected so that the degree of associativity
remains independent of the cache size, at a value of eight
lines per congruence class.

*The gap in this case can only be of maximum length eight, if we assume that the first
eight items accessed are all part of the same line.
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Table 1 True and approximated miss ratios.

Program Pascal Basic Spell Text
compiler interpreter checker editor
True miss ratio (%) 0.23 0.49 0.19 0.26
Approx. miss ratio (%) 0.16 1.33 0.33 0.52
Relative error (%) 30 171 73 100

o Feed the trace of the program considered to the software
cache-simulator and record the gap between consecutive
misses.

o Construct the distribution of the gaps in terms of the
quantity N(u), defined as

N(u) = Number[recorded gaps > u].

o Set the cache-size knee at the gap value equal to C/4 (since
each line contains eight words, half the size of the cache
expressed in words is C - 8/4).

o Take the logarithm of both components of the (x, y) pairs
associated with each point of the distribution N(u), and
apply a linear regression algorithm to the part of the curve
located on the left side of the cache-size knee. The second
regression coefficient yields the value of 6,. Similarly, the
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Table 2 Miss ratio and fractal dimensions. Linear interpolation applied on both sides of cache-size knee (NA = Not Applicable).

Cache size (lines) 32 64 128 256 512 1024 2048 4096 8192 16 384
0, 2.00 1.71 1.30 1.27 1.20 0.96 0.96 0.95 0.47 0.48
8, 1.32 1.06 1.10 0.97 0.84 1.06 0.99 1.48 NA NA
True miss ratio (%) 79 5.2 3.8 3.0 1.7 1.6 1.6 1.5 0.2 0.2
Approx. miss ratio (%) 39.9 337 20.2 18.5 16.4 7.2 6.9 64 0.2 0.2
Absolute error (%) 320 28.6 16.4 15.6 14.8 5.5 53 49 0.05 0.01

Table 3 Miss ratio and fractal dimensions. Linear interpolation applied on both sides of cache-size knee. Gaps of length 1,2, ..., 8

collapsed into one category (NA = Not Applicable).

Cache size (lines) 32 64 128 256 512 1024 2048 4096 8192 16 384
0, 2.63 2.12 1.43 1.39 1.31 1.00 1.00 0.99 0.49 0.50
0, 1.32 1.06 1.10 0.97 0.84 1.06 0.99 1.48 NA NA
True miss ratio (%) 7.9 5.2 3.8 3.0 1.7 1.6 1.6 1.5 0.2 0.2
Approx. miss ratio (%) 7.4 6.0 33 3.0 2.8 1.4 1.3 1.2 0.1 0.1
Absolute error (%) 0.5 0.8 0.5 0.0 1.2 03 0.3 0.3 0.1 0.1

Table 4 Miss ratio and fractal dimensions. Linear interpolation applied on both sides of cache-size knee. Gaps of length 1, 2, ..., 7

removed from distribution (NA = Not Applicable).

Cache size (lines) 32 64 128 256 512 1024 2048 4096 8192 16 384
6, 2.61 2.11 1.42 1.39 1.31 1.00 1.00 0.99 0.49 0.50
0, 1.32 1.06 1.10 0.97 . 1.06 0.99 1.48 NA NA
True miss ratio (%) 7.9 5.2 38 3.0 1.7 1.6 1.6 1.5 0.2 0.2
Approx. miss ratio (%) 7.3 5.9 32 3.0 2.8 1.4 1.3 1.2 0.1 0.1
Absolute error (%) 0.6 0.8 0.6 0.0 1.1 0.3 0.3 0.3 0.1 0.1

same analysis on the right side of the cache-size knee
yields the value of 4,.

The results of our experiments appear in Tables 2, 3, and
4, and are graphically illustrated in Figure 7. Table 2 shows
the result of the interpolation and algorithms before
application of either the truncation or the collapsing method.
Table 3 shows the effect of collapsing the gaps of length eight
or less into one bin. Notice that the absolute error in the
miss ratio for small cache sizes decreases dramatically. Table
4 shows the effect of not recording the gaps of length one to
seven. Here again, the miss-ratio error is greatly reduced.
The collapsing method shows a slight advantage over the
truncation method in miss-ratio accuracy.

The first major observation we gather from these tables is
that, for caches with a small number of congruence classes,
the line-size knee creates a considerable error in the
approximation of the miss ratio. In this light, we can see that
the size of the cache, and in particular the number of
congruence classes, influences the “clarity” with which the
fractal picture is rendered, very much like the focus of a lens.
At the extreme ends of the range of cache sizes, the misses
will be occurring either too often or only at start-up, blurring
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the observed fractal behavior. For large numbers of
congruence classes, the fractal behavior is more visible,
because the intermiss gaps more closely exhibit a hyperbolic
behavior and show a smoother line-size knee than at smaller
numbers of congruence classes.

It is surprising that such a large error occurs, given that the
intermiss-gap distribution is fitted with two hyperbolic
curves with different fractal-dimension coefficients, an
operation which greatly increases the accuracy of our
algorithm. The second observation is that removing the line-
size knee by way of collapsing or deleting the gaps of length
less than or equal to eight yields very good approximations
of the miss ratio for the different cache sizes studied. In both
cases, the maximum absolute error is 1.15%, with a slight
advantage in accuracy for the collapsing method.

We conjecture that both the small number of classes and
the prefetching introduced by a line size greater than one
degrade the observed hyperbolic characteristics of the
intermiss-gap distribution for gaps of length less than the line
size. By collapsing the gaps of length less than the line size,
we can accentuate the hyperbolic behavior of the gap
distribution, resulting in a significantly enhanced prediction
of the miss ratios.
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4. Conclusion

In this paper we have verified that smaller programs than
those tested by Voldman and Mandelbrot also present a
fractal nature in their generation of cache misses. This
strongly suggests that the fractal nature of the intermiss gaps
is an integral part of the access pattern of computer
programs, and is independent of the size of the computer
considered. Mandelbrot showed that this fractal
characteristic can be parameterized by the fractal dimension
6. We have shown that the knowledge of 8 alone is sufficient
to approximate the cache-miss ratio associated with the
series of intermiss gaps. This last operation is, however, not
exact and its accuracy depends largely on the degree to
which the distribution fits the hyperbolic model. We show
that if we introduce two fractal dimensions, 8, describing the
fractal behavior of the small gaps and 6, describing the
fractal behavior of the larger gaps, with a threshold
dependent only on the cache architecture, and if we
compensate for the influence of prefetching due to a line size
greater than one, we can derive a much more precise
estimate of the miss ratio. This argument reinforces our
belief that the fractal nature of the intermiss gap is a very
powerful characterization of program behavior, and that
most of the parameters traditionally used to measure
program performances are imbedded in the fractal model.
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