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by Dominique  Thiebaut 

This  work extends  a  model  proposed by 
Voldman,  Mandelbrot, et al. on the  fractal  nature 
of the  gaps  separating  cache  misses,  and 
shows  how  the fractal dimension of the  gap 
distribution  can be used  to  predict  the miss  ratio 
experienced by the  program  that  has  generated 
the  series of cache  misses.  This  result  supports 
the  thesis  that  the  fractal  dimension of the 
distribution of the  intermiss  gaps  is  a  potentially 
powerful  measure for  program  characterization. 

1. Introduction 
Voldman, Mandelbrot, et al.  have studied the activity of 
several  programs in memory caches, and have  shown that 
the seemingly erratic occurrences of gaps separating two 
consecutive  cache  misses  very  closely  fit the model of fractal 
elements. Mandelbrot first introduced and then developed a 
complete theory of fractal  geometry  with an astonishing 
number of applications to natural and physical phenomena 
[2]. In particular, if  we define the gap  between  two  cache 
misses (referred to as the intermiss gap in  the remainder of 
this paper) as the number of consecutive cache hits occumng 
between  two  cache  misses plus one, and if we call G the 

random variable  whose  values are the successive  gaps 
experienced by some program P, then, over the whole 
execution of program P, the probability distribution 
Pr[ G > u ]  is  hyperbolic and closely  follows a curve of 
equation 

where 0 is introduced by Mandelbrot as thefractal 
dimension. This property is  very  easily  recognizable  when 
the distribution is plotted with a doubly logarithmic scale, as 
the curve then becomes linear with  slope 0. 

computers of a much smaller size than  that of the computer 
used  by Voldman and Mandelbrot for their analysis  also 
exhibit a memory access pattern giving  rise to a fractal 
intermiss-gap distribution, and that we can evaluate the 
cache-miss of a program from certain particular knowledge 
of the fractal dimension 0 of its intermiss-gap pattern. This 
evaluation, however,  is not exact. It is  based on the 
assumption that the intermiss-gap distribution follows 
Equation (1) .  As a result the approximation is  directly 
related to the degree  with  which the intermiss-gap 
distributionfits the fractal model. 

In this paper, we  verify that programs running on 
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Strecker [5] extends work  by Easton and Fagin on the cold- 
start miss ratio [6], and proposes a cache-reload transient 
model for the prediction of the miss ratio of interleaved 
programs based on the continuous-flow  model. This 
approach requires the analysis of a trace of the workload 
under consideration for  different  cache  sizes, from which 
several parameters representative of the workload are 
extracted, allowing  for the prediction of the miss ratio for 
cache  sizes other than those studied. 

All  of these authors base their computation of the miss 
ratio on an analysis of the trace representing the workload 
under investigation. Laha et al. rely on sampling techniques, 
while the other authors generally  filter the whole trace. In 
their analysis they try to describe, through fhe use of several 
parameters, the erratic dynamics characterizing the behavior 
of programs and, indirectly, the associated  miss  ratios. 

Our contribution in this paper is an attempt to predict the 
miss ratio with  only one parameter, also  derived from an 
analysis of a program trace but carrying what we  believe is a 
very  powerful measure of program  behavior. This approach 
requires that a trace of a given  program  be  fed to a cache 
simulator. Instead of recording the number of  misses as a 
function of the total number of cache  accesses, we record the 
gaps  between consecutive misses. Hence, the goal of this 
paper is not so much to present a more efficient 
methodology  for computing the miss ratio of a given trace in 
a fixed-size  cache. It is rather to further stress the extreme 
richness of the fractal parameter in information about the 
behavior of the program, and  in particular, the possibility of 
predicting the cache-miss ratio of the program from 
knowledge  of the fractal dimension of the intermiss gaps. 
This ability of the fractal parameter to model program 
behavior in memories has  been reported recently in [7], 
where it is  shown that, when modeled as a fractal random 
walk through the memory lattice, the memory access pattern 
of computer programs exhibits a fractal dimension, and that 
knowledge  of this alone can be  used to predict the miss ratio 
of the programs in fully  associative  caches  of any size. 

In the next section we derive an approximation of the 
cache-miss ratio from the knowledge  of the intermiss-gap 
distribution. In the third section we apply this result to traces 
of computer programs and show the relationship between 
the real  miss ratio and the one computed using the fractal 
model, when one or two  fractal dimensions are introduced. 
The fourth section concludes this paper. 

2. Derivation of the cache-miss  ratio 
To show  how the miss ratio is  related to the plot of the 
intermiss-gap distribution Pr[G > u], we  show  by example 
how such a plot is derived, and then how the components of 
the miss ratio can easily  be computed. 

Let us assume that we have  recorded the series of gaps 
separating cache  misses during the execution of program P, 
and further that this record  is the realization of a random 
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variable G.  We denote this series of events as (G). From (GI 
we generate a sorted list (G,, N , )  of the gaps, such that the 
gaps are sorted in ascending order by their length G, over the 
range i = 1, . . , p ,  and such that each unique length Gi is 
associated  with a number N, representing the total number 
of gaps of length Gi in the series (GI.  The following equation 
is  always true: 

P 

N,= Card((G)) = N, 
I =  I 

where Card(. ) represents the total number of elements in the 
series (G). It is  straightforward to derive the probability 
distribution Pr[G > Gi], where G is the random variable and 
G, a realization of G : 

Pr[G > G,] = Pr[G = G,] 

+ Pr[G = G,,,] + . . . + Pr[G = Gp] 

N, Ni+1 NP - " +-+...+- 
N N  N 

x.,"=, N, 
x;=, q' =- 

where p is the index of the longest  gap($ in  the sorted list 
(Gi, Nil. Since we denote the smallest  gap as GI, p is  also the 
number of unique gaps in the series (G : 

p = Card({G,, N,]). 

Assuming that the series of intermiss gaps indeed exhibits 
a fractal behavior, the probability distribution Pr[G > G,] is 
hyperbolic, and can be written as 

Pr[G > Gi] = - N, 
E.,"=, N, 

where A ' and 6' are positive  real numbers. Since the 
denominator of Equation (2) is constant for any given  series 
(GI, we can, without any loss  of  generality,  shift from the 
probabilities to the distribution of the Ni, 
P 

N,=AG;'. 
J = l  

The cache-miss ratio associated  with the series (GI is defined 
as follows: 

miss ratio = 
number of misses 

number of misses + number of hits' 

Since  each intermiss gap  is measured between  two  cache 
misses, the total number of  misses  is  simply equal to the 
total number of gaps in the series (G ] plus one. This simple 
relationship is illustrated in Figure 1. 
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As a  result, we have the following  two equations: 
P 

number of misses = 1 + 1 Ni 
i= I 

and 

number of accesses = 1 + NiGi. 
P 

i= 1 

798 

Cache miss 0 Cachehit 

number of gaps = 5 

number of misses = 6 

numberofcacheaccesses = (1 X 1) + (2 X 2)  + (4 X 1) + (5 X I )  + I 
= 15 

A series of five gaps. 

ZNi  

Gaps  Gaps  Gaps 

Computation of the area S, 

From Equations (3) and (4) we deduce  a  simple  expression 
for the number of  misses in terms of A, 8,  and the length of 
the shortest  gap recorded 

number of misses = 1 + AG;'. ( 6 )  

The second term of Equation (5) is  simply the area of the 
rectangles under the hyperbolic  curve  defined by A and 8, as 
shown in Figure 2(a). (Note: We abandon the log/log  scale 
in Figure 2, since we are interested in the area under the 
hyperbolic  curve.) We  refer to this area as So. We compute 
an approximation of So from the areas SI, S,, and S,, shown 
in Figure 2(b), in the following manner: 

So= q.Gi  
P 

i= I 

ESI+S2" s3 2 '  

SI and S, are given  exactly  by 

SI = GI 1 Ni 
P 

i= I 

= G, AG;' 

S, = Ag-' dg 

and S, is approximated by the following quantity: 
P- I 

s3 = c Ni(Gi+l - Gi) 
i= 1 

a- 1 

= Ni (assuming that Gi+I - Gi = 1 for any i )  
i= 1 

P 

= -Np+  Ni 
i= I 

= -AG;' +AG;'. 

In combination, Equations (7), (8), and (9) yield 
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Combining this result  with Equation ( 9 ,  we  get the total 
number of cache  accesses, 

number of accesses 

Finally, the miss ratio is computed as the ratio of Equation 
( 6 )  to Equation ( 10): 

1 + AG;' 
miss ratio = (1 1) 

which  we can further approximate as 

GT' 

This final equation is interesting because it does not depend 
(in our approximation) on the constant A ,  but on 0, GI, and 
Gp. Since the smallest  gap  recorded will most  probably be 
equal to 1, Equation (12) can be  simplified by replacing GI 
with 1. We can further simplify it by assuming that the 
longest gap recorded, G,, will occur only once in the series 
{G), in which  case N, = 1 and G, is  given  directly  by 
Equation (3), 

AGi' = N, = I ,  (13) 

or 

G, = A I". (14) 

In this case the miss-ratio  expression  can take the following 
simple form: 

2 
miss ratio 

1 - 30 + Gi'(- 2GP + 1) . 
1 - 0  1 - 0  

3. Experimental  verification 
We tested the validity of Equation ( 12)  by plotting the 
intermiss-gap distribution of several  programs and by 
applying  a  least-squares fit to obtain the values of A and 0 
best representing the empirical data. The analysis  is  based on 
traces of the execution of several  programs. The traces 
contain the addresses of consecutive memory accesses 
generated by different  programs  while  fetching both data and 
code information stored in memory. The tracer that we 
developed for this purpose captures all memory accesses 
generated by the programs' instructions, with the exception 
of instructions imbedded in critical sections (unintemptible 
code). The programs were captured on an Intel 8088/8086- 
based computer, with 5 12K bytes of main memory and 
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0 = 0.653 

True miss  ratio = 0.49% 
Approx. miss  ratio = 1.33% 

1 10 100 1000 10000 

Intermiss gap Gz 

Basic  interpreter:  Intermiss-gap  distribution  (solid  curve,  true 
distribution;  dashed  curve,  regression). 

nonvirtual memory management. The programming was a 
uniprogramming environment. It included a  Pascal compiler 
(Turbo PascalQ1, Version 2), a  Basic interpreter (MicrosoftQ1 
Basica),  a  spell  checker  (IBM Wordproof T*l), and a text 
editor (Turbo Pascal editor) executing  a string search. The 
cache simulated is  a  I28-congruence-class,  eight-way- 
associative  cache,  with  a line size  of  eight  words.  Each 
congruence class  is  managed by a  least  recently  used (LRU) 
algorithm. The selection  of the congruence class is 
performed by taking the modulo of the line address with 
respect to the number of congruence classes. 

The plots of the intermiss-gap distributions along with the 
hyperbolic curves obtained by linear regression are shown in 
Figures 3-6. The miss ratios obtained and  the relative error 
of prediction are summarized in Table 1. 

The difference  between the predicted and true miss ratios 
stems from several  factors. The first,  most obvious factor is 
that all four programs  tested  show  a  "knee" in their 
intermiss-gap distribution. Such a phenomenon also appears 
in the study by Voldman and Mandelbrot, and they show 
that the knee corresponds to gaps equal to half the size of the 
cache. We  refer to this knee as the cache-size  knee. The 
second  factor in  the observed  difference  is linked to the 
regression algorithm. Because the regression algorithm is 
applied to the totality of the points defining our 

CA. Microsoft is a registered  trademark of Microsoft Corporation,  Seattle, WA. 
' Turbo Pascal is a registered  trademark of Borland  International, Inc., Scotts Valley, 

Wordproof is a trademark of International Business  Machines  Corporation. 799 
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1 String search program: Intermiss-gap distribution (solid curve, true 
b distribution; dashed curve, re ression). 

experimental distribution, the hyperbolic curve never 
completely  fits the flat portion of the experimental 
distribution. Instead, its slope  is  always  steeper than the 
longest,  flattest portion of the experimental curve. Voldman 
and Mandelbrot similarly point out that the determination 
of the slope 0 of the experimental curve  is critical, but they 
do not detail their algorithm for its computation. 

The curves also  show a second, much smoother, knee 
around the gap  value of eight.  Even though the knee  is  slight, 
its influence  is  critical,  because it is located at the high end of 
the ordinate logarithmic scale, and any variation from the 
linear interpolation curve in this area translates into large 
numbers. This in turn translates into a significant error in 
our approximation of the miss ratio. We conjecture that the 
location of this knee  is  related to the size of the cache  lines, 
and we refer to this knee as the line-size  knee. It appears that 
this soft knee is more accentuated when the cache has a low 
degree  of  associativity. 

and in our case, on the gaps  between  misses, can be 
explained in the following way. Assume that a program 
accesses, in a completely random fashion, all 16 memory 
items located from  address 100 to 10F (hexadecimal). If we 
assume a line size  of one word, and  that none of the items 
are in the cache to start with, the 16 accesses  result in 16 
misses separated by a gap  of  length one. If  we  now assume 

The influence of the line size on the number of  misses, 
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that  the line has a size  of  eight  words, then the same 16 
accesses will produce only  two  misses, one miss  when the 
first item in the range 100 to 107 is  accessed, the other miss 
when the first item in the range  of 108 to 10F is  accessed. 
Some of the information relating to the access pattern is thus 
“masked” by the line size. This information, were it known, 
would contribute to the frequency of occurrence of gaps  of 
length one to seven. Instead, a gap of length  between one 
and eight’ is  recorded. Therefore, we can expect the 
frequency counters associated  with the gaps of lengths one to 
seven to be the ones most affected  by the masking 
introduced by the line size. To compensate for this line-size 
effect,  we conducted two experiments. 

In the first experiment, we recorded  only  gaps of length 
greater than or equal to eight. As the program trace was  fed 
to caches of different  sizes,  only those gaps  between  misses 
separated by at least  seven memory accesses contributed to 
the total number of  misses and to the individual frequency 
counters associated  with  each  possible  gap  length.  We  refer 
to this experiment as the truncation experiment. 

gaps of length  less than eight, but this time we did not 
maintain individual frequency counters for these  gaps. 
Instead, we maintained a single counter for all of them. We 
chose to associate that counter with a gap  length of eight. A 
short example will clarify this concept. Assume that 
frequency counters for gaps of length 8 to some large 
number are all initialized to 0. Assume furthermore that 
when the trace of a given  program  is  fed to the cache, we 
observe  misses separated by the following  gaps: { 1, 1, 2, 1, 9, 
3, 5 ,  8, 9, 15, . . . ). After the gap of length 15 is  analyzed, the 
counter of the total number of  misses contains 10; the 
frequency counters associated  with  gaps of length 8, 9, and 
15 contain 7, 2, and 1, respectively.  We  have, in essence, 
collapsed all the gaps of lengths 1 to 8 into one category, and 
decided that its length would  be 8. 

In both experiments, the first step consists in applying a 
regression algorithm to compute two  values of 8, respectively 
called 8, and 8’. 8, represents the slope of the intermiss-gap 
distribution on the left  side  of the cache-size  knee,  while 82 
represents the slope of the distribution on the right  side of 
the same knee. The location of the knee  varies  with  every 
cache simulated. As Voldman has shown, this location is 
usually in the vicinity of  twice the size  of the cache 
considered. Our algorithm for finding 8, and can  be 
summarized as follows: 

In the second experiment, we recorded  all  gaps, including 

Select a cache  of  size C lines,  where one line contains eight 
memory words, and where the number of congruence 
classes  is  selected so that the degree of associativity 
remains independent of the cache size, at a value of eight 
lines per congruence class. 

The gap in  this case can  only be of maximum  length  eight,  if  we  assume  that  the  first 
eight  items accessed are all part of the  same line. 

0’40 1 -=-- True miss ratio 
.. A . . Standard  approximation I - - 0-  - Collapsing algorithm 

- -0- - Truncationalgorithm 
0.30 

0‘20 t D 
s 

Q 

0.10 

0.00 
32 64 128 256 512 1K 2K 4K 8K 16K 

Cache size (lines) 

Table 1 True  and  approximated  miss  ratios. 

Program  Pascal Basic Spell Text 
compiler interpreter  checker editor 

True miss ratio (%) 0.23 0.49 0.19 0.26 
Approx. miss ratio (%) 0.16 1.33 0.33 0.52 
Relative error (%) 30 171 73 100 

Feed the trace of the program considered to the software 
cache-simulator and record the gap between consecutive 
misses. 
Construct the distribution of the gaps in terms of the 
quantity N(u), defined as 

N(u) = NumberIrecorded gaps > u ] .  

Set the cache-size knee at the gap value equal to Cf4 (since 
each line contains eight  words,  half the size  of the cache 
expressed in words  is C . 8/4). 
Take the logarithm of both components of the (x, y )  pairs 
associated  with  each point of the distribution N( u), and 
apply a linear regression algorithm to the part of the curve 
located on the left  side  of the cache-size  knee. The second 
regression  coefficient  yields the value of 8, .  Similarly, the 80 1 
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Table 2 Miss  ratio  and  fractal dimensions. Linear  interpolation  applied on both  sides of cache-size  knee  (NA = Not Applicable). 

802 

Cache size (lines) 32 64 128 256 512 1024 2048 4096 8192  16384 
~~ 

0, 2.00 1.71  1.30  1.27  1.20 0.96 0.96 0.95 0.47 0.48 
02 1.32  1.06  1.10  0.97 0.84 1.06 0.99 1.48 NA 

True miss ratio (%) 7.9 5.2 3.8 3.0 1.7  1.6  1.6 1.5 0.2 0.2 
Approx. miss ratio(%) 39.9  33.7 20.2 18.5 16.4  7.2 
Absolute error (%) 

6.9 6.4 0.2 0.2 
32.0 28.6 16.4  15.6  14.8 5.5 5.3 4.9 0.05 0.01 

NA 

~ ~~ 

Table 3 Miss  ratio  and  fractal dimensions. Linear  interpolation  applied  on  both  sides of cache-size  knee.  Gaps of length 1 ,  2, . . . , 8 
collapsed  into  one  category (NA = Not  Applicable). 

Cache size (lines) 32 64 128  256 512 1024 2048 4096 8192 16384 

4 2.63 2.12 1.43  1.39 1.31 1.00 1.00 0.99 0.49 0.50 
02 1.32  1.06  1.10  0.97 0.84 1.06 0.99 1.48 NA 

True miss ratio (%) 7.9 5.2 3.8  3.0 1.7 1.6 1.6 1.5 0.2 
NA 

Approx. miss ratio (%) 7.4 6.0 3.3 3.0 
0.2 

2.8 
Absolute error (%) 0.5 

1.4 1.3 
0.8 

1.2 
0.5 

0.1 
0.0 

0.1 
1.2 0.3 0.3 0.3 0.1 0.1 

~ 

Table 4 Miss  ratio  and  fractal dimensions. Linear  interpolation  applied on both  sides of cache-size  knee.  Gaps of length 1, 2, . . . , 7 
removed  from  distribution (NA = Not  Applicable). 

Cache size (lines) 32 64 128  256 512 1024 2048 4096 8192  16384 

0, 2.61  2.11  1.42  1.39 1.31 1.00 1.00 0.99 0.49 0.50 
82 1.32  1.06  1.10  0.97 0.84 1.06 0.99 1.48 NA 

True miss ratio (%) 7.9 5.2 3.8 3.0 1.7 1.6  1.6 1.5 0.2 
NA 

Approx. miss ratio (%) 7.3 5.9 3.2 3.0 2.8 1.4  1.3  1.2 0.1 0.1 
0.2 

Absolute error (%) 0.6 0.8 0.6 0.0 1 . 1  0.3 0.3  0.3 0.1 0.1 

same analysis on the right  side of the cache-size  knee 
yields the value of 8,. 

The results of our experiments appear in Tables 2, 3, and 
4, and are graphically illustrated in Figure 7. Table 2 shows 
the result of the interpolation and algorithms before 
application of either the truncation or the collapsing method. 
Table 3 shows the effect  of collapsing the gaps of length  eight 
or less into one bin. Notice that the absolute error in the 
miss ratio for  small  cache  sizes  decreases dramatically. Table 
4 shows the effect  of not recording the gaps of length one to 
seven.  Here again, the miss-ratio error is greatly  reduced. 
The collapsing method shows a slight advantage over the 
truncation method in miss-ratio  accuracy. 

The first major observation we gather from these  tables is 
that, for caches  with a small number of congruence classes, 
the line-size  knee creates a considerable error in the 
approximation of the miss ratio. In this light, we can see that 
the size  of the cache, and in particular the number of 
congruence classes,  influences the “clarity” with  which the 
fractal picture is rendered, very much like the focus  of a lens. 
At the extreme ends of the range  of  cache  sizes, the misses 
will be occumng either too often or only at start-up, blurring 

the observed fractal behavior. For large numbers of 
congruence  classes, the fractal behavior is more visible, 
because the intermiss gaps more closely exhibit a hyperbolic 
behavior and show a smoother line-size knee than  at smaller 
numbers of congruence classes. 

intermiss-gap distribution is  fitted  with  two  hyperbolic 
curves  with  different fractal-dimension coefficients, an 
operation which  greatly  increases the accuracy of our 
algorithm. The second observation is that removing the line- 
size  knee  by  way  of  collapsing or deleting the gaps of length 
less than or equal to eight  yields  very  good approximations 
of the miss ratio for the different  cache  sizes studied. In both 
cases, the maximum absolute error is 1.15%, with a slight 
advantage in accuracy  for the collapsing method. 

the prefetching introduced by a line size greater than  one 
degrade the observed  hyperbolic characteristics of the 
intermiss-gap distribution for gaps of length less than  the line 
size. By collapsing the gaps of length  less than the line size, 
we can accentuate the hyperbolic behavior of the gap 
distribution, resulting in a significantly enhanced prediction 
of the miss  ratios. 

It is surprising that such a large error occurs,  given that the 

We conjecture that both the small number of  classes and 
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4. Conclusion 
In this paper we  have  verified that smaller  programs than 
those tested by Voldman and Mandelbrot also  present  a 
fractal nature in their generation of cache  misses. This 
strongly  suggests that the fractal nature of the intermiss gaps 
is an integral part of the access pattern of computer 
programs, and is independent of the size  of the computer 
considered. Mandelbrot showed that this fractal 
characteristic can be parameterized by the fractal dimension 
8.  We have  shown that the knowledge  of 8 alone is  sufficient 
to approximate the cache-miss ratio associated  with the 
series  of intermiss gaps. This last operation is,  however, not 
exact and its accuracy depends largely on the degree to 
which the distribution fits the hyperbolic  model. We  show 
that if  we introduce two fractal dimensions, 8 ,  describing the 
fractal behavior of the small  gaps and 82 describing the 
fractal  behavior of the larger  gaps,  with  a threshold 
dependent only on the cache architecture, and if we 
compensate for the influence of prefetching due to a line size 
greater than one, we can derive  a much more precise 
estimate of the miss ratio. This argument reinforces our 
belief that the fractal nature of the intermiss gap is  a  very 
powerful characterization of program behavior, and that 
most  of the parameters traditionally used to measure 
program performances are imbedded in the fractal model. 
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