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The Q-Coder is an important new development
in binary arithmetic coding. It combines a simple
but efficient arithmetic approximation for the
multiply operation, a new formalism which yields
optimally efficient hardware and software
implementations, and a new technique for
estimating symbol probabilities which matches
the performance of any method known. This
paper describes the probability-estimation
technique. The probability changes are
estimated solely from renormalizations in the
coding process and require no additional
counters. The estimation process can be
implemented as a finite-state machine, and is
simple enough to allow precise theoretical
modeling of single-context coding. Approximate
models have been developed for a more
complex multi-rate version of the estimator and
for mixed-context coding. Experimental studies
verifying the modeling and showing the
performance achieved for a variety of image-
coding models are presented.

1. Introduction

Arithmetic coding, introduced several years ago by Rissanen
[1] and Pasco [2] and generalized by Langdon and Rissanen
[3] (see Langdon [4] for a comprehensive review article), is a
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powerful technique for coding of strings of data symbols. It
derives its power from an ability to approach the entropy
limit in coding efficiency and to dynamically alter the
estimate of the probability of the symbol being encoded.

A new binary arithmetic coding system, the Q-Coder, has
been developed as a joint effort between the authors of this
paper and colleagues at the IBM Almaden Research Center.
The new probability-estimation technique used in the Q-
Coder is presented in this paper; companion papers describe
the basic principles of the Q-Coder [5], software
implementations of the Q-Coder [6], and the arithmetic

~ coding procedures which allow compatible yet optimal

hardware and software structures [7, 8]. The Q-Coder is part
of a proposal submitted to the CCITT and ISO Joint
Photographic Experts Group (JPEG) for color photographic
image compression [9].

A description of the general structure of the Q-Coder
arithmetic coding section is given in [5, 6]. Briefly, the
arithmetic coder contains two key registers, the interval
register A and the code register C. The interval register
contains the measure of the current probability interval, and
the code register contains a pointer to the interval. In order
to use fixed-precision integer arithmetic for the coding
process, the interval and code registers must be periodically
renormalized.

When a given symbol is coded, the interval measure in A
is reduced to the subinterval for that symbol, and the code
string is repositioned to point within the subinterval. Ideally,
the scaling of the interval is done by multiplying the current-
interval measure 4 by the probability estimate of the symbol
which occurred. If the less probable symbol (LPS or L)
probability ¢ is estimated as Q, and the more probable
symbol (MPS or M) probability p is estimated as 1 — Q,, the
binary coding process divides the interval into two
subintervals, 4 X Q, and 4 — (4 X Q,). The multiplication
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can be avoided by introducing a tight constraint on the
renormalization [3-5, 10]. If the probability-interval measure
A falls within the bounds 0.75 = 4 < 1.5, A can be
approximated by | when multiplying by Q,. The
subintervals are then approximated by ¢, and 4 —- Q,, and
the multiplication is avoided.

Although the renormalization is required for the
arithmetic approximation, it can serve another important
purpose—it can also be used to estimate the probability of
the symbol being coded.

A number of different but somewhat related techniques
have been used to estimate symbol probabilities. Langdon
and Rissanen [11] and Pennebaker and Mitchell [12] have
both used confidence-interval techniques to determine
whether the current estimate Q, of the LPS probability
should be changed. In [12], the degree to which the
confidence limit is exceeded is used to determine the degree
to which Q, should be changed; this gives a multi-rate
estimation process. Goertzel and Mitchell [13] used a
counting technique with periodic renormalization; although
in principle a divide operation is required, the precision is
small enough that a lookup table inversion and multiply can
be used. Mohiuddin, Rissanen, and Wax [14] devised an
intriguing multi-rate adapter in which the choice of
estimation rate is based on a local minimization of the code
string being generated. Although relatively complex to
implement, this technique is quite powerful; we regard it as a
standard against which other estimation techniques can be
measured. Finally, Helman et al. [15] used a Monte Carlo
technique involving the LPS renormalization and symbol
counts for updating the estimate of the LPS probability in
the Skew Coder [3].

The rest of this paper is devoted to an analysis of a
probability-estimation technique in which the probability is
estimated solely from renormalization.' The renewed
attempt to use renormalization as the basis for probability .
estimation was inspired by earlier work on the Log Coder
[12]. In that work the computations for probability
estimation were minimized by estimating probability each
time one byte of compressed data was generated. While this
system proved to be simple to implement and provided
accurate estimates, it failed to adapt quickly enough in
coding of facsimile data sets. On the other hand, calculating
a new probability after the coding of each symbol, as was
done by Rissanen and Mohiuddin [10], provided good
estimates and fast adaptation but involved far too much
computation. Estimation after each renormalization
appeared to be an attractive compromise between these two
schemes.

In Section 2 the estimation process is described. Section 3
develops the exact theoretical modeling of that process for a
single context. Section 4 continues the theoretical modeling

! In unpublished work G. Goertzel and J. L. Mitchell explored and abandoned this
possibility because they were unable to obtain good coding efficiencies.
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for mixed contexts and a random-interval model. Theory
and experiments are compared for a single context in
Section 5. Section 6 extends the probability estimation to a
multi-rate system. Mixed-context coding is analyzed in
Section 7.

2. Estimation process

The basic concept is as follows: The estimated LPS
probability, @, is taken from a fixed table of allowed values.
Renormalization occurs either when an L event is
encountered or when the interval falls below 0.75 following
an M event. When renormalization after an LPS is
encountered, the index to the current @, is shifted to a larger
Q.. Conversely, whenever the MPS renormalization is
encountered, the index is shifted to a smaller Q,. (The terms
MPS renormalization and LPS renormalization are usually
abbreviated as “MPS renorm” and “LPS renorm” in the text
following.)

The following approximate calculation suggests that the
estimate of the probability obtained from the table of
allowed Q, values will adapt to and closely approach the true
LPS probability g of a binary symbol sequence. Given a
starting value A for the interval register immediately
following the last renormalization, N successive MPS events
must occur to reach the MPS renorm point:

N=1+[Aa4/0,], (1)

where Q, is the current estimated value of g, A4 is the
change in the interval (0.75 > AA = 0), and the brackets
denote the greatest integer function (rounding down to the
nearest integer). The probability of getting N MPS events in
a row (and an MPS renorm) is

P.=1~q" )

For simplicity, consider the case where g is small. Taking the
natural logarithm of Equation (2) and approximating

In(1-¢)by—q,
P = €1, 3)

The magnitude of A4 is dependent on the type of
renormalization. If the MPS renorm occurred last, A4 is
close to 0.75; if the LPS renorm occurred last, AA4 is
typically somewhat smaller than 0.75. If the effective value
of AA is assumed to be an appropriate average and the
change in Q, is the same for both types of renorms, the
renorm probabilities are balanced at the point where

P
mpsr . 4
1 =P : @
Solving for Q,,
AA

The equilibrium is stable at this balance point. If 0, is too
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large, P, is also large and the system tends to move to
smaller Q,. Conversely, if Q, is too small, P is small and
the system tends to move to larger g,. Therefore, the system
adapts to and balances approximately at the point g = Q,.
Although these calculations are approximate, exact
calculations which follow the same general approach and
prove the point more rigorously are described below.

As will be seen, the coding efficiencies achieved by the
Q-Coder with this probability estimator for pseudorandom
data sets are usually not as good as those obtainable with
simple estimates of probability from counts [13]. Coding
inefficiency is due partly to the lower coding efficiency
inherent in the arithmetic approximation to the multiply,
partly to small but systematic errors in Q,, partly to the
granularity of the set of allowed values of Q,, and partly to
the intrinsic distribution in , resulting from the stochastic
estimation process. However, the estimation process tracks
variations in symbol probability very well. Consequently, the
coding efficiency achieved with the less stable symbol
probabilities encountered in many real coding environments
is extremely good, competitive with the best that can be
done by any technique currently known.

This estimation process works well for both single-context
and mixed-context coding. For a single-context system, the
renormalization process is used to estimate only one
probability. For mixed-context coding, the coding decisions
are conditioned by past history, and a different probability
must be estimated for each conditioning state or context. It
is perhaps somewhat unexpected that renormalization of a
single A register can be used to estimate the many different
probabilities required in the mixed-context case.

3. Modeling of the estimation process for a
single context
The estimator can be defined as a finite-state machine, that
is, a table of Q, values and associated next states for each
type of renorm (i.e., new table positions). The rate of change
of @, is determined by the granularity of the table of Q,
values and by the new state associated with each Q, value for
the two types of renorms. Figure 1 diagrams sections of the
actual finite-state machine used to estimate the probabilities.
The leftmost section illustrates the exchange of MPS and
LPS definitions at Q, = 0.5 (k,, is defined to be the particular
state index, k, where this exchange occurs). The center
section shows a region where the finite-state machine
changes from a single-state jump on LPS to a double-state
jump. Some parts of the finite-state machine require a jump
of more than one state in order to correctly estimate the
probability. The rightmost section shows the diagram for the
smallest values of Q.. This last section shows how the
transition at the MPS renorm for the smallest Q, value is
returned to that state.

Conditional changes in estimated probability, such as
changing Q, only after the occurrence of two MPS renorms
in a row, can readily be incorporated by allowing multiple
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entries of a given (, value. A related form of this can be
seen in the diagram for the lowest Q, state, where entry to
that state can only occur after two MPS renorms in
sequence. Handling conditional effects in this manner greatly
simplifies the theoretical treatment, the only penalty being
the need to solve a relatively large number of simultaneous
equations when complex conditional structures are being
considered.

Figure 2 illustrates the sequencing of the probability
estimator for an LPS foliowed by a sequence of MPSs. In
Figure 2 the ordinate is the interval (A-register) value, and
the abscissa is the discrete allowed values of Q.. The LPS
renormalization causes a transition to a known A-register
value and a known state in the finite-state machine (in this
case from a Q, of 0.42206 to the appropriate starting A-
register value at Q, = 0.46893. (The particular @, values in
the figure are taken from the actual optimized 5-bit Q,
values in Table 1, shown later. As MPSs are coded, the
interval decays until it drops below 0.75. At that point a
transition is made to a smaller Q,, and the interval is
renormalized by doubling until it is greater than 0.75. In
most cases only one doubling is needed. Thus, the pair of
doublings shown at Q, = 0.32831 is the exception rather
than the rule. Whether one or two doublings occur is of no
consequence for the probability estimation. However, since
each doubling produces one bit in the code string (ignoring
bit stuffing for a carry), the extra doubling is important in
the calculation of the coding efficiency.

Figure 2 illustrates the sequencing behavior which
underlies the calculation of the estimation process. The first
half of the problem is determining the probability that the
estimate will be at each of the allowed Q, values. If we define
n, as the occupation probability for the state corresponding
to Q.[k] (the kth allowed value of Q,), balance of transition
probabilities into and out of the kth state gives

T X, (1= X)% = n X, (1 = X, = n X, (6)
J

where X, = qfork=k,, and X, =1 — g for k<k,. The
symbols 7, and f,; are defined below. The table of allowed
Q. is defined to have mirror symmetry at the boundary
between k., and k,, — 1. Thus, k,, is the index in the table of
Q. where the definitions of least probable symbol and most
probable symbol are exchanged. (For k < k,, the table
provides an estimate of 1 — ¢ rather than g.)

The first term in the summation represents the transition
probability into the state at Q,[k] from all states j which can
reach the state k by an LPS followed by a sequence of MPSs.
The exponent ¢, ; is the number of MPSs needed to just enter
the kth state when starting from an LPS at state j. Thus, for
the example sketched in Figure 2, state j is marked with an
asterisk, and state & could be any one of the states which is
reached by the MPS sequence following the LPS.

The second term in the summation represents the
transition probability out of the state k, given that the MPS

W. B. PENNEBAKER AND J. L. MITCHELL

739




740

MPS

LPS MPS MPS

Lps* ~ Lps” MPS

*MPS exchange

MPS

LPS MPS LPS

LPS

LPS MPS LPS

MPS LPS MPS “
®

L]
. 0’ LPS LP§

MPS

LPS MPS

sequence continues until the interval decays below 0.75 for
the kth state. The exponent 7, ; is the number of MPSs
needed to just leave the kth state, counting from the symbol
after the LPS at state j.

The summation therefore represents the net gain in 7, due
to transitions from all states j which can reach state k
through an LPS followed by a sequence of MPSs. It is
equated to the probability of transition out of state k due to
an LPS event. (All probabilities are per-symbol encoded.)
The probability of transition out of state k via the LPS path
is the probability of the LPS multiplied by the occupation
probability #,.

Normalization requires

an= 1. @)

The numerical solution of these equations can present
problems, in that the #, can be vanishingly small when the
index k is far from the value for the most probablg.value of
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Q.. Therefore, the equations are reduced to a subset
involving only the n, near the most probable value of Q,.
Contributions from members outside this range are assumed
to be zero. The set of equations must be large enough that
the error in truncating the set is small, yet small enough to
avoid arithmetic precision problems in the calculation of
determinants by the method of Gaussian elimination. Except
near the end of the Q, table, the center value of & for the
subset is defined as the index for which Q,[k] is closest to q.
Because the table of allowed values of Q, is finite in
extent, the equations must be reformulated to take end
conditions into account. This is done by assuming that
either ¢, ;= 0 or 7,; = » in Equation (6). The latter condition
exactly describes the closure of the state diagram for k_,, in
Figure 1, in that the system cannot exit from the &, state
after the MPS renorm. It also approximates the closure if the
equation set is truncated before k reaches k,,,,. Truncation
near the other endpoint, k = k., is described by one of the

two approximations, the choice depending on whether a

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988




particular k is less than the exchange index, &, , or not. The
two assumptions are equivalent to assuming that either LPS
or MPS renormalization is highly unlikely. Note that the
approximate closure condition at the smallest value of k is
not needed, as it is replaced by Equation (7).

Given a table of Q, values and associated index changes to
new (J, values for each renormalization path, these equations
provide an exact solution of the probability of the system
being at each Q,[k]. However, they hold only for single-
context coding.

The second half of the problem is the calculation of
coding rate. Refer again to Figure 2. The current occupation
of each state in the system is determined by the balance of
LPS and MPS transitions into and out of that state. For each
Q. the probability of the LPS renormalization is known by
definition (g), and the probability of each succeeding MPS
renormalization is readily calculated. The bits generated by
each renormalization are also readily calculated. The net bit
rate R, for the kth state is thus

R, = nka[BLPS,k + 2 Byps (1= X; )rkj:| ; ®
J

where j ranges over all MPS renormalizations which can
occur following the LPS renorm. B, ., is the number of bits
generated in renormalizing Q, [k] to the allowed interval
range. By ; is the number of bits generated by the jth MPS
renorm. As defined earlier, X, = g for k= k., X, =1 — g for
k< k., and the exponent r,, is the number of MPSs needed
to reach the jth MPS renorm after the LPS event from state
k.

The total coding rate in bits per symbol is therefore

R=2Rk' (9)
k

4. Mixed contexts: The random-interval model
The calculations in Section 3 are not applicable to coding of
mixed-context symbols. If the context varies from one
symbol to the next, Q, also varies. The calculation of
probabilities of MPS renormalization and the associated bit
rate is therefore far more complex. Let us consider the
following hypothesis: The probability of the various interval
values is sufficiently randomized by the effects of multiple
contexts that the interval-register values are uniformly
distributed in the interval from 0.75 to 1.5.

Assuming that the above hypothesis is valid, the following
equations give the LPS renormalization probability P, , and
the MPS renormalization probability P, ,

Pi=aq, (10)
P_ .= (1-g)Q,[k]/0.75). o))

The equations describing the balance in transition
probabilities are similar to those developed in Section 3,
except that the probability of the MPS renorm is calculated
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Example of the sequencing of the probability estimator following an
LPS.

from Equation (11) rather than from the equations for the
probability of a sequence of MPSs. Therefore, the balance
for state k is given by

X nP  + 2 nPy,,— (P, +P,)=0, (12)
s t

where s is summed over all states which can make a
transition to k via LPS, and ¢ is summed over all states
which can make a transition to k via a single MPS renorm.
The normalization condition, Equation (7), completes the
set of equations to be solved. Numerical precision again
requires that the set of equations be truncated. Therefore,
endpoint conditions are handled in the same manner as
discussed in Section 3.

The calculation of coding efficiency is done differently for
the random-interval model. For a given interval 4 and a
given estimated LPS probability Q,, the relative coding
efficiency is

SnR,~-H

X
E——H‘—, (13)

where H is the entropy and R, is the bit rate per symbol for
state k. Defining p = 1 — g, the entropy is given by

H=—qlog,(q) — plog,(p), (14)

and, for a uniform distribution of A values in the interval
0.75 to 1.5, R, is given by

1.5
1 Q.[k]
Rk=67§ J; N [—q logz(——A )

k
-—plog2<l —Qi ]>]dA (15)
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Coding inefficiency as a function of g, calculated and measured for a
single context using Table 1. The measured points were obtained
from pseudorandom data sets of fixed ¢.

Table 1 Probability estimates for 5-bit Q..

0. Q. Decimal Q,  Decr  Incr MPS
index value value (LPS) (MPS) exch
0 X’0AC1’ 0.50409 0 1 1
1 X'0A81’ 0.49237 1 1 0
2 X’0A01” 0.46893 1 1 0
3 X’0901’ 0.42206 1 1 0
4 X’0701’ 0.32831 1 1 0
5 X’0681’ 0.30487 1 1 0
6 X’0601’ 0.28143 1 1 0
7 X’0501’ 0.23456 2 1 0
8 X'0481’ 0.21112 2 1 0
9 X’0441’ 0.19940 2 1 0
10 X’0381’ 0.16425 2 1 0
11 X'0301’ 0.14081 2 1 0
12 X'02C1’ 0.12909 2 1 0
13 X'0281’ 0.11737 2 1 0
14 X’0241’ 0.10565 2 1 0
15 X'0181’ 0.07050 2 1 0
16 X’0121’ 0.05295 2 1 0
17 X’00E1’ 0.04120 2 1 0
18 X'00A1’ 0.02948 2 1 0
19 X'0071’ 0.02069 2 1 0
20 X’0059’ 0.01630 2 1 0
21 X’0053’ 0.01520 2 1 0
22 X’0027’ 0.00714 2 1 0
23 X’0017’ 0.00421 2 1 0
24 X’0013’ 0.00348 3 1 0
25 X’000B’ 0.00201 2 1 0
26 X’0007’ 0.00128 3 1 0
27 X’0005’ 0.00092 2 1 0
28 X’0003’ 0.00055 3 1 0
29 X’0001’ 0.00018 2 0 0
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Integration yields

R, = qRy 1 ps + DRy mps » (16)
X, In(X,) - X, In (X,) — X, + X,
R, .. =log,(e) , (A7)
k,LPS 2 Xl — XO
log,(e)

X, | X, | X, —1
<L) () +nlz=) ) 09
where X, = 0.75/Q,[k] and X, = 1.5/Q,[k].

5. Comparison between theory and experiments
for single-context coding

In Figure 3, the results of calculations (solid curve) based on
the equations derived in Sections 3 and 4 are compared to
experimental results (circles). For single-context coding, the
agreement between experiment and the exact theory for that
case is excellent (as expected). The corresponding table of
estimated Q, and the associated schedule of changes in index
following renormalization are given in Table 1. This table
was selected after much experimentation [5]; it represents
the best compromise among simplicity, minimum storage
requirements for each context (6 bits),2 reasonable coding
efficiency for fixed statistics, and good performance on
mixed-context data obtained from both facsimile-
compression models and continuous-tone image-
compression models.

The Q, values in Table 1 are expressed as hexadecimal
integers. Divide these Q, values by X’1000’ X 4/3 to convert
to the decimal fractional representation. The “Decr” column
shows the decrement in the Q, index when moving to larger
Q. following an LPS renormalization. The “Incr” column
shows the increment in the Q, index when moving to
smaller Q, following an MPS renormalization. Where the
“MPS exch” column entry is 1, an LPS will cause an
exchange in the MPS definition.

Figure 4 shows several theoretical (dashed curves) and
experimental (solid curves) distributions of Q, for the 5-bit
Q. case. Again, agreement between calculation and
measurement is excellent.

Figures 5 and 6 show similar experimental and theoretical
calculations for the 6-bit Q, table (Table 2). As might be
expected, the finer granularity of this table significantly
decreases the coding inefficiency for stationary statistics.
(Compare Figure 3 with Figure 5.)

Figure 6 shows several calculated and measured
distributions of Q, for the 6-bit Q, case. Comparing these
distributions to those in Figure 4, the increase in coding

?The initial impetus to use very small amounts of storage per context came from

G. G. Langdon. Somewhat to our surprise, he was able to demonstrate that our
estimation technique could achieve relatively good performance with a table of
allowed Q, having less than 32 entries. We subsequently worked jointly to optimize
this single-rate system.
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Distribution in Q, usage for the 5-bit O, table (Table 1): (a) g = 0.5; (b) g = 0.1;(c) ¢ = 0.0002. The dashed curve shows theoretical distributions;

the solid curve, experimental distributions.

efficiency with a 6-bit Q, is due to the reduced spread in the
distribution. In both cases, the peak in the distribution is
quite close to the desired Q,. The coarser granularity of the
5-bit Q, table is not the only factor. The changes in table
position for the 5-bit Q, are often larger as well. This
increases the spread in the Q, distribution.

The effect of the estimation process can be eliminated by
choosing the Q, so as to minimize the coding inefficiency.
Such a procedure might be appropriate when the probability
is known a priori. The coding inefficiency for this special
case is shown in Figure 7 for two cases. The first case (solid
line) is for the 12-bit integer representation of O, with no
additional granularity introduced. This curve gives the lower
bound for the coding inefficiency that can be achieved with
this integer representation. Quantization of Q, to the 12-bit
integer representation causes the sequence of distinct
minima which is noticeable for g < 27" The sequence of
distinct minima for g larger than about 27 reflects the fact
that the bit rate stays constant over short intervals in Q,.
These intervals of constant bit rate result from the arithmetic
approximation and renormalization used in the Q-Coder.
The dashed line in Figure 7 represents the 12-bit integer
representation and the granularity of the 5-bit Q, table.

One feature of Tables 1 and 2 is the avoidance of O,
values which renormalize to X’1000’. For the integer
representation chosen for the tables this is the minimum A
value aliowed before MPS renormalization must occur.
Consequently, when the Q, value renormalizes to an A value
too close to X’1000’, the probability of the MPS renorm
becomes very large. If 4 is exactly X’ 1000/, any MPS will
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Coding inefficiency

Coding inefficiency as a function of g, calculated and measured for a
single context using Table 2.

i

immediately trigger an MPS renorm. In single-context
coding, this creates a trap for the estimator. Note, however,

that the smallest Q, entry in

the table must renormalize to
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Coding inefficiency as a function of g. The solid curve is for a Q,
table which allows all values between X'AC1' and 1. The 0, value
used for any given g is the smallest value in the table that minimizes
the coding inefficiency. The dashed curve is for the 5-bit Q. table
(Table 1), again with the smallest value of Q, chosen that minimizes
the coding inefficiency.
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X’1000’. When the system is at that entry, the LPS renorm
moves the Q, pointer such that at least two MPS renorms in
succession are needed to return to the smallest entry. This
avoids the trap.3

The calculations and measurements described in this
section show that coding inefficiency is strongly influenced
by the Q, table granularity and the amount of change in
index following renormalization. Table granularity and the
amount of change directly influence the rate at which the
system adapts to a change in g. However, the faster the
adaptation rate, the more the distribution in Q, is spread,
and the larger the coding inefficiency is for stationary
statistics.

6. Muiti-rate probability estimation

In real data sets the symbol probability can vary quite
widely. Consequently, the adaptive nature of the probability
estimator is extremely important in achieving good coding
efficiencies. The two different Q, table granularities discussed
in the preceding section exhibit quite different coding
efficiencies for fixed-probability coding. However, the coarser
granularity of the 5-bit Q, table allows the estimator to arrive

’G.G. Langdon suggested the particular integer representation (X’ 1000’
corresponding to 0.75) used in developing these tables. His suggestion was motivated
by simplicity in hardware implementation, in that this representation allowed a single-
bit test to determine when renormalization of the interval was needed. However, this
representation also guaranteed that the estimator would be trapped at the smallest
integer value, Q, = 1. We had explored conditional renormalization as a means of
centering the estimator at the correct Q,. Langdon suggested using it to avoid the trap.
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at the appropriate Q, value at a cost of about half as many
bits in the compressed data string. This illustrates the trade-
off that must be made between good coding efficiency for
stationary probabilities and rapid estimation of changing
probabilities.

A second-order process has been developed, however,
which allows use of the 6-bit Q, table (retaining most of the
coding efficiency for stable statistics) and yet provides very
fast estimation of changing probabilities. This second-order
process is based on measurement of the correlation of
renormalizations. If the probability of a given
renormalization is about 0.5, the probability of two
renormalizations in sequence being the same is also about
0.5. Only if the current estimate of Q, is poor will the
renormalization correlation probability significantly exceed
0.5.

Correlation of renormalizations is detected by comparing
the previous renormalization (for a given context) to the
current one. A 4-bit counter (R_,), kept individually for each
context, is used to determine the degree to which this
correlation is occurring. The counter is incremented by one
if the renormalization is the same as the last and
decremented by two if the renormalization is different. The
one exception to this rule is at the minimum value of Q,.

A spurious indication of correlation would result if R, were
incremented in that state. If R, is zero, the schedule for
change in the Q, index shown in the 6-bit Q, table is
followed. As R, increases, an additional change in Q, index
is invoked according to the schedule in Table 3. Because the
change in Q. index increases with increasing R, R, is a
measure of the estimation rate.

This schedule of extra increments and decrements was
arrived at experimentally, using the optimized 6-bit Q, table
and adjusting the schedule until the best overall performance
was obtained for mixed-context coding. The coding
performance of this multi-rate estimator is shown in Figure
8 for the fixed-probability data sets. Over most of the range
of probabilities the degradation in coding efficiency caused
by the addition of the multi-rate structure is very small. As is
seen in the next section, this is offset by a significant increase
in the robustness of the estimation process in the coding of
real files.

An approximate model has been developed for this multi-
rate structure which helps to explain the structure described
above. If the probability of a renormalization being the same
as the previous one is characterized by a single average value
P_, the probability that the counter R_, has any particular
value can be modeled by the finite-state machine shown in
Figure 9. Transitions to the right occur with probability P, ,
and transitions to the left occur with probability 1 — P_,. For
stable symbol probabilities, P, should be of the order of 0.5.
Since for that case the occupancy probability should be large
for small R, the decrement of R_ must be larger than the
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Table 2 Probability estimates for 6-bit Q..

MPS
exch

Incr
(MPS)

Decr
(LPS)

Q. Q.

index value

Decimal Q,
value

X'0A81"
X'0A01"
X’0981’
X'0901’
X'08A1’
X'07C1’
X'0761’
X'0701"
X’06C1’
X'0681’
X’0641’
X’0601"
X’0581"
X’0501"
X’04C1’
X'04A1’
X’0481’
X'0461’
X’0441’
X’0421’
X’03C1’
X’0381’
X’0341’
X’0301’
X’02E1’
X’02C1’
X'02A1
X’0281’
X'0261"
X’0241'
X’0221'
X'01E1’
X'01AY
X’0181"
X’'0161’
X’0141’
X’0131"
X'0121”
X'00F1’
X'00El’
X'00C1’
X’00A1’
X’0091"
X’0079’
X’'0071’
X’0061"
X’0053"
X’0049’
X’0039"
X’0033"
X'0025"
X’0023"
X’0019'
X’0013’
X’0011’
X’000B’
X’0009’
X'0007’
X’0005’
X'0003’
X’0001”

0.49237
0.46893
0.44550
0.42206
0.40448
0.36346
0.34589
0.32831
0.31659
0.30487
0.29315
0.28143
0.25800
0.23456
0.22284
0.21698
0.21112
0.20526
0.19940
0.19354
0.17596
0.16425
0.15253
0.14081
0.13495
0.12909
0.12323
0.11737
0.11151
0.10565
0.09979
0.08807
0.07635
0.07050
0.06464
0.05878
0.05585
0.05292
0.04413
0.04120
0.03534
0.02948
0.02655
0.02216
0.02069
0.01776
0.01520
0.01337
0.01044
0.00934
0.00677
0.00641
0.00458
0.00348
0.00311
0.00201
0.00165
0.00128
0.00092
0.00055
0.00018
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increment. If the increment and decrement were equal, the
occupation probability of all the states would be identical.
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Coding inefficiency

Coding inefficiency with multi-rate probability estimation. The
circles are measured for pseudorandom data sets of fixed ¢. The 6-bit
O, table (Table 2) is used with this multi-rate system. Consequently,
the coding efficiency of the single-rate 6-bit Q, estimator is included
for comparison (solid line).

<5

S01010

State diagram for the approximate calculation of the distribution of
the rate counter R .

Table 3 Schedule of extra increments and decrements.

R 0123456789101 12131415

cr

Decrement 0 0 2 2 9 11 13 14 15 15
Increment 0 0 11 4 5 5 5 5 5

3457
2233

11
01
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A comparison between the predictions of this model and
measured R, distributions is shown in Figure 10. Figure
10(a) shows the R__ distribution when the extra changes in
Table 3 are invoked. Figure 10(b) shows the R, distribution
when the table of extra changes is set to zero. The basic
model for the correlation in renormalization appears to be
fairly good if the renormalization correlation probability P,
is treated as an adjustable parameter.

If the schedule of increments and decrements listed in
Table 3 is set to zero, the renormalization correlation
probability can be directly calculated using the same
concepts discussed in Section 3. Figure 11 shows a
comparison between calculated and measured
renormalization correlations. The measurements were done
either by direct counting of correlation, or by a best fit (least
squares) of calculated to measured R, distributions. A third
set of measurements shows the effect on the renormalization
correlation of allowing the extra changes shown in Table 3.
The main purpose in doing these calculations and
measurements was to determine whether the schedule of
extra changes should have a dependence on Q,. The
relatively slight dependence of P, on g indicates that little
can be gained with this additional complexity.

7. Mixed-context coding

Controlled experiments on mixed contexts are more difficult
to design. One attempt is shown in Figures 12 and 13, in
which pseudorandom data sets were coded as if they
comprised 32 intermixed contexts, each with the same
probability. These two figures also show the prediction of
coding efficiency given by the random-interval model.
Although agreement is poor for ¢ near 0.5, at smaller ¢ the
random-interval model predicts the behavior quite well. The
predicted coding efficiency for a single context is also shown
for comparison (dashed line). Qualitatively, mixing contexts
appears to increase the coding inefficiency by about 1%.
However, this experiment is not representative of most
mixed-context data sets in that the various contexts usually
have quite different Q,.

The assumption of a uniform interval distribution, the
basis for the random-interval model, is not very good,
especially near g = 0.5. However, there are enough other
difficulties in the modeling of mixed contexts that nothing
more successful has yet been found. One example of these
difficulties is the interaction between contexts with ¢ near 0.5
and contexts with very small g. As noted earlier, near ¢ = 0.5
there is a significant chance of getting a 2-bit MPS renorm.
However, below g = 0.375, this 2-bit MPS renorm cannot
occur. The randomizing effect of mixed contexts tends to
shift the interval distribution to larger values, thereby
reducing the probability of the 2-bit MPS renorm and the bit
rate for coding of contexts with g near 0.5. Unfortunately,
the shift in the interval distribution can only occur because
of MPS renormalization during coding of other contexts.
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Consequently, the decrease for high-g contexts is offset by
increased bit rate for low-g contexts. This effect was observed
experimentally during optimization of the 5-bit Q, table.
Minor changes made to the Q, table at values near 0.5
caused a significant increase in the bit rate for some contexts
with very small Q,.

Figure 14 shows the effect of multiple contexts for the 12-
bit-per-context multi-rate estimator. Again, the coding
inefficiency is increased by about 1%. The increase in coding
inefficiency is caused primarily by a broadening of the
distribution of Q, rather than by a poor average estimate of
the probability.

Multiple-context interval randomization does not strongly
influence the transient behavior of the estimation process.
Figures 15-17 show the transient coding inefficiency for the
6-, 7-, and 12-bit-per-context estimators. Decision strings
with g = 0.01 for the zero symbol were used, and the coder
was initialized with Q, = X’0AC1’ (Q, = 0.5), MPS = 0, and
A(0) = X”1000’ (0.75). This is the initialization convention
used for the image data set experiments described later in
this section. Only the data for ¢ = 0.01 are shown, as the
behavior for other g values is qualitatively similar. To
generate these plots, the results from 25600 different
pseudorandom decision strings were averaged for the single-
context case; results from 800 strings were averaged for the
32-context case. The comparison of single-context and 32-
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Coding of mixed contexts for the 6-bit-per-context estimator. 32
contexts, all with the same ¢, were coded in a cyclical fashion. The
prediction of the random-interval model is shown with the solid line.
For comparison, the single-context exact calculation is shown with a
dashed line.
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Coding of mixed contexts for the 12-bit-per-context estimator. 32
contexts (0), all with the same g, were coded in a cyclical fashion. For
comparison, single-context measurements (®) are also shown.
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Coding of mixed contexts for the 7-bit per-context estimator. 32
contexts, all with the same g, were coded in a cyclical fashion. The
prediction of the random-interval model is shown with the solid line.
For comparison, the single-context exact calculation is shown with a
dashed line.
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context data shows that except for the detailed structure seen
in the single-context case, the transient behavior is quite
similar for single- and mixed-context coding. The detailed
structure in the single-context data is real and can be verified
approximately by calculating the coding rate for the most
likely sequence—an LPS followed by a string of MPSs. The
randomizing of the A register by context mixing removes
this fine structure.

Figure 18 shows the transient behavior of the estimation-
rate counter R_. In this case, context mixing does affect the
behavior, although not strongly. Context mixing tends to
broaden the Q, distribution; this increases the
renormalization correlation, which in turn increases the
value of R,.

Most real coding problems involve mixed contexts.
Consequently, while initial work was done with
pseudorandom fixed-probability data sets, great emphasis
was placed on obtaining the best coding efficiencies for two
sets of mixed-context files, one generated by a gray-scale
compression model [16] and the other by a 7-pel predictor
facsimile model [11]. Data from a single file derived from a
modified-neighborhood predictor [17] are also included.
Results for these files are shown in Table 4 for four variants
of the estimator: the 6-bit-per-context (5-bit Q,, one bit to
define the sense of the MPS), the 7-bit-per-context (6-bit Q,),
the 12-bit-per-context multi-rate estimator, and the 12-bit-

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988




12 2
10F 10
> 8 » 8
8 2
] i
E I E 6
PN :
¢
O 41 { &} 41
I
i
2F 2|
or ol
| ! L ! i ! 1 | I 1 L I 1
0 10 20 30 40 50 0 10 20 30 40 50 60
Renormalizations per context Renormalizations per context

Decay of coding inefficiency as a function of the average Decay of coding inefficiency as a function of the average
renormalization count per context for the 6-bit-per-context renormalization count per context for the 7-bit-per-context
estimator. ¢ = 0.01; the solid curve represents 32 contexts, the estimator. ¢ = 0.01; the solid curve represents 32 contexts, the
dashed curve a single context. dashed curve a single context.

—

Coding inefficiency
o
Ll

A | 1 i L 1 ]
0 10 20 30 40 50 60 ] I 1 ] I 1 A
0 10 20 30 40 50 60

Renormalizations per context

Renormalizations per context

i i

Variation of the average rate counter, R, asa function of the average
renormalization count per context. g = 0.01; the solid curve
represents 32 contexts, the dashed curve a single context.

Decay of coding inefficiency as a function of the average
renormalization count per context for the 12-bit-per-context
estimator. ¢ = 0.01; the solid curve represents 32 contexts, the
dashed curve a single context.
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Table 4 Q-Coder coding performance.

Present experiments Reference Entropy
Bits per context 6 bits 7 bits 12 bits 24 bits
0, 5 bits 6 bits 6 bits 6 bits
(file) (bits) (bits) (bits) (bits) (bits) (bits)
Gray-scale, teleconferencing model
12 171856 171296 170968 170 544 172608 [16] 166373
courierf 94432 94720 93608 93376 98 560 [16] 95327
courier 171648 171264 170488 170616 173536 [16] 170335
ieeef 175536 175856 174704 174272 176 560 [16] 173443
ieee 232952 233040 232104 231792 232704 [16] 228819
handwrtf 98832 98 664 98240 98336 100224 [16] 97563
topletf 101784 102008 101088 101040 104 448 [16] 101272
densetf 248232 249016 247328 246928 253792 [16] 245042
marcosf 110536 110440 109240 108 800 110512 [16] 108278
atomsf 171408 170392 170720 170504 170288 [16] 164753
fruitf 141248 140344 140328 140296 141408 [16] 137530
t4f 237560 236704 236256 236008 240960 [16] 229059
t5f 164112 162120 161752 161784 163264 [16] 156253
Total: 2120136 2115864 2106824 2104296 2138864 2074047
Facsimile, 7-pel predictor
ceittl 119752 123632 119816 119000 122021 [nn 130623
ccitt2 71568 72232 71400 70696 71932 [11] 71884
ccitt3 187728 192224 187400 185952 200927
ceitt4 446816 461200 447304 444 184 494249
ceitts 215888 220176 215960 214120 230345
ceitté 112256 113992 111808 110544 117002
ceitt? 468232 465840 466304 462 840 466907 [11] 465156
ccitt8 124768 125280 123840 123056 131735
Total: 1747008 1774576 1743832 1730392 1841921
Digital halftone, 7-pel predictor
budking 966 480 1051592 885368 879176 101 1952 [11] 1267429
boat2x 154744 155464 149656 147680 152258 [11] 153029
jphmesh 184016 213680 146 136 144 192 257665
Total: 1305240 1420736 1181160 1171048 1678123
Digital halfione, modified predictor model [17)]
jphmesh5 91088 90312 90584 89792 93526

substantial penalty is incurred in achieving slightly improved
compression in terms of context storage and computational
complexity. The compression improvement between 24-bit-
per-context and 12-bit-per-context estimators ranged from
approximately —0.2% to 1.5%, with the largest improvement
occurring for the facsimile and digital halftone files. Since
the gray-scale files had an average probability per decision of
about 0.25, and the facsimile and digital halftone files had an
average probability per decision an order of magnitude
smaller, this is somewhat consistent with the data in Figure
14. The 12-bit-per-context multi-rate estimator gave the
second best overall performance, but for facsimile files the
performance of the 6-bit-per-context version was essentially
as good.

The results for the digital halftone files are particularly
interesting, for these files require an estimator which can
track rapidly changing probabilities. This is evident both

per-context multi-rate estimator when used with an
independent “interval register” for the estimation process for
each context (24 bits per context). Using an independent
interval register per context for the estimation process
removes the effect of context mixing from the coding
efficiency.

When the 6- and 7-bit-per-context single-rate estimator
results were compared, the 6-bit-per-context estimator
worked significantly better for the facsimile files and the
digital halftone files analyzed using the 7-pel predictor.
However, the gray-scale files and the file from the modified
predictor model compressed slightly better with the 7-bit-
per-context estimator.

Still better results were obtained with the 12-bit-per-
context multi-rate estimator, but the best results were
obtained with the 24-bit-per-context estimator.

750 Unfortunately, relative to the 12-bit-per-context estimator, a
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from relative performances achieved with the three different
estimators, and from comparison of the results with the
entropies. The robustness of the multi-rate estimator is
particularly apparent with these files. Note that the numbers
quoted for the Q-Coder and in [8] are for fully decodable
files. They include the overhead for bit stuffing to block
carry propagation, flushing of the final bits in the code
register, and rounding to a byte boundary.

8. Summary

Theoretical modeling and experimentation have been used
to show that estimation of symbol probabilities solely from
interval-register renormalization is a practical and robust
estimation technique. The technique is readily implemented
in either hardware or software. The computations involved
are almost trivial, and scale with the number of compressed
bits generated.

The single-rate estimator is particularly simple, and
requires minimal storage for the Q, table and contexts. Its
simplicity—in both hardware and software—makes it the
estimation technique of choice for the Q-Coder. While the
multi-rate estimator does give significantly better
performance under some conditions, it requires either
substantially more computations per estimation or much
larger finite-state machine tables. This additional complexity
is a deterrent to the use of the multi-rate estimator in
current-generation hardware and software environments.

The coding efficiency attained with these estimation
techniques is clearly influenced by the nature of the data sets
chosen for the optimization. However, given that choice, the
coding efficiencies attained for both single- and multi-rate
variations compare favorably with results from any
technique known. Although complexity is currently a barrier
to its use, the multi-rate version has an additional robustness
that guarantees excellent coding efficiency for the entire
range of models considered.

Adaptive arithmetic coding often gives lower coding rates
than predicted from the stationary entropy, and thus raises
an interesting question. What is the lower bound for the
coding rate for statistically unstable data? One promising
approach to a theoretical bound is J. Rissanen’s MDL
(minimum descriptor length) principle [18]. J. Rissanen and
K. Mohiuddin [10, 14] used that principle as the basis for
their probability-estimation technique. However, on the
basis of very limited comparisons, the Q-Coder outperforms
that estimator. The true theoretical bound for the coding of
nonstationary systems is not known,
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