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estimation 
for  the  Q-Coder 

The  Q-Coder  is  an  important  new  development 
in  binary  arithmetic  coding. It combines  a  simple 
but  efficient  arithmetic  approximation  for  the 
multiply  operation,  a  new  formalism  which  yields 
optimally  efficient  hardware  and  software 
implementations,  and  a  new  technique  for 
estimating  symbol  probabilities  which  matches 
the  performance of  any method  known.  This 
paper  describes  the  probability-estimation 
technique.  The  probability  changes are 
estimated solely  from  renormalizations  in  the 
coding  process  and  require  no  additional 
counters.  The  estimation  process  can be 
implemented as a  finite-state machine,  and  is 
simple  enough  to  allow precise  theoretical 
modeling  of  single-context  coding.  Approximate 
models  have  been  developed  for  a  more 
complex  multi-rate  version  of  the  estimator  and 
for  mixed-context  coding.  Experimental  studies 
verifying  the  modeling  and  showing  the 
performance  achieved  for  a  variety of image- 
coding  models are presented. 

1. Introduction 
Arithmetic coding, introduced several  years  ago by Rissanen 
[ 11 and Pasco [2] and generalized by Langdon and Rissanen 
[3] (see  Langdon [4] for a comprehensive review  article),  is a 
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powerful technique for  coding  of  strings of data symbols. It 
derives its power from an ability to approach the entropy 
limit in coding efficiency and to dynamically alter the 
estimate of the probability of the symbol  being encoded. 

A new binary arithmetic coding system, the Q-Coder, has 
been  developed as a joint effort  between the authors of this 
paper and colleagues at the IBM Almaden  Research Center. 
The new probability-estimation technique used in the Q- 
Coder  is  presented in this paper; companion papers describe 
the basic  principles  of the Q-Coder [ 5 ] ,  software 
implementations of the Q-Coder [6] ,  and the arithmetic 
coding procedures which  allow compatible yet optimal 
hardware and software structures [7, 81. The Q-Coder is part 
of a proposal submitted to the CCITT and IS0 Joint 
Photographic Experts Group (JPEG) for color photographic 
image compression [9]. 

A description of the general structure of the Q-Coder 
arithmetic coding section is  given in [ 5 ,  61. Briefly, the 
arithmetic coder contains two key  registers, the interval 
register A and the code  register  C. The interval register 
contains the measure of the current probability interval, and 
the code  register contains a pointer to the interval. In order 
to use fixed-precision  integer arithmetic for the coding 
process, the interval and code  registers must be  periodically 
renormalized. 

When a given  symbol  is coded, the interval measure in A 
is  reduced to the subinterval for that symbol, and the code 
string is repositioned to point within the subinterval. Ideally, 
the scaling of the interval is done by multiplying the current- 
interval measure A by the probability estimate of the symbol 
which occurred. If the less probable symbol (LPS or L) 
probability q is estimated as a and the more probable 
symbol (MPS or M) probability p is estimated as 1 - a, the 
binary  coding  process  divides the interval into two 
subintervals, A X a and A - ( A  X Qe). The multiplication 
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can be  avoided  by introducing a  tight constraint on the 
renormalization [3-5,  101.  If the probability-interval measure 
A falls  within the bounds 0.75 5 A < 1.5, A can be 
approximated by 1 when multiplying by $. The 
subintervals are then approximated by Q, and A - Q,, and 
the multiplication is  avoided. 

arithmetic approximation, it can serve another important 
purpose-it can also  be  used to estimate the probability of 
the symbol  being  coded. 

A number of  different but somewhat related techniques 
have  been  used to estimate symbol probabilities. Langdon 
and Rissanen [ 1 11 and Pennebaker and Mitchell [ 121 have 
both used  confidence-interval techniques to determine 
whether the current estimate Q, of the LPS probability 
should be changed. In [ 121, the degree to which the 
confidence limit is  exceeded  is  used to determine the degree 
to which Q, should be changed; this gives a multi-rate 
estimation process. Goertzel and Mitchell [ 131  used a 
counting technique with periodic renormalization; although 
in principle a divide operation is required, the precision  is 
small enough that a lookup table inversion and multiply can 
be  used. Mohiuddin, Rissanen, and Wax [ 141  devised an 
intriguing multi-rate adapter in which the choice of 
estimation rate is  based on a  local minimization of the code 
string being generated. Although  relatively  complex to 
implement, this technique is quite powerful; we regard it as a 
standard against  which other estimation techniques can  be 
measured. Finally, Helman et al. [ 151 used  a Monte Carlo 
technique involving the LPS renormalization and symbol 
counts for updating the estimate of the LPS probability in 
the Skew Coder [3]. 

The rest  of this paper is devoted to  an analysis  of  a 
probability-estimation technique in which the probability is 
estimated solely from renormalization.’ The renewed 
attempt to use renormalization as  the basis  for probability 
estimation was inspired by earlier work on the Log Coder 
[ 121. In that work the computations for probability 
estimation were minimized by estimating probability each 
time one byte of compressed data was generated. While this 
system  proved to be simple to implement and provided 
accurate estimates, it failed to adapt quickly enough in 
coding of facsimile data sets. On the other hand, calculating 
a new probability after the coding of each  symbol, as was 
done by Rissanen and Mohiuddin [lo], provided good 
estimates and fast adaptation but involved  far too much 
computation. Estimation after each renormalization 
appeared to be an attractive compromise between  these  two 
schemes. 

In Section 2 the estimation process  is  described.  Section  3 
develops the exact theoretical modeling of that process for a 
single context. Section  4 continues the theoretical modeling 

Although the renormalization is required for the 

738 possibility because they were  unable to obtain good coding efficiencies. 
’ In  unpublished work G. Goertzel and J. L. Mitchell explored and  abandoned this 

for  mixed contexts and a random-interval model. Theory 
and experiments are compared for  a  single context in 
Section 5 .  Section 6 extends the probability estimation to a 
multi-rate system.  Mixed-context coding is  analyzed in 
Section  7. 

2. Estimation process 
The basic concept is as follows: The estimated LPS 
probability, Q,, is taken from a fixed table of allowed  values. 
Renormalization occurs either when an L event is 
encountered or when the interval falls  below 0.75 following 
an M event. When renormalization after an LPS  is 
encountered, the index to the current Q, is  shifted to a  larger 
Q,. Conversely,  whenever the MPS renormalization is 
encountered, the index  is  shifted to a smaller Q,. (The terms 
MPS renormalization and LPS renormalization are usually 
abbreviated as “MPS renorm” and “LPS renorm” in the text 
following.) 

The following approximate calculation suggests that the 
estimate of the probability obtained from the table of 
allowed Q, values will adapt to and closely approach the true 
LPS probability q of a binary symbol sequence. Given a 
starting value A for the interval register immediately 
following the last renormalization, N successive  MPS events 
must occur to reach the MPS renorm point: 

N =  1 + [AA/Q,l, (1) 

where Q, is the current estimated value of q, AA is the 
change in the interval (0.75 > AA 2 0), and  the brackets 
denote the greatest  integer function (rounding down to the 
nearest  integer). The probability of getting N MPS events in 
a row (and an MPS renorm) is 

p,,, = (1 - 4 )  * 
N 

(2) 

For simplicity, consider the case  where q is  small. Taking the 
natural logarithm of Equation (2) and approximating 
In  (1 - 4 )  by -q, 

Pmmr e 
- W d / e . )  (3) 

The magnitude of AA is dependent on the type of 
renormalization. If the MPS renorm occurred last, AA is 
close to 0.75; if the LPS renorm occurred last, AA is 
typically somewhat smaller than 0.75.  If the effective value 
of AA is assumed to be an appropriate average and the 
change in Q, is the same for both types of renorms, the 
renorm probabilities are balanced at  the point where 

The equilibrium is stable at this balance point. If Qe is too 
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large, P,,, is  also  large and the system tends to move to 
smaller Q,. Conversely, if Q, is too small, P,,, is  small and 
the system tends to move to larger Q,. Therefore, the system 
adapts to and balances approximately at the point q = Q, . 
Although  these calculations are approximate, exact 
calculations which  follow the same general approach and 
prove the point more rigorously are described  below. 

As  will  be seen, the coding  efficiencies  achieved  by the 
Q-Coder  with this probability estimator for pseudorandom 
data sets are usually not as  good as those obtainable with 
simple estimates of probability from counts [ 131. Coding 
inefficiency  is due partly to the lower  coding  efficiency 
inherent in the arithmetic approximation to the multiply, 
partly to small but systematic errors in Q,, partly to the 
granularity of the set of  allowed  values  of Q,, and partly to 
the intrinsic distribution in Q, resulting from the stochastic 
estimation process.  However, the estimation process tracks 
variations in symbol probability  very  well. Consequently, the 
coding  efficiency  achieved  with the less  stable symbol 
probabilities encountered in many real  coding environments 
is extremely  good, competitive with the best that can be 
done by any technique currently known. 

and mixed-context  coding. For a single-context  system, the 
renormalization process is  used to estimate only one 
probability. For mixed-context  coding, the coding decisions 
are conditioned by past  history, and a different probability 
must be estimated for each conditioning state or context. It 
is perhaps somewhat unexpected that renormalization of a 
single A register can be  used to estimate the many different 
probabilities required in the mixed-context case. 

This estimation process  works well for both single-context 

3. Modeling of the  estimation  process  for  a 
single  context 
The estimator can  be  defined as a finite-state machine, that 
is, a table of Q, values and associated  next states for  each 
type of renorm (i.e., new table  positions). The rate of change 
of Q, is determined by the granularity of the table  of Q, 
values and by the new state associated  with  each Q, value for 
the two  types of renorms. Figure 1 diagrams sections of the 
actual finite-state machine used to estimate the probabilities. 
The leftmost  section illustrates the exchange  of MPS and 
LPS definitions at Qe z 0.5 (kex is defined to be the particular 
state index, k, where this exchange  occurs). The center 
section  shows a region  where the finite-state machine 
changes from a single-state jump  on LPS to a double-state 
jump. Some parts of the finite-state machine require a jump 
of more than one state in order to correctly estimate the 
probability. The rightmost section shows the diagram for the 
smallest  values of Q,. This last  section  shows  how the 
transition at the MPS renorm for the smallest Q, value is 
returned to that state. 

Conditional changes in estimated probability, such as 
changing Q, only  after the occurrence of two MPS renorms 
in a row,  can  readily  be incorporated by allowing multiple 

entries of a given Qe value. A related form of this can be 
seen in the diagram for the lowest Q, state, where entry to 
that state can only occur after two MPS renorms in 
sequence. Handling conditional effects in this manner greatly 
simplifies the theoretical treatment, the only penalty being 
the need to solve a relatively  large number of simultaneous 
equations when  complex conditional structures are being 
considered. 

Figure 2 illustrates the sequencing of the probability 
estimator for an LPS followed  by a sequence  of MPSs. In 
Figure 2 the ordinate is the interval (A-register)  value, and 
the abscissa  is the discrete  allowed  values of Q, . The LPS 
renormalization causes a transition to a known A-register 
value and a known state in the finite-state machine (in this 
case  from a of 0.42206 to the appropriate starting A- 
register  value at Q, = 0.46893. (The particular Q, values in 
the figure are taken from the actual optimized 5-bit Q, 
values in Table 1, shown later. As MPSs are coded, the 
interval decays until it drops below  0.75.  At that point a 
transition is made to a smaller Q,, and the interval is 
renormalized by doubling until it is  greater than 0.75. In 
most  cases  only one doubling is  needed. Thus, the pair of 
doublings shown at Q, = 0.32831 is the exception rather 
than the rule. Whether one or two doublings occur is  of no 
consequence for the probability estimation. However,  since 
each doubling produces one bit in the code string (ignoring 
bit stuffing for a carry), the extra doubling is important  in 
the calculation of the coding efficiency. 

underlies the calculation of the estimation process. The first 
half  of the problem is determining the probability that  the 
estimate will be at each  of the allowed Q, values.  If we define 
n, as the occupation probability for the state corresponding 
to Q,[k] (the kth allowed value of e,), balance of transition 
probabilities into and out of the kth state gives 

Figure 2 illustrates the sequencing behavior which 

where X ,  = q for k 2 k,, and X, = 1 - q for k < kex. The 
symbols rkj and tkj are defined  below. The table of allowed 
Q, is  defined to have mirror symmetry at  the boundary 
between  keX and k,, - 1. Thus, k,, is the index in the table of 
Q, where the definitions of  least probable symbol and most 
probable symbol are exchanged. (For k < kex the table 
provides an estimate of 1 - q rather than q.) 

The first term in the summation represents the transition 
probability into  the state at Q,[k] from all states j which can 
reach the state k by an LPS followed by a sequence of MPSs. 
The exponent tkj is the number of MPSs needed to just enter 
the kth state when starting from an LPS at statej. Thus, for 
the example sketched in Figure 2, state j is marked with an 
asterisk, and state k could be any  one of the states which  is 
reached by the MPS sequence  following the LPS. 

transition probability out of the state k, given that the MPS 
The second term in  the summation represents the 
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Sections of the state diagram for the probability estimator. 

sequence continues until the interval decays below 0.75 for 
the kth state. The exponent rkj is the number of MPSs 
needed to just leave the kth state, counting from the symbol 
after the LPS at state j. 

The summation therefore  represents the net gain  in nk due 
to transitions from  all statesj which can reach state k 
through an LPS followed  by a sequence of MPSs. It is 
equated to the probability of transition out of state k due to 
an LPS event.  (All  probabilities are per-symbol  encoded.) 
The probability of transition out of state k via the LPS path 
is the probability  of the LPS multiplied by the occupation 
probability nk. 

Normalization requires 

1 nj= 1. (7 ) 
j 

The numerical  solution  of  these equations can present 
problems, in that the nk can be vanishingly  small when the 

740 index k is  far  from the value  for the most  probablGvalue of 

Q,. Therefore, the equations are reduced to a subset 
involving  only the nk near the most  probable  value  of a. 
Contributions from  members outside this range  are  assumed 
to be zero. The set  of equations must be  large  enough that 
the error in truncating the set  is  small,  yet  small  enough to 
avoid arithmetic precision  problems in the calculation of 
determinants by the method of Gaussian elimination. Except 
near the end of the table, the center value  of k for the 
subset  is  defined as the index  for  which  Q,(k]  is  closest to q. 

Because the table of  allowed  values  of Q, is  finite in 
extent, the equations must be reformulated to take end 
conditions into account. This is done by assuming that 
either tkj = 0 or rkj = 00 in Equation (6). The latter condition 
exactly  describes the closure of the state diagram  for k,, in 
Figure 1, in that the system cannot exit  from the k,, state 
after the MPS renorm. It also approximates the closure if the 
equation set  is truncated before k reaches kma. Truncation 
near the other endpoint, k = kmin, is  described by one of the 
two approximations, the choice  depending on whether a 
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particular k is  less than the exchange index, k,,, or not. The 
two assumptions are equivalent to assuming that either LPS 
or MPS renormalization is  highly  unlikely. Note that the 
approximate closure condition at the smallest  value of k is 
not needed, as it is  replaced by Equation (7). 

Given a table of Q, values and associated  index  changes to 
new Q, values  for  each renormalization path, these equations 
provide an exact solution of the probability of the system 
being at each Q,[k]. However,  they  hold  only for single- 
context coding. 

The second  half  of the problem is the calculation of 
coding  rate.  Refer  again to Figure 2. The current occupation 
of each state in the system  is determined by the balance of 
LPS and MPS transitions into and out of that state. For each 
Q, the probability of the LPS renormalization is known by 
definition (q), and the probability of each  succeeding MPS 
renormalization is  readily  calculated. The bits generated by 
each renormalization are also  readily  calculated. The net bit 
rate R,  for the kth state is thus 

Rk = nkXk BLPS,k + x BMp&j (' - > 
[ j  I (8) 

where j ranges  over  all MPS renormalizations which can 
occur following the LPS renorm. BLPS,, is the number of bits 
generated in renormalizing Q,[k] to the allowed interval 
range. BMps,j is the number of bits generated by the jth MPS 
renorm. As defined earlier, X ,  = q for k 2 k,,, X ,  = 1 - q for 
k < k,,, and the exponent rkj is the number of MPSs needed 
to reach the j th MPS renorm after the LPS event from state 
k. 

The total coding rate in bits per  symbol  is therefore 

R = C R , .  
k 

4. Mixed  contexts: The random-interval  model 
The calculations in Section 3 are not applicable to coding of 
mixed-context  symbols. If the context varies from one 
symbol to the next, Q, also  varies. The calculation of 
probabilities of MPS renormalization and the associated bit 
rate is therefore far more complex.  Let  us consider the 
following  hypothesis: The probability of the various interval 
values  is  sufficiently randomized by the effects  of multiple 
contexts that the interval-register  values are uniformly 
distributed in the interval from 0.75 to 1.5. 

Assuming that the above  hypothesis  is  valid, the following 
equations give the LPS renormalization probability P,,k and 
the MPS renormalization probability Pm,k : 

The equations describing the balance in transition 
probabilities are similar to those developed in Section 3, 
except that the probability of the MPS renorm is calculated 
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t 
I 

t I -r 

I 

0.46893  0.42206*  0.32831  0.30487 

Allowed values of Q, 

b Example of the sequencing of the probability estimator following an I LPS. 

from Equation (1 1) rather than from the equations for the 
probability of a sequence of MPSs. Therefore, the balance 
for state k is  given  by 

nspI,s + ntPm,t - nk(Pm,k + p l ,k )  = O 9  

S I 

where s is summed over  all states which can make a 
transition to k via LPS, and t is summed over  all states 
which can make a transition to k via a single MPS renorm. 
The normalization condition, Equation (7), completes the 
set of equations to be  solved. Numerical precision  again 
requires that the set of equations be truncated. Therefore, 
endpoint conditions are handled in the same manner as 
discussed in Section 3. 

The calculation of coding  efficiency  is done differently for 
the random-interval model. For a given interval A and a 
given estimated LPS probability a, the relative coding 
efficiency is 

where H i s  the entropy and R, is the bit rate per symbol for 
state k. Defining p = 1 - q, the entropy is  given  by 

= -4 log 2(4) - P 1% 2(Ph  (14) 

and, for a uniform distribution of A values in  the interval 
0.75 to 1.5, R,  is  given  by 
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Table 1 Probability estimates for 5-bit &. 

Q c  Q, Decimal Q Decr  Incr MPS 
index value  value (LPS) (MPS) exch 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

X'OACl' 
X'OA8 1 ' 
X'OAO 1 ' 
X'0901' 
X'0701' 
X'068 1 ' 
X'0601' 
X'0501' 
X'048 1 ' 
X'0441' 
X'0381' 
X'0301' 
X'02C1' 
X'028 1 ' 
X'024 1 ' 
X'0181' 
X'0121' 
X'OOE 1 ' 
X'OOA 1 ' 
X'007 1 ' 
X'0059' 
X'0053' 
X'0027' 
X'0017' 
X'0013' 
X'OOOB' 
X'0007' 
X'0005' 
X'0003' 
X'OOO 1 ' 

0.50409 
0.49237 
0.46893 
0.42206 
0.32831 
0.30487 
0.28  143 
0.23456 
0.21 112 
0.19940 
0.16425 
0.14081 
0.12909 
0.11737 
0.10565 
0.07050 
0.05295 
0.04 120 
0.02948 
0.02069 
0.0 1630 
0.0 1520 
0.007  14 
0.0042 1 
0.00348 
0.0020 1 
0.00128 
0.00092 
0.00055 
0.000 1 8 

0 1 1 
1 1 0 
1 1 0 
1 1 0 
1  1 0 
1 1 0 
1  1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
2 1 0 
3 1 0 
2 1 0 
3 1 0 
2 1 0 
3 1 0 
2 0 0 

X ,  In ( X , )   - X ,  In (X,) - X ,   + X o  
Rk,LPS = > (17) 

where X,  = 0.75/Qe[kl and X ,  = 1.5/Qe[k1. 

5. Comparison  between  theory  and  experiments 
for  single-context coding 
In Figure 3, the results of calculations (solid  curve)  based on 
the equations derived in Sections 3 and 4 are compared to 
experimental results  (circles). For single-context  coding, the 
agreement between experiment and the exact theory for that 
case  is  excellent  (as  expected). The corresponding table of 
estimated Q, and the associated  schedule of changes in index 
following renormalization are given in Table 1. This table 
was  selected  after much experimentation [ 51; it represents 
the best compromise among simplicity, minimum storage 
requirements for each context (6  bits),' reasonable coding 
efficiency for fixed statistics, and good performance on 
mixed-context data obtained from both facsimile- 
compression  models and continuous-tone image- 
compression  models. 

The Q, values in Table 1 are expressed as hexadecimal 
integers.  Divide  these a values by X'1000' X 4/3 to convert 
to the decimal fractional representation. The "Decr" column 
shows the decrement in the Qe index when  moving to larger 
a following an LPS renormalization. The "Incr" column 
shows the increment in  the Q index when  moving to 
smaller Q, following an MPS renormalization. Where the 
"MPS exch" column entry is 1 ,  an LPS will  cause an 
exchange in the MPS definition. 

Figure 4 shows  several theoretical (dashed curves) and 
experimental (solid  curves) distributions of Qe for the 5-bit 

case.  Again, agreement between calculation and 
measurement is  excellent. 

Figures 5 and 6 show similar experimental and theoretical 
calculations for the 6-bit a table (Table 2). As might be 
expected, the finer granularity of this table significantly 
decreases the coding  inefficiency  for stationary statistics. 
(Compare Figure 3 with  Figure 5.) 

distributions of Q, for the 6-bit case. Comparing these 
distributions to those in Figure 4, the increase in coding 

Figure  6  shows  several  calculated and measured 

The  initial  impetus to use very small  amounts of storage per context came from 
G. G. Langdon.  Somewhat  to our surprise,  he  was  able to demonstrate  that our 
estimation  technique could achieve  relatively good performance  with  a table of 
allowed a having less than 32 entries.  We  subsequently  worked  jointly to optimize 
this  singlerate  system. 
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efficiency  with a 6-bit Q, is due to the reduced  spread in the 
distribution. In both cases, the peak in the distribution is 
quite close to the desired Q,. The coarser granularity of the 
5-bit Q, table  is not the only  factor. The changes in table 
position for the 5-bit Q, are often larger as well. This 
increases the spread in the Q, distribution. 

The effect of the estimation process can be eliminated by 
choosing the Q, so as to minimize the coding  inefficiency. 
Such a procedure might be appropriate when the probability 
is known a priori. The coding  inefficiency for this special 
case  is  shown in Figure 7 for two  cases. The first  case  (solid 
line) is for the 12-bit  integer representation of with no 
additional granularity introduced. This curve gives the lower 
bound for the coding inefficiency that can be  achieved  with 
this integer representation. Quantization of Q, to the 12-bit 
integer representation causes the sequence of distinct 
minima which  is  noticeable for q < 2-l'. The sequence of 
distinct minima for q larger than  about 2-3  reflects the fact 
that the bit rate stays constant over short intervals in Q,. 
These intervals of constant bit rate result from the arithmetic 
approximation and renormalization used in the Q-Coder. 
The dashed line in Figure 7 represents the 12-bit  integer 
representation and the granularity of the 5-bit Q, table. 

One feature of Tables 1 and 2 is the avoidance of Q, 
values  which renormalize to X' 1000'. For the integer 
representation chosen for the tables this is the minimum A 
value  allowed  before MPS renormalization must occur. 
Consequently, when the Q, value renormalizes to  an A value 
too close to X' lOOO', the probability of the MPS renorm 
becomes  very  large.  If A is  exactly X' lOOO', any MPS will 

0.08 - 

A 

.p 0.06 8 - 
$ 
2 .* # 0.04- 
V 

0.02 - 

2 4 6  8 10  12 

immediately trigger an MPS renorm. In single-context 
coding, this creates a trap for the estimator. Note, however, 
that the smallest Q, entry in the table must renormalize to 
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i table which allows all values between X'ACI' and 1. The Q, value 

used for any given q is the smallest value in the table that minimizes 
f the coding inefficiency. The dashed curve is for the 5-bit Q, table 
1 (Table I ) ,  again with the smallest value of Q, chosen that minimizes 
4 the coding inefficiency. 
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X' 1000'. When the system  is at that entry, the LPS renorm 
moves the Q, pointer such that at least  two MPS renorms in 
succession are needed to return to the smallest entry. This 
avoids the trap.3 

The calculations and measurements described in this 
section  show that coding  inefficiency  is  strongly influenced 
by the Q, table granularity and the amount of change in 
index  following renormalization. Table granularity and the 
amount of change directly  influence the rate at which the 
system adapts to a change in q. However, the faster the 
adaptation rate, the more the distribution in Q, is spread, 
and the larger the coding  inefficiency  is  for stationary 
statistics. 

6. Multi-rate  probability  estimation 
In real data sets the symbol probability can vary quite 
widely. Consequently, the adaptive nature of the probability 
estimator is  extremely important in achieving  good coding 
efficiencies. The two  different Q, table granularities discussed 
in the preceding  section exhibit quite different  coding 
efficiencies for fixed-probability  coding.  However, the coarser 
granularity of the 5-bit  table  allows the estimator to  amve 

G. G. Langdon  suggested the particular integer representation (X' 1ooO' 
corresponding to 0.75) used in developing  these  tables.  His  suggestion  was  motivated 
by simplicity in hardware implementation, in that this representation allowed a single- 
bit  test to determine when renormahtion of the interval was needed.  However, this 
representation  also guaranteed that the estimator would be trappA at the smallest 
integer  value, 0, = I ,  We had  explored conditional renormalization as a means of 
centering the estimator at the correct 0,. Langdon suggested using it to avoid the trap. 
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at the appropriate Qe value at a cost of about half as many 
bits in the compressed data string. This illustrates the trade- 
off that must be made between  good  coding  efficiency  for 
stationary probabilities and rapid estimation of changing 
probabilities. 

A second-order process  has  been  developed,  however, 
which  allows use of the 6-bit Q, table (retaining most of the 
coding  efficiency for stable statistics) and yet provides very 
fast estimation of changing  probabilities. This second-order 
process  is  based on measurement of the correlation of 
renormalizations. If the probability of a given 
renormalization is about 0.5, the probability of two 
renormalizations in sequence  being the same is  also about 
0.5. Only if the current estimate of Q, is poor will the 
renormalization correlation probability significantly  exceed 
0.5. 

Correlation of renormalizations is detected by comparing 
the previous renormalization (for a given context) to the 
current one. A 4-bit counter (R,), kept individually for each 
context, is  used to determine the degree to which this 
correlation is occurring. The counter is incremented by one 
if the renormalization is the same as the last and 
decremented by two if the renormalization is  different. The 
one exception to this rule  is at the minimum value of Q,. 
A spurious indication of correlation would result if R,, were 
incremented in  that state. If R,, is zero, the schedule for 
change in the index shown in  the 6-bit table is 
followed.  As R,, increases, an additional change in Q, index 
is invoked according to the schedule in Table 3. Because the 
change in Q, index  increases  with  increasing R,, R,, is a 
measure of the estimation rate. 

This schedule of extra increments and decrements was 
arrived at experimentally, using the optimized 6-bit Qe table 
and adjusting the schedule until the best  overall performance 
was obtained for mixed-context  coding. The coding 
performance of this multi-rate estimator is shown in Figure 
8 for the fixed-probability data sets.  Over  most  of the range 
of probabilities the degradation in coding efficiency  caused 
by the addition of the multi-rate structure is  very  small. As is 
seen in the next  section, this is offset  by a significant  increase 
in the robustness of the estimation process in the coding of 
real files. 

An approximate model has been  developed for this multi- 
rate structure which  helps to explain the structure described 
above. If the probability of a renormalization being the same 
as the previous one is characterized by a single  average  value 
Per, the probability that the counter R,, has any particular 
value can be modeled by the finite-state machine shown in 
Figure 9. Transitions to the right occur with probability PC,, 
and transitions to the left occur with probability 1 - P,. For 
stable  symbol  probabilities, P, should be  of the order of 0.5. 
Since  for that case the occupancy probability should be  large 
for small R,, the decrement of R,, must be larger than the 

Table 2 Probability  estimates  for  6-bit &. 

Q, Q, 
index value 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

X'OA8 1 ' 
X'OAOl ' 
X'098 1 ' 
X'090 1 ' 
X'08A 1 ' 
X'07C1' 
X'0761' 
X'0701' 
X'06C 1 ' 
X'068 1 ' 
XI0641 ' 
X'0601' 
X'0581' 
X'0501' 
X'04C 1 ' 
X'04A 1 ' 
X'048 1 ' 
X'046 1 ' 
X'0441' 
X'042 1 ' 
X'03C1' 
X'038 1 ' 
XI0341 ' 
X'0301' 
X'02E 1 ' 
X'02C 1 ' 
X'02A 1 ' 
X'0281' 
X'026 1 ' 
X'0241' 
x '022 1 ' 
X'OlEI' 
X'OlA1' 
X'0181' 
X'0161' 
X'0141' 
X'0131' 
X'0121' 
X'OOF1' 
X'OOE 1 ' 
X'OOCl' 
X'OOA 1 ' 
X'009 1 ' 
X'0079' 
XI007 1 ' 
X'006 1 ' 
X'0053' 
X'0049' 
X'0039' 
X'0033' 
X'0025' 
X'0023' 
X'00  19' 
X'0013' 
X'0011' 
X'OOOB' 
X'0009' 
X'0007' 
X'0005' 
X'0003' 
X'0001' 

Decimal Q, Decr  Incr MPS 
(LPS)  (MPS) exch 

- 
value 

0.49237 
0.46893 
0.44550 
0.42206 
0.40448 
0.36346 
0.34589 
0.32831 
0.31659 
0.30487 
0.293 15 
0.28  143 
0.25800 
0.23456 
0.22284 
0.21698 
0.21 112 
0.20526 
0.19940 
0.19354 
0.17596 
0.16425 
0.15253 
0.1408 1 
0.13495 
0.12909 
0.12323 
0.1 1737 
0.11151 
0.10565 
0.09979 
0.08807 
0.07635 
0.07050 
0.06464 
0.05878 
0.05585 
0.05292 
0.044  13 
0.04  120 
0.03534 
0.02948 
0.02655 
0.022 16 
0.02069 
0.01776 
0.0 1520 
0.01337 
0.01044 
0.00934 
0.00677 
0.00641 
0.00458 
0.00348 
0.003 1 1 
0.0020 1 
0.00165 
0.00128 
0.00092 
0.00055 
0.00018 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
2 
1 
2 
2 
1 
1 
1 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
2 
1 
1 
2 
2 
1 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

increment. If the increment and decrement were equal, the 
occupation probability of all the states would  be identical. 745 
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1 Coding  inefficiency with multi-rate  probability  estimation.  The 
i circles are measured for pseudorandom data sets of fixed q. The 6-bit 1 Q, table (Table 2) is used with this multi-rate system. Consequently, 

the coding efficiency of the single-rate 6-bit Q, estimator is included 1 for comparison (solid line). 

A comparison between the predictions of this model and 
measured R,, distributions is  shown in Figure 10. Figure 
10(a)  shows the R, distribution when the extra changes in 
Table 3 are invoked. Figure  10(b)  shows the R,, distribution 
when the table of extra changes  is  set to zero. The basic 
model for the correlation in renormalization appears to be 
fairly  good if the renormalization correlation probability PC, 
is treated as an adjustable parameter. 

If the schedule of increments and decrements listed in 
Table 3 is  set to zero, the renormalization correlation 
probability can be  directly  calculated  using the same 
concepts discussed in Section 3. Figure 11 shows a 
comparison between  calculated and measured 
renormalization correlations. The measurements were done 
either by direct counting of correlation, or by a best fit (least 
squares) of calculated to measured R, distributions. A third 
set of measurements shows the effect on the renormalization 
correlation of allowing the extra changes  shown in Table 3. 
The main purpose in doing these calculations and 
measurements was to determine whether the schedule of 
extra changes should have a dependence on Q,. The 
relatively  slight dependence of PC, on q indicates that little 
can be gained  with this additional complexity. 

7. Mixed-context  coding 
Controlled experiments on mixed contexts are more difficult 
to design. One attempt is shown in Figures 12 and 13, in 
which pseudorandom data sets  were coded as if they 
comprised  32 intermixed contexts, each  with the same 
probability.  These  two  figures  also  show the prediction of 
coding  efficiency  given  by the random-interval model. 
Although agreement is poor for q near 0.5, at smaller q the 
random-interval model  predicts the behavior quite well. The 
predicted coding efficiency  for a single context is  also shown 
for comparison (dashed  line). Qualitatively, mixing contexts 
appears to increase the coding inefficiency  by about 1 %. 
However, this experiment is not representative of most 
mixed-context data sets in that the various contexts usually 
have quite different Q,. 

The assumption of a uniform interval distribution, the 
qxT ,~' ' 
~~~, basis for the random-interval model, is not very  good, 

State diagram for the approximate calculation of the distribution of 
especially near q = 0.5.  However, there are enough other 

1 the rate counter R~ . difficulties in  the modeling of mixed contexts that nothing 
more  successful has yet  been found. One example of these 
difficulties  is the interaction between contexts with q near 0.5 
and contexts with  very  small q. As noted earlier, near q = 0.5 
there is a significant chance of getting a 2-bit  MPS renorm. 
However,  below q = 0.375, this 2-bit  MPS renorm cannot 

Table 3 Schedule of extra  increments  and  decrements. occur. The randomizing effect  of  mixed contexts tends to 
shift the interval distribution to larger  values, thereby 

rate for coding of contexts with q near 0.5. Unfortunately, 

of MPS renormalization during coding of other contexts. 

R,, 0 1 2 3 4 5 6 7 8 9 10 11  12 13  14 15 reducing the probability of the 2-bit  MPS renorm and the bit 

Decrement 0 0 1 1 2 2 3 4 5 7 9 11 13 14 15  15 
I~~~~~~~~ 0 0 0 the shift in the interval distribution can only occur because 
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Consequently, the decrease for high-q contexts is  offset  by 
increased  bit rate for low-q contexts. This effect  was  observed 
experimentally during optimization of the 5-bit Q, table. 
Minor changes made to the Q, table at values near 0.5 
caused a significant  increase in the bit rate for some contexts 
with  very  small Q,. 

Figure 14 shows the effect  of multiple contexts for the 12- 
bit-per-context multi-rate estimator. Again, the coding 
inefficiency  is  increased by about 1 % . The increase in coding 
inefficiency  is  caused primarily by a broadening of the 
distribution of Q, rather than by a poor average estimate of 
the probability. 

Multiple-context interval randomization does not strongly 
influence the transient behavior of the estimation process. 
Figures 15-17 show the transient coding inefficiency for the 
6-, 7-, and 12-bit-per-context estimators. Decision  strings 
with q = 0.0 1 for the zero  symbol  were  used, and  the coder 
was initialized with Qe = X'OACl ' (Q, = 0.5), MPS = 0, and 
A(0)  = X'1000' (0.75). This is the initialization convention 
used for the image data set experiments described later in 
this section. Only the data for q = 0.0 1 are shown, as the 
behavior for other q values  is qualitatively similar. To 
generate these plots, the results from 25 600 different 
pseudorandom decision  strings  were  averaged  for the single- 
context case;  results from 800 strings were  averaged  for the 
32-context  case. The comparison of single-context and 32- 
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) Comparison between the calculated and measured correlated 
\ renormalization probabilities. 

IBM J. RES, DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988 W. B. PENNEBAKER AND J. L. MITCHELL 



O.1° t 

0.02 ' 

0.00 

2 4 6  8 10  12 

-log, (4) 

0.08 0'1° t 
0 

0 

0.00 I 
2 4  6 8 10  12 

-log, (4) 

748 

W. B. PENNEBAKER AND J.  L. MITCHELL 

0.08 0 ' 1 ° ~  

0.00 c 

context data shows that except for the detailed structure seen 
in the single-context  case, the transient behavior is quite 
similar for  single- and mixed-context  coding. The detailed 
structure in the single-context data is real and can be  verified 
approximately by calculating the coding rate for the most 
likely  sequence-an  LPS  followed  by  a string of  MPSs. The 
randomizing of the A register  by context mixing  removes 
this fine structure. 

Figure 18 shows the transient behavior of the estimation- 
rate counter Rcr. In this case, context mixing  does  affect the 
behavior, although not strongly. Context mixing tends to 
broaden the distribution; this increases the 
renormalization correlation, which in turn increases the 
value of Rcr . 

Most  real coding problems involve  mixed contexts. 
Consequently, while initial work  was done with 
pseudorandom fixed-probability data sets,  great emphasis 
was placed on obtaining the best coding efficiencies for two 
sets of mixed-context files, one generated by  a  gray-scale 
compression model [ 161 and the other by a  7-pel predictor 
facsimile model [ 1 11. Data from a  single  file  derived from a 
modified-neighborhood predictor [ 171 are also included. 
Results  for  these  files are shown in Table 4 for four variants 
of the estimator: the 6-bit-per-context (5-bit Q,, one bit to 
define the sense of the MPS), the 7-bit-per-context  (6-bit Q,), 
the 12-bit-per-context multi-rate estimator, and  the 12-bit- 
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Table 4 Q-Coder  coding  performance. 

Present experiments Reference  Entropy 

Bits per context 6 bits 7 bits I2  bits 24 bits 
Q, 5 bits 6 bits 6 bits 6 bits 

(file) (bits) (bits) (bits) (bits) (bits) (bits) 

Gray-scale, teleconferencing model 
t2 171  856  17 1 296 170968 170  544  172  608 [I61 166 373 
courierf 94 432 94  720 93 608 93 376 98 560 [I61 95  327 
courier 171  648 171  264 170488 170616 173  536 [I61 170  335 
ieeef 175  536 175  856 174  704 174  272 176 560 [I61 173 443 
ieee 232  952 233040 232  104 23 1 792 232  704 [I61 228819 
handwrtf 98  832 98 664 98  240 98  336 100  224 [I61 97  563 
topletf 101  784 102008 101 088 101  040 104  448 1161  101 272 
densetf 248  232 249016 247  328 246  928 253  792 1161 245 042 
marcosf 110  536 1 10  440 109 240 108 800 110512 1161 108278 
atomsf 171  408 170  392 170  720 170  504 170  288 [I61 164753 
fruitf 141  248 140  344 140  328 140  296 141  408 [I61 137 530 
t4f 237  560 236  704 236  256 236008 240  960 [I61 229  059 
t5f 164  112 162  120 161  752 161  784 163 264 [I61 156 253 

Total: 2120136  2115864  2106824  2104296  2138864 2 074  047 

Facsimile, 7-pel predictor 
ccitt 1 119  752 123 632 119816 119000 122021 [I11 130 623 
ccitt2 71  568  72  232 7 1 400  70  696 71  932 [I11 71 884 
ccitt3 187 728 192 224  187  400  185  952  200  927 
ccitt4  446 8 16 461  200  447  304  444  184  494  249 
ccitt5 215888 220  176 215960 214  120  230  345 
ccitt6 1 12  256 113992 111808 1 10  544 117002 
ccitt7  468  232  465  840  466  304  462  840  466  907 [I11 465  156 
ccitt8 124  768  125  280  123  840  123  056  131  735 

Total: 1 747  008 1 774  576 1 743 832 1 730  392 1841 921 

Digital halftone, 7-pel predictor 
budking  966  480 1 05 1 592  885  368  879  176  101  1952 [I11 1 267  429 
boat2x  154  744  155  464  149  656  147  680  152  258 [I11 153  029 
jphmesh 184016 213680 146  136  144  192  257  665 

Total: 1305240  1420736  1181 160 1171048  1678 123 

Digital halftone, modified predictor model [ 171 
jphmesh5 9 1 088 90312 90  584  89  792 93 526 

per-context multi-rate estimator when  used  with an 
independent “interval register”  for the estimation process  for 
each  context  (24 bits per  context).  Using an independent 
interval register  per context for the estimation process 
removes the effect  of context mixing  from the coding 
efficiency. 

results were compared, the 6-bit-per-context estimator 
worked  significantly better for the facsimile  files and the 
digital  halftone files analyzed  using the 7-pel  predictor. 
However, the gray-scale  files and the file from the modified 
predictor model  compressed  slightly better with the 7-bit- 
per-context estimator. 

Still better results were obtained with the 12-bit-per- 
context multi-rate estimator, but the best  results  were 
obtained with the 24-bit-per-context estimator. 
Unfortunately, relative to the 12-bit-per-context estimator, a 

When the 6- and 7-bit-per-context  single-rate estimator 

substantial penalty  is incurred in achieving  slightly improved 
compression  in terms of context storage and computational 
complexity. The compression improvement between  24-bit- 
per-context and 12-bit-per-context estimators ranged  from 
approximately -0.2% to 1.5%, with the largest improvement 
occumng for the facsimile and digital  halftone files.  Since 
the gray-scale  files  had an average  probability  per  decision  of 
about 0.25, and the facsimile and digital  halftone files had an 
average  probability  per  decision an order of magnitude 
smaller, this is  somewhat  consistent  with the data in Figure 
14. The 12-bit-per-context multi-rate estimator gave the 
second  best  overall  performance, but for  facsimile  files the 
performance of the 6-bit-per-context  version  was  essentially 
as good. 

The results  for the digital  halftone files are particularly 
interesting,  for  these files require an estimator which can 
track  rapidly  changing  probabilities. This is  evident both 
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from  relative performances achieved  with the three different 
estimators, and from comparison of the results  with the 
entropies. The robustness of the multi-rate estimator is 
particularly apparent with  these  files. Note that  the numbers 
quoted for the Q-Coder and in [8] are for  fully  decodable 
files. They include the overhead  for bit stuffing to block 
carry propagation, flushing of the final  bits in the code 
register, and rounding to a byte boundary. 

8. Summary 
Theoretical modeling and experimentation have  been  used 
to show that estimation of symbol probabilities solely from 
interval-register renormalization is a practical and robust 
estimation technique. The technique is  readily implemented 
in either hardware or software. The computations involved 
are almost trivial, and scale  with the number of compressed 
bits  generated. 

The single-rate estimator is particularly simple, and 
requires minimal storage for the Q, table and contexts.  Its 
simplicity-in both hardware and software-makes it the 
estimation technique of choice for the Q-Coder.  While the 
multi-rate estimator does give significantly better 
performance under some conditions, it requires either 
substantially more computations per estimation or much 
larger  finite-state machine tables. This additional complexity 
is a deterrent to the use  of the multi-rate estimator in 
current-generation hardware and software environments. 

The coding  efficiency attained with  these estimation 
techniques is  clearly  influenced by the nature of the data sets 
chosen  for the optimization. However,  given that choice, the 
coding  efficiencies attained for both single- and multi-rate 
variations compare favorably  with  results from any 
technique known. Although  complexity  is currently a barrier 
to its use, the multi-rate version has an additional robustness 
that guarantees excellent coding efficiency for the entire 
range of models  considered. 

Adaptive arithmetic coding often gives lower  coding rates 
than predicted from the stationary entropy, and thus raises 
an interesting question. What is the lower bound for the 
coding rate for statistically unstable data? One promising 
approach to a theoretical bound is J. Rissanen’s MDL 
(minimum descriptor length)  principle [ 181. J. Rissanen and 
K. Mohiuddin [ 10, 141  used that principle as the basis  for 
their probability-estimation technique. However, on the 
basis of  very limited comparisons, the Q-Coder outperforms 
that estimator. The true theoretical bound for the coding of 
nonstationary systems  is not known. 
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