
and software
arithmetic coding
procedures
for the Q-Coder

The Q-Coder is an important new development
in arithmetic coding. It combines a simple but
efficient arithmetic approximation for the multiply
operation, a new formalism which yields
optimally efficient hardware and software
implementations, and a new form of probability
estimation. This paper describes the concepts
which allow different, yet compatible, optimal
software and hardware implementations. In prior
binary arithmetic coding algorithms, efficient
hardware implementations favored ordering the
more probable symbol (MPS) above the less
probable symbol (LPS) in the current probability
interval. Efficient software implementation
required the inverse ordering convention. In this
paper it is shown that optimal hardware and
software encoders and decoders can be
achieved with either symbol ordering. Although
optimal implementation for a given symbol
ordering requires the hardware and software
code strings to point to opposite ends of the
probability interval, either code string can be

"Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

converted to match the other exactly. In
addition, a code string generated using one
symbol-ordering convention can be inverted so
that it exactly matches the code string
generated with the inverse convention. Even
where bit stuffing is used to block carry
propagation, the code strings can be kept
identical.

1. Introduction
A new binary arithmetic coding system, the Q-Coder, has
been developed as a joint effort by the authors of this paper
and colleagues at the Almaden site of the IBM Research
Division. This paper covers one key aspect of the Q-Coder
system, compatible optimal software and hardware coding
algorithms. An overview of the Q-Coder is found in [11.
Other aspects of the Q-Coder such as the probability-
estimation technique and the software and hardware
implementations are described in three companion papers
[2-41. The Q-Coder is part of a proposal submitted to the
CCITT and IS0 Joint Photographic Experts Group (JPEG)
for color photographic image compression [5] . The overview
[11 also contains a more comprehensive list of references to
earlier work on arithmetic coding.

extensive review has been published by Langdon [6] . As
discussed in these references, arithmetic coding is closely
related to Elias coding [7]. A sequence of symbols is coded

A brief review of arithmetic coding is given in [11. A more

1BM J. RES. DEVELOP. VOL. 32 NO, 6 NOVEMBER 1988 J. L. MITCHELL A N D W. B. PENNEBAKER

Symbol: M L L M

0.0 “I/ \
U

by sending a point on the probability number line between 0
and 1 with sufficient precision to uniquely identify the
probability interval assigned to that particular sequence.
More specifically, in Elias coding the interval for a particular
sequence of binary symbols is developed by a recursive
subdivision process in which each binary decision is coded
by subdividing the interval. This recursive subdivision is
sketched in Figure 1. Note that at the end of each recursion
the unrenormalized code string U is left pointing at the
subinterval for the symbol just coded. The code string grows
in length as coding proceeds, because it must be of sufficient
precision to uniquely identify the interval.

In Figure 1 the symbols are ordered in the probability
interval such that the more probable symbol (MPS or M)
occupies the upper subinterval and the less probable symbol
(LPS or L) occupies the lower subinterval. As each symbol is
coded, the interval is subdivided into two parts in proportion
to the probability estimates, P, and Q,, for the MPS and LPS
symbols respectively. A specific convention is followed in
developing the unrenormalized code string U in Figure 1 -
the code string is defined to point to the base of the current
interval. Because no renormalization is used, the coding
sequence sketched in Figure 1 requires increasing arithmetic
precision as more symbols are coded. When this coding
system is modified to use fixed-precision arithmetic, it
becomes an arithmetic coder.

Figure 1 shows one particular symbol-ordering convention
(P/Q), and one convention where the string points to the
base of the interval. However, the symbol-ordering
convention can be inverted (Q/P), and other code-string
conventions are possible. The interrelationships among
symbol ordering, code-string conventions, and efficiency of
implementation are a central topic of this paper. 728

J. L. MITCHELL AND W. B. PENNEBAKER

In Section 2, the basic coding structures which allow
optimal hardware and software coding implementations are
explored. In Section 3, the techniques for obtaining
compatible (and in fact, identical) code strings when
following different code-string conventions are presented. In
Section 4, a technique for inverting the code string so as to
give compatible code strings for different symbol-ordering
conventions is given. Section 5 discusses the code-register
structure and shows that code space is opened up for some
structures which can be used to “escape” from the arithmetic
coding environment.

2. Optimal hardware and software structures
In this section the basic coding structures for optimal
hardware and software implementations are explored. Unless
specifically noted, the P/Q symbol-ordering convention
followed in Figure 1 is used. The optimal hardware coding
structure discussed in this section was developed by Langdon
and Rissanen [8- 101 for their Skew Coder [lo]. The optimal
software structure which uses inverted symbol ordering is
also found in earlier work [8, 1 11.

To implement the coder of Figure 1 in fixed-precision
arithmetic, some constraints must be adopted on the range
of probability estimates for the LPS. In addition, the code
string and interval must be renormalized periodically, and
something must be done to limit carry propagation in the
code string. As discussed in [I], a good resolution of these
issues has been provided by Langdon and Rissanen in the
Skew Coder [101.

The Skew Coder uses a precision of 12 bits for the LPS
probability, thereby limiting the minimum LPS probability
to approximately 2-12. It uses the symbol-ordering and code-
string conventions of Figure 1 . It also follows a
renormalization rule which keeps the interval of order unity,
thereby allowing the multiplicative scaling of the interval to
be approximated by either subtraction or substitution.
Finally, it uses a bit-stuffing procedure [9] to limit carry
propagation. All of these concepts have, with modifications
and extensions, been carried over to the Q-Coder.

Langdon and Rissanen’s Skew Coder is a hardware-
optimized arithmetic coder. Indeed, the major difference
between the arithmetic coding procedures in the Skew Coder
and the hardware-optimized Q-Coder is a change in the
renormalization rule. The Skew Coder renormalization
maintains the interval A between 1 and 2, while the Q-Coder
renormalization maintains the interval between 0.75 and
1.5. Both renormalize by a shift-left-logical operation, but
the rule used in the Q-Coder reduces the coding inefficiency
caused by the approximation to the multiply. The
renormalization rule used in the Q-Coder was suggested by
J. Rissanen.’

I J. J. Rissanen, IBM Research Division, Almaden Research Center, San Jose, CA,
private communication.

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

Following the conventions of Figure 1, the hardware-
optimized coding process, with approximations for the
multiplications such that A Q, Q, and A P, = A(1 - Q)
A - Q,, is

if MPS is encoded

C t C + Q,

A t P , = A - Q,

renormalize A and C if necessary

else (LPS is encoded)

A + Q,
renormalize A and C

end

and the matching decoder is

if C z Q,

(MPS is decoded)

C + C " Q ,

A c A - Q ,

renormalize A and C if necessary

else

(LPS is decoded)

A+Qe

renormalize A and C

end

Note that after decoding a symbol, the decoder subtracts
from the code string any interval the encoder added.

A mathematical formulation is now developed which
allows the interrelationships between the different symbol-
ordering and code-string conventions to be expressed
concisely. For the encoding process, define U(j) as the
unrenormalized code string, C(j) as the renormalized code
string, A (j) as the current interval, and R(j) as the
renormalization factor which keeps A(j) of order unity.
Then,

The renormalizing factor has the form R (j) = 2-k"', where
k (j) is the total number of renormalization shifts required to
return A(j) to the interval 1.5 > A(j) z 0.75 after the jth
symbol is coded. Analogous relationships hold for other
code-string definitions used below.

Since the code string is designed to point to the bottom of
the current interval, the unrenormalized code string after the
jth symbol is coded is

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

Symbol M M L M

5 Code-string generation for PiQ symbol ordering in the interval, for
4 the hardware coding convention. The unrenormalized sequence of
1 values taken by the hardware code string is indicated on the left side.
j Note that renormalization must scale the size of the current interval
4 and the code string identically.

j

U j) = C R(i - 1)Qe(i)&,=Mm,
i= 1

where S, is the ith symbol, Q (i) is the LPS estimated
probability for Si, and 6condition is the equivalent of the
Kronecker delta function (1 if the condition is true, 0 if
false).

After the j th symbol is decoded, the corresponding
expression for the decoder code string U, (j) is

where U(k) is the code string generated by the encoder in
coding k symbols, and k > j. When the MPS is decoded, the
decoder subtracts the portion of the interval allocated to the
LPS in order to keep the reference level for the decoder
decision at zero for the next decoding operation.
Consequently, if C d (j) < QJj + l), the code string is
pointing to the interval allocated to the LPS, and the next
(j + 1) decision is decoded as an LPS.

The operation of this type of encoder and decoder is
illustrated in Figures 2 and 3. This encoder and decoder
structure is appropriate for hardware implementation
because the interval subdivision and the code-string addition
can be done in parallel [11. However, a software
implementation following this logic is not as efficient, since
two arithmetic operations are required on the MPS path,
while only one arithmetic operation is required on the LPS
path. The arithmetic coding used in the IBM Internal 729

J. L. MITCHELL AND W. B. PENNEBAKER

I I r I

Symbol M M L M
Qe

Symbol M M L M

Teleconferencing System (Goertzel and Mitchell [1 11) solved
this problem by inverting the order of the symbols on the
number line. Then, fewer operations are required on the
MPS path.

An efficient software implementation of the encoder can
be realized without reordering the symbols by pointing the
code string C to the top of the current interval rather than
the bottom. Then, the encoding process is as follows:

A c A - Q ,

if MPS is encoded

renormalize A and C if necessary

else (LPS is encoded)

C t C - A

A + Q,
renormalize A and C

end

C is initialized at A(O), the starting interval, and always
points to the top of the probability interval. With each
coding operation the interval shrinks; if the LPS is coded,
the MPS interval is subtracted from the code string. A sketch
of code-string generation for the software implementation is
shown in Figure 4; the hardware code string from Figure 2 is
also shown for comparison. The interval between the two
code strings is the unrenormalized probability interval,
R (i) X A(i) . Therefore, if the remaining interval is subtracted
from the software code string after the last symbol is coded,
the two code strings will-in principle-be identical.
However, when finite-precision arithmetic is used, the two
code strings are not necessarily the same, and may be
incompatible. In Section 3 the effects of finite-precision
arithmetic are treated, and a method for generating the
hardware code string while following the software coding
convention is described.

The mathematical description of the software encoder is

j

W) = A (O) - C R(i - 1)pe(i)6s,=Lm. (4)
i= I

Since A(i - 1) is the interval at the start of coding of the ith
symbol, P,(i) = A(i - 1) - Q,(i) . Figure 4 illustrates the
operation of this encoder.

Following the decoding of a given symbol, the decoder
must add back to the code string any interval the encoder
subtracted. Thus, for k > j , the decoder should follow the
form

j

ud(j) = U(k) + C R(i - 1)p,(i)6s,=Lps. (5)
I = I

However, in this form the unrenormalized decoder code
string converges to the top of the initial interval A(O), and
the test to decode the next symbol is rather awkward

J. L. MITCHELL AND W. B. PENNEBAKER IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

As decoding proceeds, R(j) gets smaller and smaller, and
the precision required for the decoding grows
correspondingly.

There are two ways to convert this decoder to a form
which allows fixed-precision arithmetic in the decoding. The
simplest is to start the decoder code string at -A(O) rather
than at zero, and to subtract the same amount from the
starting interval. The top of the interval-the reference level
for this decoder-is then at zero. If we define a new decoder
code string by

u d , (j) = u d (j) - A (o) > (7)

the comparison of Equation (6) becomes

c d ! (j) < - [A (j) - Q , (j + (8)

Both C,,(j) and - [A (j) - Q e (j + I)] are negative, but
always within I A(j) I of 0. Therefore, the software decoder
can be implemented using fixed-precision arithmetic. The
software decoder is thus

A c A + Q ,

if C,. 2 A

(MPS is decoded)

renormalize A and C, I if necessary

else

(LPS is decoded)

C,, c C,, - A

A -e,
renormalize A and C, ,

end

The operation of this decoder is illustrated in Figure 5.
The second form for the decoder can be achieved by

inverting the code string (and symbol ordering on the
number line). Then, the inverted code string &) is

= [A (O) / W) I - (3) . (9)

This inversion process appears to have a problem with
arithmetic precision. However, a technique for resolving this
problem is discussed in Section 4. From Equation (3) the
decoder becomes (k > J)

1 :
f

Symbol M M L M

A t A - Q ,

i f c < A

(MPS is decoded)

renormalize A and if necessary

else

(LPS is decoded)

C ' c C - A

A c e ,

renormalize A and

end

There is an entirely equivalent complementary set of
encoder and decoder structures in which the symbol
ordering in the interval is inverted. The second software
decoder described above really belongs to this
complementary set, and the code-string inversion allows
translation to the code strings generated by the

j complementary form. Figure 6 shows the full family of
Od(j)= O(k)- W- l)pe(%,=Lm, (lo) compatible encoders and decoders.

i= I
This section has explored the encoder and decoder

and the decoder decodes an MPS if e,(j) < P, (j + 1). structures which are derived for the different symbol-
In the software implementation of this decoder, the ordering and code-string conventions. The next two sections

code-string inversion is done as each byte of the normal code address problems in making the code strings compatible for
string is read. The actual decoding process then becomes these structures. 73 1

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988 I. L. MITCHELL AND W. B. PENNEBAKER

Invert

encoder
software
encoder

hardware
\ code I

I

precision of CT(i) and CB(i),

C,(i) I C(n) I CB(i).

Equation (14) is used in a number of ways in this section
and the next section.

Consider implementation of the hardware coding
convention with fixed-precision arithmetic. The Q-Coder
code string is defined to follow the hardware coding
convention for P/Q symbol ordering.

parts, a code buffer which contains completed bytes of coded
data, and a 32-bit code register which contains the low-order
bits of the code string. At 8-bit intervals, completed bytes are
taken from the code register and added to the code buffer. At
that time, any carry-propagation problems are resolved by
bit stuffing.

propagation is described in [9]. The carry propagation is
blocked by detecting runs of 1 -bits and inserting a 0-bit
whenever the run length reaches a predefined length. The
decoder, operating under the same rules, shifts the data so
that any carry-over into the stuffed 0-bit is properly aligned
when the new data are added to the code register.

The detection of patterns which would allow excessive

For convenience, the code string is separated into two

The basic concept of bit stuffing to block carry

carry propagation is greatly simplified in software if an
additional constraint is introduced-namely, that the runs

3. Obtaining compatible code strings for a given
symbol ordering
The generation of compatible code strings for the two code-
string conventions and a given symbol-ordering convention
depends on a simple but important observation. The
difference between code strings which point at the bottom
and top of the probability interval is simply, by definition,
the current probability interval. If after the ith symbol is
coded, C,(i) is the renormalized code string pointing to the
top of the interval and CB(i) is the renormalized code string
pointing to the bottom of the interval,

CT(i) = CB(i) + A(i) .

For any future symbol n, the lower and upper bounds
CB(n) and CT(n) are given by

fill complete bytes (a 2-byte alignment with a stuffed byte
was used in [1 11). The minimum possible run length of
binary ones is then a single coded byte with a value of
hexadecimal ’FF’ (X’FF’); bit stuffing after a single X’FF’
byte is, in fact, the convention adopted for the Q-Coder. For
simplicity, the rest of this discussion is restricted to this case.
The Q-Coder also uses an integer representation suggested by
G. G. Langdon,* in which hexadecimal 1000 is equivalent to
the decimal fraction 0.75. With this representation the
renormalized interval is a 13-bit binary fraction with the
most significant bit set. Finally, the Q-Coder adopts the
constraint that only the “current byte”-the byte most
recently moved from the code register to the code buffer-
can be modified by a carry from the code register.

In the software encoder the code string is generated by
subtracting the MPS subinterval from the renormalized code
string C whenever the LPS occurs. Consequently, borrow
propagation rather than carry propagation must be
prevented. Borrow propagation could be prevented by
stuffing a 1-bit following any string of binary zeros of some
given length. However, the code strings would then be
incompatible with the code strings generated following the
hardware conventions. Therefore, another approach must be

CT(i) I CJn) > CB(i). (13) taken.

As 12 increases, the Probability interval shrinks, and C B (~) conversion process is followed which converts the software
and C,(n) converge to a common code string C(n). code string to the hardware code string. This conversion

To get compatible (in fact, identical) code strings, a simple

- .,
Consequently, for n >> i the future code string can approach

732 arbitrarily close to either bound. Thus, within the current
* G. G. Langdon, Jr., University of California at Santa Cruz, Santa Cruz, CA, private
communication.

J . L. MITCHELL AND W. B. PENNEBAKER IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

process also creates the same bit-stuffing structure, which is
needed to block hardware carry propagation.

In the hardware encoder, the binary pattern in the code
buffer triggering the bit stuffing is

. . . , 11111111,

where the byte boundaries are denoted by commas. Any
X’FF‘ in the code string must by definition be followed by
at least one stuff bit. Thus, if the current byte is X‘FF‘,
the bits following have the pattern

. e . , 11111111 ,Snnnnnnn ,~~~ ,

where S is the stuff bit containing any carry from bits
nnnnnnn. In general, more than one stuff bit may be
introduced. However, in Section 5 a proof is given that with
proper constraints on the code-register structure, a single-bit
stuff is sufficient and even provides for “illegal” (escape)
codes in the byte following X’FF’. The presence of these
escape codes also guarantees that an X’FF’ byte cannot
follow an X‘FF’ byte in the code string.

The decoder detects the X‘FF‘ byte and shifts the new
code byte left by one bit position before adding the byte to
the code register. This properly aligns the carry bit with the
data already in the code register.

In the software encoder described in the preceding section,
the subtraction causes borrow propagation rather than carry
propagation, and borrow propagation is triggered by runs of
binary zeros:

. . . , 00000000.

Since the goal is to create a code string which is compatible
with the hardware convention for bit stuffing, the code string
is created subject to two constraints: First, any X’FF’
generated by the software coder must be followed by a
stuffed bit. Otherwise, byte patterns which are illegal for the
hardware decoder may be generated. Second, the code string
is constructed such that whenever a borrow is needed from
the current byte, it can, by definition, be taken without
underflow occumng. In Section 5 a proof is given that, when
following the hardware coding conventions, the register
structure used in the Q-Coder allows no more than one carry
to propagate as far as the current byte in the code buffer.
Similarly for the software conventions, only one borrow can
propagate as far as the current byte in the code buffer.
Therefore, the only byte value which cannot be borrowed
from is zero.

The need for a borrow from the current byte is detected
by setting a high-order “preborrow” bit in the code register,
at the start of a new byte. If this preborrow is used during
the creation of the next byte, a borrow must be taken from
the current byte. One convenient implementation places the
preborrow bit in the bit position P, which becomes the
register sign bit at the completion of the next byte. A flag bit

IBM I. RES. DEVELOP, VOL. 32 NO. 6 NOVEMBER 1988

F is also inserted one bit to the left of P. When the code
register goes negative, the next renormalization shift
completes the new code byte. Thus, when a new byte starts,

Code register: OOOOOOOF, POOOOOOO,xxxxxxxx,xxxxxvxx
A register : OOOaaaaa, aaaaaaaa

where F and P are both set. When the next byte is complete,

Code register: POOOOOOO, nnnnnnnn,xxxxxuxx,xxxvxxxx
A register : OOOaaaaa,aaaaaaaa

If the code register is positive, the preborrow has been
used and a borrow is therefore taken from the current byte
before the new byte, nnnnnnnn, is transferred from the code
register to the buffer. Note that when the preborrow is used,
the value in the code register is always larger than the A
register, and future borrows can be taken from the code-
register contents. A borrow will never be needed from the
new code byte, and it can therefore be written to the code
buffer without further testing.

If the code register is negative, no borrow is needed from
the current byte and the unused preborrow Pis discarded.
The A register is then compared to the code register. If the A
register is larger than the code register, two things have been
detected: First, the next byte to be written (nnnnnnnn) is
zero. Second, the bounds on the software code string are
such [Equation (14)] that a borrow from the current byte
might be needed. A borrow is therefore immediately taken
from the zero (nnnnnnnn) byte, converting it to X‘FF’, and
propagated to the current byte in the code buffer. The
X’FF’ is then written to the code buffer. Since this byte is
X‘FF‘, bit stuffing is required when the next byte is written.
Therefore, in addition to the normal preborrow bit P, the bit
borrowed from the X’FF’ is placed in bit position C, the bit
position which becomes the carry bit for the next byte. Thus,
if the code register is smaller than the A register, a borrow is
taken from the current byte, an X’FF’ is written to the code
buffer, and the code register is modified to become

Code register: OOOOOOOF, POOOOOOC,xxxxxxxx,xxxxxxvx
A register : OOOaaaaa, aaaaaaaa

where F, P, and C are all set to 1. When the next byte is
complete,

Code register: POOOOOOC,nnnnnnnx,xxxxxxxx,~xx
A register : OOOaaaaa, aaaaaaaa

The preborrow P will not be used when bit C i s set. The
current byte value of X’FF’ will therefore trigger bit stuffing,
and the next byte will be (Cnnnnnnn) rather than
(nnnnnnnn). The bit in C goes into the stuff-bit position. If
the C bit borrowed from the preceding byte remains unused,
a hardware code-string carry would occur; if the C bit has
been borrowed from, a hardware code-string carry would not
occur.

1. L. MITCHELL AND W. E. PENNEBAKER

Note that after a stuff bit, one extra valid x bit remains in
the code register. Therefore, the preborrow bit and the flag
bit for the next byte are inserted one bit to the left of the
normal position.

If the code register is not smaller than the A register, the
current contents of the code register are large enough to
satisfy any borrow requirements. The current byte must then
be checked; if it is X’FF’, bit stuffing is triggered. In this
case, since no preborrow was required, the stuffed bit will be
zero.

If all zero bytes were simply converted to X’FF’ , a
hardware decoder could decode the resulting code string.
However, the look-ahead to see if a borrow might be needed
when the byte to be written is zero makes the resulting code
string identical to the hardware code string. In effect, this
look-ahead detects the existence of the X’FF’ that the
equivalent hardware coder would have generated. It also
resolves a problem with precision which otherwise would
occur in coding long sequences of MPSs.

If it were desired, an entirely equivalent inverse bit stuffing
following zero bytes could be effected, with hardware doing
the look-ahead for the X’FF’ pattern to see if an overflow to
X’ 00 ’ might be possible.

4. Code-string inversion
In this section we consider the process of code-string
inversion. Only inversion to and from the hardware code
string for P/Q symbol ordering is treated, since the Q-Coder
is defined to use those conventions. Other code-string
translations are direct extensions of this case.

First consider the code-string inversion process of
Equation (9). In this case the inversion is camed out in the
decoder, converting the hardware code string for P/Q symbol
ordering to the software code string for Q/P symbol
ordering.

If only LPSs are coded (a remote but real possibility), the
code string remains zero. Subtraction of the code string from
A(0) as required for inversion then encounters precision
problems unless a preborrow from A(0) is propagated
through all understood binary zeros in the binary fraction. In
effect,

where E = R (i) X 2”’ for a 12-bit integer representation of
Q. E is therefore the smallest change in A allowed by the
integer representation. The preborrow of E also has the
desirable attribute of shifting the inverted code string slightly
so that it is always within the correct interval for the
software coding convention with Q/P symbol ordering. For
Q/P symbol ordering, the software coding convention
requires the code string to point to the bottom of the current
interval. Then, the MPS interval is added to the code string

734 each time the LPS symbol is coded.

J. L. MITCHELL AND W. B. PENNEBAKER

Inversion in the encoder is a more complex process than
inversion in the decoder, since the translation to the
hardware bit-stuffing convention must be done at the same
time. The encoding is done with Q/P symbol ordering, and
the resulting code string is inverted to generate the hardware
code string for P/Q ordering. Each time a new byte of coded
data is completed in the code register, it is inverted by
subtracting it from A(O), and the difference is placed in the
buffer. The inversion process requires the same preborrow as
in the decoder, such that the subtraction of the new byte of
code is always from X‘FF‘ (unless bit stuffing is needed).

Any carry created during the coding of the new byte is
normally subtracted from the current byte as part of the
inversion process. Consequently, inversion also requires a
look-ahead (as in the software encoder for P/Q ordering) to
see if a borrow might be needed from any X’ 00 ’ byte
created by the inversion. This look-ahead is done by
summing the current code register with the A register-the
sum provides an upper limit to the size of the code register
as additional symbols are coded [Equation (14)]. If adding
the A register to the code register causes a carry out of the
newly completed code byte still in the register, that byte
must be an X’FF’. Furthermore, a borrow might be required
from the X’OO’ byte which results from the subsequent
inversion of the X’FF’ byte, and borrowing from it later is
illegal. Therefore a borrow is taken immediately. It is
conceptually taken from the X’OO’ byte resulting from the
inversion (converting it to X’FF’) and propagated to the
current byte in the code buffer. A borrow flag is then set
indicating that this borrow was taken, and the X‘FF‘ is
written to the code buffer. When the next byte is complete,
the X’FF‘ triggers bit stuffing. The bit which was borrowed
is put into the stuff-bit (carry-receiver) position before
subtracting the new byte. If a carry has occurred in the new
byte, it is subtracted from this bit as the new byte is inverted.
Thus, if the current byte is X’FF’, the next byte is
subtracted from X’FF’ when the borrow flag is set;
otherwise it is subtracted from X’ 7F’.

For some definitions of the code-register bit assignments,
the preborrow can propagate through an arbitrary number of
X’FF’ bytes in succession. However, with the code-register
bit assignment discussed in the next section, an X’FF’ in a
byte with a stuff bit cannot happen.

5. Escaping from the arithmetic code string
In many coding environments it is highly desirable to
provide an escape from the code string that can be located
by a control system external to the arithmetic decoding
system. Arps et al. [121 noted that following bit stuffing,
certain code words were illegal, thus providing an escape,
and that the key to the development of illegal code space is
related to the introduction of “spacer bits” in the register
structure. Langdon3 also suggested this concept to limit the

’ G. G. Langdon, Jr., private communication.

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

number of carries. In this section, that idea is developed to
provide a rigorous bound on the code-register value when
the X’FF‘ code byte is followed by bit stuffing. In particular,
the 2-byte pattern X’FFFF‘ is shown to be illegal when
more than one spacer bit is used. The hardware coding
convention is followed in this section.

The bit pattern of the code register holding the partially
completed next byte of the code string must be bit-aligned
with the interval register A. Thus, for the integer
representation chosen for the Q-Coder, one possible bit
assignment in the encoder registers would be

Code register: OOOOOOOC nnnnnnnn ssssxxxx xxxxxxxx
A register : 00000000 00000000 OOOaaaaa aaaaaaaa

where 0 indicates zero bits, C is a carry-receiver bit, n labels
bits in the positions where the next code byte is generated, s
indicates spacer bits needed to limit carry propagation, and
the x bits contain the binary fraction still being developed in
the code register. The number of spacer bits is chosen so that
if the code register is memory-mapped, the completed byte
will be byte-aligned. The a bits represent the value in the A
register.

If the preceding code byte is X’FF’, the byte removed
from the register is shifted by one bit, such that the carry bit
is the highest-order bit of that byte. In this case one of the n
bits is left in the register, and the renormalization count to
complete the next byte in the code register is reduced by 1.

Assuming that the byte taken from the code register does
not contain a stuff bit, the rules for bit positioning and
renormalization provide an upper bound on the values
remaining in the two registers after removal of the byte. If
we define a binary point between the s and x bits in the
registers, then the upper bound on C[O] (the part of the code
string remaining in the code register after removal of a byte
of coded data) is

C[O] e 2s,

where s is the number of spacer bits. The code string cannot
be increased by more than A[O] , the value of the
A register after removal of a byte of coded data. Since for
this discussion the binary point is positioned such that
1 5 A [O] < 2, after eight renormalization shifts the
maximum value of the sum A [8] + C[8] is bounded by

A [8] + C [8] 5 2’(A[O] + C[O])

for any possible symbol sequence. Since A [81 > 0,

C [8] e 2 7 2 + 2 7 ,

where s is the number of spacer bits. Therefore, if the
current byte is an X‘FF‘, the upper bound on b, the next
complete byte in the code register, is the sum of C[O] and
A [O] after eight renormalizations:

b < 2’(2 + 2’)/2’+’.

IBM 1. RES, DEVELOP, VOL. 32 NO. 6 NOVEMBER 1988

In this equation the numerator is the sum of the C and A
registers multiplied by the renormalization factor; the
denominator scales the value to the position in the C register
where the byte is removed. Note that when the current byte
is an X’FF’ , the register bit sequence from which the new
byte is taken is shifted by one bit position to include the
carry bit. For s = 4 (the convention chosen for the Q-Coder),
this relationship shows that any 2-byte pattern in the range
X’FF90’ to X’FFFF’ is illegal. Furthermore, any byte with
a stuff bit cannot be X’FF’.

If the current byte is not an X’FF’ and does not contain a
stuff bit (that is, does not follow X’FF’),

b < 2 7 2 + 2s)/2s .

If the current byte does contain a stuff bit, the
renormalization shift count for the next byte is reduced to 7.
The trailing n bit left in the code register acts like an
additional spacer bit, giving

b < 28(2 + 2s+’)/2s.

Equations (19) and (20) prove that for spacer-bit counts
greater than zero, a carry can never propagate more than
one bit beyond the completed byte in the code register.

6. Summary
In the Q-Coder, P/Q symbol ordering is used and the
convention is adopted that the code string points to the
bottom of the current interval. However, compatible,
optimal software and hardware implementations of binary
arithmetic encoders and decoders can be achieved using
either symbol-ordering convention and either code-string
convention. Even though optimal implementation requires
that the code string point to the bottom of the interval for
one coder and the top of the interval for the other, the code
strings can be made identical. Identity of the code strings can
be guaranteed even when fixed-precision arithmetic is used
in the coding process. In addition, a code string can be
translated from one symbol-ordering convention to another
by inverting it. The inversion can be done using fixed-
precision arithmetic in either the encoder or the decoder.
An analysis of the role of spacer bits in limiting carry
propagation provides a rigorous bound for escape codes
from the arithmetic code string.

Acknowledgments
This paper is part of a larger collaborative effort between
IBM researchers at Almaden and Yorktown Heights to
develop an arithmetic coding implementation which
provides excellent compression and which is structured for
efficiency in both software and hardware. We have benefited
greatly from the continuing interaction with G. Langdon,
J. Rissanen, R. Arps, and R. Pasco of the Almaden facility.
We have also benefited from interactions with C. Gonzales
and G. Goertzel at the Yorktown facility, and from the

J. L. MITCHELL AND W. B. PENNEBAKER

continuing support and encouragement of our manager,
K. Pennington.

References
1. W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, Jr., and R. B.

Arps, “An Overview of the Basic Principles of the Q-Coder
Adaptive Binary Arithmetic Coder,” IBM J. Res. Develop. 32,
7 17 (1988, this issue).

2. W. B. Pennebaker and J. L. Mitchell, “Probability Estimation
for the Q-Coder,” IBM J . Res. Develop. 32,737 (1988, this
issue).

Implementations of the Q-Coder,” IBMJ. Res. Develop. 32, 753
(1988, this issue).

4. R. B. Arps, T. K. Truong, D. J. Lu, R. C. Pasco, and T. D.
Friedman, “A Multi-Purpose VLSI Chip for Adaptive Data
Compression of Bilevel Images,” IBMJ. Res. Develop. 32, 775
(1988, this issue).

Touchton, “Predictive Image Ccder/Decoder Using Adaptive
Binary Arithmetic Coding,’’ Research Report RC-13423, IBM
T. J. Watson Research Center, Yorktown Heights, N Y , January
1988.

6. G. G. Langdon, “An Introduction to Arithmetic Coding,” IBM
J. Res. Develop. 28, 135 (1984).

7. P. Elias, in N. Abramson, Information Theory and Coding,
McGraw-Hill Book Co., Inc., New York, 1963.

8. J. Rissanen and G. G. Langdon, “Universal Modeling and
Coding,” IEEE Trans. Info. Theory IT-27, 12 (1981).

9. G. G. Langdon and J. J. Rissanen, “Compression of Black-
White Images with Arithmetic Coding,” IEEE Trans. Commun.

3. J. L. Mitchell and W. B. Pennebaker, “Software

5. W. B. Pennebaker, J. L. Mitchell, C. A. Gonzales, and C. F.

COM-29,858 (1981).
10. G. G. Langdon and J. J. Rissanen, “A Simple General Binary

11. G. Goertzel and J. L. Mitchell, “Symmetrical Optimized
Source Code,” IEEE Trans. Info. Theory IT-28, 800 (1982).

Adaptive Data Compression/Transfer/Decompression System,”
US. Patent 4,633,490, December 30, 1986.

Character Insertion into Arithmetically Encoded Strings,” IBM
Tech. Disclosure Bull. 25, 2051 (1982).

12. R. B. Arps, J. M. Cheng, and G. G. Langdon, “Control

Received August I I, 1987; accepted for publication July 27,
I988

736

J. L. MITCHELL AND W. B. PENNEBAKER

Joan L. Mitchell IBM Research Division, T. J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598. Dr.
Mitchell graduated from Stanford University with a B.S. in physics
in 1969. She received her M.S. and Ph.D. degrees in physics from
the University of Illinois at Champaign-Urbana in 197 1 and 1974,
respectively. She joined the Exploratory Printing Technologies group
at the IBM T. J. Watson Research Center immediately after
completing her Ph.D., and since. 1976 has worked in the field of data
compression. Dr. Mitchell received IBM Outstanding Innovation
Awards for two-dimensional data compression in 1978, for
teleconferencing in 1982, and for the Image View Facility and
resistive ribbon thermal transfer printing technology in 1985. She is
co-inventor on fifteen patents.

William B. Pennebaker IBMResearch Division, T. J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Pennebaker is a Research Staff Member at the IBM T. J. Watson
Research Center and currently manages a group doing research in
areas related to image processing and compression. He joined IBMs
Research Division in 1962 and has worked in areas related to low-
temperature physics, thin films, display technology, printing
technology, and image processing. Dr. Pennebaker has received an
Outstanding Contribution Award for work on strontium titanate
films, an Outstanding Invention Award for work on silicon nitride
films, and an Outstanding Innovation Award for work on image
processing and compression. He has received ten IBM Invention
Achievement Awards. Dr. Pennebaker received his B.S. in
engineering physics from Lehigh University, Bethlehem,
Pennsylvania, in 1957, and his Ph.D. in physics from Rutgers
University, New Brunswick, New Jersey, in 1962. He is a member of
the American Association for the Advancement of Science, the
American Institute of Physics, the Institute of Electrical and
Electronics Engineers, and the Society for Information Display.

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

