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The  Q-Coder is an  important  new  development 
in arithmetic  coding. It combines  a  simple  but 
efficient  arithmetic  approximation  for  the  multiply 
operation,  a  new  formalism  which  yields 
optimally  efficient  hardware  and  software 
implementations,  and  a  new  form of probability 
estimation.  This  paper  describes  the  concepts 
which  allow  different,  yet  compatible,  optimal 
software  and  hardware  implementations. In prior 
binary  arithmetic  coding  algorithms,  efficient 
hardware  implementations  favored  ordering  the 
more  probable  symbol (MPS) above  the less 
probable  symbol (LPS) in the  current  probability 
interval.  Efficient  software  implementation 
required  the  inverse  ordering  convention. In this 
paper it is shown  that  optimal  hardware  and 
software  encoders  and  decoders  can be 
achieved  with  either  symbol  ordering.  Although 
optimal  implementation  for  a  given  symbol 
ordering  requires  the  hardware  and  software 
code  strings to point to opposite  ends of the 
probability  interval,  either  code string can be 
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converted to match  the  other  exactly. In 
addition,  a  code string generated  using  one 
symbol-ordering  convention  can be inverted so 
that it exactly  matches  the  code string 
generated  with  the  inverse  convention.  Even 
where bit stuffing is used to block  carry 
propagation,  the  code strings can be kept 
identical. 

1. Introduction 
A new binary arithmetic coding system, the Q-Coder, has 
been  developed as a joint effort  by the authors of this paper 
and colleagues at  the Almaden  site of the IBM Research 
Division. This paper covers one key aspect of the Q-Coder 
system, compatible optimal software and hardware coding 
algorithms. An  overview  of the Q-Coder  is found in [ 11. 
Other aspects of the Q-Coder such as the probability- 
estimation technique and the software and hardware 
implementations are described in three companion papers 
[2-41. The Q-Coder  is part of a proposal submitted to the 
CCITT and IS0  Joint Photographic Experts Group (JPEG) 
for color photographic image compression [ 5 ] .  The overview 
[ 11 also contains a more comprehensive list  of  references to 
earlier  work on arithmetic coding. 

extensive  review has been published by Langdon [6] .  As 
discussed in these  references, arithmetic coding is closely 
related to Elias coding [7]. A sequence of symbols  is  coded 

A brief  review  of arithmetic coding is given in [ 11. A more 
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by sending a point on the probability number line between 0 
and 1 with  sufficient  precision to uniquely identify the 
probability interval assigned to that particular sequence. 
More  specifically, in Elias coding the interval for a particular 
sequence of binary symbols  is  developed by a recursive 
subdivision  process in which  each  binary  decision  is  coded 
by subdividing the interval. This recursive  subdivision  is 
sketched in Figure 1. Note that at the end of each  recursion 
the unrenormalized code string U is  left pointing at the 
subinterval for the symbol just coded. The code string grows 
in length as coding proceeds,  because it must be  of sufficient 
precision to uniquely identify the interval. 

In  Figure 1 the symbols are ordered in  the probability 
interval such that the more probable symbol (MPS or M) 
occupies the upper subinterval and the less probable symbol 
(LPS or L) occupies the lower subinterval. As each  symbol  is 
coded, the interval is  subdivided into two parts in proportion 
to the probability estimates, P, and Q,, for the MPS and LPS 
symbols  respectively. A specific convention is  followed in 
developing the unrenormalized code string U in Figure 1 - 
the code string is  defined to point to the base of the current 
interval. Because no renormalization is  used, the coding 
sequence  sketched in Figure 1 requires increasing arithmetic 
precision as more symbols are coded.  When this coding 
system is modified to use  fixed-precision arithmetic, it 
becomes an arithmetic coder. 

Figure 1 shows one particular symbol-ordering convention 
(P/Q), and one convention where the string points to the 
base  of the interval. However, the symbol-ordering 
convention can be inverted (Q/P), and other code-string 
conventions are possible. The interrelationships among 
symbol ordering, code-string conventions, and efficiency  of 
implementation are a central topic of this paper. 728 
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In  Section 2, the basic coding structures which  allow 
optimal hardware and software coding implementations are 
explored.  In  Section 3, the techniques for obtaining 
compatible (and in fact, identical) code strings when 
following  different  code-string conventions are presented. In 
Section 4, a technique for inverting the code string so as to 
give compatible code strings for different symbol-ordering 
conventions is  given. Section 5 discusses the code-register 
structure and shows that code space  is opened up for some 
structures which can be used to “escape” from the arithmetic 
coding environment. 

2. Optimal  hardware  and  software  structures 
In this section the basic coding structures for optimal 
hardware and software implementations are explored.  Unless 
specifically noted, the P/Q symbol-ordering convention 
followed in Figure 1 is  used. The optimal hardware coding 
structure discussed in this section was developed by Langdon 
and Rissanen [8- 101 for their Skew Coder [lo]. The optimal 
software structure which uses inverted symbol ordering is 
also found in earlier work [8, 1 11. 

To implement the coder of Figure 1 in fixed-precision 
arithmetic, some constraints must be adopted on the range 
of probability estimates for the LPS.  In addition, the code 
string and interval must be renormalized periodically, and 
something must be done to limit carry propagation in  the 
code  string. As discussed in [I], a good resolution of these 
issues has been  provided by Langdon and Rissanen in the 
Skew Coder [ 101. 

The Skew Coder uses a precision of 12 bits for the LPS 
probability, thereby limiting the minimum LPS probability 
to approximately 2-12. It uses the symbol-ordering and code- 
string conventions of Figure 1 .  It also  follows a 
renormalization rule  which  keeps the interval of order unity, 
thereby  allowing the multiplicative scaling of the interval to 
be approximated by either subtraction or substitution. 
Finally, it uses a bit-stuffing procedure [9] to limit carry 
propagation. All  of these concepts have,  with modifications 
and extensions, been carried over to the Q-Coder. 

Langdon and Rissanen’s Skew Coder is a hardware- 
optimized arithmetic coder. Indeed, the major difference 
between the arithmetic coding procedures in the Skew Coder 
and  the hardware-optimized Q-Coder  is a change in the 
renormalization rule. The Skew Coder renormalization 
maintains the interval A between 1 and 2, while the Q-Coder 
renormalization maintains the interval between 0.75 and 
1.5. Both renormalize by a shift-left-logical operation, but 
the rule used in the Q-Coder reduces the coding inefficiency 
caused by the approximation to the multiply. The 
renormalization rule  used in  the Q-Coder was  suggested  by 
J. Rissanen.’ 

I J. J. Rissanen, IBM Research Division, Almaden Research Center,  San Jose, CA, 
private communication. 
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Following the conventions of Figure 1, the hardware- 
optimized coding  process,  with approximations for the 
multiplications such that A Q,  Q, and A P, = A( 1 - Q) 
A - Q,, is 

if MPS is encoded 

C t  C +  Q, 

A t P , = A -  Q, 

renormalize A and C if  necessary 

else (LPS is encoded) 

A + Q, 
renormalize A and C 

end 

and the matching decoder is 

if C z  Q, 

(MPS is decoded) 

C + C " Q ,  

A c A - Q ,  

renormalize A and C if  necessary 

else 

(LPS is decoded) 

A+Qe 

renormalize A and C 

end 

Note that after  decoding a symbol, the decoder subtracts 
from the code string any interval the encoder added. 

A mathematical formulation is  now  developed  which 
allows the interrelationships between the different  symbol- 
ordering and code-string conventions to be  expressed 
concisely.  For the encoding process,  define U( j )  as the 
unrenormalized code  string, C( j ) as the renormalized code 
string, A ( j )  as the current interval, and R( j )  as the 
renormalization factor  which  keeps A( j )  of order unity. 
Then, 

The renormalizing factor has the form R ( j )  = 2-k"', where 
k ( j )  is the total number of renormalization shifts required to 
return A( j )  to the interval 1.5 > A( j )  z 0.75 after the jth 
symbol  is  coded.  Analogous relationships hold for other 
code-string definitions used  below. 

Since the code string is  designed to point to the bottom of 
the current interval, the unrenormalized code string after the 
jth symbol is coded  is 
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5 Code-string generation for PiQ symbol ordering in the interval, for 
4 the hardware coding convention. The unrenormalized sequence of 
1 values taken by the hardware code string is indicated on the left side. 
j Note that renormalization must scale the size of the current interval 
4 and the code string identically. 

j 

U j )  = C R(i - 1)Qe(i)&,=Mm, 
i= 1 

where S, is the  ith symbol, Q ( i )  is the LPS estimated 
probability  for Si, and 6condition is the equivalent of the 
Kronecker delta function (1 if the condition is true, 0 if 
false). 

After the j th symbol is decoded, the corresponding 
expression  for the decoder code string U, ( j ) is 

where U(k) is the code string generated by the encoder in 
coding k symbols, and k > j. When the MPS is decoded, the 
decoder subtracts the portion of the interval allocated to the 
LPS in order to keep the reference  level for the decoder 
decision at zero for the next  decoding operation. 
Consequently, if C d ( j )  < QJj + l), the code string is 
pointing to the interval allocated to the LPS, and the next 
( j  + 1)  decision  is  decoded as an LPS. 

The operation of this type of encoder and decoder is 
illustrated in Figures 2 and 3. This encoder and decoder 
structure is appropriate for hardware implementation 
because the interval subdivision and the code-string addition 
can be done in parallel [ 11. However, a software 
implementation following this logic  is not as efficient,  since 
two arithmetic operations are required on the MPS path, 
while  only one arithmetic operation is required on the LPS 
path. The arithmetic coding  used in the IBM Internal 729 
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Teleconferencing  System (Goertzel and Mitchell [ 1 11) solved 
this problem by inverting the order of the symbols on the 
number line. Then, fewer operations are required on the 
MPS path. 

An  efficient  software implementation of the encoder can 
be  realized without reordering the symbols by pointing the 
code string C to the top of the current interval rather than 
the bottom. Then, the encoding process  is as follows: 

A c A - Q ,  

if  MPS  is  encoded 

renormalize A and C if  necessary 

else (LPS is encoded) 

C t C - A  

A + Q, 
renormalize A and C 

end 

C is initialized at A(O), the starting interval, and always 
points to the top of the probability interval. With  each 
coding operation the interval shrinks; if the LPS  is coded, 
the MPS interval is subtracted from the code string. A sketch 
of code-string generation for the software implementation is 
shown in Figure 4; the hardware code string from Figure 2 is 
also  shown for comparison. The interval between the two 
code  strings  is the unrenormalized probability interval, 
R ( i )  X A(i ) .  Therefore, if the remaining interval is subtracted 
from the software  code string after the last  symbol is coded, 
the two  code  strings will-in  principle-be identical. 
However,  when  finite-precision arithmetic is  used, the two 
code  strings are not necessarily the same, and may  be 
incompatible. In Section 3 the effects  of  finite-precision 
arithmetic are treated, and a method for generating the 
hardware code string while  following the software coding 
convention is described. 

The mathematical description of the software encoder is 

j 

W ) = A ( O )  - C R(i -  1)pe(i)6s,=Lm. (4) 
i= I 

Since A( i  - 1) is the interval at the start of coding of the  ith 
symbol, P,(i) = A(i  - 1) - Q,(i) .  Figure 4 illustrates the 
operation of this encoder. 

Following the decoding of a given symbol, the decoder 
must add back to the code string any interval the encoder 
subtracted. Thus, for k > j ,  the decoder should follow the 
form 

j 

ud(j) = U(k) + C R(i - 1)p,(i)6s,=Lps. ( 5 )  
I =  I 

However, in this form the unrenormalized decoder code 
string  converges to the  top of the initial interval A(O), and 
the test to decode the next  symbol  is rather awkward 

J. L. MITCHELL AND W. B. PENNEBAKER IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988 



As decoding  proceeds, R( j )  gets  smaller and smaller, and 
the precision required for the decoding  grows 
correspondingly. 

There are two ways to convert this decoder to a form 
which  allows  fixed-precision arithmetic in the decoding. The 
simplest is to start the decoder code string at -A(O) rather 
than  at zero, and to subtract the same amount from the 
starting interval. The top of the interval-the  reference  level 
for this decoder-is then at zero. If  we define a new decoder 
code string by 

u d , ( j ) =  u d ( j ) - A ( o ) >  (7 ) 

the comparison of Equation (6) becomes 

c d ! ( j ) < - [ A ( j ) - Q , ( j +  (8) 

Both C,,(j) and - [ A ( j )  - Q e ( j +  I)] are negative, but 
always  within I A( j )  I of 0. Therefore, the software decoder 
can be implemented using  fixed-precision arithmetic. The 
software decoder is thus 

A c A + Q ,  

if C,. 2 A 

(MPS is decoded) 

renormalize A and C, I if  necessary 

else 

(LPS  is decoded) 

C,, c C,, - A  

A -e, 
renormalize A and C, , 

end 

The operation of this decoder is illustrated in Figure 5. 
The second form for the decoder can be  achieved  by 

inverting the code string (and symbol ordering on the 
number line). Then, the inverted code string &) is 

= [ A ( O ) / W ) I  - ( 3 ) .  (9) 

This inversion  process appears to have a problem  with 
arithmetic precision.  However, a technique for resolving this 
problem  is  discussed in Section 4. From Equation (3) the 
decoder becomes (k  > J )  

1 :  
f 

Symbol M M L M 

A t A - Q ,  

i f c < A  

(MPS  is decoded) 

renormalize A and if  necessary 

else 

(LPS  is decoded) 

C ' c C - A  

A c e ,  

renormalize A and 

end 

There is an entirely equivalent complementary set of 
encoder and decoder structures in which the symbol 
ordering in the interval is inverted. The second  software 
decoder described above really  belongs to this 
complementary set, and the code-string inversion allows 
translation to the code strings generated by the 

j complementary form. Figure 6 shows the full  family of 
Od(j)= O(k)-  W- l)pe(%,=Lm, (lo) compatible encoders and decoders. 

i= I 
This section has explored the encoder and decoder 

and the decoder decodes an MPS if e,( j )  < P, ( j  + 1). structures which are derived for the different  symbol- 
In the software implementation of this decoder, the ordering and code-string conventions. The next two sections 

code-string  inversion  is done as  each  byte  of the normal code address problems in making the code strings compatible for 
string is  read. The actual decoding  process then becomes these structures. 73 1 
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precision of CT(i) and CB(i), 

C,(i) I C(n) I CB(i). 

Equation ( 14)  is  used in a number of  ways in this section 
and the next  section. 

Consider implementation of the hardware coding 
convention with  fixed-precision arithmetic. The Q-Coder 
code string is  defined to follow the hardware coding 
convention for P/Q symbol ordering. 

parts, a code  buffer  which contains completed bytes of coded 
data, and a 32-bit  code  register  which contains the low-order 
bits of the code  string.  At  8-bit intervals, completed bytes are 
taken from the code  register and added to the code  buffer.  At 
that time, any carry-propagation problems are resolved  by 
bit  stuffing. 

propagation is  described in [9]. The carry propagation is 
blocked by detecting runs of 1 -bits and inserting a 0-bit 
whenever the run length  reaches a predefined  length. The 
decoder, operating under the same rules,  shifts the data so 
that any carry-over into the stuffed  0-bit  is properly aligned 
when the new data are added to the code register. 

The detection of patterns which  would  allow  excessive 

For convenience, the code string is separated into two 

The basic concept of bit stuffing to block carry 

carry propagation is  greatly  simplified in software if an 
additional constraint is  introduced-namely, that the runs 

3. Obtaining  compatible code strings  for  a  given 
symbol ordering 
The generation of compatible code strings  for the two  code- 
string conventions and a given  symbol-ordering convention 
depends on a simple but important observation. The 
difference  between  code strings which point at the bottom 
and  top of the probability interval is  simply, by definition, 
the current probability interval. If  after the ith symbol  is 
coded, C,(i) is the renormalized code string pointing to the 
top of the interval and CB(i) is the renormalized code string 
pointing to the bottom of the interval, 

CT(i) = CB(i) + A( i ) .  

For any future symbol n, the lower and upper bounds 
CB(n) and CT(n) are given  by 

fill complete bytes (a 2-byte alignment with a stuffed  byte 
was  used in [ 1 11). The minimum possible run length of 
binary ones is then a single  coded  byte  with a value of 
hexadecimal ’FF’ (X’FF’); bit stuffing after a single X’FF’ 
byte  is, in fact, the convention adopted for the Q-Coder. For 
simplicity, the rest  of this discussion  is  restricted to this case. 
The Q-Coder  also  uses an integer representation suggested  by 
G. G. Langdon,* in which  hexadecimal 1000 is equivalent to 
the decimal fraction 0.75. With this representation the 
renormalized interval is a 13-bit binary fraction with the 
most  significant bit set.  Finally, the Q-Coder adopts the 
constraint that only the “current byte”-the  byte  most 
recently  moved  from the code  register to the code buffer- 
can  be  modified by a carry from the code register. 

In the software encoder the code string is generated by 
subtracting the MPS subinterval from the renormalized code 
string C whenever the LPS occurs. Consequently, borrow 
propagation rather than carry propagation must be 
prevented.  Borrow propagation could be prevented by 
stuffing a 1-bit  following any string of binary zeros of some 
given length. However, the code strings  would then be 
incompatible with the code  strings generated following the 
hardware conventions. Therefore, another approach must be 

CT(i) I CJn)  > CB(i). (13) taken. 

As 12 increases, the Probability interval shrinks, and C B ( ~ )  conversion  process  is  followed  which converts the software 
and C,(n) converge to a common code string C(n). code string to the hardware code string. This conversion 

To get compatible (in fact, identical) code strings, a simple 

- ., 
Consequently, for n >> i the future code string can approach 

732 arbitrarily close to either bound. Thus, within the current 
* G. G. Langdon, Jr., University of California  at  Santa Cruz, Santa  Cruz, CA, private 
communication. 
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process  also creates the same  bit-stuffing structure, which  is 
needed to block hardware carry propagation. 

In the hardware encoder, the binary pattern in the code 
buffer  triggering the bit  stuffing  is 

. . .  , 11111111, 

where the byte boundaries are denoted by commas. Any 
X’FF‘ in the code string must by definition be followed  by 
at least one stuff bit. Thus, if the current byte  is X‘FF‘, 
the bits  following  have the pattern 

. e . ,  11111111 ,Snnnnnnn ,~~~ ,  

where S is the stuff bit containing any carry from bits 
nnnnnnn. In general, more than one stuff bit may  be 
introduced. However, in Section 5 a proof  is  given that with 
proper constraints on the code-register structure, a single-bit 
stuff  is  sufficient and even  provides for “illegal”  (escape) 
codes in the byte  following X’FF’. The presence of these 
escape  codes  also guarantees that an X’FF’ byte cannot 
follow an X‘FF’ byte in the code string. 

The decoder detects the X‘FF‘ byte and shifts the new 
code  byte  left  by one bit position  before adding the byte to 
the code register. This properly  aligns the carry bit with the 
data already in the code register. 

In the software encoder described in the preceding section, 
the subtraction causes  borrow propagation rather than carry 
propagation, and borrow propagation is  triggered by runs of 
binary zeros: 

. . . , 00000000. 

Since the goal  is to create a code string which  is compatible 
with the hardware convention for bit stuffing, the code string 
is created subject to two constraints: First, any X’FF’ 
generated by the software coder must be  followed  by a 
stuffed  bit.  Otherwise,  byte patterns which are illegal for the 
hardware decoder may  be  generated.  Second, the code string 
is constructed such that whenever a borrow is needed  from 
the current byte, it can, by definition, be taken without 
underflow occumng. In Section 5 a proof  is  given that, when 
following the hardware coding conventions, the register 
structure used in the Q-Coder  allows no more than one carry 
to propagate as far as the current byte in the code buffer. 
Similarly  for the software conventions, only one borrow can 
propagate as far as the current byte in  the code buffer. 
Therefore, the only  byte  value  which cannot be borrowed 
from is  zero. 

The need for a borrow  from the current byte  is detected 
by setting a high-order “preborrow” bit in the code  register, 
at the start of a new byte. If this preborrow  is  used during 
the creation of the next  byte, a borrow must be taken from 
the current byte. One convenient implementation places the 
preborrow bit in the bit position P, which  becomes the 
register  sign bit at the completion of the next  byte. A flag bit 
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F is  also inserted one bit to the left  of P. When the code 
register goes negative, the next renormalization shift 
completes the new code  byte. Thus, when a new byte starts, 

Code register: OOOOOOOF, POOOOOOO,xxxxxxxx,xxxxxvxx 
A register : OOOaaaaa, aaaaaaaa 

where F and P are both set.  When the next  byte  is complete, 

Code register: POOOOOOO, nnnnnnnn,xxxxxuxx,xxxvxxxx 
A register : OOOaaaaa,aaaaaaaa 

If the code  register  is  positive, the preborrow has been 
used and a borrow  is therefore taken from the current byte 
before the new byte, nnnnnnnn, is transferred from the code 
register to the buffer. Note that when the preborrow is  used, 
the value in the code  register  is  always  larger than  the A 
register, and future borrows can be taken from the code- 
register contents. A borrow will never be needed from the 
new code  byte, and it can therefore be written to the code 
buffer without further testing. 

If the code register  is  negative, no borrow  is  needed from 
the current byte and the unused preborrow Pis discarded. 
The A register  is then compared to the code register. If the A 
register  is  larger than the code  register,  two things have  been 
detected: First, the next  byte to be written (nnnnnnnn) is 
zero.  Second, the bounds on the software  code string are 
such [Equation (14)] that a borrow from the current byte 
might  be  needed. A borrow  is therefore immediately taken 
from the zero (nnnnnnnn) byte, converting it to X‘FF’, and 
propagated to the current byte in the code buffer. The 
X’FF’ is then written to the code  buffer.  Since this byte  is 
X‘FF‘, bit stuffing is required when the next  byte is written. 
Therefore, in addition to the normal preborrow bit P, the bit 
borrowed from the  X’FF’ is  placed in bit position C, the bit 
position which  becomes the carry bit for the next byte. Thus, 
if the code  register  is smaller than the A register, a borrow  is 
taken from the current byte, an X’FF’  is written to the code 
buffer, and the code register  is  modified to become 

Code register: OOOOOOOF, POOOOOOC,xxxxxxxx,xxxxxxvx 
A register : OOOaaaaa, aaaaaaaa 

where F, P,  and C are all  set to 1. When the next byte is 
complete, 

Code register: POOOOOOC,nnnnnnnx,xxxxxxxx,~xx 
A register : OOOaaaaa, aaaaaaaa 

The preborrow P will not be  used  when bit C i s  set. The 
current byte  value  of X’FF’ will therefore trigger bit stuffing, 
and  the next  byte will  be (Cnnnnnnn) rather than 
(nnnnnnnn). The bit in C goes into the stuff-bit position. If 
the C bit  borrowed from the preceding  byte remains unused, 
a hardware code-string carry would occur; if the C bit has 
been  borrowed from, a hardware code-string carry would not 
occur. 
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Note that after a stuff bit, one extra valid x bit remains in 
the code  register. Therefore, the preborrow bit and the flag 
bit for the next  byte are inserted one bit to the left of the 
normal position. 

If the code  register  is not smaller than the A register, the 
current contents of the code  register are large enough to 
satisfy any borrow requirements. The current byte must then 
be  checked;  if it is X’FF’, bit stuffing  is  triggered.  In this 
case,  since no preborrow was required, the stuffed bit will  be 
zero. 

If  all  zero  bytes  were simply converted to  X’FF’ , a 
hardware decoder could decode the resulting  code  string. 
However, the look-ahead to see  if a borrow might be needed 
when the byte to be written is zero makes the resulting code 
string identical to the hardware code string.  In  effect, this 
look-ahead detects the existence of the X’FF’  that the 
equivalent hardware coder would  have generated. It also 
resolves a problem  with  precision  which  otherwise  would 
occur in coding long sequences of MPSs. 

If it were desired, an entirely equivalent inverse bit stuffing 
following  zero  bytes  could  be  effected,  with hardware doing 
the look-ahead for the X’FF’ pattern to see  if an overflow to 
X’ 00 ’ might  be  possible. 

4. Code-string  inversion 
In this section we consider the process of code-string 
inversion. Only inversion to and from the hardware code 
string for P/Q symbol ordering is treated, since the Q-Coder 
is  defined to use those conventions. Other code-string 
translations are direct extensions of this case. 

First consider the code-string inversion process of 
Equation (9). In this case the inversion  is camed out in  the 
decoder, converting the hardware code string for P/Q symbol 
ordering to the software code string for Q/P symbol 
ordering. 

If only LPSs are coded (a remote but real  possibility), the 
code string remains zero. Subtraction of the code string from 
A(0)  as required for inversion then encounters precision 
problems unless a preborrow from A(0)  is propagated 
through all understood binary zeros in the binary fraction. In 
effect, 

where E = R ( i )  X 2”’ for a 12-bit  integer representation of 
Q. E is therefore the smallest  change in A allowed  by the 
integer representation. The preborrow of E also has the 
desirable attribute of shifting the inverted code string slightly 
so that it is  always within the correct interval for the 
software coding convention with Q/P symbol  ordering. For 
Q/P symbol ordering, the software coding convention 
requires the code string to point to the bottom of the current 
interval. Then, the MPS interval is added to the code string 

734 each time the LPS symbol  is  coded. 
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Inversion in the encoder is a more complex  process than 
inversion in the decoder, since the translation to the 
hardware  bit-stuffing convention must be done  at the same 
time. The encoding is done with Q/P symbol ordering, and 
the resulting code string is inverted to generate the hardware 
code string for P/Q ordering. Each time a new byte of coded 
data is completed in the code  register, it is inverted by 
subtracting it from A(O), and the difference  is  placed in the 
buffer. The inversion process requires the same preborrow as 
in the decoder, such that the subtraction of the new byte of 
code  is  always from X‘FF‘ (unless bit stuffing  is  needed). 

Any carry created during the coding of the new byte  is 
normally subtracted from the current byte as part of the 
inversion  process. Consequently, inversion also requires a 
look-ahead (as in  the software encoder for P/Q ordering) to 
see  if a borrow  might be needed from any X’ 00 ’ byte 
created by the inversion. This look-ahead  is done by 
summing the current code register  with the A register-the 
sum provides an upper limit to the size  of the code  register 
as additional symbols are coded [Equation (14)]. If adding 
the A register to the code  register  causes a carry out of the 
newly completed code byte  still in the register, that byte 
must be an X’FF’. Furthermore, a borrow might be required 
from the X’OO’ byte  which  results from the subsequent 
inversion of the X’FF’  byte, and borrowing from it later is 
illegal. Therefore a borrow  is taken immediately. It is 
conceptually taken from the X’OO’ byte  resulting from the 
inversion (converting it to X’FF’ ) and propagated to the 
current byte in the code  buffer. A borrow flag  is then set 
indicating that this borrow  was taken, and  the  X‘FF‘ is 
written to the code buffer.  When the next  byte  is complete, 
the X’FF‘ triggers bit stuffing. The bit which  was borrowed 
is put into the stuff-bit  (carry-receiver) position before 
subtracting the new byte. If a carry has occurred in the new 
byte, it is subtracted from this bit as the new byte  is inverted. 
Thus, if the current byte  is X’FF’, the next  byte  is 
subtracted from X’FF’ when the borrow flag is  set; 
otherwise  it  is subtracted from X’ 7F’. 

For some definitions of the code-register bit assignments, 
the preborrow can propagate through an arbitrary number of 
X’FF’ bytes in succession.  However,  with the code-register 
bit assignment  discussed in  the next section, an  X’FF’ in a 
byte  with a stuff bit cannot happen. 

5. Escaping  from  the  arithmetic  code  string 
In many coding environments it  is  highly  desirable to 
provide an escape from the code string that can be located 
by a control system external to the arithmetic decoding 
system.  Arps et al. [ 121 noted that following bit stuffing, 
certain code  words  were  illegal, thus providing an escape, 
and that the key to the development of illegal  code  space  is 
related to the introduction of “spacer bits” in the register 
structure. Langdon3 also  suggested this concept to limit the 

’ G.  G. Langdon, Jr., private communication. 
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number of carries. In this section, that idea  is  developed to 
provide a rigorous bound on the code-register  value  when 
the X’FF‘ code  byte  is  followed  by bit stuffing.  In particular, 
the 2-byte pattern X’FFFF‘ is  shown to be  illegal when 
more than one spacer bit is  used. The hardware coding 
convention is  followed in this section. 

The bit pattern of the code  register  holding the partially 
completed next  byte of the code string must be  bit-aligned 
with the interval register A. Thus, for the integer 
representation chosen for the Q-Coder, one possible bit 
assignment in the encoder registers  would be 

Code register: OOOOOOOC nnnnnnnn ssssxxxx xxxxxxxx 
A register : 00000000  00000000 OOOaaaaa aaaaaaaa 

where 0 indicates zero bits, C is a carry-receiver  bit, n labels 
bits in the positions  where the next code byte  is generated, s 
indicates spacer  bits  needed to limit carry propagation, and 
the x bits contain the binary fraction still  being  developed in 
the code register. The number of spacer bits is chosen so that 
if the code  register  is memory-mapped, the completed byte 
will be byte-aligned. The a bits represent the value in the A 
register. 

If the preceding code byte  is X’FF’, the byte removed 
from the register  is  shifted  by one bit, such that the carry bit 
is the highest-order bit of that byte.  In this case one of the n 
bits  is  left  in the register, and the renormalization count to 
complete the next  byte in the code register  is  reduced by 1. 

Assuming that the byte taken from the code register  does 
not contain a stuff bit, the rules  for bit positioning and 
renormalization provide an upper bound on the values 
remaining in the two  registers  after  removal  of the byte. If 
we define a binary point between the s and x bits in the 
registers, then the upper bound on C[O] (the part of the code 
string remaining in  the code  register after removal of a byte 
of coded data) is 

C[O] e 2s, 

where s is the number of spacer  bits. The code string cannot 
be  increased by more than A[O] ,  the value of the 
A register after removal of a byte of coded data. Since for 
this discussion the binary point is  positioned such that 
1 5 A [O] < 2, after eight renormalization shifts the 
maximum value of the sum A [ 8 ]  + C[8] is bounded by 

A [ 8 ]  + C [ 8 ]  5 2’(A[O] + C[O]) 

for any possible  symbol  sequence.  Since A [ 81 > 0, 

C [ 8 ]  e 2 7 2  + 2 7 ,  

where s is the number of spacer  bits. Therefore, if the 
current byte is an X‘FF‘, the upper bound on b, the next 
complete byte in the code  register,  is the sum of C[O] and 
A [O] after  eight renormalizations: 

b < 2’(2 + 2’)/2’+’. 
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In this equation the numerator is the sum of the C and A 
registers multiplied by the renormalization factor; the 
denominator scales the value to the position in  the C register 
where the byte  is  removed. Note that when the current byte 
is an X’FF’ , the register bit sequence from which the new 
byte  is taken is shifted by one bit position to include the 
carry  bit. For s = 4 (the convention chosen  for the Q-Coder), 
this relationship shows that any 2-byte pattern in the range 
X’FF90’ to X’FFFF’ is  illegal. Furthermore, any byte  with 
a stuff bit cannot be X’FF’. 

If the current byte  is not an X’FF’  and does not contain a 
stuff bit (that is,  does not follow X’FF’ ), 

b < 2 7 2  + 2s)/2s .  

If the current byte  does contain a stuff  bit, the 
renormalization shift count for the next  byte  is reduced to 7. 
The trailing n bit left in the code register acts like an 
additional spacer bit, giving 

b < 28(2 + 2s+’)/2s. 

Equations ( 19) and (20) prove that for spacer-bit counts 
greater than zero, a carry can never  propagate more than 
one bit beyond the completed byte in the code register. 

6. Summary 
In the Q-Coder, P/Q symbol ordering is  used and the 
convention is adopted that the code string points to the 
bottom of the current interval.  However, compatible, 
optimal software and hardware implementations of binary 
arithmetic encoders and decoders can be  achieved  using 
either symbol-ordering convention and either code-string 
convention. Even though optimal implementation requires 
that the code string point to the bottom of the interval for 
one coder and the top of the interval for the other, the code 
strings  can  be made identical. Identity of the code strings can 
be guaranteed even  when  fixed-precision arithmetic is used 
in the coding process. In addition, a code string can be 
translated from one symbol-ordering convention to another 
by inverting it. The inversion can be done using  fixed- 
precision arithmetic in either the encoder or the decoder. 
An analysis of the role of spacer bits in limiting carry 
propagation  provides a rigorous bound for escape  codes 
from the arithmetic code  string. 
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