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The  Q-Coder  is  a  new  form  of  adaptive  binary 
arithmetic  coding.  The  binary  arithmetic  coding 
part of  the  technique  is  derived  from  the  basic 
concepts  introduced  by  Rissanen,  Pasco,  and 
Langdon,  but  extends  the  coding  conventions  to 
resolve  a  conflict  between  optimal  software  and 
hardware  implementations.  In  addition,  a  robust 
form  of  probability  estimation is  used  in  which 
the  probability  estimate  is  derived  solely  from 
the  interval  renormalizations  that are part of the 
arithmetic  coding  process. A brief  tutorial of 
arithmetic  coding  concepts is  presented, 
followed by a discussion  of  the  compatible 
optimal  hardware  and  software  coding 
structures  and  the  estimation  of  symbol 
probabilities  from  interval  renormalization. 

1. Introduction 
The Q-Coder  is an adaptive binary arithmetic coding  system 
which  allows  different, but compatible, coding conventions 
to be  used in optimal hardware and optimal software 
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implementations. It also incorporates a new probability- 
estimation technique which  provides an extremely simple yet 
robust mechanism  for adaptive estimation of probabilities 
during the coding  process. 

This paper presents an overview  of the principles of the 
Q-Coder. A brief  discussion  of the basic principles of 
arithmetic coding  is  presented in Section 2. A discussion of 
the coding conventions which  lead to optimal, compatible 
hardware and software implementations of arithmetic coding 
follows in Section 3. In addition, Section 3 introduces some 
aspects of implementation using  fixed-precision arithmetic. 
Section 4 covers the estimation of probabilities by a new 
technique which  uses  only the interval renormalization that 
is a necessary part of the finite-precision arithmetic coding 
process. Dynamic probability estimation makes the Q-Coder 
an adaptive binary arithmetic coder. Section 5 gives some 
experimental results. 

2. Basic  principles  of  binary  arithmetic  coding' 
Traditionally, Huffman coding [2]  is  used to code a sequence 
of symbols  which  describes the information being 
compressed. As an example, Figure 1 shows a possible 
Huffman tree for a set of four symbols-w,  x,  y, and z- 
with  respective probabilities 0.125,O. 125,  0.25, and 0.5. The 
vertical  axis of Figure 1 represents the number line from 0 to 
1, which  is the probability interval occupied by the four 
symbols.  Each of the four symbols  is  assigned a subinterval 
' A much  more  extensive  tutorial  on  arithmetic  coding is found  in [ 11. 
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Symbol Probability Code fraction 
Binary 

z 0.5 1 0.1 T 
Y 0.25 01 

0.01 
x 0.125 001 0.001 
w 0.125 000 0.000 0 

0 

of  size proportional to the probability estimate of that 
symbol. If each subinterval is  identified  by its least or base 
value, the four symbols are identified  respectively  by the 
binary numbers 0.000,O.OO 1, 0.01, and 0.1. Note that the 
subinterval size (or probability estimate) determines the 
length of the code  word. Ideally this length for some symbol 
a is  given by  log,p,(a), where  p,(a)  is the probability estimate 
for symbol a. For the example in Figure 1, the probabilities 
have  been  chosen such that the code  lengths are ideal. 

Z 
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0.000 

The  tree in Figure 1 is constructed in a particular way to 
illustrate a concept which  is fundamental to arithmetic 
coding: The code  words, if regarded as binary fractions, are 
pointers to the particular interval being coded. In  Figure 1 
the code  words point to the base of each interval. The 
general concept that a code string can be a binary fraction 
pointing to the subinterval for a particular symbol sequence 
is due to Shannon [3] and was applied to successive 
subdivision of the interval by  Elias [4]. The idea of 
arithmetic coding,  derived by Rissanen [ 5 ]  from the theory 
of enumerative coding, was approached by Pasco [6] as the 
solution to a finite-precision constraint on the interval 
subdivision methods of Shannon and Elias. 

Any decision  selecting one symbol from a set of two or 
more  symbols can be decomposed into a sequence of binary 
decisions. For example, Figure 2 shows  two  possible 
decompositions of the four-symbol  choice of Figure 1. From 
a coding-efficiency point of  view there is no difference 
between the two alternatives, in  that  the interval size and 
position on the number line are the same for both. However, 
from the point of  view  of computational efficiency, 
decomposition (a) is better. Fewer computations are required 
to code the most  probable  symbol. Thus, although the 
Huffman coding tree  is not required to achieve  efficient 
compression, it remains useful as an approximate guide for 
minimizing the computational burden. 

In  general, as coding of each additional binary decision 
occurs, the precision of the code string must be  sufficient to 
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provide  two  distinguishable points within the subinterval 
p ( s )  allocated to the sequence of symbols, s, which actually 
occurred. The number of bits, b, required to express the code 
string is then given  by [3] 

4 > 2bp(s) 2 2, 

which  can  be  rewritten  using the left inequality as 

b < 2 - log,(p(s)). 

After  many  symbols are coded, p(s) becomes  very small, 
and the code-string  length required to express the fraction 
approaches the ideal  value  of - log&). 

An example of  Elias coding  is  shown in Figure 3 for the 
binary  decision sequence, M L L M, where M is the more 
probable symbol (MPS) and L is the less  probable  symbol 
(LPS). The interval subdivision in Figure 3 is a 
generalization of that in Figures  2(a) and (b). The interval 
subdivision  process  is  defined in terms of a recursion that 
selects one subinterval as the new current interval. The 
recursive splitting of the current interval continues until all 
decisions  have  been coded. By convention, as in Figure 1, 
the code  string in Figure 3 is  defined to point at the base of 
the current interval. The symbol-ordering convention is 
adopted from [7], where the MPS probability estimate, P,, is 
ordered above the LPS probability estimate, Qe, in the 
current interval. The translation of the 0 and 1 symbols into 
MPS and LPS symbols and  the subsequent ordering of the 
MPS and LPS subintervals is important for optimal 
arithmetic coding implementations [8]. 

After  each symbol is coded, the probability interval 
remaining for future coding operations is the subinterval of 
the symbol just coded. If the more probable symbol M is 
coded, the interval allocated to the less probable symbol L 
must be added to the code-string value so that it points to 
the base  of the new interval. 

Arithmetic coders such as the Q-Coder  avoid the 
increasing-precision  problem of Elias coding by  using a 
fixed-precision arithmetic. Implementation in fixed-precision 
arithmetic requires that a choice  be made for the fixed- 
precision representation of the interval. Then, a 
renormalization rule must be  devised  which maintains the 
interval size within the bounds allowed by the fixed-precision 
representation. Both the code string and the interval size 
must be renormalized identically, or the identification of the 
code string as a pointer to the current interval will  be lost. 
Efficiency  of hardware and software implementations 
suggests that renormalization be done using a shift-left- 
logical operation. 

as the encoder, and performs the same subdivision into 
subintervals. The decoder simply determines, for  each 
decision, the subinterval to which the code string points. For 
finite-precision implementations following the coding 
conventions above,  however, the decoder must subtract any 

The  Elias decoder maintains the same current-interval size 

Symbol: M L L M 

0.0 “I/ \ 
Code string 

interval added by the encoder, after decoding a given 
symbol. The code-string remainder will  be smaller than  the 
corresponding current-interval measure, since it is a pointer 
to a particular subinterval within that interval. 
Renormalization then keeps the precision of the arithmetic 
operations within the required bounds. Decoder 
renormalization must be the same as in the encoder. 

Another problem to be resolved  for implementation in 
fixed-precision arithmetic is a carry propagation problem. It 
is  possible to generate a code string with a consecutive 
sequence of 1-bits of arbitrary length. If a bit is added to the 
least  significant bit of this sequence, a carry will propagate 
until a 0-bit  is encountered. Langdon and Rissanen [8] 
resolved this problem by “bit stuffing.”  If a sequence of 1- 
bits of a predefined maximum length is detected, an extra 0- 
bit  is  stuffed into the code string. The stuffed  0-bit acts as a 
carry trap for any carry from future coding operations. The 
decoder, after detecting this same sequence,  removes the 
stuffed  bit, adding any carry contained in it to the code- 
string remainder. The Q-Coder follows this general  scheme, 
but with the additional constraints that  the string of 1-bits  is 
eight  bits in length and is  byte-aligned. 

One final practical problem needs to be  resolved. In 
general, arithmetic coding requires a multiply operation to 
scale the interval after each coding operation. Generally, 
multiplication is a costly operation in both hardware and 
software implementations. An early implementation of 
adaptive binary arithmetic coding avoided multiplication [8]. 
However, the Skew Coder [7] uses an even simpler 
approximation to avoid the multiply; the same 
approximation is  used in the Q-Coder.  If renormalizations 
are used to keep the current interval, A, of order unity, i.e., 
in the range 1.5 > A z 0.75, the multiplications required to 
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3. Q-Coder  hardware  and  software  coding 
conventions 
The description of the arithmetic coder and decoder in  the 
preceding  section is  precisely that of a hardware-optimized 
implementation of the arithmetic coder in the Q-Coder. It 
uses the same hardware optimizations developed for the 
earlier Skew Coder [7]. A sketch of the unrenormalized 
code-string development is  shown in Figure 5(a), and a 
sketch of the corresponding decoding  sequence  is found in 
Figure 5(b). Note that the coding (and decoding)  process 
requires that both the current code string and the current 
interval be adjusted on the more probable symbol path. On 
the less probable symbol path only the current interval must 
be  changed. 

The extra operations for the MPS path do not affect 
hardware  speed, in that the reduction in the interval size and 
the addition to (or subtraction from) the code string can be 
done in parallel. The illustration of the hardware decoder 
implementation in Figure 6(a) shows this parallelism. 
However, this organization is not as good for software. 
Having more operations on the more probable path, as seen 
in the decoder flowchart of Figure 7(a), can be  avoided. 
Software  speed can be enhanced by  exchanging the location 
of subintervals representing the MPS and LPS. As illustrated 
in Figure 7(b), the instructions on the more probable path 
are reduced to a minimum and, instead, more instructions 
are needed on the less probable path. Note that this 
organization gives  slower hardware, in that two  serial 
arithmetic operations must be done on the LPS path [see 
Figure 6(b)]. To decode,  first the new MPS subinterval size is 
calculated, then the result is compared to the code string. 

If the choices were limited to the two organizations 
sketched in Figures 6 and 7, there would  be a fundamental 
conflict  between optimal hardware and software 
implementations. However, there are two  ways to resolve 
this conflict [9 ] .  First, it is  possible to invert the code string 
created for one symbol-ordering convention, and achieve a 
code string identical to that created with the opposite 
convention. A second (and simpler) technique uses the same 
symbol-ordering convention for both hardware and software, 
but assigns  different  code-string pointer conventions for 
hardware and software implementations. The code-string 
convention shown in Figure  5(a), in which the code string is 
pointed at the bottom of the interval, is  used for hardware 
implementations. However, a different code-string 
convention, illustrated in Figure 8(a), is  used for software. In 
this software  code-string convention the code string is 
pointed at the top of the interval. When the software  code- 
string convention is  followed, coding an MPS does not 
change the code string, while coding an LPS does.  Figure 
8(a) also  shows the relationship between hardware and 
software code strings. Note that the gap  between the two 
code  strings is simply the current interval. 
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* J. J. Rissanen, IBM Almaden Research Center, San Jose, CA, private 
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START 

A " A  - Q 

A 5  C ?  

TEST(A): e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ?  
A " A  - Q 

RENORMALIZE TEST(A): RENORMALIZE? RENORMALIZE 

: Inner-loop  trade-offs: (a) Hardware-optimized MPS and LPS subinterval  ordering.  (b)  Software-optimized MPS and LPS subinterval  ordering. 
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Software  code  string 
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Symbol: M M L M  

(a) 

The addition operation required when  generating a code creates a problem  with  borrow propagation. Borrow 
string following the hardware convention creates a problem propagation could be blocked by  stuffing a 1-bit  following a 
with carry propagation, Conversely, the subtraction string of 0-bits, but the code strings  generated  using the two 

722 operation required when  following the software convention conventions would then be incompatible. 
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Compatibility (and, in fact, identity) of the hardware and 
software  code strings can be achieved as follows [9]: In both 
cases the code string is partitioned into two parts, a code 
buffer which contains the high-order  bytes of the code string, 
and a code register which contains the low-order  bits of the 
code  string. The hardware convention for bit stuffing 
requires that if R, the byte  most  recently transferred from 
the code register to the code  buffer, cannot allow the 
addition of a carry  bit (i.e,, X’FF’), the leading bit of the 
next  byte must become a stuffed 0-bit. 

In software the problem  is  borrow propagation. The 
convention is adopted that, by definition, if a borrow  is 
needed  from the byte  most  recently transferred from the 
code  register, it can be taken. The only  byte  value  which 
cannot supply a borrow  is 0. Consider the case  where a 0- 
byte is to be transferred from the code  register to the code 
buffer.  Note that the difference  between  software and 
hardware code  strings is the value in the probability interval 
register, and this interval value  (by definition) must be 
smaller than the least  significant bit of the byte  being 
transferred. Therefore, for the special  case  where the byte 
about to be transferred is 0, only  two  possibilities  exist  for 
the software code string relative to the hardware code  string: 

& software  code 

code  buffer  code  register 

. . . . , R  , 

or 

code  buffer 

string 

00, ’ ‘ ’ ’ hardware  code 
string 

code  reaister 

OO,..” software  code 
string 

(b) 
. . . .  , R  , IFF :... hardware  code 

string 

These two  cases  can  be  differentiated  by comparing the code 
register  with the interval register.  If the code  register  is  less 
than the interval register,  case (b) has occurred; otherwise, 
case (a) has occurred. If  case (b), a borrow  is taken from the 
X’OO’ byte (converting it to X’FF‘) and propagated to 
R + 1 (reducing it to R). For both hardware and software 
code  strings, the X’FF’ byte  triggers bit stuffing.  However, 
in hardware a 0-bit  is  stuffed,  while in software a 1-bit is 
stuffed.  As coding  proceeds, either a borrow will  be 
subtracted from the software  stuff  bit or a carry will  be 
added to the hardware stuff  bit. The code strings then 
become identical. 

To work  with  fixed  precision, the decoder must “undo” 
the actions of the encoder. The hardware decoder therefore 
subtracts any LPS interval the encoder added. Similarly, 
since for the LPS operation the software encoder subtracts 
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the MPS interval when  coding, the software decoder must 
add this interval. If the software decoder initial conditions 
simply emulated the hardware decoder, the software  code 
remainder would approach A(0)  instead of 0. Since A(0)  gets 
very  large  relative to the current interval as coding proceeds, 
a problem  with arithmetic precision  would quickly occur. 
Instead, the software decoder remainder is initialized to 
-A(O) at the start of coding.  Adding the MPS interval then 
moves the remainder toward 0. The decoder comparison is 
done with a negative remainder and a negative interval, as 
sketched in Figure 8(b). However,  since both remainder and 
interval approach zero (and are periodically renormalized), 
there is no problem with  precision. Note that the gap 
between the remainders of the hardware and software 
decoders  is the current interval. 

4. Probability  estimation 
Adaptive arithmetic coding requires that the probability be 
re-estimated  periodically. This very important concept- 
dynamic probability estimation-was  developed in earlier 
arithmetic coding implementations [7, 8, 10-121. The 
current technique, when applied to mixed-context coding, 
generally  falls in the class  of  so-called approximate counting 
methods [lo, 12, 131. 

The probability-estimation technique used in the Q-Coder 
differs  from the earlier techniques in  that the estimates are 
revised  only during the interval renormalization required in 
the arithmetic coder [ 141. Estimation only at 
renormalizations is  very important for  efficient  software 
implementations. The inner loop of the coder is then 
minimized. Since  each renormalization produces at least one 
compressed-data bit, the instruction cycles expended on the 
estimation process are related to the compressed-data  code- 
string length. 

By definition, both encoder and decoder renormalize in 
precisely the same way. Furthermore, renormalization 
occurs following both the MPS (occasionally) and the LPS 
(always). The estimation process  is implemented as a finite- 
state machine of 60 states.  Half of the states are for an MPS 
of 1, and the other half are for an MPS of 0. Each state k of 
the machine has a less probable symbol probability estimate, 
Q,(k), associated  with it. After the LPS renormalization, the 
estimate is increased; after the MPS renormalization, the 
estimate is decreased. 

Table 1 gives the set of allowed values for  the LPS 
probability estimate.  This particular set of values is the re- 
sult of a lengthy optimization procedure involving both the- 
oretical modeling [ 141 and coding of acutal data generated 
by binary and continuous-tone image-compression  model^.^ 
The values are given as hexadecimal  integers,  where a scaling 
is  used  such that the decimal fraction 0.75  is equivalent to 

’ G. Langdon  was  the  first to show  that  the estimation  process  in [ 141 could be used 
with  such  a  sparse  finite-state  machine.  He  initiated  the  effort to simplify  this 
algorithm,  and  contributed  significantly  to  the  set of values  in  Table I .  
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Table 1 Q-Coder LPS probability  estimate  values  and 
associated LPS renormalization  index  changes. 

.Qe Qe dk Q, Q, dk 
(hex) (decimal) (hex) (decimal) 

X’OAC1’ 0.50409 1 X’0181’ 0.07050  2 
X’OA81’ 0.49237 1 X’0121’ 0.05292  2 
X’OAOl’ 0.46893 1 X’OOE1’ 0.04120  2 
X’0901’ 0.42206 1 X’OOA1’ 0.02948  2 
X’0701’ 0.32831 1 X’0071’ 0.02069  2 
X’0681’ 0.30487 1 X’0059’ 0.01630  2 
X’0601’ 0.28143 1 X’0053’ 0.01520  2 
X’0501’ 0.23456 2  X’0027’ 0.00714  2 
X’0481’ 0.21112 2  X’0017’ 0.00421  2 
X’0441’ 0.19940 2  X’0013’ 0.00348  3 
X’0381’ 0.16425 2 X’OOOB’ 0.00201  2 
X’0301’ 0.14081 2  X’0007’ 0.00128 3 
X’02C1’ 0.12909 2  X’0005’ 0.00092  2 
X’0281’ 0.11737 2  X’0003’ 0.00055 3 
X’0241’ 0.10565 2 X’OOO1’ 0.00018  2 

hexadecimal 1000. This particular scaling  provides  ease of 
hardware implementation and leads to a convenient range 
for the interval register A of hexadecimal 1000 to I FFF 
(corresponding to the decimal range of  0.75 5 A < IS). For 
simplicity, a convention was adopted that MPS 
renormalization always  shifts the LPS estimate to the next 
smaller  value; the column labeled dk, which gives the change 
in table position (to larger Q,) following LPS 
renormalization, was then derived as part of the 
optimization procedure. 

Each state in the finite-state-machine estimation process 
must  have a unique index. A five-bit  index  which  selects one 
of 30 Q, values from Table 1, together  with one bit which 
defines the sense  of the MPS, completely  describes the 
current state of the estimator. This six-bit  index  is  all that is 
required in a hardware implementation. 

One particularly efficient  software implementation of this 
finite-state machine uses  two  tables, one for the MPS 
renormalization and one for the LPS renormalization. Each 
table entry is four bytes,  where the first  two  bytes are the 
new estimate Q, and the next  two  bytes are the index to be 
used at the next renormalization. The estimation process  is, 
therefore, nothing more than an indexed lookup of a four- 
byte quantity from one of  two  tables. 

operation of this estimation process can be  gained from the 
following a rg~men t .~  Unlike the earlier estimation 
techniques, which require some estimation mechanism 
external to the arithmetic coder, the Q-Coder’s approximate 
symbol counting is imbedded in  the arithmetic coding 
process  itself. The counter for the MPS is the interval register 
A.  The LPS counter is a one-bit counter which  is  set by the 
LPS renormalization. 

An approximate understanding of the principles of 

MPS and LPS definitions when  the  estimate  would exceed 0.5 are  ignored;  the 
‘ In developing  this explanation, the complications introduced by the  exchange of 

truncation of the finite-state machine at the minimum LPS value is also ignored. 724 
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The interval register  is decremented by the current LPS 
probability estimate Qe following  each MPS. After Nm, 
symbols, the MPS renormalization occurs, giving 

If,,,, = d/Q,, 
where dA is the change in the interval register  between 
renormalizations. Define the finite-state-machine 
organization such that increasing state index, k, corresponds 
to decreasing Q,. The finite-state machine is  also  restricted 
such that on the MPS renormalization path only a unit 
change in k is  allowed. On the LPS path, however, the 
change in index, dk, can be 1,2, or 3. For balance of the 
estimator, dk MPS renormalizations must occur for each 
LPS renormalization. Thus, for one LPS event, the number 
of MPSs must be 

Nm, = [A  - 0.75 + 0.75(dk - l)]/Qe, 

where A is the starting interval after the LPS 
renormalization. We assume Q, does not change very much 
from one state to the next if dk > 1. The estimator will  be 
balanced  when the true probability q is approximately equal 
to the estimate 

4 = MNm, + 1) = Q,. 
Thus, near q = 0.5, dk = 1 for a good balance (A  is  of the 
order of 1.125 on the average). For q << 0.5, dk = 2 for a 
good  balance. The values  for dk in Table 1 show this 
qualitative behavior. At  very small  values of Q,, dk = 3 for 
some entries, but this is a result of optimization in real 
compression experiments, where the increased estimation 
rate for dk = 3 becomes important. 

machine corresponding to Table 1. The solid curve is the 
result of an exact  modeling of this state machine [9]; the 
data points are from a Monte Carlo simulation using a real 
coder and pseudorandom data sets. The coding inefficiency 
is of the order of 5-6%, the inefficiency  being dominated by 
the granularity of the set of  allowed probability estimates 
(only 30), rather than by any inaccuracy in the estimation 
process. This granularity represents the best compromise we 
could  find  between  good coding of statistically stable systems 
and rapid estimation of dynamically  varying  systems. 

In  most  data-compression  systems, conditioning states or 
contexts are used  with independent probability estimates for 
each context. In the Q-Coder, a different  six-bit index (or, in 
software, a four-byte storage unit) is kept for each context. 
However, the renormalization of the interval register  is  used 
to generate individual estimates for all  of  these separate 
contexts. The approximate analysis above ignores the effects 
of these independent contexts on the estimation process.  An 
approximate model and experimental data for the influence 
of multiple contexts are given in [ 141. 

Figure 9 shows the coding inefficiency for the finite-state 

5. Some  experimental  results 
Table 2 lists some experimental results  for the Q-Coder for 
two important classes  of  image  models. The results for gray- 
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scale compression show that the Q-Coder provides good 
compression, slightly improving upon  the performance 
achieved  with a version of arithmetic coding which  used a 
full multiplication in both arithmetic coding and probability 
estimation [ 151. 

The results  for  facsimile image compression using a 7-pel- 
neighborhood model [8] and  the Q-Coder are also 
summarized. This algorithm for adaptive bilevel image 
compression (ABIC) has been successfully implemented in a 
high-speed VLSI chip [ 161, using the hardware-optimized 
form of the Q-Coder. Here, the results are much better than 
can be achieved  with the CCITT G-4 facsimile algorithm, 
and are even better than the stationary entropy for the 
model. Compressing to better than  the stationary entropy is 
a direct result  of the adaptive dynamic probability 
estimation. The compression achieved with the Skew Coder 
is almost identical to that listed  here for the facsimile 
documents PTT 1 -PTT8. However, the 
Q-Coder fares better on the gray-scale  images and also on 
the statistically unstable binary halftone images. 

6. Summary 
A brief  overview  of the Q-Coder has been presented. The 
same material is  covered in much greater depth in the 
companion papers of this issue  of the ZBM Journal of 
Research and Development [9, 14, 16, 171 and in previous 
tutorials [ 1,  181. This paper is intended to provide a broad 
overview of the concepts involved. In addition to  the tutorial 
and the description of the parts of the Q-Coder derived from 
earlier arithmetic coders such as the Skew Coder, two main 
points have been  summarized-the compatible coding 
conventions for hardware and software implementations, 
and  the probability-estimation technique. 
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