
An overview
of the basic

by W. B. Pennebaker
J. L. Mitchell
G. G. Langdon, Jr
R. B. Arps

prlnclples
of the Q-Coder
adaptive binary
arithmetic coder

The Q-Coder is a new form of adaptive binary
arithmetic coding. The binary arithmetic coding
part of the technique is derived from the basic
concepts introduced by Rissanen, Pasco, and
Langdon, but extends the coding conventions to
resolve a conflict between optimal software and
hardware implementations. In addition, a robust
form of probability estimation is used in which
the probability estimate is derived solely from
the interval renormalizations that are part of the
arithmetic coding process. A brief tutorial of
arithmetic coding concepts is presented,
followed by a discussion of the compatible
optimal hardware and software coding
structures and the estimation of symbol
probabilities from interval renormalization.

1. Introduction
The Q-Coder is an adaptive binary arithmetic coding system
which allows different, but compatible, coding conventions
to be used in optimal hardware and optimal software

"Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

implementations. It also incorporates a new probability-
estimation technique which provides an extremely simple yet
robust mechanism for adaptive estimation of probabilities
during the coding process.

This paper presents an overview of the principles of the
Q-Coder. A brief discussion of the basic principles of
arithmetic coding is presented in Section 2. A discussion of
the coding conventions which lead to optimal, compatible
hardware and software implementations of arithmetic coding
follows in Section 3. In addition, Section 3 introduces some
aspects of implementation using fixed-precision arithmetic.
Section 4 covers the estimation of probabilities by a new
technique which uses only the interval renormalization that
is a necessary part of the finite-precision arithmetic coding
process. Dynamic probability estimation makes the Q-Coder
an adaptive binary arithmetic coder. Section 5 gives some
experimental results.

2. Basic principles of binary arithmetic coding'
Traditionally, Huffman coding [2] is used to code a sequence
of symbols which describes the information being
compressed. As an example, Figure 1 shows a possible
Huffman tree for a set of four symbols-w, x, y, and z-
with respective probabilities 0.125,O. 125, 0.25, and 0.5. The
vertical axis of Figure 1 represents the number line from 0 to
1, which is the probability interval occupied by the four
symbols. Each of the four symbols is assigned a subinterval
' A much more extensive tutorial on arithmetic coding is found in [11.

IBM 1. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988 W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. ARF'S

Symbol Probability Code fraction
Binary

z 0.5 1 0.1 T
Y 0.25 01

0.01
x 0.125 001 0.001
w 0.125 000 0.000 0

0

of size proportional to the probability estimate of that
symbol. If each subinterval is identified by its least or base
value, the four symbols are identified respectively by the
binary numbers 0.000,O.OO 1, 0.01, and 0.1. Note that the
subinterval size (or probability estimate) determines the
length of the code word. Ideally this length for some symbol
a is given by log,p,(a), where p,(a) is the probability estimate
for symbol a. For the example in Figure 1, the probabilities
have been chosen such that the code lengths are ideal.

Z

WO" Y mO'ol I

0.001

0.000

The tree in Figure 1 is constructed in a particular way to
illustrate a concept which is fundamental to arithmetic
coding: The code words, if regarded as binary fractions, are
pointers to the particular interval being coded. In Figure 1
the code words point to the base of each interval. The
general concept that a code string can be a binary fraction
pointing to the subinterval for a particular symbol sequence
is due to Shannon [3] and was applied to successive
subdivision of the interval by Elias [4]. The idea of
arithmetic coding, derived by Rissanen [5] from the theory
of enumerative coding, was approached by Pasco [6] as the
solution to a finite-precision constraint on the interval
subdivision methods of Shannon and Elias.

Any decision selecting one symbol from a set of two or
more symbols can be decomposed into a sequence of binary
decisions. For example, Figure 2 shows two possible
decompositions of the four-symbol choice of Figure 1. From
a coding-efficiency point of view there is no difference
between the two alternatives, in that the interval size and
position on the number line are the same for both. However,
from the point of view of computational efficiency,
decomposition (a) is better. Fewer computations are required
to code the most probable symbol. Thus, although the
Huffman coding tree is not required to achieve efficient
compression, it remains useful as an approximate guide for
minimizing the computational burden.

In general, as coding of each additional binary decision
occurs, the precision of the code string must be sufficient to

r z
i
f O"
0 Y
I
- 0.01

0.001
W

0.000

(b)

W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. ARPS IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

provide two distinguishable points within the subinterval
p (s) allocated to the sequence of symbols, s, which actually
occurred. The number of bits, b, required to express the code
string is then given by [3]

4 > 2bp(s) 2 2,

which can be rewritten using the left inequality as

b < 2 - log,(p(s)).

After many symbols are coded, p(s) becomes very small,
and the code-string length required to express the fraction
approaches the ideal value of - log&).

An example of Elias coding is shown in Figure 3 for the
binary decision sequence, M L L M, where M is the more
probable symbol (MPS) and L is the less probable symbol
(LPS). The interval subdivision in Figure 3 is a
generalization of that in Figures 2(a) and (b). The interval
subdivision process is defined in terms of a recursion that
selects one subinterval as the new current interval. The
recursive splitting of the current interval continues until all
decisions have been coded. By convention, as in Figure 1,
the code string in Figure 3 is defined to point at the base of
the current interval. The symbol-ordering convention is
adopted from [7], where the MPS probability estimate, P,, is
ordered above the LPS probability estimate, Qe, in the
current interval. The translation of the 0 and 1 symbols into
MPS and LPS symbols and the subsequent ordering of the
MPS and LPS subintervals is important for optimal
arithmetic coding implementations [8].

After each symbol is coded, the probability interval
remaining for future coding operations is the subinterval of
the symbol just coded. If the more probable symbol M is
coded, the interval allocated to the less probable symbol L
must be added to the code-string value so that it points to
the base of the new interval.

Arithmetic coders such as the Q-Coder avoid the
increasing-precision problem of Elias coding by using a
fixed-precision arithmetic. Implementation in fixed-precision
arithmetic requires that a choice be made for the fixed-
precision representation of the interval. Then, a
renormalization rule must be devised which maintains the
interval size within the bounds allowed by the fixed-precision
representation. Both the code string and the interval size
must be renormalized identically, or the identification of the
code string as a pointer to the current interval will be lost.
Efficiency of hardware and software implementations
suggests that renormalization be done using a shift-left-
logical operation.

as the encoder, and performs the same subdivision into
subintervals. The decoder simply determines, for each
decision, the subinterval to which the code string points. For
finite-precision implementations following the coding
conventions above, however, the decoder must subtract any

The Elias decoder maintains the same current-interval size

Symbol: M L L M

0.0 “I/ \
Code string

interval added by the encoder, after decoding a given
symbol. The code-string remainder will be smaller than the
corresponding current-interval measure, since it is a pointer
to a particular subinterval within that interval.
Renormalization then keeps the precision of the arithmetic
operations within the required bounds. Decoder
renormalization must be the same as in the encoder.

Another problem to be resolved for implementation in
fixed-precision arithmetic is a carry propagation problem. It
is possible to generate a code string with a consecutive
sequence of 1-bits of arbitrary length. If a bit is added to the
least significant bit of this sequence, a carry will propagate
until a 0-bit is encountered. Langdon and Rissanen [8]
resolved this problem by “bit stuffing.” If a sequence of 1-
bits of a predefined maximum length is detected, an extra 0-
bit is stuffed into the code string. The stuffed 0-bit acts as a
carry trap for any carry from future coding operations. The
decoder, after detecting this same sequence, removes the
stuffed bit, adding any carry contained in it to the code-
string remainder. The Q-Coder follows this general scheme,
but with the additional constraints that the string of 1-bits is
eight bits in length and is byte-aligned.

One final practical problem needs to be resolved. In
general, arithmetic coding requires a multiply operation to
scale the interval after each coding operation. Generally,
multiplication is a costly operation in both hardware and
software implementations. An early implementation of
adaptive binary arithmetic coding avoided multiplication [8].
However, the Skew Coder [7] uses an even simpler
approximation to avoid the multiply; the same
approximation is used in the Q-Coder. If renormalizations
are used to keep the current interval, A, of order unity, i.e.,
in the range 1.5 > A z 0.75, the multiplications required to

W. B. PENNEBAKER, I. L. MITCHELL, G. G. I .ANGlWN, IR., AND R. B. A

719

,RPS

3. Q-Coder hardware and software coding
conventions
The description of the arithmetic coder and decoder in the
preceding section is precisely that of a hardware-optimized
implementation of the arithmetic coder in the Q-Coder. It
uses the same hardware optimizations developed for the
earlier Skew Coder [7]. A sketch of the unrenormalized
code-string development is shown in Figure 5(a), and a
sketch of the corresponding decoding sequence is found in
Figure 5(b). Note that the coding (and decoding) process
requires that both the current code string and the current
interval be adjusted on the more probable symbol path. On
the less probable symbol path only the current interval must
be changed.

The extra operations for the MPS path do not affect
hardware speed, in that the reduction in the interval size and
the addition to (or subtraction from) the code string can be
done in parallel. The illustration of the hardware decoder
implementation in Figure 6(a) shows this parallelism.
However, this organization is not as good for software.
Having more operations on the more probable path, as seen
in the decoder flowchart of Figure 7(a), can be avoided.
Software speed can be enhanced by exchanging the location
of subintervals representing the MPS and LPS. As illustrated
in Figure 7(b), the instructions on the more probable path
are reduced to a minimum and, instead, more instructions
are needed on the less probable path. Note that this
organization gives slower hardware, in that two serial
arithmetic operations must be done on the LPS path [see
Figure 6(b)]. To decode, first the new MPS subinterval size is
calculated, then the result is compared to the code string.

If the choices were limited to the two organizations
sketched in Figures 6 and 7, there would be a fundamental
conflict between optimal hardware and software
implementations. However, there are two ways to resolve
this conflict [9] . First, it is possible to invert the code string
created for one symbol-ordering convention, and achieve a
code string identical to that created with the opposite
convention. A second (and simpler) technique uses the same
symbol-ordering convention for both hardware and software,
but assigns different code-string pointer conventions for
hardware and software implementations. The code-string
convention shown in Figure 5(a), in which the code string is
pointed at the bottom of the interval, is used for hardware
implementations. However, a different code-string
convention, illustrated in Figure 8(a), is used for software. In
this software code-string convention the code string is
pointed at the top of the interval. When the software code-
string convention is followed, coding an MPS does not
change the code string, while coding an LPS does. Figure
8(a) also shows the relationship between hardware and
software code strings. Note that the gap between the two
code strings is simply the current interval.

0.10

0.08

s
5
8

.$ 0.06

.-

$ 0.04
V

M

0.02

0.00

- 12-bit quantizationonly

----- 5-bit granularity added

* J. J. Rissanen, IBM Almaden Research Center, San Jose, CA, private
communication.

W. 8. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. ARPS IBM J. RES. DEVELOP. VOL. 32 NO, 6 NOVEMBER 1988

Q, index

9 E-:
Underflow

MUX

CODEIN ,! I I (MPS) DATA OUT
1/" c

Q, index

13

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988 W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGWN, JR., AND R. B. A R E

ii START

START

A " A - Q

A 5 C ?

TEST(A): e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ?
A " A - Q

RENORMALIZE TEST(A): RENORMALIZE? RENORMALIZE

: Inner-loop trade-offs: (a) Hardware-optimized MPS and LPS subinterval ordering. (b) Software-optimized MPS and LPS subinterval ordering.

N O)

Software code string

""_
QC

+

Hardware code string

v

Symbol: M M L M

(a)

The addition operation required when generating a code creates a problem with borrow propagation. Borrow
string following the hardware convention creates a problem propagation could be blocked by stuffing a 1-bit following a
with carry propagation, Conversely, the subtraction string of 0-bits, but the code strings generated using the two

722 operation required when following the software convention conventions would then be incompatible.

W. B. PENNEBAKER, 1. L. MITCHELL, G. G. LANGDON, JR., AND R. B. ARPS IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

Compatibility (and, in fact, identity) of the hardware and
software code strings can be achieved as follows [9]: In both
cases the code string is partitioned into two parts, a code
buffer which contains the high-order bytes of the code string,
and a code register which contains the low-order bits of the
code string. The hardware convention for bit stuffing
requires that if R, the byte most recently transferred from
the code register to the code buffer, cannot allow the
addition of a carry bit (i.e,, X’FF’), the leading bit of the
next byte must become a stuffed 0-bit.

In software the problem is borrow propagation. The
convention is adopted that, by definition, if a borrow is
needed from the byte most recently transferred from the
code register, it can be taken. The only byte value which
cannot supply a borrow is 0. Consider the case where a 0-
byte is to be transferred from the code register to the code
buffer. Note that the difference between software and
hardware code strings is the value in the probability interval
register, and this interval value (by definition) must be
smaller than the least significant bit of the byte being
transferred. Therefore, for the special case where the byte
about to be transferred is 0, only two possibilities exist for
the software code string relative to the hardware code string:

& software code

code buffer code register

. . . . , R ,

or

code buffer

string

00, ’ ‘ ’ ’ hardware code
string

code reaister

OO,..” software code
string

(b)
. . . . , R , IFF :... hardware code

string

These two cases can be differentiated by comparing the code
register with the interval register. If the code register is less
than the interval register, case (b) has occurred; otherwise,
case (a) has occurred. If case (b), a borrow is taken from the
X’OO’ byte (converting it to X’FF‘) and propagated to
R + 1 (reducing it to R). For both hardware and software
code strings, the X’FF’ byte triggers bit stuffing. However,
in hardware a 0-bit is stuffed, while in software a 1-bit is
stuffed. As coding proceeds, either a borrow will be
subtracted from the software stuff bit or a carry will be
added to the hardware stuff bit. The code strings then
become identical.

To work with fixed precision, the decoder must “undo”
the actions of the encoder. The hardware decoder therefore
subtracts any LPS interval the encoder added. Similarly,
since for the LPS operation the software encoder subtracts

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

the MPS interval when coding, the software decoder must
add this interval. If the software decoder initial conditions
simply emulated the hardware decoder, the software code
remainder would approach A(0) instead of 0. Since A(0) gets
very large relative to the current interval as coding proceeds,
a problem with arithmetic precision would quickly occur.
Instead, the software decoder remainder is initialized to
-A(O) at the start of coding. Adding the MPS interval then
moves the remainder toward 0. The decoder comparison is
done with a negative remainder and a negative interval, as
sketched in Figure 8(b). However, since both remainder and
interval approach zero (and are periodically renormalized),
there is no problem with precision. Note that the gap
between the remainders of the hardware and software
decoders is the current interval.

4. Probability estimation
Adaptive arithmetic coding requires that the probability be
re-estimated periodically. This very important concept-
dynamic probability estimation-was developed in earlier
arithmetic coding implementations [7, 8, 10-121. The
current technique, when applied to mixed-context coding,
generally falls in the class of so-called approximate counting
methods [lo, 12, 131.

The probability-estimation technique used in the Q-Coder
differs from the earlier techniques in that the estimates are
revised only during the interval renormalization required in
the arithmetic coder [141. Estimation only at
renormalizations is very important for efficient software
implementations. The inner loop of the coder is then
minimized. Since each renormalization produces at least one
compressed-data bit, the instruction cycles expended on the
estimation process are related to the compressed-data code-
string length.

By definition, both encoder and decoder renormalize in
precisely the same way. Furthermore, renormalization
occurs following both the MPS (occasionally) and the LPS
(always). The estimation process is implemented as a finite-
state machine of 60 states. Half of the states are for an MPS
of 1, and the other half are for an MPS of 0. Each state k of
the machine has a less probable symbol probability estimate,
Q,(k), associated with it. After the LPS renormalization, the
estimate is increased; after the MPS renormalization, the
estimate is decreased.

Table 1 gives the set of allowed values for the LPS
probability estimate. This particular set of values is the re-
sult of a lengthy optimization procedure involving both the-
oretical modeling [141 and coding of acutal data generated
by binary and continuous-tone image-compression model^.^
The values are given as hexadecimal integers, where a scaling
is used such that the decimal fraction 0.75 is equivalent to

’ G. Langdon was the first to show that the estimation process in [141 could be used
with such a sparse finite-state machine. He initiated the effort to simplify this
algorithm, and contributed significantly to the set of values in Table I .

W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGWN, JR., AND R. B. ARPS

Table 1 Q-Coder LPS probability estimate values and
associated LPS renormalization index changes.

.Qe Qe dk Q, Q, dk
(hex) (decimal) (hex) (decimal)

X’OAC1’ 0.50409 1 X’0181’ 0.07050 2
X’OA81’ 0.49237 1 X’0121’ 0.05292 2
X’OAOl’ 0.46893 1 X’OOE1’ 0.04120 2
X’0901’ 0.42206 1 X’OOA1’ 0.02948 2
X’0701’ 0.32831 1 X’0071’ 0.02069 2
X’0681’ 0.30487 1 X’0059’ 0.01630 2
X’0601’ 0.28143 1 X’0053’ 0.01520 2
X’0501’ 0.23456 2 X’0027’ 0.00714 2
X’0481’ 0.21112 2 X’0017’ 0.00421 2
X’0441’ 0.19940 2 X’0013’ 0.00348 3
X’0381’ 0.16425 2 X’OOOB’ 0.00201 2
X’0301’ 0.14081 2 X’0007’ 0.00128 3
X’02C1’ 0.12909 2 X’0005’ 0.00092 2
X’0281’ 0.11737 2 X’0003’ 0.00055 3
X’0241’ 0.10565 2 X’OOO1’ 0.00018 2

hexadecimal 1000. This particular scaling provides ease of
hardware implementation and leads to a convenient range
for the interval register A of hexadecimal 1000 to I FFF
(corresponding to the decimal range of 0.75 5 A < IS). For
simplicity, a convention was adopted that MPS
renormalization always shifts the LPS estimate to the next
smaller value; the column labeled dk, which gives the change
in table position (to larger Q,) following LPS
renormalization, was then derived as part of the
optimization procedure.

Each state in the finite-state-machine estimation process
must have a unique index. A five-bit index which selects one
of 30 Q, values from Table 1, together with one bit which
defines the sense of the MPS, completely describes the
current state of the estimator. This six-bit index is all that is
required in a hardware implementation.

One particularly efficient software implementation of this
finite-state machine uses two tables, one for the MPS
renormalization and one for the LPS renormalization. Each
table entry is four bytes, where the first two bytes are the
new estimate Q, and the next two bytes are the index to be
used at the next renormalization. The estimation process is,
therefore, nothing more than an indexed lookup of a four-
byte quantity from one of two tables.

operation of this estimation process can be gained from the
following a rg~men t .~ Unlike the earlier estimation
techniques, which require some estimation mechanism
external to the arithmetic coder, the Q-Coder’s approximate
symbol counting is imbedded in the arithmetic coding
process itself. The counter for the MPS is the interval register
A. The LPS counter is a one-bit counter which is set by the
LPS renormalization.

An approximate understanding of the principles of

MPS and LPS definitions when the estimate would exceed 0.5 are ignored; the
‘ In developing this explanation, the complications introduced by the exchange of

truncation of the finite-state machine at the minimum LPS value is also ignored. 724

w. B. PENNEBAKER, I. L. MITCHELL, G. G. LANGDON, JR., AND R. B. A R B

The interval register is decremented by the current LPS
probability estimate Qe following each MPS. After Nm,
symbols, the MPS renormalization occurs, giving

If,,,, = d/Q,,
where dA is the change in the interval register between
renormalizations. Define the finite-state-machine
organization such that increasing state index, k, corresponds
to decreasing Q,. The finite-state machine is also restricted
such that on the MPS renormalization path only a unit
change in k is allowed. On the LPS path, however, the
change in index, dk, can be 1,2, or 3. For balance of the
estimator, dk MPS renormalizations must occur for each
LPS renormalization. Thus, for one LPS event, the number
of MPSs must be

Nm, = [A - 0.75 + 0.75(dk - l)]/Qe,

where A is the starting interval after the LPS
renormalization. We assume Q, does not change very much
from one state to the next if dk > 1. The estimator will be
balanced when the true probability q is approximately equal
to the estimate

4 = MNm, + 1) = Q,.
Thus, near q = 0.5, dk = 1 for a good balance (A is of the
order of 1.125 on the average). For q << 0.5, dk = 2 for a
good balance. The values for dk in Table 1 show this
qualitative behavior. At very small values of Q,, dk = 3 for
some entries, but this is a result of optimization in real
compression experiments, where the increased estimation
rate for dk = 3 becomes important.

machine corresponding to Table 1. The solid curve is the
result of an exact modeling of this state machine [9]; the
data points are from a Monte Carlo simulation using a real
coder and pseudorandom data sets. The coding inefficiency
is of the order of 5-6%, the inefficiency being dominated by
the granularity of the set of allowed probability estimates
(only 30), rather than by any inaccuracy in the estimation
process. This granularity represents the best compromise we
could find between good coding of statistically stable systems
and rapid estimation of dynamically varying systems.

In most data-compression systems, conditioning states or
contexts are used with independent probability estimates for
each context. In the Q-Coder, a different six-bit index (or, in
software, a four-byte storage unit) is kept for each context.
However, the renormalization of the interval register is used
to generate individual estimates for all of these separate
contexts. The approximate analysis above ignores the effects
of these independent contexts on the estimation process. An
approximate model and experimental data for the influence
of multiple contexts are given in [141.

Figure 9 shows the coding inefficiency for the finite-state

5. Some experimental results
Table 2 lists some experimental results for the Q-Coder for
two important classes of image models. The results for gray-

IBM I. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

scale compression show that the Q-Coder provides good
compression, slightly improving upon the performance
achieved with a version of arithmetic coding which used a
full multiplication in both arithmetic coding and probability
estimation [151.

The results for facsimile image compression using a 7-pel-
neighborhood model [8] and the Q-Coder are also
summarized. This algorithm for adaptive bilevel image
compression (ABIC) has been successfully implemented in a
high-speed VLSI chip [161, using the hardware-optimized
form of the Q-Coder. Here, the results are much better than
can be achieved with the CCITT G-4 facsimile algorithm,
and are even better than the stationary entropy for the
model. Compressing to better than the stationary entropy is
a direct result of the adaptive dynamic probability
estimation. The compression achieved with the Skew Coder
is almost identical to that listed here for the facsimile
documents PTT 1 -PTT8. However, the
Q-Coder fares better on the gray-scale images and also on
the statistically unstable binary halftone images.

6. Summary
A brief overview of the Q-Coder has been presented. The
same material is covered in much greater depth in the
companion papers of this issue of the ZBM Journal of
Research and Development [9, 14, 16, 171 and in previous
tutorials [1, 181. This paper is intended to provide a broad
overview of the concepts involved. In addition to the tutorial
and the description of the parts of the Q-Coder derived from
earlier arithmetic coders such as the Skew Coder, two main
points have been summarized-the compatible coding
conventions for hardware and software implementations,
and the probability-estimation technique.

References
1. G. G. Langdon, “An Introduction to Arithmetic Coding,” IBM

2. D. A. Huffman, “A Method for the Construction of Minimum-

3. C. E. Shannon, “A Mathematical Theory of Communication,”

4. P. Elias, in N. Abramson, Information Theory and Coding,

5. J. J. Rissanen, “Generalized Kraft Inequality and Arithmetic

J. Res. Develop. 28, 135 (1 984).

Redundancy Codes,” Proc. IRE 40, 1098 (1952).

Bell Syst. Tech. J. 27, 379 (1948).

McGraw-Hill Book Co., Inc., New York, 1963.

Coding,” IBM J. Res. Develop. 20, 198 (1976); first published as
IBM Research Report RJ-1591, June 1975.

6. R. C. Pasco, “Source Coding Algorithms for Fast Data
Compression,” Ph.D. Thesis, Department of Electrical
Engineering, Stanford University, Stanford, CA, May 1976.

7. G. G. Langdon and J. J. Rissanen, “A Simple General Binary
Source Code,” IEEE Trans. Info. Theory IT-28, 800 (1982).

8. G. G. Langdon and J. J. Rissanen, “Compression of Black-
White Images with Arithmetic Coding,” IEEE Trans. Commun.
COM-29, 858 (1981).

9. J. L. Mitchell and and W. B. Pennebaker, “Optimal Hardware
and Software Arithmetic Coding Procedures for the Q-Coder,”
IBM J. Res. Develop. 32, 727 (1988, this issue).

10. D. R. Helman, G. G. Langdon, N. Martin, and S. J. P. Todd,
“Statistics Collection for Compression Coding with

(1982).
Randomizing Feature,” IBM Tech. Disclosure Bull. 24, 49 17

IBM J. RES. DEVELOP. VOL. 32 NO, 6 NOVEMBER 1988

0.10

0.08

x
fi
.$ 0.06
E
8 .-
OD

.< 0.04
u

0.02

0.00

Table 2 Compression performance relative to alternative
techniques.

Gray-scale image compression

DPCMlQ-Coder Entropy Reference [I51
(bits) (bits) (bits)

Total, 13 images 2 120 288 2 074 047 2 138 864

Bilevel image compression
ABIC Entropy CCITT G-4
(bits) (bits) (bits)

Total, CCITT 1-8 1 747008 1 841 921 2 113 128
Total, 6 halftones 157 952 2 333 312

11. G. G. Langdon and J. J. Rissanen, “A Double-Adaptive File
Compression Algorithm,” IEEE Trans. Commun. COM-31,
1253-(1983). -

12. P. Flaiolet. “Amroximate Counting: A Detailed Analysis,” BIT
2s,1 i3 (l k i

-
13. S. J. P. Todd, G. G. Langdon, D. R. Helman, and N. Martin,

“Statistics Collection for Compression Coding with
Randomizing Feature,” Research Report RJ-6414, IBM
Almaden Research Center, San Jose, CA, August 1988.

14. W. B. Pennebaker and J. L. Mitchell, “Probability Estimation
for the Q-Coder,” IBM J. Res. Develop. 32, 737 (1988, this
issue). 725

W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. A R B

15. D. Anastassiou, J. L. Mitchell, and W. B. Pennebaker, “Gray-
Scale Image Coding for Free-Frame Videoconferencing,” IEEE
Trans. Commun. COM-34, 382 (1986).

Friedman, “A Multi-Purpose VLSI Chip for Adaptive Data
Compression of Bilevel Images,” IBM J. Res. Develop. 32, 775
(1988, this issue).

Implementations of the Q-Coder,” IBM J. Res. Develop. 32, 753
(1988, this issue).

18. G. G. Langdon, W. B. Pennebaker, J. L. Mitchell, R. B. Arps,
and J. J. Rissanen, “A Tutorial on the Adaptive Q-Coder,”
Research Report RJ-5736, IBM Almaden Research Center, San
Jose, CA, July 1987.

16. R. Arps, T. K. Truong, D. J. Lu, R. C. Pasco, andT. D.

17. J. L. Mitchell and W. B. Pennebaker, “Software

Received March 11, 1988; accepted for publication
September 2, 1988

William B. Pennebaker IBM Research Division, T. J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Pennebaker is a Research Staff Member at the IBM T. J. Watson
Research Center and currently manages a group doing research in
areas related to image processing and compression. He joined IBM’s
Research Division in 1962 and has worked in areas related to low-
temperature physics, thin films, display technology, printing
technology, and image processing. Dr. Pennebaker has received an
Outstanding Contribution Award for work on strontium titanate
films, an Outstanding Invention Award for work on silicon nitride
films, and an Outstanding Innovation Award for work on image
processing and compression. He has received ten IBM Invention
Achievement Awards. Dr. Pennebaker received his B.S. in
engineering physics from Lehigh University, Bethlehem,
Pennyslvania, in 1957, and his Ph.D. in physics from Rutgers
University, New Brunswick, New Jersey, in 1962. He is a member of
the American Association for the Advancement of Science, the
American Institute of Physics, the Institute of Electrical and
Electronics Engineers, and the Society for Information Display.

Joan L. Mitchell IBM Research Division, T. J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598. Dr.
Mitchell graduated from Stanford University with a B.S. in physics
in 1969. She received her MS. and Ph.D. degrees in physics from
the University of Illinois at Champaign-Urbana in 1971 and 1974,
respectively. She joined the Exploratory Printing Technologies group
at the IBM T. J. Watson Research Center immediately after
completing her Ph.D., and since 1976 has worked in the field of data
compression. Dr. Mitchell received IBM Outstanding Innovation
Awards for two-dimensional data compression in 1978, for
teleconferencing in 1982, and for the Image View Facility and
resistive ribbon thermal transfer printing technology in 1985. She is
co-inventor on fifteen patents.

726

W. B. PENNEBAKER, J. L. MITCHELL, G. G. LANGDON, JR., AND R. B. A R B

Glen G. Langdon, Jr. University of California at Santa Cruz,
Santa Cruz. California 95064. Dr. Langdon received the B.S. from
Washington State University, Pullman, in 1957, the M.S. from the
University of Pittsburgh, Pennsylvania, in 1963, and the Ph.D. from
Syracuse University, New York, in 1968, all in electrical engineering.
He worked for Westinghouse on instrumentation and data logging
from 196 1 to 1962 and was an application programmer for the
PRODAC computer for process control for most of 1963. In 1963 he
joined IBM at the Endicott, New York, development laboratory,
where he did logic design on small computers. In 1965 he received
an IBM Resident Study Fellowship. On his return from Syracuse
University, he was involved in future systems architectures and
storage subsystem design. During 197 1, 1972, and part of 1973, he
was a Visiting Professor at the University of SBo Paulo, Brazil, where
he developed graduate courses on computer design, design
automation, microprogramming, operating systems, and MOS
technology. The first Brazilian computer, called Patinho Feio (Ugly
Duckling), was developed by his students at the University of S b
Paul0 during his stay. He joined the IBM Research laboratory in
1974 to work on distributed systems and later on stand-alone color
graphic systems. In 1987 he retired from the Computer Science
Department of the IBM Almaden Research Center in San Jose,
California, where he worked on data-compression algorithms. He
has taught graduate courses on logic and computer design at the
University of Santa Clara, California, and is currently a Professor of
Computer Engineering at the University of California, Santa Cruz.
Dr. Langdon is author of Logic Design: A Review of Theory and
Practice, an ACM monograph, and coauthor of the Brazilian text
Project0 de Sistemas Digitais. In 1980 he received the IBM
Outstanding Innovation Award for his contributions to arithmetic
coding compression techniques; he holds several patents. Dr.
Langdon is an accreditation evaluator for computer-related programs
for ABET (Accreditation Board for Engineering and Technology),
and a CSAB (Computer Sciences Accreditation Board) visitor for
computer science programs.

Ronald B. A T ~ S IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose, California 95120. Dr. Arps
received the B.S., MS., and Ph.D. degrees in electrical engineering
from the California Institute of Technology, Pasadena, in 1960;
Oregon State University, Corvallis, in 1963; and Stanford University,
Stanford, in 1969, respectively. From 1960 to 1962 he was with the
Electrodata Division, Burroughs Co., Pasadena. He has been with
IBM since 1963, starting in its Advanced Systems Development
Division at Los Gatos and currently in its Research Division at San
Jose. His assignments have included exploratory studies on
processing and compressing binary images, advanced development
of computer peripherals and systems, and research into hardware-
optimized adaptive compression and implementation of algorithms
in VLSI microsystems. Dr. Arps received a Resident Study Award to
Stanford University in 1967-69 and taught as an IBM Visiting
Scientist at the Swiss Federal Institute of Technology, Zurich, during
1970-71. During 1977-78, he was on leave as a visiting associate
professor at Linkoping University in Sweden. In 1979, Dr. Arps
published a chapter entitled “Binary Image Compression” in Image
Transmission Techniques (Academic Press, New York, 1979). Dr.
Arps is currently manager of the VLSI-Oriented Algorithms project
at the IBM Almaden Research Center and architect of the ABIC
VLSI chip for Adaptive Binary Image Compression. His research
interests include adaptive data-compression algorithms as well as
image processing, office automation, and computer-aided design of
LSI.

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988

