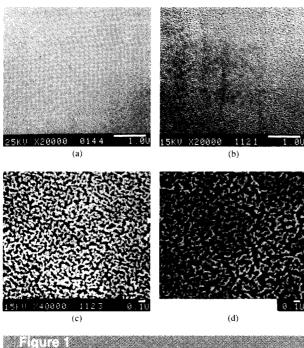
Improvement of adhesion of copper on polyimide by reactive ion-beam etching

by Arthur L. Ruoff Edward J. Kramer Che-Yu Li

In this paper we describe the effect of oxygenreactive ion-beam etching of a polyimide film to enhance its adhesion to an overlying, subsequently deposited copper film. The adhesion strength of the copper to the polyimide could be increased by as much as a factor of 25 as a result of the etching. Near the etching condition which resulted in optimum strength, the failure mode at the polyimide/copper interface changed from adhesive failure to tensile failure. The latter occurred at the "roots" of a "grass-like" surface structure of the ionetched polyimide film.

Introduction


The adhesion of copper to polyimide (PI) is largely due to mechanical interlocking, which in turn depends on the structure of the Cu/PI interface. Therefore, one way to

[®]Copyright 1988 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the *Journal* reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to *republish* any other portion of this paper must be obtained from the Editor.

improve Cu/PI adhesion is simply to roughen one surface or the other. This turns out to be a great deal more complicated than one would immediately suppose. In what follows we describe what we have learned by roughening PI surfaces with reactive ion beams prior to deposition of the overlying Cu.

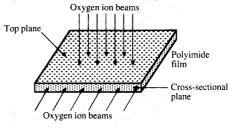
Experiments

Used in this study were Kapton PI films and films formed by spin-coating du Pont 2540 onto silicon. Oxygen gas reactive ion-beam etching (RIBE) was carried out at various energies (500, 1000 eV), ion-current densities (0.4, 0.6, 0.8, 1.0, and 1.2 mA/cm^2), and etching times (5, 10, 15, 20 min). The system which was used has been described elsewhere [1]. The chamber base pressure was 2×10^{-6} torr and the operating oxygen gas pressure was 2×10^{-4} torr. Most of the ion-beam etching was performed on the upper surfaces of the films. Ion-beam etching was also performed on cross-sectional slices (normal to their surfaces) of the films. Two methods were used to prepare cross sections. In the first, the sample was sliced with a razor blade. In the second, the surface was masked by a glass slide and then etched, creating a 10-µmdeep step. The side of the step (the cross section) was then subsequently etched by a beam which was oriented normal to it. Ion-beam etching in argon was also carried out to

Scanning electron micrographs of a PI film, illustrating surface morphological changes with various amounts of O2 reactive ionbeam etching (RIBE): (a) Unmodified PI. (b)–(d) After 1, 3, and 5 min of O, RIBE, respectively. (Beam energy = 1000 eV; beam density = 1.2 mA/cm^2 .)

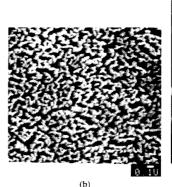
compare the surface morphology with that produced by etching in oxygen.

After etching, the surface morphology was observed by scanning electron microscopy (SEM). X-ray photoemission spectroscopy (XPS) was used to investigate the surface compositional differences of the PI films before and after etching. The XPS experiments were performed in an angleresolved mode at a glancing angle in order to increase sensitivity.


Cu films were deposited on the PI films by thermal evaporation. Stripes which were 1 mm wide, 20 mm long, and 20 µm thick, used for peel-testing, were deposited by using Al sheet masks. Peel-testing (at 90°), to measure the peel strength of the Cu/PI interface, was performed using an Instron machine.

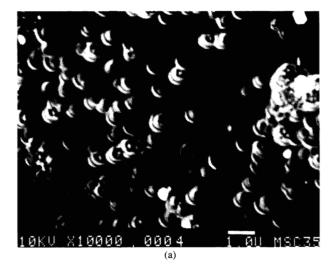
Results and discussion

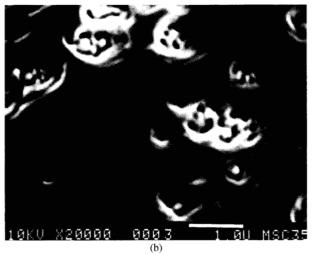
• Morphological changes


The surface morphology of the PI films changed substantially with beam energy, ion dose (beam current density times etching time), and beam direction. Figure 1 shows the surface morphological changes with various ion doses (etching times) at a beam energy of 1000 eV. The

Direction 1: beams on top plane

Direction 2: beams on cross-sectional plane


(a)



Scanning electron micrographs of a Kapton PI film after O2 RIBE for 5 min at the same beam energy (the PI film formed by spin-coating gave closely similar results for both orientations): (a) Geometry of the film and beam directions. (b) Grass-like structure on the top plane of the film, tilted 30° under the scanning electron microscope. (c) Plate-like structure on its cross-sectional plane.

unetched surface of the PI film was very smooth, but at the initial stage of etching with low ion doses, etch pits formed. These etch pits evolved to surface cracks during further ion etching, and grew deeper and propagated, leading to the development of grass-like and plate-like structures at the top plane [direction 1 in Figure 2(a)] and the cross-sectional plane [direction 2 in Figure 2(a)] of the PI films, respectively. Figures 2(b) and 2(c) show the grass-like and plate-like microstructures which were observed. The structures became deeper and wider at higher beam energies and larger ion doses as a result of chemical reaction and surface erosion by chemical and physical effects of the reactive oxygen ion beams. To separate the effects of physical ion bombardment in the O₂ RIBE, argon ion-beam etching was performed at the same beam conditions as the O2 RIBE. The surface

Hallitzak

Scanning electron micrographs of a PI film after ion-beam etching in argon for 15 min at the same beam energy (a) on its top plane and (b) on its cross-sectional plane.

Table 1 Composition analysis for unetched and O₂ RIBE (1000 eV, 1.2 mA/cm², 15 min) specimens.

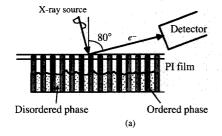
	Detector	Elements					
	angle	Carbon			Oxygen		Nitrogen
		C=0	C-N, C-C	C-0	<i>O-C</i>	<i>0=C</i>	
Theoretical			75.9		17.2		6.9
Unetched	80°	8.4 7:	30.3 5.2 (tot		4.9 17.2	12.3 (total)	7.5
O ₂ RIBE	80°		25.1 2.2 (tot	29.4 al)	6.6 21.1	14.5 (total)	6.7

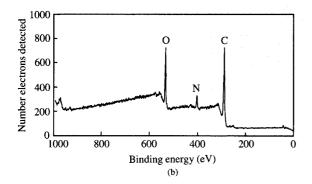
morphology of argon-etched PI shown in Figure 3 is totally different from that of the former. Regardless of ion-beam conditions, the latter caused the formation of larger surface etch pits. One important fact is that no differences were found between the top plane and the cross-sectional plane. It is known that argon physically sputters the oxygen and nitrogen from PMDA-ODA-type PI.* When we placed a PI film in the region outside the electrodes in an RF-oxygen plasma, etching still occurred (without ion bombardment) but no grass-like structure developed. Hence we conclude that the formation of the grass-like and plate-like structures requires both the presence of reactive oxygen ions or molecules and bombardment by ions.

The chemical reaction of an oxygen plasma with PI (on the negatively biased electrode) has been studied previously [2-4]. The oxygen ions strike the PI surface and abstract a hydrogen atom, leaving behind a radical which may be attacked by the reactive species: oxygen ions and molecules. The subsequent attachment of oxygen weakens the carboncarbon bond by about 25%, thus enhancing the degradation of the PI by chain scission [2-4]. Our XPS results show that O₂ RIBE oxygenates the PI and decreases its carbon and nitrogen concentrations. Table 1 indicates the percentage composition of C, O, and N for unetched and O₂ RIBE (1000 eV, 1.2 mA/cm², 15 min) specimens.

Reasons for the morphological changes

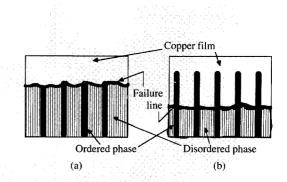
Several suggestions have been made regarding the surface structure which results from O_2 RIBE. Rangelow et al. [5] suggested that the appearance of the grass-like structure is caused by metal compound contamination, in that case by Al contamination caused by sputtering of the reactor walls during oxygen reactive ion etching. Kogoma and Turban [3] concluded that a surface which has been exposed to O_2 RIBE is partially covered by a deposited material $(C_nH_mO_x)$, which obstructs the etching reaction and causes surface roughness. However, neither indicates why different morphologies should be found at the top and the cross-sectional planes of the PI film formed by spin-coating.

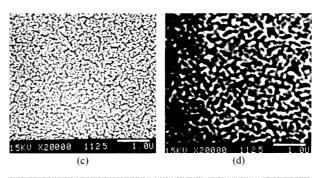

In our XPS studies, the detection angle (see Figure 4) between the detector and the specimen was set at 80° to enhance the detectability of the electrons emerging from the top portion of the grass-like structure. There were no measurable metallic surface impurities, which is also consistent with the view that metal contaminants acting as a mask are not responsible for the surface roughness. The XPS results also show that the oxygen concentration after O_2 RIBE increases from 17.2 atomic % to 21.1 atomic %, while the nitrogen and carbon concentrations decrease. The carbon concentration is reduced from 75.3% to 72.2%, while that of the carbonyl carbon approximately doubles; as a result, chain scission is enhanced.


P. Ho, IBM Research Division, T. J. Watson Research Laboratory, Yorktown Heights, NY, private communication.

The morphology of PMDA-ODA has been investigated by numerous groups using scattering [6] and diffraction [7]. It is obvious that an appreciable long-range crystalline morphology does not exist in thermally imidized PI films. The structure can be described as crystalline only in highly extended chain segments. The lateral alignment of chain segments is ordered in a smectic fashion along the chain axis for several monomer units, as reflected by a coherence length from the intramolecular reflection of some 50-60 Å up to 120 Å. Also, it is presumably ordered along the vertical direction of the PI film. We expect that the etch rate for the ordered phase is less than that for the disordered phase because of its higher density and more efficient bonding. In our studies, after small surface asperities were developed due to the sputter yield differences between the ordered and the disordered phases, surface asperities would grow into grasslike structure during further etching.

• Adhesion of Cu on polyimide


The peel strength of Cu on the unmodified PI film surface was found to be 2.5 ± 0.3 g/mm, the average for 30 samples. Its failure mode was found to be adhesive failure at the interface of the unmodified PI and Cu films. The peel



eranz.

XPS system with angled specimen stage (a), and a typical spectrum for a complete energy scan (b).

Elaine :

Schematic diagrams of (a) adhesive and (b) tensile failure modes; and scanning electron micrographs of a PI film which had been subjected to $\rm O_2$ RIBE for 5 min at the same beam energy, (c) before and (d) after peel-testing.

strength was so low that an unmodified PI film region was used to initiate peeling in the peel-testing of an O_2 RIBE-modified PI film. For the O_2 RIBE-modified PI film, two types of failure mechanisms were found: adhesive failure at the PI/Cu interface, and tensile failure in the PI film itself. As illustrated in **Figure 5(a)**, at the early stage of etching, etch pits and surface cracks were initiated and the failure mode was adhesive failure at the interface. The peel strength was substantially increased due to the mechanical interlocking. For example, the peel strength measured after O_2 RIBE at 500 eV/0.2 mA/cm²/5 min was 70 ± 5 g/mm (based on 10 samples), which was more than 25 times that of unmodified PI films. This was the optimal condition found for increasing the bond strength.

Substantially larger ion doses resulted in a deeper "grass-like" structure with thinner "blades" and fewer blades per unit area. Peel-strength tests indicated that the mechanical bonding between the blades and Cu is very high, and the weak points are at the "roots" of the long, thin blades, resulting in a drop in peel strength to about 22 g/mm (the average for 10 samples) because of tensile fracture of the blades at their roots. This result corresponded reasonably well with simple calculations: Assuming a blade diameter of $0.3~\mu m$ and an ultimate tensile strength of $35~kg/mm^2$ for

the PI, the load required to break each blade was calculated to be 0.003 g times the number of blades (~ 6000) per mm, or ~ 20 g/mm.

Figure 5(b) shows the other of the two inferred failure modes; shown in Figures 5(c) and 5(d) are scanning electron micrographs of the surface of a PI film which had been subjected to O₂ RIBE before and after peel-testing. Numerous scanning electron micrographs were obtained which clearly demonstrated the removal of the blades from modified PI film surfaces and their embedding in the peeled copper films. Regarding the adhesion, there are critical etching conditions which cause the failure mode to change from adhesive failure to tensile failure. Further studies are being carried out to determine the O₂ RIBE conditions for achieving optimal adhesion.

Summary

The top and cross-sectional planes of the polyimide films which were examined in this study assumed grass-like and plate-like structures, respectively, upon exposure to oxygen-reactive ion-beam etching.

Etch pits were developed at the early stage of etching, which evolved to surface cracks and subsequently to the grass-like and plate-like structures.

The main reason for these morphological changes is believed to be the structural inhomogeneity of the polyimide films, involving crystalline and other phases. The grass-like and plate-like structures could not be accounted for solely on the basis of physical ion bombardment. A combination of chemical reaction with oxygen ions, hydrogen abstractions by molecules and ion bombardment, and chain degradation appeared to be necessary to cause the observed surface modification.

The adhesion to a polyimide film of an overlying, deposited copper film could be improved by mechanical interlocking. However, excessive exposure to oxygen-reactive ion-beam etching resulted in a low peel strength because of failure at the "roots" of the thin, long "blades" of the resulting grass-like surface structure of the polyimide film.

Acknowledgments

The support of this research by the General Electric Company is gratefully acknowledged. We also acknowledge the use of the facilities of the Cornell Materials Science Center, which is funded by the National Science Foundation, Division of Materials Research, Materials Research Laboratories Program. We appreciate the enthusiastic guidance of Professor J. W. Mayer on all aspects of Rutherford backscattering spectroscopy and the able experimental assistance of John Fitch. Finally, we thank Peter Charvat for helpful discussions.

References

T. L. Cheeks, Ph.D. Thesis, Cornell University, Ithaca, NY, 1988.
F. D. Egitto, F. Emmi, and R. S. Horwath, J. Vac. Sci. Technol.

- B 3, 893 (1985).
- 3. M. Kogoma and G. Turban, Plasma Chem. & Plasma Process. 6, 349 (1986).
- F. D. Egitto, "Plasma Processing in Electronic Packaging," in Principles of Electronic Packaging Design and Materials Science, D. P. Seraphim, R. C. Lasky, and C. Y. Li, Eds., McGraw-Hill Book Co., Inc., New York; to be published mid-1989.
- I. W. Rangelow, K. Macheli, L. Niewohner, R. Kassing, and W. Pilz, Microelectron. Eng. 3, 475 (1985).
- 6. T. P. Russell, J. Polym. Sci., Polym. Phys. Ed. 22, 1105 (1984).
- N. Takahashi, D. Y. Yoon, and W. Parrish, *Macromol.* 17, 2583 (1984).

Received November 11, 1987; accepted for publication April 15, 1988

Arthur L. Ruoff Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853. Prof. Ruoff has been the Director of the Department of Materials Science and Engineering since 1978. During his tenure in this position, he created the MS&E News and the MS&E Industrial Affiliates program; he has dramatically helped to increase enrollment in MS&E at both the undergraduate and graduate levels. Prof. Ruoff also served as Program Committee Chairman of the National Research and Resource Facility for Submicron Structures (now the Nanofabrication Facility) for several years. He is the author of two books in materials science, an audiotutorial course in Elements of Materials Science, and over 190 research publications. His research interests include reactive ion-beam etching and the study of solids at extreme pressures (measured in megabars); he is an expert in X-ray diffraction at high pressure. Prof. Ruoff is a Fellow of the American Physical Society and a member of the Executive Committee of AIRAPT, the international association for high-pressure research.

Edward J. Kramer Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853. After receiving his doctorate, Prof. Kramer was a NATO Postdoctoral Fellow with Sir Peter Hirsch, FRS, at Oxford, before joining the Cornell faculty in 1967. He is a member of the Mechanical Properties Study Group of the Materials Science Center. Prof. Kramer was a visiting scientist at Argonne National Laboratory in 1974-75; Karl Friedrich Gauss Professor at the Akademie der Wissenschaften in Gottingen, West Germany, in 1979; and professor invitee of the Ecole Polytechnique Fédérale de Lausanne. Switzerland, in 1982. Kramer is a Fellow of the American Physical Society and a member of the American Association for the Advancement of Science, the American Chemical Society, the Bohmische Physical Society, the Materials Research Society, and the Society of Plastics Engineers. In 1985 he was the co-recipient of the American Physical Society's High Polymer Physics Prize for his work on crazing in polymers.

Che-Yu Li Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853. After two years in postdoctoral research at Cornell, Prof. Li was appointed to the faculty of the Department of Materials Science and Engineering. Earlier, in 1965–66, he had spent a year at the U.S. Steel Research Center as a Ford Foundation resident in engineering practice. In 1968 he began a two-year period at the Argonne National Laboratory, where he led a team involved in research on energy-related materials. Prof. Li has worked closely with industrial groups on a variety of topics, and is currently a consultant on materials related to energy and electronics for IBM, the Electric Power Research Institute, and other institutions. His main research interests are in mechanical properties and irradiation effects and their applications in areas related to energy and electronics.