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A new  system  of  many-valued  logic,  the 
Extended  Post  system  of  order p, p 2 2, is 
proposed  as  a  system  of  logic  supporting 
reasoning  with facts and  rules  which  are  reliable 
to a  specified  extent. In an  Extended  Post 
system  there  are  as  many  operations  of logical 
disjunction  and logical conjunction  as  there  are 
truth values.  The truth  value  associated  with  a 
particular  operation of disjunction  (conjunction) 
acts as a  threshold  value  controlling  the 
behavior of the  operation.  The  availability of  an 
extended  set  of logical operations  provides 
improved flexibility in the  symbolic  translation of 
sentences  from  the  ordinary  word-language. 
Extended  Post  systems  are  equipped  with  a 
semantics in which  graded  rather  than crisp sets 
correspond to predicates.  The  system  exhibits  a 
“rich”  algebraic  structure.  The p operations  of 
disjunction  form  a distributivity cycle. To each 
disjunction  there  corresponds  a  dual  operation 
of conjunction,  the  two  operations  being 
distributive to one  another.  The p conjunctions 
form a dual distributivity cycle.  Both 
propositional  calculus  and  first-order  predicate 
calculus of EP systems  are  developed.  The 
application to approximate  reasoning is 
described. It is shown  that  there exist distinct 
isomorphic  copies  of  fuzzy  logic,  each 
corresponding to a distinct level of 
approximation  and  being  complete to resolution. 
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1. Introduction 
A knowledge-based  system  is able to perform one or more 
tasks  relying upon its knowledge  base as its primary source 
of information. Question-answering  is one of the most  usual 
tasks, and querying a  knowledge  base  is one of the classical 
artificial  intelligence applications. 

In  question-answering  systems,  facts and information are 
stored as axioms in some logical  language, and the problem 
to be  solved, or the question to be answered,  is stated as  a 
theorem to be proved (or refused) by means of the inference 
rules  available in the language. 

consequences of the axioms are derivable as theorems. Then 
question-answering  can  be formulated as a theorem-proving 
task. This is the case  when the logical  language of first-order 
logic  is adopted. However,  first-order  logic  is not the only 
possible  choice. Other logics can be adopted, for example to 
achieve  a  higher  degree  of  expressiveness, or  to handle 
temporal relationships. 

which  is that the facts and the rules taken as axioms are 
assumed to be  absolutely correct. There is no room for 
uncertainty or approximation. On the other hand, it is well 
known that many of the rules  provided by experts, and 
much of the data provided by  users, are provided as being 
“true, but for a few  possible exceptions,” or “true in  the 
majority of cases,” or even “more or less true, where the 
degree  of truth varies  from  case to case.”  In many 
applications the approximate nature of the notion of truth is 
intrinsic, and it  would  be  highly  desirable to have machines 
that can make intelligent decisions by relying both on 
incomplete knowledge and on rules of behavior that are 
reliable  only to some specified extent. 

Since  logic  is  technically  very  well suited for making 
inferences and supporting reasoning,  artificial  intelligence 

When the logical  language  is complete, all the logical 

The approach outlined above  suffers from a  drawback, 
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researchers  have  investigated  various  possible  generalizations 
of  logic  for  dealing  with  facts and rules  which are only 
partially, or approximately, true. There has been interest in 
fuzzy  logic, and in techniques of approximate reasoning 
related to the notion of a  fuzzy  set. There have  also  been 
efforts to combine logic  with  probability theory. Expert 
systems  embodying  reasoning methods based on Bayes’ rule 
or “likelihood” rules  have  already  been  developed, and 
research aimed at providing theoretical bases for the ad hoc 
techniques is  being done. Nilsson [ 1 1  presents  a  useful 
discussion of the subject and reviews many expert systems 
that rely on uncertain knowledge. 

Shafer’s theory of evidential  reasoning [2] has recently 
received attention as a  possible  model  for  probabilistic 
reasoning in expert-system applications, and work has been 
done [3] to overcome the difficulties of implementing 
Shafer’s  belief functions in rule-based  systems. 

new  system  of many-valued  logic, the Extended  Post (EP) 
system.  Some  of the technical  aspects of this system  have 
already  been  discussed in the literature [4], with emphasis on 
the underlying  algebra  (which is a multiple Boolean  algebra 
[ 51). This paper,  while  self-contained,  focuses on the 
semantics and the inference  subsystem of the EP logic 
system.  While problems encountered in the actual 
implementation of the resolution by EP logic  may  well  need 
examination, they are outside the scope of the present 
discussion. We  will  show,  however, that the system  is 
complete to resolution and therefore that implementation in 
rule-based  systems  (specific  cases  of  which  would  clearly 
need to be tested)  is  feasible. 

The purpose of this article  is to provide an overview  of  a 

2. Background  and  heuristic  considerations 
A  sizable portion of the literature of  logic does not adhere to 
the viewpoint that there are only  two truth values,  namely 
truth and falsehood. 

Many-valued logics go back to ancient times. Thus 
Aristotelian  logic  recognized four truth modes,  namely 
necessity, contingency, possibility, and impossibility. 

In modem times,  Lukasiewicz [6] first introduced a three- 
valued propositional calculus in 1920. He considered  a third 
truth value, intermediate between truth and falsehood, 
expressing possibility. Denoting truth by 1 ,  falsehood by 0, 
and the intermediate value by ;, Lukasiewicz’s truth tables 
for - (negation), A (logical conjunction), V (logical 
disjunction) can be summarized as follows: 

T(-A) = 1 - T(A), (1) 

T(A A B )  = min { T(A), T(B)) ,  (2) 

T(A V B )  = max { T(A),   T(B)) ,  (3) 

where A ,  B are propositions, and T(A)  denotes the truth 
value of A.  
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Generalization to a  many-valued propositional calculus 
using any number p of truth values, p 2 2, was made by 
Post [7] in 1921, independently of  Lukasiewicz.  In  a p- 
valued  Post  system there are p truth values 0, 1 ,  . . . , p - 1 ,  
and the operations of  logical conjunction and disjunction are 
defined by Equations (2) and (3). However,  a different unary 
operation is  used to express  negation, namely, 

T(-A)= T(A)+ 1 for T ( A ) < p -  1, 

T(-A) = 0 otherwise. 

Post’s  negation  is not self-evident;  however, its important 
advantage  over  Lukasiewicz’s  negation  is that it leads to a 
truth-functionally complete system,  i.e.,  a  system in which 
every  logical condition is  expressible in terms of the 
connectives of the system. 

After the pioneering  work  of  Lukasiewicz and Post, 
numerous logicians  have contributed to many-valued  logic, 
and the field has become one of the most  investigated 
subjects in logic. 

application issues,  such as supporting inexact and 
approximate reasoning and the design  of  multiple-valued 
switching  circuits. Indeed, as two-valued propositional 
calculus  is the basis  for the design  of  two-valued  logic 
circuits, so is  many-valued propositional calculus the basis 
for the logical  design  of  switching circuits with  more than 
two  stable  states. 

The size  of the literature on many-valued  logic  is  very 
large. For example,  books on many-valued  logic  have  been 
authored by Rosser and Turquette [8], Ackermann [9], and 
Rescher [lo]. The book by Rescher contains a  bibliography 
that is complete up to 1965. A review paper by  Wolf [ 1 11 
gives  references updated to 1974. More recent reviews 
include Hurst [ 121 and Guccione et al. [ 131. 

Since Zadeh introduced the notion of a  fuzzy  set, there 
has been an impressive  growth of interest in fuzzy logic, and 
in techniques of approximate, imprecise, and inexact 
reasoning  related to the notion of  fuzzy  sets. 

Since we  refer to both fuzzy  sets and fuzzy  logic, we shall 
recall some very  basic notions on both subjects. 

Let X be  a nonempty set, and let I denote the unit interval 
of the real  line, I = [0, 11. After Zadeh [ 141, a  fuzzy  subset  of 
X (equivalently,  a  fuzzy  set in  the universe X )  is  defined to 
be  a function f: X + Z. Given any x in X ,  the degree  of 
membership of x in X is f (x). The union and the 
intersection of any two  fuzzy setsf; g in the same universe X 
are defined as 

The interest in many-valued  logic  is motivated by various 

(f u g)(x)  = maxV(x), g(x)l, 

(f n g) (x )  = min{f(x), dxN. 
Equipped  with union and intersection, the set 1(X) of the 
fuzzy  subsets  of X is  a complete distributive lattice. The least 
element of J ( X )  is the function X + Z which  is  everywhere 
0; the greatest element is the function which  is  everywhere 1. 
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The complement 7 of a  fuzzy  set f is defined by 

Equipped  with union, intersection, and complement, %(X) is 
a  deMorgan  algebra [22] (with complement acting as 
involution). 

A more specialized notion of  fuzzy  sets, that of graded 
sets, is obtained if the unit interval Z is  replaced by any finite 
subset of Z containing both 0 and 1. Graded sets  exhibit 
additional algebraic properties that are useful in many 
applications [ 51. For example,  graded  subsets of the universe 
of discourse are assigned to monadic predicates by 
interpretations in many-valued logic. 

The term fuzzy logic does not have  a unique meaning in 
the literature. Sometimes it addresses  a local logic in which 
the truth values are fuzzy  subsets  of the unit interval [ 151. 
Other variants of  fuzzy  logic and their possible applications 
in expert systems are discussed in Zadeh [ 161 and Prade 
[ 171. The latter paper also contains extended references to 
recent literature on the subject. 

In the present  paper,  byfuzzy logic we mean the special 
many-valued  logic  investigated  by Marinos [ 181, Chang and 
Lee [ 191, Lee [20], and Aronson et al. [21], among others. In 
this sense,  fuzzy  logic  is  a  many-valued  logic in which the 
truth-set is the unit interval of the real line, and the logical 
operations of negation, conjunction, and disjunction are 
those  expressed by (1)-(3). In this restricted  sense,  fuzzy 
logic  is  a straight generalization of  Lukasiewicz’s  logic. 

We conclude our extremely  concise account of many- 
valued  logic by quoting a note of criticism made by  Birkhoff 
on, in a  sense,  all  of the efforts to construct many-valued 
logics [22]. The core of Birkhoffs argument is the following: 
As long as  we equip the set of  all the propositions with one 
logical conjunction and one logical disjunction, we are 
implicitly treating that set as a  Boolean  algebra, and there is 
no structure-preserving application of a  Boolean  algebra to a 
linearly ordered set  with more than two elements. 

We shall  keep this remark in mind when  defining our 
system  of many-valued  logic.  Actually, we do not assign  a 
structure of  Boolean  algebra to the set of all propositions. 

Our starting point is our everyday  language, and the way 
we  use it in everyday  speech.  Of course, we  use language not 
only  for communication but also for reasoning. There are 
both analogies and differences  between the way  we  use a 
nonformal language  like  English for reasoning about our 
everyday  affairs, and the way a mathematician uses it for 
proving  a theorem. In both cases arguments such as “if A is 
true, then B is true” or, say,  “if either A or B is true, then C 
is  false” are used.  However, in everyday  speech we are less 
drastic. For example, when  we  use arguments of the form 
“if A ,  then B,” we usually mean “ B  is  likely to be true if A is 
true,” or “B is often true when A is true,” and so forth. 

Even the statement that A is true may  have  different 
meanings according to the context in which it is  made. 554 
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We concentrate on certain patterns of informal reasoning, 
as performed in nonformal language,  which  seem to suggest 
that certain more articulate logical operations might be 
useful.  In current speech we often refer to properties and 
relations that are obviously  complex and require compound 
predicates for adequate translation into a  symbolic  language. 
The resulting compound predicates are often assembled 
from simpler components by means of certain repetitive 
patterns of and and or. 

person, and we assert that b is a computer scientist. If  we 
analyze the meaning of this statement, we  easily recognize 
that it is  a  very  complex statement, in which numerous 
assertions about b are implied. When we  say that someone is 
a computer scientist, we usually understand that he or she 
knows something of all the relevant  subfields of computer 
science, and, very  likely,  knows almost everything of some of 
these  subfields. Thus, “computer scientist” is indeed a 
composite property; in its definition, a certain pattern of 
logical conjunctions and logical disjunctions occurs. 

This pattern repeats  itself at various  levels. For example, 
let us make a “zoom” over  two of the relevant  subfields of 
“computer science,”  namely “programming languages” and 
“artificial  intelligence.”  When we  say that someone has some 
knowledge  of programming languages,  we probably mean 
that he has heard of all the relevant programming languages, 
and perhaps has  good  knowledge of a few. When we  say that 
somebody  is  a  researcher in artificial  intelligence, we 
probably mean that he understands the basic  facts  of,  say, 
high- and low-level  vision,  robotics,  knowledge 
representation, etc., and has deep knowledge  of,  say, 
theorem proving and automated reasoning (or vice  versa, or 
any other combination of  well-known and less-known topics 
in artificial  intelligence). 

In everyday  language we also combine these  complex (and 
inexact) properties and relations to form more complex and 
structured attributes. Again, the new attributes do not often 
fit such  schemes as pure logical conjunction or disjunction. 
Often  they occur as compound notions sharing features from 
both conjunction and disjunction. 

Analogous situations are found in various other semantic 
domains; for example, “beautiful,” “clever,” “polite” are 
complex attributes, and their symbolic translation into a 
formal language  may  be  easier  if certain weak, or 
generalized,  logical operations of conjunction and 
disjunction are available. The same generalized operations 
may  be  useful for assembling  new, and more complex, 
properties from “beautiful,” “clever,” “polite,” etc. 

sense, mimic this mixed and graded character of the 
connectives actually  used in informal reasoning. We 
introduce two families of generalized  logical operations, a 
family of generalized disjunctions and a  family of 
generalized conjunctions. 

Let us consider some more examples.  Suppose that b is  a 

In this paper we introduce logical operations which, in a 
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We define a symbolic translation for those statements of 
the conversational language  which  assert that the facts 
A ,  B, . + , C are all more or less true and that possibly some 
of them are quite true. For each  grade of truth m we define a 
generalized (or weak) operation of  logical conjunction 6 
such that the proposition 

A / J B b . * * b C  

has a degree  of truth greater than or equal to m if and only if 
all the facts A,  B, . . . , C have a degree  of truth of at least m. 
If this condition is met, the truth value of the above 
proposition will  be set to be equal to the maximum of the 
truth values T(A), T(B), . . . , T(C). 

A dual operation of  logical disjunction corresponding to 
will be defined on the basis  of  purely  algebraic 
considerations. For each  grade of truth m we shall  define a 
generalized (or weak) operation of  logical disjunction such 
that the proposition 

A i B L * . - i C  

has a degree  of truth greater than or equal to m if and only if 
at least one of the facts A,  B, . . . , C has a degree of truth of 
at least m. If this condition is met, the truth value of the 
proposition is  set equal to the minimum of those values 
T(A), T(B), . . , T(C)  which are above the threshold m. 

3. Extended  Post  systems 
Any  logical  system has three basic components: a formal 
language, a semantics, and a set of inference  rules. 

The language of a logical  system  is a set  of  well-formed 
formulas built from certain primitive symbols  according to 
given  rules  of formation. So long as we are concerned with 
the syntactical definition of the language, the formulas of the 
language remain uninterpreted. 

The language of a logical  system  is so constructed that 
various  sentences of the natural language can be translated 
into it, provided  only that certain signs  have  received 
determinate interpretations. Interpretations are dealt with in 
the semantics of the language. 

The rules of inference permit us to deduce statements in 
the language  from other statements in the language. 

We  specify a logical  system, the Extended Post  system  of 
order p [or the p-valued EP system, or even the EP(p) 
system,  for short], where p is any integer  greater than or 
equal to 2. In this section we define the language of the 
system and its semantics, while in the next  section we 
present and discuss the inference  rules. For p = 2, the 
p-valued EP system  reduces to ordinary two-valued 
first-order  logic. 

It may be  possible to define the language of the pvalued 
EP system along purely syntactical lines, without mentioning 
semantic notions such as truth and falsehood and 
interpretations. It is,  however, more convenient to take into 

account, from the very beginning, that our formal language 
is to be  used as a medium for  expressing statements from the 
conversational language. A great many of these statements 
(some would  say  all) are about some specific domain of 
objects;  i.e.,  they  describe some of the properties of certain 
objects and some of the relations among them. Thus, we  find 
it convenient to refer from the outset to a fixed, though 
unspecified, domain D of individual objects.  And we shall 
bear in mind that  the well-formed formulas of our language 
must be suitable for interpretation as assertions concerning 
the objects in D. 

We  begin  by discussing the semantic notion of truth-set. 
The truth-set is the set of the possible truth values of a 
proposition. In  two-valued  logic, truth and falsehood are the 
only  possible truth values of a proposition. If truth is 
designated by 1 and falsehood by 0, V(2)  = (0, 1 ) is the 
truth-set of two-valued  logic.  In a pvalued EP system, the 
truth-set is defined to be 

A proposition can take any element of V ( p )  as a truth value. 
We  regard the elements of the set V( p )  as actually 
representing  various  degrees  of truth. For example, the truth 
values in a four-valued  system  might be interpreted as truth, 
plausibility,  implausibility, and falsehood. 

For notational convenience,  each truth value is assigned 
a nonnegative  integer as its label. To this end, let Z(p)  
denote the set of the first p nonnegative  integers, 
Z ( p )  = (0, 1, + .  . , p - l ) ,  and let u: Z ( p )  + V ( p )  be such 
that u(m) = m/(p - 1)  for all m in Z(p). Any m in Z(p)  may 
then be regarded as a pointer to the  truth value u(m), or, 
equivalently, as the label of u(m). 

The set Z(p) possesses a number of algebraic  properties. 
Equipped  with V (maximum) and A (minimum), Z(p) is a 
complete distributive lattice. The least element is 0; the 
greatest is p - 1. Equipped with V, A ,  and -, where - is the 
unary operation such that -m = p -  1 - m, Z(p)isa 
deMorgan  algebra.  Equipped  with V, A ,  and [ .], where [ .] is 
the unary operation (called cycle) such that [m] = m + 1 for 
m # p - 1 and [ p  - 11 = 0, Z(p)  is a Post  algebra of order p .  
By the bijection u, the algebraic structures defined on Z(p)  
can be carried  over onto V ( p ) .  In particular, for any v in 
V ( p ) ,  given that v = u(m), we define [v] and -v by means of 
[v] = u[m] and -v = u(-m), respectively. Note that -v 
turns out to be just 1 - v. 

(2) individual, functional, and predicate  symbols, and (3) 
logical connectives and quantifiers. 

There are two  parentheses, the left parenthesis "(" and the 
right  parenthesis ")". 

The individual symbols are names, or (if one prefers) 
designations, for individual objects. There are two kinds of 
individual symbols,  namely individual constants and 
individual variables. An individual constant is a designation 

The primitive symbols of our languages are (1) parentheses, 
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of a specific member of D; an individual variable is a 
designation of a generic member of D. For individual 
constants we use  lowercase letters a,  b, c, . . . taken from the 
beginning of the alphabet. For individual variables we  use 
lowercase letters x, y ,  z, . . . taken from the end of the 
alphabet. 

An  n-place function symbol is a designation of a function 
on D" to D, where D" is the nth Cartesian  power  of D. For 
function symbols we  use  lowercase letters such asf; g, h, . . . 
taken from the middle of the alphabet. In  examples, we also 
use for function symbols various letter groups, all  lowercase. 
For example, if the domain of individuals D is the set of the 
natural numbers, then prod might  designate the product of 
two  such numbers (a function from D X D to D). Thus, if a 
and b are individual constants, hence  designations of certain 
numbers, then prod(a, b )  denotes the product of these 
numbers. 

An  n-place  predicate  symbol  is a designation of a function 
on D" to the truth-set V(p) .  Note that, for p = 2, an n-place 
predicate  symbol turns out to be a designation of a subset of 
D", i.e., a name for an n-place relation among the 
individuals in D. For p > 2, an n-place predicate symbol  is a 
designation of a graded  subset of D", i.e., an n-place  graded 
relation in D. For predicate symbols we  use the capital 
letters P, Q, R, . . . . In connection with  examples, we also 
use for predicates  significative letter groups  with the first 
letter capitalized. 

Terms and atomic formulas are defined as in two-valued 
logic. 

Terms are defined  recursively as follows: (1) An individual 
constant is a term. (2) An individual variable  is a term. (3) If 
f is an n-place function symbol and t ,  , . . . , t, are terms, then 
f ( t , ,  . . . , t,) is a term. (4) Nothing is a term unless its being 
so follows  from  (1)-(3). 

If P is an n-place predicate symbol and t ,  , . . . , t, are 
terms, then P(t,,  . . . , t,) is an atomic formula (briefly, an 
atom). Nothing else is an atomic formula. 

Example If our language were to be applied to a domain 
comprising a specified group of people, a might  be taken as 
an abbreviation for Charles Smith, b for Mary Miller, etc.  In 
this domain Beautiful might  designate the property of being 
beautiful, and Likes might  designate the relation that obtains 
between  two  persons  when the first  likes the second.  Both 
this property and this relation are graded attributes: Beauty 
is distributed among people in various degrees, and there are 
various  grades of appreciation between any two  persons. 
According to the above definition, Beautijiul(b) and 
Likes(a, b)  are atomic formulas in  our language. 
Beautiful(b) is the translation into our formal language of 
the English sentence "Mary  Miller  is  beautiful,"  while 
Likes(a, b )  is the translation of "Charles Smith likes  Mary 
Miller." 

In a preceding  section we  gave heuristic motivations for 
556 the association of distinct logical operations of disjunction 
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and conjunction with  each truth value.  We  now  list the 
logical  connectives of a p-valued EP system, and specify 
formally  what  strings of signs are to be  considered well- 
formed formulas in the language of the system. 

The logical  connectives  of the language are - (not), 
[.I (cycle), ! (m-disjunction), k (m-conjunction), 
2 (m-implication), and (m-equivalence), where m is any 
element of I(p). 

We  save parentheses by  assigning  decreasing ranks to E, 
2, x, 4, -, [.I, and requiring that the connective with 
greater rank reach further. 

the following  rules of formation: 
Well-formed formulas ( WFFs) are defined  recursively by 

RF1. Atoms are WFFs. 

RF2. IfA is a WFF, then -A and [A] are WFFs. 

RF3. If A and B are WFFs, then A B, A 2 B, A B, 
A B are WFFs. 

RF4. If F is a WFF, and x is a free  variable in F, then both 
( ! x)F and ( 6 x)F are WFFs. 

It is understood that m can be any member of Z(p). With 
reference to Rule RF4, bound and free  variables are here 
defined in exactly the same way  as in ordinary two-valued 
logic. 

With the definition of well-formed formulas, the 
specification of the syntax of the language  is completed. In 
connection with the specification of the language, a few 
aspects of the semantics have  already  been mentioned. 
However, the specification of the semantics is not completed. 
It remains for us to specify  what we mean by an 
interpretation, and how the truth value of a formula is 
evaluated under a given interpretation. 

a domain D together  with an assignment of values to all 
value-bearing  signs in the formula. More specifically, an 
interpretation Z of a formula F consists of a nonempty set D, 
and an assignment of values to each constant, function 
symbol, and predicate  symbol occurring in F as follows: 

To define an interpretation for a formula we must  specify 

To each individual constant, assign an element in D. 
To each  n-place function symbol,  assign a mapping 

To each  n-place  predicate  symbol,  assign a mapping 
D" + D. 

D" + V(p). 

Note that, at least  in  general, an interpretation assigns a 
graded  subset of D" to each  n-place predicate symbol. 

Let T(A)  (TA, if there is no danger of confusion) denote 
the truth value of a well-formed formula A.  For every 
interpretation of a formula over a domain D, the formula 
can be evaluated to one of the truth values in V(p) according 
to the following  rules  of evaluation: 
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RE 1. T(-A) = 1 - T(A). 

RE2. T[A] = [ TA]. 

'I 
-I 

min (TA,  TB) if TA, TB < u(m) 

max { TA, TB) otherwise. 

max{ TA, TB) if TA, TB < u(m) 

min { TA, TB) otherwise. 

RE3. T(A l B)= or TA, TB 2 u(rn), 

RE4. T(A !'J B)= or TA, TB 2 u(m), 

RE5. T(A 2 B) = T((-A) l B). 

RE6. T(A ; B) = T((A 1 B) !'J (B 2 A)) .  

RE7. T ( ( l x ) F )  = inf(T(F(d)) : d E D, T(F(d)) 2 u(rn)) 

V inf(T(F(d)) : d E D, T(F(d)) < u(m)). 

RE8. T((  !'Jx)F) = sup(T(F(d)) : d E D, T(F(d)) 2 u(m)) 

A sup { T(F(d)) : d E D, T(F(d)) < ~(rn)). 

A few comments may  be convenient. Rule  RE1  is the rule 
of evaluation for  negation in fuzzy  logic [ 19,201, while  RE2 
is the analogous  rule in the many-valued propositional 
calculus introduced by  Post [7]. Rules RE3 and RE4 are the 
explications  here  proposed for the weak (or generalized) 
notions of  logical disjunction and conjunction that have 
been  informally  discussed in the preceding  section.  Rules 
RE5 and RE6  define the truth values of A 2 B and A g B in 
terms of those of -A, A B, and A $ B. Indeed, 
A 2 B and A g B are to be regarded as abbreviations of 
-A l B and, respectively, (A  2 B)  $ ( B  2 A).  Finally,  RE7 
and RES are the infinitary  versions of RE3 and RE4, 
respectively. 

For the sake  of clarity, we rephrase RES in words.  Let a 
be the maximum of the values T(F(d)) computed over  those 
d E D for which T(F(d)) 2 u(m); let ,f3 be the maximum of 
the values T(F(d)) computed over those for d E D 
for  which T(F(d)) < u(m). Then the truth value of the 
formula ($ x)F is min(a, @). It  is understood that the least 
upper bound and the greatest  lower bound of an empty set 
of members of  V(p) are 1 and 0, respectively. 

Example Let P be a monadic (one-place) predicate 
symbol.  Consider the formula (/$ x)P(x) in a six-valued EP 
system.  Assume that the domain is D = { 1, 2). 

1. Consider an interpretation in which the assignment  for P 
is P( 1)  = 1/5 = 0.2, P(2) = 4/5 = 0.8. In this case 

Id€ D: T(P(d))  2 u(3)) 

= (dE  D: T(P(d) )  2 0.6) = (21, 

( d e  D: T(P(d) )  < 0.6) = { 1).  

Thus, a = 0.8, = 0.2, T(( /$x)P(x)) = min(a, P )  = 0.2. 
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f Truth tables of the operations of logical conjunction and disjunction 3 of the three-valued Extended Post system. 

2. Consider an interpretation in which the assignment  for P 
is P( 1)  = 1/5 = 0.2, P(2) = 0. In this case 

( d E  D: T(P(d))  2 0.61 = 0, 

id€ D: T(P(d))  < 0.6) = D. 
Thus, a = 1, p = 0.2, T(( $x)P(x)) = min(a, P )  = 0.2. 

The  truth tables of the operations of the EP(3) system are 
given in Figure 1. 

4. Algebraic  properties of the  Extended Post 
system 
At this point both the syntax and the semantics of our 
system  have  been  specified. A few comments may  again be 
convenient. We  have  been  led to our system  by two  basic 
issues. On one hand, we  have tried to mimic everyday 
conversational language by introducing a set  of new  logical 
operations each sharing features of both the conjunction and 
the disjunction of usual  logic. On the other hand, we  have 
tried to meet the formal requirements set forth by  Birkhoff 
for  many-valued  logics.  We are now interested in 
investigating the formal properties of our system.  In 
particular, we are interested in understanding to what extent 
the algebra  which underlies the system can be regarded as 
actually  generalizing  Boolean  algebra,  i.e., the algebra of 
ordinary two-valued logic. 

Our first step is to establish a lemma showing that there 
exists a bijection I( p) + I( p),  namely the cycle operation, 
which  carries onto V and 6 onto A . As an immediate 
consequence,  all of the operations of rn-disjunctions are 

Iml [ml 

painvise isomorphic: In a sense, any one of them is a shifted 
copy  of any other. The same applies to m-conjunctions. The 
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lemma will prove  useful  since it allows  us to transfer 
everything we know of the pair of operations ( y , 0) 
to any pair of operations ( , 6). It follows from RE3 and 
RE4 that y ,  4 coincide with the well-known operations of 
minimum A and maximum V ,  respectively, in  the truth-set 
V(p); hence we  have detailed  knowledge  of them. 

We shall say that two formulas A and B are logically 
equivalent if A and B always take the same truth value in 
any interpretation. In  some  cases we  use the sign = of the 
metalanguage as an abbreviation of “is logically equivalent 
to.” 

Lemma For any m E Z(p) and any pair A, B of ground 
atomic formulas (i.e., atomic formulas not containing 
variables), 

Proof Only part (a) is  proved; part (b) can be proved 
analogously.  Let m < p - 1 .  We may  have TA 2 u(m + I), 
or TA = u(m), or TA < u(m), and independently, 
TB 2 u(m + l ) ,  or TB = u(m), or TB < u(m). Thus, nine 
cases should be  considered.  Since  is  obviously 
commutative, we consider  only  six cases: 

1 .  TA,  TB B u(m + 1). Then also TA,  TB 2 u(m), hence 
T(A l B )  = TA A TB, whence T[A  B] = 
[TA A TB]. On the other hand, T[A],   T[B] are either 
greater than u(m + 1 )  or 0: 
(i) If they are both greater than u(m + 1 )  or both 0, then 

T(  [A] XI [ B ] )  = T[A] A T[B]  = [ TA] A [ TB] = 
[TA A TB]. 

T([A]  [B])  = 0 V T[B]  = T[B] = [TA A TB], 
since, in this case, TA = 1 .  

2. TA 2 u(m + l ) ,  TB = u(m). In this case T(A l B) = 
u(m) by RE3, hence T[A  B]  = u[m] .  On the other 
hand, T[B]  = u [ m ] ,  hence,  again by RE3, T([A] XI [ B ] )  
= u [ m ] .  

3. TA 2 u(m + l ) ,  TB < u(m). T(A B )  = TA V TB = TA 
thus T[A  B] = [ TA]. On the other hand, if T[A] = 0, 
then T(  [A] XI [ B ] )  = 0 = [ TA]. If T[A] B 

u(m + l ) ,  then T([A]   [B])  = T[A] V T[B] = 
T[A] = [TA]. 

4. TA = TB = u(m). In this case the proposition holds 
trivially. 

5 .  TA = u(m), TB < u(m). T[A 1 B]  = T([A]  [B]) = 
u [ m ]  by RE3. 

6. TA,  TB < u(m). T(A B )  = TA A TB, thus 
T[A 1 B]  = [TA A TB]. On the other hand, T[A], 
T[B]  < u(m + l ) ,  thus T([A]   [B])  = T[A] A T[B] = 
[TA A TB]. 

(ii) If, say, T[A] = 0 and T[B] 2 u(m + l ) ,  

It is  left to the reader to check that the proposition holds  for 
m = p - 1 .  

As noted, we  have detailed knowledge  of the properties of 
y and 4. Both operations are associative, commutative, 
idempotent, and equipped with both neutral and absorbing 
elements. Indeed, if B is a 0-tautology,  i.e.,  if it takes the 
truth value 0 in all interpretations, then B is absorbing for 
and neutral for 0; i.e.,  for  any WFF A, 

A V B = B ,   A Q B = A .  

If C is a 1 -tautology, C is neutral for y and absorbing for 4, 
or 

A V C = A ,   A Q C = C .  

The two operations and 4 are djstributive to one another. 
Besides, there exists a unary operation - such that 

- - A = A ,  

-(A V B )  (-A) Q (-B), 

-(A Q B) = (-A)  (-B). 

By the above lemma, all  these properties can be transferred 
from the pair of operations (y , 4) to any pair (l , 2). Thus, 
we  have the following propositions, in which m is any 
element of Z(p), and A, B, C are any well-formed formulas. 

0 

Proposition 1 

(a) ( A  l B )  x C = A l ( B  C),  

( A  b B )  6 C = A 1 ( B  C),  

( b ) A l B = B B A ,   A h B = B h A ,  

( c ) A x A = A ,   A ; A = A .  

Let n be the inverse  image of m in the cycle operation; i.e., 
[n] = m. Let M and N be an m-tautology and an n- 
tautology,  respectively. 

Proposition 3 

(a) A I M = M ,   A h M = A ,  

(b) A ! N = A ,   A h N c N .  

Let us denote by ;;i the mapping I(p) + Z(p) which implies 
the following commutative diagram: 
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Considered as a unary operation in the set of  all  well-formed 
formulas, the operation ;;; is such that, for any WFF A, 

- A  m = [-[A]-"]". 

Since - is the involution of the deMorgan  algebra  associated 
with the pair (v , t), ;;; is the involution of the deMorgan 
algebra  associated  with the pair of operations (I, t). 
Proposition 4 

(a) ; ; A = A ,  

(b) ; (A B) = ( ;A)  4 (;B), 

( 4  ;(A b B) = ( ; A )  y (;@. 

For all m in Z(p), the set of all  WFFs equipped with 1, b, 
and ;;; is a deMorgan  algebra. We  now investigate  whether 
there are any relationships among all  these  algebras. 

The method of proceeding  based on pure semantics,  i.e., 
rules REI-RES, which we have  followed up to now,  is the 
most  usual in logic. For the results to be derived  next, 
however, it would  lead to laborious proofs. For the sake  of 
brevity, in the rest  of this section we proceed  along  algebraic 
lines. 

Wedefinethe2pbinaryoperationsy , . . . , d l , , $ , . . . ,  A 
over the set Z(p), 

i 
{ 

P-l 

min(x, y )  if x,  y < m or x,  y L m, 
max(x, y )  otherwise, 

max(x,y) if x , y < m o r x , y r m ,  
min(x,  y)  otherwise. 

x y  y =  

x $  y =  

Equipped with  these operations and the unary operations - 
and [ . I ,  the set Z(p) is denoted B(p) .  Obviously,  everything 
said of x and 2 as logical operations between  WFFs  of the 
EP(p) system can be reformulated to apply to F(p) .  For 
example, the above lemma states that, for any x, y,  m in 
Z(p), we  have 

[ x  y VI = [XI X] [ Y l ,  

[ x !  Yl = [XI [VI .  

The converse  holds; that is, the results  derived  for P ( p )  can 
be reformulated to apply to the set of WFFs of a pvalued 
EP system. 

Remark Everything  said of Z(p) can be  restated in terms of 
V(p). It is understood that all the algebraic structures defined 
on Z(p) are carried over onto V ( p )  along the bijection u. 
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Proposition 5 
For all m in Z(p), 

(a) y is distributive  with respect to $", 

(b) is distributive with respect to 1. 

Proof Only part (a) is proved; part (b) can be proved 
analogously. y is distributive to Y by direct verification. 
Now assume that is distributive to [L',. By repeated 
application of the basic lemma, we have 

( x  [A!]] y )  X1 
= [[XI" X] [Vl"l X] [[zI-Il 

= [([XI" X] [Yl") I [zI"l 

= [([XI" [ Z I " )  X] ([VI" [zl")I 

= [[XI" [zl"] &]] [[Yl" y [zI"l 

= ( x  A!] z )  [A!]] ( Y  X] z).  

Proposition 6 
For all x, m in Z(p), 

x !   [ x ]  y [x]"-' = m, 

x b [ x ]  b . [x]"-' = [m]". 

Proof The elements x, [x ] ,  . . . , [xIp" form the totality of 
the elements of Z(p). Since is associative, commutative, 
and idempotent, for any y in I (  p )  we have 

y ( x   [ x ]  y . * . y [x]"") = x I [ x ]  . * * y [xlp-l. 

Since there can be at most one absorbing element, the first 
equality is  proved. The second equality can be proved 
analogously. 

In Proposition 3 we mentioned m-tautologies. Proposition 
6 proves the existence of m-tautologies  for  all m. Indeed, if A 
is any WFF, then 

A I [A] . . . x [A]"-1 

takes the truth value u(m) in all interpretations. 

Proof Only part (a) is proved; part (b) can be proved 
analogously.  Assume that either x, y 2 m or x, y < m. Then 
x y = x A y.  It follows that -(x y )  = -(x A y )  = 
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Distributivity  graph of the operations of logical  conjunction  and 1 disjunction of the Extended Post system of order 3.  

(-x) V (- y ) .  On the other hand, our assumption on x, y is 
equivalent to the assumption that either -x, - y < p - m or 
-x, - y  2 p - m. Thus (-x) A ( - y )  = (-x) V ( - y ) .  Now 
assume that x 2 m, y < m. Then x x y = x V y ,  whence 
-(x y )  = -(x V y )  = (-x) A ( - y ) .  But x 2 m implies 
-x < p - m, and y < m implies - y  2 p - m. Thus (-x) A 

On the basis  of the preceding propositions, we may  try to 

p m  

(-Y) = ( - 4  A ( - y ) .  
P - m  

draw a picture of a p-valued EP system. We  have p logical 
operations of disjunction y, \I, . + , V , all  exhibiting the 
usual properties of binary  logical operatlons. Each operation 
is  associative, commutative, idempotent, and equipped with 
both an identity and an absorbing element. 

Taken together, these operations form a distributivity 
cycle; i.e., y is distributive to y, \I is distributive to y, . . . , 
V is distributive to y. To each disjunction 1 there 
corresponds a dual operation of conjunction A. Pairs of dual 
operations are distributive to one another; in addition, the 
identity element of one operation is  absorbing  for the dual 
operation. Together with ;;;, each pair (1, A) forms a 
deMorgan  algebra. The conjunctions exhibit the same 
algebraic properties as the disjunctions. Taken together, they 
form a distributivity cycle in the reverse order; i.e., $ is 
distributive to A I ,  A ,  is distributive to k2, . . , /I\ is 
distributive to $ . 

algebraic structure. This uniformity can be made even more 

P- I. 

PI 

Thus, a p-valued EP system exhibits an extremely uniform 

560 evident by considering the symmetries, i.e., the 
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automorphisms, of the system.  Let G ( p )  be a graph  such that 
(1) its vertices are the operations 1 and 2, m E Z(p), (2) 
there is an arc from vertex a to vertex b whenever a is 
distributive to b. For p = 3, G ( p )  is  shown in Figure 2. It can 
be  verified  easily that the group of the automorphisms of 
G ( p )  is isomorphic to the dihedral group of order 2p. That 
implies that, given  any  two operations a, b of disjunction (or 
conjunction), there is an automorphism which cames a into 
b. From a logical point of  view, that implies that the truth 
values in V( p )  all stand on one and the same footing, and 
one can choose the pair 0, 1 in p distinct and logically 
equivalent ways. 

So far, the algebraic properties of a p-valued EP system 
have  been  investigated to some extent. Now it may  be  of 
interest to relate the results  derived above to the results 
obtained on Post  algebras after Post’s seminal work. The rest 
of this section  is dedicated to a brief comparison of results. 

The first  algebra  of  p-valued truth-functionally complete 
logic corresponding to the work  of Post  was formulated by 
Rosenbloom [23] and called  Post  algebra of order p ,  p 2 2. 
The currently adopted formulation of Post  algebras  using 
disjoint operators was  given  by  Epstein [24]. Epstein 
improved Rosenbloom’s axiom set  considerably, and gave a 
complete representation theory of Post  algebras. 

One of Epstein’s  most important results  was that every 
Post  algebra of order p is isomorphic to a lattice of 
continuous functions from a Boolean  space to a discrete 
p-element chain. This result  leads to formulas that formally 
resemble those of a pvalued EP system. For example,  when 
the class  of  Post  algebras  of order p is  described as an 
equational class  of  algebras, p unary operations C,, C, , . . . , 
Cp-l are introduced, satisfying 

C,(X v v) = C,(X) v C,(Y), (4) 

C,(X A v) = CJ-4 A G ( v ) .  ( 5 )  

These unary operations resemble the operations ;;; that occur 
in Proposition 4. However, the two  sets  of unary operations 
are different, and there is no simple way  of expressing one in 
terms of the other. For example, the C, satisfy 

while the operations ;;; do not. 

attention on generalizations of Post algebras. The review 
paper by  Dwinger [25] provides a detailed account of the 
relevant  efforts in this direction. We mention the generalized 
Post  algebras of order W +  since  they  also are based on 
(infinitely many) unary operations satisfying Equations (4) 
and ( 5 )  but having  yet a different  meaning. 

Generalized Post  algebras of order w +  have  been studied 
by H.  Rasiowa [26,27] and E. Orlowska [28,29], among 
others. 

for  Post  algebras, and in all the numerous generalizations of 

After the work  of Epstein, numerous authors focused their 

By  way  of conclusion, we note that in Epstein’s axiomatics 
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Post  algebras proposed so far, only the two binary lattice 
operations V and A occur. Thus, the adoption (after proof  of 
existence) of distributive cycles  of generalized ANDs and 
ORs is unique to EP systems. 

5. Inference  in  Extended Post systems 
Up to this point we have considered the syntactic and  the 
semantical aspects of EP systems. In this section we 
investigate inference in EP systems.  We  also  discuss  possible 
applications of EP systems in problem-solving and question- 
answering  systems. 

We assume that  the available  knowledge  base  consists  of 
facts and rules  which are reliable to some specified  degree  of 
confidence. They are not necessarily fuzzy or vague. What is 
relevant is the effect upon them of an error whose maximum 
magnitude is assumed to be known. 

We consider the problem of deriving consequences from 
the knowledge  base and, at the same time, of associating a 
degree  of truth with  each  of the consequences that we derive. 

We  begin  by considering a very simple case.  Assume that 
we work  with,  say, p = 100 truth values, and all the  data we 
start with are affected by the same maximum error of,  say, 
20 percent. In this situation we might be interested in logical 
consequences of our data within a degree  of confidence of 80 
percent. 

Note that this is a simplified situation. In a realistic 
situation we start with  facts and rules each  affected by its 
own maximum error value. In an actual application there 
will be  facts and rules  which are  no less than true, facts and 
rules  which are reliable up to a degree  of confidence of,  say, 
95 percent, and so on. 

Let us consider the simplified situation. We could take 
advantage of the fact that in a pvalued EP system we 
actually have p subsystems (l, $ [.I), m E Z(p), each 
isomorphic to a classical  p-valued  Post  system, and all 
interleaved in one and the same EP system. Since it is 
isomorphic to a Post  system,  each  of  these subsystems is 
functionally complete. Thus, we could single out  the proper 
one of  these subsystems and work just with it, ignoring the 
rest of the full EP system.  If, e.g., p = 100, and the available 
data are all  reliable up to a degree  of confidence of 80 
percent, we could single out the subsystem  based on 
(L, $, [.I), m = 80. The problem with this choice is that  the 
cycle operation [ .] does not behave  as a negation (though, in 
his  early  work,  Post treats it as a generalized negaion). 

As  we shall  see, a better choice is to adopt a subsystem 
based on  the operations -, 1, $, pym, f i m .  Note that, by 
Proposition 7, the operations ,Vm,  pJm are actually 
unessential, since they can be expressed in terms of -, l, $. 
Again, m is to be  selected according to  the desired 
degree  of approximation. We denote EP(p, m) such a 
subsystem of EP(p). 

The simplified situation considered above cannot be 
expected to occur very frequently in practice. In real 
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applications we must be able to derive consequences from 
facts and rules  given  with different degrees  of truth. As  we 
shall  see,  each  single derivation step is performed in a well- 
defined EP(p, m)  subsystem.  However, all the EP(p, m) 
subsystems, m > i, are in general  used in a full derivation 
process. 

and investigate it from a logical, rather than an algebraic, 
point of  view.  Before doing that, however, we state the two 
basic inference rules of an EP( p )  system. In a rather evident 
way,  these are straight generalizations of modus ponens and 
generalization of ordinary two-valued  logic. 

In the following, we single out a fixed EP(p, m) subsystem 

Dejinition 8 
A well-formed formula S is m-true (under  an interpretation 
I )  if and only if T(S)  2 u(m)  (under I ) .  

Remark Obvious references to  an interpretation are 
omitted. 

DeJinition 9 
A WFF S is  m-false  iff T(S)  5 1 - u(m). 

The two basic inference rules  of a pvalued EP system can 
now  be formulated as  follows. For every pair of  WFFs F, G, 
and all m in Z(p) such that  u(m) > ;, 

If F and F 2 G are m-true, infer that G is m-true. 
If F is rn-true, infer that ($x)F is m-true. 

The justification for so straight a generalization of 
two-valued  logic can be made clear by examining a few 
immediate properties of any EP(p, m) subsystem. In  what 
follows, m is such that u(m) > f .  

Proposition 10 
A WFF S is m-true iff -S is m-false. 

Proof T(S)  B u(m) iff -T(S) 5 -u(m) iff 1 - T(S)  5 1 - 
u(m). Thus, by RE1, T(S)  B u(m) iff T(-S) I 1 - u(m). By 
Definition 9, the proposition follows. 

Proposition I I 
A B is m-true iff either A or B is m-true, or both are m- 
true. 

Proof Let A be m-true, i.e., T(A) 2 u(m). If T(B) 2 u(m), 
by RE3 we have T(A l B) = min( TA, TB) 2 u(m); hence A 
1 B is m-true. If T(B) < u(m), by RE3 we have T(A l B = 
max(TA, TB) = TA B u(m); hence A l B is  again m-true. 
Since l is commutative, the ifpart of the proposition is 
proved.  Let A l B be m-true, Le., T(A l B) 2 u(m). By 
RE3, either T(A B) = min(TA, TB) or T(A 1 B) = 
max(TA, TB). In the former case, T(A), T(B) 2 u(m) and 
both A and B are m-true. In the latter case, since T(A 1 B) 
2 u(m), we have either T(A) B u(m) or T(B) 2 u(m). 
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Proposition 12 
A A B is  m-true if both A and B are m-true. 

Proof Analogous to that of Proposition 1 1. 

Proposition I3 
If A is either m-true or m-false, then A 2 A is m-true. 

Proof Let A be m-true. By Proposition 10, -A  is m-false. 
Then, by Proposition 11, ( - A )  1 A is  m-true. Thus, by RE5, 
A 2 A is m-true. If A is  m-false, then -A  is  m-true, and 
A 2 A is  again  m-true. 

Proposition 14 
Assume that A ,  B, C are each either m-true or m-false.  If 
A 2 B and B 2 C are both m-true, then A 2 C is m-true. 

Proof By RE5 and Proposition 2, 

H = ( A 2 B ) / I ( B ? C )  

= ( - A  1 B) 4 (-B 1 C )  

~ ( - A 4 - B ) 1 ( - ~ ~ C ) 1 ( B 4 - B ) 1 ( B ~ C ) .  

By Propositions 10 and 12, (- B) B is  m-false.  Let 
A 2 B and B 2 C be m-true. By Proposition 12, H is 
m-true. (1) Assume A is m-true. By Propositions 10 and 12, 
both ( - A )  ( -B)  and ( - A )  6 Care m-false. Since H is m- 
true, by Proposition 1 1, B 4 C is m-true. By Proposition 12, 
that means that both B and Care m-true. Thus ( - A )  1 C, 
i.e., A 2 C, is m-true. (2) Assume A is  m-false. Then 
( - A )  1 C, hence A 2 C,  is m-true by Propositions 10 and 
11. 

Proposition 15 
If both A and B are either m-true or m-false, then 
(A 1 B) 2 A is  always m-true. 

Proof A B is either m-true or m-false. By RE5, 
(A B) 2 A is  logically equivalent to -(A A B) 1 A.  If 
A B is m-true, A is  m-true by Proposition 12; thus, by 
Proposition 1 1, -(A i B) 1 A is m-true. If A 1 B is m-false, 
then -(A A B) is m-true, whence -(A 4 B) A is  again m- 
true. 

Proposition 16 
If A is either m-true or m-false, then A 2 ( A  1 B) is m-true. 

Proof By RE5, A 2 ( A  1 B) is  logically equivalent to 
-A  1 (A  1 B), whence the conclusion, by Propositions 1, 
10, and 11. 

Proposition I7 
A 2 B is  logically equivalent to -B 2 -A. 
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Proof By RE5, A 2 B = ( - A )  1 B. Again  by RE5, 
- B ? - A = ( - - B ) : - A = B l - A = ( - A ) Y B .  

exhibits formal properties similar to those of ordinary two- 
valued  logic. It is thus natural to ask  whether  these  systems 
have properties which make them suitable for incorporation 
into problem-solving  systems. 

generalization are used to derive theorems in two-valued 
logic. Various theorem-proving techniques are based on the 
infererence rule known as the resolution principle [30]. This 
rule of inference permits a new clause to be derived  from 
two  given  clauses. The derived  clause  is  satisfiable  (i.e., has a 
model)  whenever the two parent clauses are satisfiable. 

Resolution applies to WFFs in clausal form. A clause  is 
defined as a WFF consisting of a disjunction of literals. A 
literal is an atomic formula or the negation of an atomic 
formula (i.e., a formula with a - in front of it). When 
resolution is  used  as a rule of inference, the set of WFFs 
representing the available  knowledge  base  is  first put into 
clausal form, i.e.,  is  converted into a conjunction of clauses 
where  all  variables are universally quantified. Any WFF in 
the language of first-order  two-valued  logic can be so 
converted; thus, clauses are a general  form in which to 
express  WFFs. 

role in automated reasoning.  Most theorem-proving and 
logic programming systems rely upon inference methods 
which are variants of the resolution principle. Thus, 
understanding whether a system of  logic  is suited for 
incorporation into actual problem-solving  systems  is almost 
equivalent to investigating  whether resolution is  applicable 
in it. 

Propositions 10-  17  suggest that each EP(  p, m) subsystem 

Inference  rules other than modus ponens and 

Techniques based on the resolution principle play a major 

It turns  out that the resolution principle  is  applicable as an 
inference  rule in each EP( p ,  m)  subsystem.  Also,  each 
EP( p,  m) subsystem  is complete to resolution. That means 
that, given any pair F, G of WFFs in one of these 
subsystems, if G is  m-true in all interpretations in which F is 
m-true, then G can be  derived  from F by means of a 
resolution-refutation procedure. 

[ 191 and Lee [20] on the applicability of the resolution 
principle to fuzzy  logic, and the basic lemma proved in 
Section  4.  We  discuss  briefly  how the results of Chang and 
Lee apply in our case. A detailed  proof can be found in [4]. 

First, we note that, for m = 0, the EP(p,  m) subsystem 
reduces to fuzzy  logic. Indeed, the only  difference  between 
the two  systems  consists in the truth-set they adopt: The 
EP(p, 0)  system  uses the set V(p) ,  while  fuzzy  logic uses the 
unit interval [0, 11. However, the properties of the truth-set 
actually  used in fuzzy  logic are certain algebraic properties 
that are common to V ( p )  and [0, 11. That is, the truth-set is 
assumed to be a complete distributive lattice with 0, 1 whose 
associated ordering is total. Both V ( p )  and the unit interval 

These  results  follow from the results of Chang and Lee 
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have  these  properties. The continuity properties of the unit 
interval are never  actually  used in the construction of  fuzzy 
logic. In view  of that, we henceforth make no distinction 
between  fuzzy  logic and the EP(p, 0) subsystem. 

We  now  recall the results obtained by Chang and Lee [ 191 
and Lee  [20]  regarding  fuzzy  logic. 

Let F, G be any WFFs in  the language  of  fuzzy logic.  An 
interpretation I satisfies F if T(F)  z : under I .  I falsifies F if 
T(F)  5 under I .  F is unsatisfiable if it is  falsified  by  every 
interpretation. G is a logical consequence of F if F A - G is 
unsatisfiable.  Equivalently, G is a logical  consequence of F if 
G is  satisfied in all interpretations in which F is  satisfied. 

Chang and Lee  proved that, given  any  set S of WFFs in 
the language of fuzzy logic, if  all the clauses in  Shave truth 
values in the interval [a, b],  where : < a 5 b I 1, then we 
are guaranteed that all the logical  consequences obtained by 
repeatedly  applying the resolution principle will  have truth 
value  between a and b. 

subsystem.  According to our definitions, A is :-true under an 
interpretation I if and only if I satisfies A in the sense of 
fuzzy  logic. A is  f-false under I if and only if I falsifies A.  
Taking that into account, and remembering that EP(p, m)  is 
isomorphic to  EP( p ,  0) by virtue of [ . ] m, the above  results 
can be reformulated as follows.  If  every  clause in a set of 
clauses EP(p, m) has truth value  greater than or equal to 
u(m), and the most unreliable  clause  has truth value a while 
the most  reliable  clause has truth value b, then we are 
guaranteed that any clause obtained by the resolution 
principle has truth value in the range [a, b]. 

system  can  be made as follows. Assume that we start with a 
set S of axiomatic ground clauses  with truth values in V(p) .  
Let S’ be a subset of S, and assume that there exists an m in 
V(p) ,  m > f ,  such that all the clauses in S’ are either m-true 
or rn-false. Then we  may invoke the EP(p, m) subsystem to 
derive  logical  consequences  from S’ in the usual manner, 
e.g.,  by Robinson’s  resolution  rule. All the conclusions thus 
derived will be rn-true. 

Now let us consider a formula A in the EP(p, 0) 

In conclusion, inference in .a  p-valued  Extended  Post 

In the rest  of this section we discuss some examples. 

Example 1 Let p = 11; thus V ( p )  = (0, 0.1, e . ,0.9, I}. 
Let Ax [A(x), if there is danger of confusion] mean “x is an 
athlete,” Ix mean ‘‘X is intelligent,” Cx mean ‘‘X has 
courage,” Sx mean “x will succeed in his career,” Hx mean 
“x will  be happy.” Assume the axioms 

Ax 3 Cx, 
8 

Ix 9 cx 7 s x .  

Let a be an individual. Suppose that we know the truth 
values of the clauses Aa and la. What consequences can be 
derived from A 1,  A2? 

If T(Aa) 2 u(8) = 0.8,  we are able to infer the inequality 
T(Ca) 2 0.8  from Al. If,  besides, T(Za) 2 u(6) = 0.6, then 
T(Za Q Ca) 2 0.8 > 0.7 = u(7). Thus, we are able to infer 
T(Sa) 2 0.7  from axiom A2. 

If T(Aa) 2 0.8 and T(Za) < 0.6, then again we are able to 
infer T(Cu) L 0.8.  However, l a  Q Ca evaluates to less than 
0.6, hence  less than 0.7; thus we cannot make any inference 
about the career of a. 

If T(Aa) < 0.8, then we are not able to infer anything 
from Al, A2. 

Example 2 Let  all the predicate symbols  preserve their 
meanings.  According to axiom Al, as soon as T(Aa) 2 0.8, 
we infer T(Ca) 2 0.8. This may  seem too drastic in some 
situations. One might wish a weaker rule, e.g., one allowing 
T(Ca) 2 0.6 to be  inferred from T(Aa) L 0.8. Then, we 
replace axiom A 1 with 

Ax 3 (Cx 9 K(0.8)). (B1) 

Here K(0.8) denotes an 8-tautology  (i.e., according to the 
definition given in Section 4, a formula which takes the 
value  0.8 under any interpretation). Again,  if T(Aa) < 0.8, 
we are not able to infer anything. If T(Aa) L 0.8, then 
T(Ca Q K(0.8)) L 0.8,  whence T(Ca) L 0.6. Now, if 
T(1a) 2 0.7, from axiom A2  we infer that T(Sa) 2 0.7,  since 
in this case T(Za Q Ca) = max (T(Zu), T(Ca)) = T(Za). If 
T(Za) < 0.7, we cannot make any inference about the career 
of a. 

8 

Example 3 Let  all the predicate symbols  preserve their 
meanings. We keep axiom B 1 and replace axiom A2 with 

(Ix 9 CX) 3 (SX 9 Hx). (B2) 

If T(Aa) < 0.8, we infer nothing. If T(Aa) 2 0.8 and 
T(Za) < 0.7, we infer  only that T(Ca) 2 0.6. If T(Aa) L 0.8 
and T(Za) 2 0.7, then we infer that T(Sa $ Ha) 2 0.7; that 
is, both Sa and Ha are Strue, and  at least one of them is 
7-true. 

6. Remarks on the  use of EP logic in rule-based 
systems 
The examples at the end of the last  section  show  how 
reasoning can be done in EP systems. It was seen that 
reasoning is  possible  provided certain numerical thresholds 
are specified. Thus, in axiom A1 there is one threshold value 
associated  with the implication sign; in axiom A2  two 
thresholds occur, one associated  with the conjunction in the 
antecedent and the other associated  with the implication; 
analogously  for the other axioms. 

we must  show, or at least indicate, how these numerical 
values can be determined. For example,  with  reference to 
axiom A 1 ,  how do we know that Ax 2 Cx and that it  is not, 563 

In view  of an actual use  of EP logic in rule-based  systems, 
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say, Ax 2 Cx? Indeed, there is no unique translation of a 
sentence like “the athletes are courageous” into the EP 
language (by the way, axioms A1 and A2 are two distinct 
translations). 

The answer to this question is  suggested  by the nature 
(from a logical point of  view)  of such sentences as “the 
athletes are courageous.” Sentences like this are factual (or 
logically indeterminate, as logicians  also  say). Their truth 
value cannot be  established on purely  logical grounds, on the 
mere basis of their form. It is  necessary to institute 
observations. Thus, only the observation of the actual world 
can tell us whether the degree  of truth of the statement 
asserting that the athletes are courageous is 0.8 or 0.6. 

Pursuing this line of reasoning, we must  specify a 
methodology for assessing the numerical values in the 
axioms from our knowledge  of the world. One of the most 
known and theoretically motivated methodologies  is the 
statistical approach. We discuss its application in  the present 
context in some detail.  Its strict application would  be 
impractical in most  cases;  however, it provides a general 
criterion for the selection of numerical values in  the axioms. 

Let  us  first examine a specially  suggestive  example.  Let Px 
stand for “x took examination P,” and Qx stand for “x took 
examination Q.” In many-valued  logic we may  assume that 
T(Px) r p means that x took examination P and gained p 
marks, and analogously  for T(Qx) r p. Let  us analyze the 
implication 

Note that, since prob( T(Px) E 0.8 I T(Qx) Z 0.6) 5 1,  we 
have 

prob(T(Px)r0 .8 ) sprob(T(Qx)r0 .61 .  

This is  obvious: In this case the event T(Px) E 0.8 almost 
surely implies the event T(Qx) E 0.6; thus, the probability of 
the event T(Px) E 0.8 cannot be greater than the probability 
of T(Qx) z 0.6. 

Now  we try to rephrase  these conclusions in terms of 
axiom B1 in Example 2 above. This axiom has exactly the 
same form as the one just studied, but the meaning is 
different: Ax stands for ‘‘X is an athlete,” and Cx stands for 
‘‘X has courage.” We can think of T(Ax) and T(Cx) as 
measures of the extent to which x is an athlete and, 
respectively, a courageous individual. Then, if in the actual 
world the individuals who are athletes to an extent no less 
than 0.8 happen, with probability 1, to be courageous to an 
extent no less than 0.6, we  will accept axiom B1. 

Let  us  now  consider axiom B2 in Example 3. Although 
this axiom is more complex than B 1, nothing changes in 
principle, and we  have only to rephrase the conclusions 
regarding B 1 in this more involved situation. In other words, 
the inclusion of B2 in the knowledge  base  is equivalent to 
the assumption that T(Zx Q Cx) E 0.7 almost surely implies 
T(Sx I )  Hx) E 0.7. The first inequality is equivalent to the 
set of inequalities 

T(Zx) 2 0.6, 

Px 3 (Qx Q K(0.8)), (6) 

which  is  formally identical to axiom B1 in Example 2. On 
the basis  of the theory developed  before, the inclusion of this 
axiom in an axiom system is equivalent to the assumption 
that T(Px) E 0.8 implies T(Qx) r 0.6. In other words,  if  we 
accept this axiom, it means that we expect that an individual 
taking examination P and gaining 8 marks or more would 
gain no less than 6 marks if he  were to take examination Q. 

Now the question is  this: What factual evidence can lead 
us to make assumption (6)? The answer  is  very  simple. We 
accept this rule  if  sufficient data are available for us to infer 
that almost surely  (i.e.,  with probability l), if an individual 
gains no less than 8 marks in examination P, then he or she 
will be  able to gain at least 6 marks in examination Q. In 
other words, the conditional probability of the event 
T(Qx) E 0.6 under the condition T(Px) r 0.8 should be 
equal to 1: 

prob(T(Qx) 2 0.6 I T(Px) 2 0.8) = 1. 

Note that we are in a Bayesian  setting.  Bayes’ theorem holds 
that 

prob(T(Qx) r 0.6 I T(Px) 2 0.8)prob(T(Px) 2 0.81 

= prob( T(Px) 2 0.8 I T(Qx) 2 6)prob( T(Qx) 2 0.6). 
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T(Cx) r 0.6, ( 8 )  

T(Zx) 2 0.7 or T(Cx) 2 0.7. (9) 

The second inequality is equivalent to the set of inequalities 

Thus, the condition that must be satisfied in order that B2 
may be accepted as a rule is the following: There must be 
empirical evidence that, whenever (7)-(9) are satisfied, then 
( lo)-(  12) are also  satisfied.  More  specifically, the conditional 
probability of the event  represented by the inequalities 
(lo)-( 12),  given that the event represented by (7)-(8) is true, 
should be equal to 1. 

motivations, but in most  cases it cannot be put into practice 
too strictly.  How can we estimate the fraction of the athletes 
who are courageous?  Shall we draw a random sample of 
athletes and perform some tests to assign an individual 
degree  of  courage to each member of the sample? 

It is  considered more practical to rely upon the degree of 
confidence of the expert in his or her  expressed  rule. Thus, 
in the case  of EP logic, the expert is  expected to provide the 
rules,  together  with the thresholds that occur in them. The 

The statistical approach has sound theoretical 
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statistical  methodology  is of use  in  that  it  provides  the  expert 
with  a  criterion for assessing  the  thresholds.  For  example,  an 
expert  will  supply  rule  B2 if he or she  feels  confident  that, 
whenever (7)-(9) are satisfied,  then  almost  surely (lo)-( 12) 
are also  satisfied. 

7. Concluding  remarks 
In this paper  we  have  presented a  system of many-valued 
logic  suited for handling  approximate or imprecise 
knowledge. 

On  the one hand,  the  system  has an algebraic  foundation, 
and on the  other  hand,  it  provides  for  translation of certain 
recurrent  patterns of informal  reasoning to logical  form. 

A well-known  requirement  set  forth  by  Birkhoff [22] on 
many-valued logics, that  the  truth  assignment function 
(denoted Tin this  paper)  should  be  a  morphism  from  the  set 
of all the propositions to the set of the  possible truth  values, 
is  satisfied  in  this  system.  Indeed,  the  set of all  the 
propositions  and  the  truth-set  are  here  equipped  with 
isomorphic  algebraic  structures,  based on the two unary 
operations - and [.I, a set of generalized ANDs, and  a 
conjugate  set of generalized ORs. 

In the  system of logic  presented in this paper, inference 
can be performed  by  Robinson’s  resolution  principle, as in 
ordinary  two-valued  logic. Thus the system is complete to 
resolution,  thereby  satisfying one basic  prerequisite  for 
incorporation into rule-based  systems. 
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