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A many-valued
logic for
approximate
reasoning

by Silvano Di Zenzo

A new system of many-valued logic, the
Extended Post system of orderp, p = 2, is
proposed as a system of logic supporting
reasoning with facts and rules which are reliable
to a specified extent. In an Extended Post
system there are as many operations of logical
disjunction and logical conjunction as there are
truth values. The truth value associated with a
particular operation of disjunction {conjunction)
acts as a threshold value controlling the
behavior of the operation. The availability of an
extended set of logical operations provides
improved flexibility in the symbolic translation of
sentences from the ordinary word-language.
Extended Post systems are equipped with a
semantics in which graded rather than crisp sets
correspond to predicates. The system exhibits a
“rich” algebraic structure. The p operations of
disjunction form a distributivity cycle. To each
disjunction there corresponds a dual operation
of conjunction, the two operations being
distributive to one another. The p conjunctions
form a dual distributivity cycle. Both
propositional calculus and first-order predicate
calculus of EP systems are developed. The
application to approximate reasoning is
described. It is shown that there exist distinct
isomorphic copies of fuzzy logic, each
corresponding to a distinct level of
approximation and being complete to resolution.
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1. Introduction

A knowledge-based system is able to perform one or more
tasks relying upon its knowledge base as its primary source
of information. Question-answering is one of the most usual
tasks, and querying a knowledge base is one of the classical
artificial intelligence applications.

In question-answering systems, facts and information are
stored as axioms in some logical language, and the problem
to be solved, or the question to be answered, is stated as a
theorem to be proved (or refused) by means of the inference
rules available in the language.

When the logical language is complete, all the logical
consequences of the axioms are derivable as theorems. Then
question-answering can be formulated as a theorem-proving
task. This is the case when the logical language of first-order
logic is adopted. However, first-order logic is not the only
possible choice. Other logics can be adopted, for example to
achieve a higher degree of expressiveness, or to handle
temporal relationships.

The approach outlined above suffers from a drawback,
which is that the facts and the rules taken as axioms are
assumed to be absolutely correct. There is no room for
uncertainty or approximation. On the other hand, it is well
known that many of the rules provided by experts, and
much of the data provided by users, are provided as being
“true, but for a few possible exceptions,” or “true in the
majority of cases,” or even “more or less true, where the
degree of truth varies from case to case.” In many
applications the approximate nature of the notion of truth is
intrinsic, and it would be highly desirable to have machines
that can make intelligent decisions by relying both on
incomplete knowledge and on rules of behavior that are
reliable only to some specified extent.

Since logic is technically very well suited for making
inferences and supporting reasoning, artificial intelligence
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researchers have investigated various possible generalizations
of logic for dealing with facts and rules which are only
partially, or approximately, true. There has been interest in
fuzzy logic, and in techniques of approximate reasoning
related to the notion of a fuzzy set. There have also been
efforts to combine logic with probability theory. Expert
systems embodying reasoning methods based on Bayes’ rule
or “likelihood” rules have already been developed, and
research aimed at providing theoretical bases for the ad hoc
techniques is being done. Nilsson [1] presents a useful
discussion of the subject and reviews many expert systems
that rely on uncertain knowledge.

Shafer’s theory of evidential reasoning [2] has recently
received attention as a possible model for probabilistic
reasoning in expert-system applications, and work has been
done [3] to overcome the difficulties of implementing
Shafer’s belief functions in rule-based systems.

The purpose of this article is to provide an overview of a
new system of many-valued logic, the Extended Post (EP)
system. Some of the technical aspects of this system have
already been discussed in the literature [4], with emphasis on
the underlying algebra (which is a multiple Boolean algebra
[5]). This paper, while self-contained, focuses on the
semantics and the inference subsystem of the EP logic
system. While problems encountered in the actual
implementation of the resolution by EP logic may well need
examination, they are outside the scope of the present
discussion. We will show, however, that the system is
complete to resolution and therefore that implementation in
rule-based systems (specific cases of which would clearly
need to be tested) is feasible.

2. Background and heuristic considerations

A sizable portion of the literature of logic does not adhere to
the viewpoint that there are only two truth values, namely
truth and falsehood.

Many-valued logics go back to ancient times. Thus
Aristotelian logic recognized four truth modes, namely
necessity, contingency, possibility, and impossibility.

In modern times, Lukasiewicz [6] first introduced a three-
valued propositional calculus in 1920. He considered a third
truth value, intermediate between truth and falsehood,
expressing possibility. Denoting truth by 1, falsehood by 0,
and the intermediate value by %, Lukasiewicz’s truth tables
for — (negation), A (logical conjunction), V (logical
disjunction) can be summarized as follows:

T(-4)=1-T(4), (1
T(4 A B) = min{T(4), T(B)}, @
T(4 V B) = max{T(4), T(B)}, 3)

where A, B are propositions, and 7(A4) denotes the truth
value of 4.
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Generalization to a many-valued propositional calculus
using any number p of truth values, p = 2, was made by
Post [7] in 1921, independently of Lukasiewicz. In a p-
valued Post system there are p truth values 0, 1,---,p— 1,
and the operations of logical conjunction and disjunction are
defined by Equations (2) and (3). However, a different unary
operation is used to express negation, namely,

TA)=TA+1 for TA)<p-1,
T(—A)=0 otherwise.

Post’s negation is not self-evident; however, its important
advantage over Lukasiewicz’s negation is that it leads to a
truth-functionally complete system, i.e., a system in which
every logical condition is expressible in terms of the
connectives of the system.

After the pioneering work of Lukasiewicz and Post,
numerous logicians have contributed to many-valued logic,
and the field has become one of the most investigated
subjects in logic.

The interest in many-valued logic is motivated by various
application issues, such as supporting inexact and
approximate reasoning and the design of multiple-valued
switching circuits. Indeed, as two-valued propositional
calculus is the basis for the design of two-valued logic
circuits, so is many-valued propositional calculus the basis
for the logical design of switching circuits with more than
two stable states.

The size of the literature on many-valued logic is very
large. For example, books on many-valued logic have been
authored by Rosser and Turquette [8], Ackermann [9], and
Rescher [10]. The book by Rescher contains a bibliography
that is complete up to 1965. A review paper by Wolf [11}]
gives references updated to 1974. More recent reviews
include Hurst {12] and Guccione et al. [13].

Since Zadeh introduced the notion of a fuzzy set, there
has been an impressive growth of interest in fuzzy logic, and
in techniques of approximate, imprecise, and inexact
reasoning related to the notion of fuzzy sets.

Since we refer to both fuzzy sets and fuzzy logic, we shall
recall some very basic notions on both subjects.

Let X be a nonempty set, and let 7 denote the unit interval
of the real line, I = [0, 1]. After Zadeh [14], a fuzzy subset of
X (equivalently, a fuzzy set in the universe X) is defined to
be a function f: X — I. Given any x in X, the degree of
membership of x in X is f(x). The union and the
intersection of any two fuzzy sets f; g in the same universe X
are defined as

(f U g)(x) = max{f(x), g(x)},

(f N g)(x)=min{f(x), g(x)}.

Equipped with union and intersection, the set .£(X) of the
fuzzy subsets of X is a complete distributive lattice. The least
element of .£(X) is the function X — I which is everywhere

0; the greatest element is the function which is everywhere 1. 553
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The complement f of a fuzzy set f is defined by
Sx)y=1-fx).

Equipped with union, intersection, and complement, £(X) is
a deMorgan algebra [22] (with complement acting as
involution).

A more specialized notion of fuzzy sets, that of graded
sets, is obtained if the unit interval 7 is replaced by any finite
subset of I containing both 0 and 1. Graded sets exhibit
additional algebraic properties that are useful in many
applications [5]. For example, graded subsets of the universe
of discourse are assigned to monadic predicates by
interpretations in many-valued logic.

The term fuzzy logic does not have a unique meaning in
the literature. Sometimes it addresses a local logic in which
the truth values are fuzzy subsets of the unit interval [15].
Other variants of fuzzy logic and their possible applications
in expert systems are discussed in Zadeh [16] and Prade
[17]. The latter paper also contains extended references to
recent literature on the subject.

In the present paper, by fuzzy logic we mean the special
many-valued logic investigated by Marinos [18], Chang and
Lee [19], Lee [20], and Aronson et al. [21], among others. In
this sense, fuzzy logic is a many-valued logic in which the
truth-set is the unit interval of the real line, and the logical
operations of negation, conjunction, and disjunction are
those expressed by (1)—(3). In this restricted sense, fuzzy
logic is a straight generalization of Lukasiewicz’s logic.

We conclude our extremely concise account of many-
valued logic by quoting a note of criticism made by Birkhoff
on, in a sense, all of the efforts to construct many-valued
logics [22]. The core of Birkhoff’s argument is the following:
As long as we equip the set of all the propositions with one
logical conjunction and one logical disjunction, we are
implicitly treating that set as a Boolean algebra, and there is
no structure-preserving application of a Boolean algebra to a
linearly ordered set with more than two elements.

We shall keep this remark in mind when defining our
system of many-valued logic. Actually, we do not assign a
structure of Boolean algebra to the set of all propositions.

Our starting point is our everyday language, and the way
we use it in everyday speech. Of course, we use language not
only for communication but also for reasoning. There are
both analogies and differences between the way we use a
nonformal language like English for reasoning about our
everyday affairs, and the way a mathematician uses it for
proving a theorem. In both cases arguments such as “if 4 is
true, then B is true” or, say, “if either 4 or B is true, then C
is false” are used. However, in everyday speech we are less
drastic. For example, when we use arguments of the form
“if A, then B,” we usually mean “B is likely to be true if 4 is
true,” or “B is often true when A is true,” and so forth.

Even the statement that 4 is true may have different
meanings according to the context in which it is made.
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We concentrate on certain patterns of informal reasoning,
as performed in nonformal language, which seem to suggest
that certain more articulate logical operations might be
useful. In current speech we often refer to properties and
relations that are obviously complex and require compound
predicates for adequate translation into a symbolic language.
The resulting compound predicates are often assembled
from simpler components by means of certain repetitive
patterns of and and or.

Let us consider some more examples. Suppose that b is a
person, and we assert that & is a computer scientist. If we
analyze the meaning of this statement, we easily recognize
that it is a very complex statement, in which numerous
assertions about b are implied. When we say that someone is
a computer scientist, we usually understand that he or she
knows something of all the relevant subfields of computer
science, and, very likely, knows almost everything of some of
these subfields. Thus, “computer scientist” is indeed a
composite property; in its definition, a certain pattern of
logical conjunctions and logical disjunctions occurs.

This pattern repeats itself at various levels. For example,
let us make a “zoom” over two of the relevant subfields of
“computer science,” namely “programming languages” and
“artificial intelligence.” When we say that someone has some
knowledge of programming languages, we probably mean
that he has heard of all the relevant programming languages,
and perhaps has good knowledge of a few. When we say that
somebody is a researcher in artificial intelligence, we
probably mean that he understands the basic facts of, say,
high- and low-level vision, robotics, knowledge
representation, etc., and has deep knowledge of, say,
theorem proving and automated reasoning (or vice versa, or
any other combination of well-known and less-known topics
in artificial intelligence).

In everyday language we also combine these complex (and
inexact) properties and relations to form more complex and
structured attributes. Again, the new attributes do not often
fit such schemes as pure logical conjunction or disjunction.
Often they occur as compound notions sharing features from
both conjunction and disjunction.

Analogous situations are found in various other semantic
domains; for example, “beautiful,” “clever,” “polite” are
complex attributes, and their symbolic translation into a
formal language may be easier if certain weak, or
generalized, logical operations of conjunction and
disjunction are available. The same generalized operations
may be useful for assembling new, and more complex,
properties from “beautiful,” “clever,” “polite,” etc.

In this paper we introduce logical operations which, in a
sense, mimic this mixed and graded character of the
connectives actually used in informal reasoning. We
introduce two families of generalized logical operations, a
family of generalized disjunctions and a family of
generalized conjunctions.
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We define a symbolic translation for those statements of
the conversational language which assert that the facts
A, B, -, Care all more or less true and that possibly some
of them are quite true. For each grade of truth m we define a
generalized (or weak) operation of logical conjunction A
such that the proposition

has a degree of truth greater than or equal to m if and only if
all the facts A, B, - - -, C have a degree of truth of at least m.
If this condition is met, the truth value of the above
proposition will be set to be equal to the maximum of the
truth values 7(4), T(B), - - -, T(C).

A dual operation of logical disjunction corresponding to {n\
will be defined on the basis of purely algebraic
considerations. For each grade of truth m we shall define a
generalized (or weak) operation of logical disjunction V such
that the proposition

A\"/IBX\”/IC

has a degree of truth greater than or equal to m if and only if
at least one of the facts 4, B, - - -, C has a degree of truth of
at least m. If this condition is met, the truth value of the
proposition is set equal to the minimum of those values
T(A), T(B), - - -, T(C) which are above the threshold m.

3. Extended Post systems
Any logical system has three basic components: a formal
language, a semantics, and a set of inference rules.

The language of a logical system is a set of well-formed
formulas built from certain primitive symbols according to
given rules of formation. So long as we are concerned with
the syntactical definition of the language, the formulas of the
language remain uninterpreted.

The language of a logical system is so constructed that
various sentences of the natural language can be translated
into it, provided only that certain signs have received
determinate interpretations. Interpretations are dealt with in
the semantics of the language.

The rules of inference permit us to deduce statements in
the language from other statements in the language.

We specify a logical system, the Extended Post system of
order p [or the p-valued EP system, or even the EP(p)
system, for short], where p is any integer greater than or
equal to 2. In this section we define the language of the
system and its semantics, while in the next section we
present and discuss the inference rules. For p = 2, the
p-valued EP system reduces to ordinary two-valued
first-order logic.

It may be possible to define the language of the p-valued
EP system along purely syntactical lines, without mentioning
semantic notions such as truth and falsehood and
interpretations. It is, however, more convenient to take into
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account, from the very beginning, that our formal language
is to be used as a medium for expressing statements from the
conversational language. A great many of these statements
(some would say all) are about some specific domain of
objects; i.e., they describe some of the properties of certain
objects and some of the relations among them. Thus, we find
it convenient to refer from the outset to a fixed, though
unspecified, domain D of individual objects. And we shall
bear in mind that the well-formed formulas of our language
must be suitable for interpretation as assertions concerning
the objects in D.

We begin by discussing the semantic notion of truth-set.
The truth-set is the set of the possible truth values of a
proposition. In two-valued logic, truth and falsehood are the
only possible truth values of a proposition. If truth is
designated by 1 and falsehood by 0, V(2) = {0, 1} is the
truth-set of two-valued logic. In a p-valued EP system, the
truth-set is defined to be

V(p) = {0’ 1/(p_ l)s e :(p_z)/(P_ 1)’ 1}'

A proposition can take any element of V(p) as a truth value.
We regard the elements of the set V(p) as actually
representing various degrees of truth. For example, the truth
values in a four-valued system might be interpreted as truth,
plausibility, implausibility, and falsehood.

For notational convenience, each truth value is assigned
a nonnegative integer as its label. To this end, let J(p)
denote the set of the first p nonnegative integers,
I(p)=10,1,---, p— 1}, and let u: I(p) — V(p) be such
that u(m) = m/(p — 1) for all min I(p). Any m in I(p) may
then be regarded as a pointer to the truth value u(m), or,
equivalently, as the label of u(m).

The set I(p) possesses a number of algebraic properties.
Equipped with V (maximum) and A (minimum), I(p) is a
complete distributive lattice. The least element is 0; the
greatest is p — 1. Equipped with V, A, and ~, where ~ is the
unary operation such that ~m=p—1—m, I(p)isa
deMorgan algebra. Equipped with V, A, and [.], where [.] is
the unary operation (called cycle) such that [m] = m + 1 for
m#p—1and[p— 1] =0, I(p) is a Post algebra of order p.
By the bijection u, the algebraic structures defined on I(p)
can be carried over onto V(p). In particular, for any v in
V(p), given that v = u(m), we define [v] and ~v by means of
[v] = u[m] and ~v = u(~m), respectively. Note that ~v
turns out to be just 1 — v.

The primitive symbols of our languages are (1) parentheses,
(2) individual, functional, and predicate symbols, and (3)
logical connectives and quantifiers.

There are two parentheses, the left parenthesis “(” and the
right parenthesis “)”.

The individual symbols are names, or (if one prefers)
designations, for individual objects. There are two kinds of
individual symbols, namely individual constants and
individual variables. An individual constant is a designation
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of a specific member of D; an individual variable is a
designation of a generic member of D, For individual
constants we use lowercase letters a, b, ¢, - - - taken from the
beginning of the alphabet. For individual variables we use
lowercase letters x, J, z, - - - taken from the end of the
alphabet.

An n-place function symbol is a designation of a function
on D" to D, where D" is the nth Cartesian power of D. For
function symbols we use lowercase letters such as f; g, 4, - - -
taken from the middle of the alphabet. In examples, we also
use for function symbols various letter groups, all lowercase.
For example, if the domain of individuals D is the set of the
natural numbers, then prod might designate the product of
two such numbers (a function from D X D to D). Thus, if a
and b are individual constants, hence designations of certain
numbers, then prod(a, b) denotes the product of these
numbers.

An n-place predicate symbol is a designation of a function
on D" to the truth-set ¥(p). Note that, for p = 2, an n-place
predicate symbol turns out to be a designation of a subset of
D" i.e., a name for an n-place relation among the
individuals in D. For p > 2, an n-place predicate symbol is a
designation of a graded subset of D", i.e., an n-place graded
relation in D. For predicate symbols we use the capital
letters P, O, R, - - - . In connection with examples, we also
use for predicates significative letter groups with the first
letter capitalized.

Terms and atomic formulas are defined as in two-valued
logic.

Terms are defined recursively as follows: (1) An individual
constant is a term. (2) An individual variable is a term. (3) If
[ is an n-place function symbol and ¢,, - - -, ¢, are terms, then
S, -+, t,) is a term. (4) Nothing is a term unless its being
so follows from (1)~(3).

If P is an n-place predicate symbol and ¢,, - - -, 7, are
terms, then P(¢,, - - -, ¢,) is an atomic formula (briefly, an
atom). Nothing else is an atomic formula.

Example If our language were to be applied to a domain
comprising a specified group of people, a might be taken as
an abbreviation for Charles Smith, b for Mary Miller, etc. In
this domain Beautiful might designate the property of being
beautiful, and Likes might designate the relation that obtains
between two persons when the first likes the second. Both
this property and this relation are graded attributes: Beauty
is distributed among people in various degrees, and there are
various grades of appreciation between any two persons.
According to the above definition, Beautifil(b) and
Likes(a, b) are atomic formulas in our language.
Beautiful(b) is the translation into our formal language of
the English sentence “Mary Miller is beautiful,” while
Likes(a, b) is the translation of “Charles Smith likes Mary
Miller.”

In a preceding section we gave heuristic motivations for
the association of distinct logical operations of disjunction
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and conjunction with each truth value. We now list the
logical connectives of a p-valued EP system, and specify
formally what strings of signs are to be considered well-
formed formulas in the language of the system.

The logical connectives of the language are ~ (not),

[.] (cycle), X (m-disjunction), {n\ (m-conjunction),
2 (m-implication), and 5 (m-equivalence), where m is any
element of I(p).

We save parentheses by assigning decreasing ranks to =,
2> X, {n\, ~, [.], and requiring that the connective with
greater rank reach further.

Well-formed formulas (WFFs) are defined recursively by
the following rules of formation:

RF1. Atoms are WFFs.
RF2. If A is a WFF, then ~A4 and [A] are WFFs.

RF3. If A and B are WFFs, then A = B, A 2 B, A \"/l B,
A {n\ B are WFFs.

RF4. If Fis a WFF, and x is a free variable in F, then both
(\r{lx)F and ({n\x)F are WFFs.

It is understood that m can be any member of I(p). With
reference to Rule RF4, bound and free variables are here
defined in exactly the same way as in ordinary two-valued
logic.

With the definition of well-formed formulas, the
specification of the syntax of the language is completed. In
connection with the specification of the language, a few
aspects of the semantics have already been mentioned.
However, the specification of the semantics is not completed.
It remains for us to specify what we mean by an
interpretation, and how the truth value of a formula is
evaluated under a given interpretation.

To define an interpretation for a formula we must specify
a domain D together with an assignment of values to all
value-bearing signs in the formula. More specifically, an
interpretation I of a formula F consists of a nonempty set D,
and an assignment of values to each constant, function
symbol, and predicate symbol occurring in F as follows:

e To each individual constant, assign an element in D.

e To each n-place function symbol, assign a mapping
D" = D.

® To each n-place predicate symbol, assign a mapping
D" S V(p).

Note that, at least in general, an interpretation assigns a
graded subset of D" to each n-place predicate symbol.

Let T(A) (TA, if there is no danger of confusion) denote
the truth value of a well-formed formula 4. For every
interpretation of a formula over a domain D, the formula
can be evaluated to one of the truth values in V(p) according
to the following rules of evaluation:
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REL. T(~A4) =1 — T(A).
RE2. T[A] = [TA].

‘min{7A4, TB} if TA, TB < u(m)
RE3. T(4 VY B)= or TA, TB= u(m),
max{TA, TB} otherwise.
‘max{TA, TB} if TA, TB < u(m)

RE4. T(4 N B)= { or TA, TB = u(m),

min{TA, TB} otherwise.
RES. T(4 D B)=T((~4) \ B).
RE6. T(4 = B)=T((A42 B) A (BD 4)).

RE7. T(Y X)F) = inf{T(F(d)) : d € D, T(F(d)) = u(m)}

Vinf{T(F(d)):d € D, T(F(d)) < u(m)}.
REB. T((AxX)F) = sup{T(F(d)):d € D, T(F(d)) = u(m)}

A sup{T(F(d)):d € D, T(F(d)) < u(m)}.

A few comments may be convenient. Rule RE1 is the rule
of evaluation for negation in fuzzy logic [19, 20], while RE2
is the analogous rule in the many-valued propositional
calculus introduced by Post [7]. Rules RE3 and RE4 are the
explications here proposed for the weak (or generalized)
notions of logical disjunction and conjunction that have
been informally discussed in the preceding section. Rules
RES5 and REG6 define the truth values of 4 D Band A 5 B in
terms of those of ~A4, A V B,and 4 /\ B. Indeed
A 2 Band 4 5 Bareto be regarded as abbreviations of
~A X B and, respectlvely, 4 2 B) {n\ (B 2 A). Finally, RE7
and RES are the infinitary versions of RE3 and RE4,
respectively.

For the sake of clarity, we rephrase RE8 in words. Let «
be the maximum of the values T(F(d)) computed over those
d € D for which T(F(d)) = u(m); let 8 be the maximum of
the values T(F(d)) computed over those for d € D
for which T(F(d)) < u(m). Then the truth value of the
formula ({n\x)F is min (e, B). It is understood that the least
upper bound and the greatest lower bound of an empty set
of members of V(p) are 1 and 0, respectively.

Example Let P be a monadic (one-place) predicate
symbol. Consider the formula (/3\ X)P(x) in a six-valued EP
system. Assume that the domain is D = {1, 2}.

1. Consider an interpretation in which the assignment for P
is P(1) = 1/5 = 0.2, P(2) = 4/5 = 0.8. In this case
{d € D:T(P(d)) = u(3)}
={d€ D:T(P(d))=0.6] = {2},
{d€ D:T(P(d)) < 0.6} = {1}.
Thus, & = 0.8, 8 = 0.2, T((Ax)P(x)) = min(e, 8) = 0.2
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Truth tables of the operations of logical conjunction and disjunction
of the three-valued Extended Post system.

e

2. Consider an interpretation in which the assignment for P

is P(1) = 1/5 = 0.2, P(2) = 0. In this case

{de D:T(P(d)) = 0.6} =
{deD:T(P(d))<0.6} =
Thus, e =1, 8=0.2, T(( /3\x)P(x)) = min(a, 8) =

The truth tables of the operations of the EP(3) system are
given in Figure 1.

4. Algebraic properties of the Extended Post
system

At this point both the syntax and the semantics of our
system have been specified. A few comments may again be
convenient, We have been led to our system by two basic
issues. On one hand, we have tried to mimic everyday
conversational language by introducing a set of new logical
operations each sharing features of both the conjunction and
the disjunction of usual logic. On the other hand, we have
tried to meet the formal requirements set forth by Birkhoff
for many-valued logics. We are now interested in
investigating the formal properties of our system. In
particular, we are interested in understanding to what extent
the algebra which underlies the system can be regarded as
actually generalizing Boolean algebra, i.e., the algebra of
ordinary two-valued logic.

Our first step is to establish a lemma showing that there
exists a bijection I(p) — I(p), namely the cycle operation,
which carries \m/ onto X and {n\ onto [Q]. As an immediate
consequence, all of the operations of m-disjunctions are
pairwise isomorphic: In a sense, any one of them is a shifted
copy of any other. The same applies to m-conjunctions. The
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lemma will prove useful since it allows us to transfer
everything we know of the pair of operations (¥, /o\)

to any pair of operations (X, {n\). It follows from RE3 and
RE4 that ¥, {)\ coincide with the well-known operations of
minimum A and maximum V, respectively, in the truth-set
V(p); hence we have detailed knowledge of them.

We shall say that two formulas 4 and B are logically
equivalent if A and B always take the same truth value in
any interpretation. In some cases we use the sign = of the
metalanguage as an abbreviation of “is logically equivalent
to.”

Lemma For any m € I(p) and any pair A4, B of ground
atomic formulas (i.e., atomic formulas not containing
variables),

(@ (4 B=[4] Y, [B],

(b) [4 /A B] = [4] A\ [B].

Proof Only part (a) is proved; part (b) can be proved
analogously. Let m < p — 1. We may have T4 = u(m + 1),
or TA = u(m), or TA < u(m), and independently,

TB = u(m + 1), or TB = u(m), or TB < u(m). Thus, nine
cases should be considered. Since X is obviously
commutative, we consider only six cases:

1. TA, TB = u(m + 1). Then also T4, TB = u(m), hence
T X B)=TA A TB, whence T[4 X B] =
[TA A TB]. On the other hand, T[A4], T[B] are either
greater than u(m + 1) or 0:

(i) If they are both greater than u(m + 1) or both 0, then
T([4] v, [B]) = T[4] A T[B] = [TA] A [TB] =
[TA A TB].

(ii) If, say, T{4) = 0 and T[B] = u(m + 1),
T([A4] [\4] [B])=0V T[B]=T[B)=[TA A TB],
since, in this case, 74 = 1.

2. TAz u(m + 1), TB = u(m). In this case T(4 V B) =
u(m) by RE3, hence T[4 X B] = u[m]. On the other
hand, T[B] = u[m], hence, again by RE3, T({4] [\»/;1 [B))
= u[m).

3. TAz u(m+ 1), TB< u(m). T(4 XB) =TAVTB=TA
thus 7{4 V B] = [TA]. On the other hand, if T[4] =0,
then T([A] [\4] [B]) =0 = [TA]. If T[4] =
u(m + 1), then T([4] [Xl [B) =T[4] V T[B] =
T[A] = [TA].

4. TA = TB = u(m). In this case the proposition holds
trivially.

5. TA =u(m), TB < u(m). T[4 V B] = T([4] [¥] [BY) =
u[m] by RE3.

6. TA, TB <u(m). T(4 V. B) = TA A TB, thus
T[4V B] = [TA A TB]. On the other hand, T[4],

T[B] < u(m + 1), thus T([4] IXI [B]) = T[4A] A T[B] =
[TA A TB).
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It is left to the reader to check that the proposition holds for
m=p-—1.

As noted, we have detailed knowledge of the properties of
¥ and {)\ Both operations are associative, commutative,
idempotent, and equipped with both neutral and absorbing
elements. Indeed, if B is a O-tautology, i.e., if it takes the
truth value 0 in all interpretations, then B is absorbing for ¥
and neutral for 4)\; i.e., for any WFF 4,

A \o/ B=B, ANB=A

If Cis a 1-tautology, C is neutral for \f and absorbing for J\,
or

AVC=A, ANC=C.

[

The two operations ¥ and /0\ are djstributive to one another.
Besides, there exists a unary operation ~ such that

~~A=A,

~(4 \0/ B) = (~4) ) (~B),

~(A )\ By= (~4) Y (~B).

By the above lemma, all these properties can be transferred
from the pair of operations (X, 4)\) to any pair (X, Q). Thus,

we have the following propositions, in which m is any
element of I(p), and 4, B, C are any well-formed formulas.

Proposition 1

@ @YB)YC=4YBYC),
ANBNC=ANBAOC),
W) AV B=~BVA ANB~BAN\A,

©)AYA=d4, ANA=A

Proposition 2
(a)A\A(B{"\C)z(A\AB)(n\(A\AC),
(b)A{n\(B\”/'C)z(A/”\‘B)\"((A{n\C).

Let n be the inverse image of m in the cycle operation; i.e.,
[n] = m. Let M and N be an m-tautology and an n-
tautology, respectively.

Proposition 3
(@ AYM=M, ANM= A,
(b) AV N=A, AAN=N.

Let us denote by 5 the mapping I(p) — I(p) which implies
the following commutative diagram:
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I(p)¢———— I(p)

[1” [.1"

I(p)(~— I(p)

Considered as a unary operation in the set of all well-formed
formulas, the operation 7 is such that, for any WFF 4,

~A=[~AT

Since ~ is the involution of the deMorgan algebra associated
with the pair (V , /o\), =~ is the involution of the deMorgan
algebra associated with the pair of operations (\4, A).

Proposition 4

(@) ~~A=A4,

®) ~AY B)=(z4) \(B),
© 7ANB)= (A Y (3B).

For all m in I(p), the set of all WFFs equipped with X, /”\,,
and 7 is a deMorgan algebra. We now investigate whether
there are any relationships among all these algebras.

The method of proceeding based on pure semantics, i.e.,
rules RE1-RES8, which we have followed up to now, is the
most usual in logic. For the results to be derived next,
however, it would lead to laborious proofs. For the sake of
brevity, in the rest of this section we proceed along algebraic
lines.

We define the 2p binary operations V, e
over the set I(p),

xVy= {mm(x, »)

’p\—/’/o\"“’

1

if x,y<morx,yzm,

max(x, y) otherwise,

if x,y<morx,y=zm,
otherwise.

_ Jmax(x, y)
XmY _{min(x, ¥)

Equipped with these operations and the unary operations ~
and [.], the set I(p) is denoted .£(p). Obviously, everything
said of V and /\ as logical operations between WFFs of the
EP(p) system can be reformulated to apply to .£(p). For
example, the above lemma states that, for any x, y, m in
I(p), we have

x Y yI=1Ix]Y, (5,
e Ayl =[x A D)

The converse holds; that is, the results derived for .£(p) can
be reformulated to apply to the set of WFFs of a p-valued
EP system.

Remark Everything said of /(p) can be restated in terms of
V(p). It is understood that all the algebraic structures defined
on I(p) are carried over onto V(p) along the bijection u.
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Proposition 5
For all m in I(p),

(a) VY is distributive with respect to [\'4],

(b) &1 is distributive with respect to A.

Proof Only part (a) is proved; part (b) can be proved
analogously. ¥ is distributive to V by direct verification.
Now assume that V is dlstnbutlve to V By repeated
application of the bas1c lemma, we have

¥ [tm]] ») [XI z

=[x, D7 Y, =17
=107 Y, DT Y [217]
=[0I Y 217D Y, O Y 217
=[x Y 217, (1 Y 217

=(x [\"/1] ), [[m]) 64 [\’él 2).

Proposition 6
For all x, m in I(p),

xx[x]x...x[x]""=

XA AT =[mT
Proof The elements x, [x], - - -, [x]°”" form the totality of
the elements of I( p). Since X is associative, commutative,

and idempotent, for any y in I(p) we have

PYGY Y Y I =x Y Iy Y

Since there can be at most one absorbing element, the first
equality is proved. The second equality can be proved
analogously.

In Proposition 3 we mentioned m-tautologies. Proposition
6 proves the existence of m-tautologies for all m. Indeed, if A
is any WFF, then

AY ALY -y A
takes the truth value u(m) in all interpretations.

Proposition 7
@ ~x Yy =(x) A (~)

(B) ~(x A »)=(~x) V, (~¥.

Proof Only part (a) is proved; part (b) can be proved
analogously. Assume that either x, y =2 m or x, y < m. Then
X X y=x A y. It follows that ~(x X YV=~xAy)=
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? Distributivity graph of the operations of logical conjunction and
disjunction of the Extended Post system of order 3.

(~x) V (~»). On the other hand, our assumption on x, y is
equivalent to the assumption that either ~x, ~y <p — m or
~Xx, ~y=p - m., Thus (~x) p[\m (~y) = (~x) V (~y). Now
assume that x = m, y < m. Then x \4 y=XxV y, whence
~(x X Y)=~(xV )= (~x) A (~y). But x = m implies
~x<p—m,and y < mimplies ~y = p — m. Thus (~x) p[\m
(=) =(~x) A (~)).

On the basis of the preceding propositions, we may try to
draw a picture of a p-valued EP system. We have p logical
operations of disjunction X, Y AR p\_/l , all exhibiting the
usual properties of binary logical operations. Each operation
is associative, commutative, idempotent, and equipped with
both an identity and an absorbing element.

Taken together, these operations form a distributivity
cycle; ie., \({ is distributive to \{, Y is distributive to y, ceey
p\—/l is distributive to ¥ To each disjunction V there
corresponds a dual operation of conjunction {n\ Pairs of dual
operations are distributive to one another; in addition, the
identity element of one operation is absorbing for the dual
operation. Together with ;, each pair (X, {n\) forms a
deMorgan algebra. The conjunctions exhibit the same
algebraic properties as the disjunctions. Taken together, they
form a distributivity cycle in the reverse order; i.e., /0\ is
distributive to A, A is distributiveto A,---, Ais

17 p—1 . 2 1
distributive to /0\.

Thus, a p-valued EP system exhibits an extremely uniform
algebraic structure. This uniformity can be made even more
evident by considering the symmetries, i.e., the
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automorphisms, of the system. Let G(p) be a graph such that
(1) its vertices are the operations \”/, and {n\, me I(p), (2)
there is an arc from vertex g to vertex b whenever a is
distributive to b. For p = 3, G(p) is shown in Figure 2. It can
be verified easily that the group of the automorphisms of
G(p) is isomorphic to the dihedral group of order 2 p. That
implies that, given any two operations a, b of disjunction (or
conjunction), there is an automorphism which carries a into
b. From a logical point of view, that implies that the truth
values in ¥(p) all stand on one and the same footing, and
one can choose the pair 0, 1 in p distinct and logically
equivalent ways.

So far, the algebraic properties of a p-valued EP system
have been investigated to some extent. Now it may be of
interest to relate the results derived above to the results
obtained on Post algebras after Post’s seminal work. The rest
of this section is dedicated to a brief comparison of results.

The first algebra of p-valued truth-functionally complete
logic corresponding to the work of Post was formulated by
Rosenbloom [23] and called Post algebra of order p, p = 2.
The currently adopted formulation of Post algebras using
disjoint operators was given by Epstein [24]. Epstein
improved Rosenbloom’s axiom set considerably, and gave a
complete representation theory of Post algebras.

One of Epstein’s most important results was that every
Post algebra of order p is isomorphic to a lattice of
continuous functions from a Boolean space to a discrete
p-element chain. This result leads to formulas that formally
resemble those of a p-valued EP system. For example, when
the class of Post algebras of order p is described as an
equational class of algebras, p unary operations C;, C,, -« -
C,_, are introduced, satisfying

C,(xVy)=C,(x)V C,(»), )
C.(xAy)=C,(x)A C,(»). (5)

These unary operations resemble the operations ; that occur
in Proposition 4. However, the two sets of unary operations
are different, and there is no simple way of expressing one in
terms of the other. For example, the C,, satisfy

C, () A~C,(x)=C, () A~C,(x) =1,

while the operations 5 do not.

After the work of Epstein, numerous authors focused their
attention on generalizations of Post algebras. The review
paper by Dwinger [25] provides a detailed account of the
relevant efforts in this direction. We mention the generalized
Post algebras of order ™ since they also are based on
(infinitely many) unary operations satisfying Equations (4)
and (5) but having yet a different meaning.

Generalized Post algebras of order ™ have been studied
by H. Rasiowa [26, 27] and E. Orlowska [28, 29], among
others.

By way of conclusion, we note that in Epstein’s axiomatics
for Post algebras, and in all the numerous generalizations of
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Post algebras proposed so far, only the two binary lattice
operations V and A occur. Thus, the adoption (after proof of
existence) of distributive cycles of generalized ANDs and
ORs is unique to EP systems.

5. Inference in Extended Post systems

Up to this point we have considered the syntactic and the
semantical aspects of EP systems. In this section we
investigate inference in EP systems. We also discuss possible
applications of EP systems in problem-solving and question-
answering systems.

We assume that the available knowledge base consists of
facts and rules which are reliable to some specified degree of
confidence. They are not necessarily fizzy or vague. What is
relevant is the effect upon them of an error whose maximum
magnitude is assumed to be known.

We consider the problem of deriving consequences from
the knowledge base and, at the same time, of associating a
degree of truth with each of the consequences that we derive.

We begin by considering a very simple case. Assume that
we work with, say, p = 100 truth values, and all the data we
start with are affected by the same maximum error of, say,
20 percent. In this situation we might be interested in logical
consequences of our data within a degree of confidence of 80
percent.

Note that this is a simplified situation. In a realistic
situation we start with facts and rules each affected by its
own maximum error value. In an actual application there
will be facts and rules which are no less than true, facts and
rules which are reliable up to a degree of confidence of, say,
95 percent, and so on.

Let us consider the simplified situation. We could take
advantage of the fact that in a p-valued EP system we
actually have p subsystems (\m/, {n\ [.]), m € I(p), each
isomorphic to a classical p-valued Post system, and all
interleaved in one and the same EP system. Since it is
isomorphic to a Post system, each of these subsystems is
functionally complete. Thus, we could single out the proper
one of these subsystems and work just with it, ignoring the
rest of the full EP system. If, e.g., p = 100, and the available
data are all reliable up to a degree of confidence of 80
percent, we could single out the subsystem based on
v, {n\, [.]), m = 80. The problem with this choice is that the
cycle operation {.] does not behave as a negation (though, in
his early work, Post treats it as a generalized negation).

As we shall see, a better choice is to adopt a subsystem
based on the operations ~, \4, {n\, pym, p[\m Note that, by
Proposition 7, the operations pym, p[\m are actually
unessential, since they can be expressed in terms of ~, \'ﬁ, {n\
Again, m is to be selected according to the desired
degree of approximation. We denote EP(p, m) such a
subsystem of EP(p).

The simplified situation considered above cannot be
expected to occur very frequently in practice. In real
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applications we must be able to derive consequences from
facts and rules given with different degrees of truth. As we
shall see, each single derivation step is performed in a well-
defined EP(p, m) subsystem. However, all the EP(p, m)
subsystems, m > %, are in general used in a full derivation
process.

In the following, we single out a fixed EP(p, m) subsystem
and investigate it from a logical, rather than an algebraic,
point of view. Before doing that, however, we state the two
basic inference rules of an EP(p) system. In a rather evident
way, these are straight generalizations of modus ponens and
generalization of ordinary two-valued logic.

Definition 8
A well-formed formula S is m-true (under an interpretation
I) if and only if T(S) = u(m) (under 7).

Remark Obvious references to an interpretation are
omitted.

Definition 9
A WFF S'is m-false iff 7(S) = 1 — u(m).

The two basic inference rules of a p-valued EP system can
now be formulated as follows. For every pair of WFFs F, G,
and all m in I(p) such that u(m) > %,

e IfFand F 2 G are m-true, infer that G is m-true.
o If Fis m-true, infer that (/réx)F is m-true.

The justification for so straight a generalization of
two-valued logic can be made clear by examining a few
immediate properties of any EP(p, m) subsystem. In what
follows, m is such that u(m) > %

Proposition 10
A WEFF S'is m-true iff ~S is m-false.

Proof T(S)zum)if —T(S) = —u(m)iff 1 = T(S) =1 -
u(m). Thus, by RE1, T(S) = u(m) iff T(~S) = 1 — u(m). By
Definition 9, the proposition follows.

Proposition 11
A X B is m-true iff either 4 or B is m-true, or both are m-
true.

Proof Let A be m-true, i.e., T(A) = u(m). If T(B) = u(m),
by RE3 we have T(4 X B) = min(TA, TB) = u(m); hence 4
VB is m-true. If T(B) < u(m), by RE3 we have T(4 \’5 B=
max(7A4, TB) = TA =z u(m); hence A X B is again m-true.
Since X is commutative, the if part of the proposition is
proved. Let 4 \”/l B be m-true, i.e., T(4 X B) = u(m). By
RE3, either 7(4 \’4 B) = min(TA4, TB) or T(4 \"/l B)=
max(TA, TB). In the former case, T(4), T(B) = u(m) and
both A4 and B are m-true. In the latter case, since 7(4 X B)
= u(m), we have either T(4) = u(m) or T(B) = u(m).
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Proposition 12
A {n\ B is m-true if both 4 and B are m-true.

Proof Analogous to that of Proposition 11.

Proposition 13
If A is either m-true or m-false, then A 2 A is m-true.

Proof Let A be m-true. By Proposition 10, ~4 is m-false.
Then, by Proposition 11, (~A4) \’4 A is m-true. Thus, by RES,
A 2 A is m-true. If A is m-false, then ~A4 is m-true, and
424 is again m-true.

Proposition 14
Assume that 4, B, C are each either m-true or m-false. If
A 2 Band B 2 C are both m-true, then 4 2 C is m-true.

Proof By RES5 and Proposition 2,
H=A2JB)NBIC)

~(~A\ B)\ (~BY C)
~(~AN~B)\ (~ANC)\ (BA~B)Y (BAC).

By Propositions 10 and 12, (~B) {n\ B is m-false. Let

A 2 Band B 2 C be m-true. By Proposition 12, H is
m-true. (1) Assume A is m-true. By Propositions 10 and 12,
both (~A4) /’> (~B) and (~A4) /"\l C are m-false. Since H is m-
true, by Proposition 11, B {n\ C is m-true. By Proposition 12,
that means that both B and C are m-true. Thus (~A4) \’4 C,
ie., A 2 C, is m-true. (2) Assume A is m-false. Then

(~A4) X C, hence 4 2 C, is m-true by Propositions 10 and
11.

Proposition 15
If both A and B are either m-true or m-false, then
“ AB)DA is always m-true.

Proof 4 {n\ B is either m-true or m-false. By RES5,

(4 A B) 24 is logically equivalent to ~(A4 AB)V A. If

A {"\ B is m-true, A is m-true by Proposition 12; thus, by
Proposition 11, ~(4 Q B) \4 A is m-true. If 4 {n\ B is m-false,
then ~(A4 {"\ B) is m-true, whence ~(4 {n\ B) X A is again m-
true.

Proposition 16
If A is either m-true or m-false, then A 2 v X B) is m-true.

Proof By RES, 4 2 A \”/‘ B) is logically equivalent to
~A \”/l (4 \”/’ B), whence the conclusion, by Propositions 1,
10, and 11.

Proposition 17
A2 Bis logically equivalent to ~B 2 ~A
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Proof By RES, 42 B=(~A)V B. Again by RES,
~BY~A=(~~B)V ~4=BV ~Ad=(~4)V B.

Propositions 10-17 suggest that each EP(p, m) subsystem
exhibits formal properties similar to those of ordinary two-
valued logic. It is thus natural to ask whether these systems
have properties which make them suitable for incorporation
into problem-solving systems.

Inference rules other than modus ponens and
generalization are used to derive theorems in two-valued
logic. Various theorem-proving techniques are based on the
infererence rule known as the resolution principle [30]. This
rule of inference permits a new clause to be derived from
two given clauses. The derived clause is satisfiable (i.e., has a
model) whenever the two parent clauses are satisfiable.

Resolution applies to WFFs in clausal form. A clause is
defined as a WFF consisting of a disjunction of literals. A
literal is an atomic formula or the negation of an atomic
formula (i.e., a formula with a ~ in front of it). When
resolution is used as a rule of inference, the set of WFFs
representing the available knowledge base is first put into
clausal form, i.c., is converted into a conjunction of clauses
where all variables are universally quantified. Any WFF in
the language of first-order two-valued logic can be so
converted; thus, clauses are a general form in which to
express WFFs,

Techniques based on the resolution principle play a major
role in automated reasoning. Most theorem-proving and
logic programming systems rely upon inference methods
which are variants of the resolution principle. Thus,
understanding whether a system of logic is suited for
incorporation into actual problem-solving systems is almost
equivalent to investigating whether resolution is applicable
in it.

It turns out that the resolution principle is applicable as an
inference rule in each EP(p, m) subsystem. Also, each
EP(p, m) subsystem is complete to resolution. That means
that, given any pair F, G of WFFs in one of these
subsystems, if G is m-true in all interpretations in which Fis
m-true, then G can be derived from F by means of a
resolution-refutation procedure.

These results follow from the results of Chang and Lee
[19] and Lee [20] on the applicability of the resolution
principle to fuzzy logic, and the basic lemma proved in
Section 4. We discuss briefly how the results of Chang and
Lee apply in our case. A detailed proof can be found in [4].

First, we note that, for m = 0, the EP(p, m) subsystem
reduces to fuzzy logic. Indeed, the only difference between
the two systems consists in the truth-set they adopt: The
EP(p, 0) system uses the set V(p), while fuzzy logic uses the
unit interval [0, 1]. However, the properties of the truth-set
actually used in fuzzy logic are certain algebraic properties
that are common to V{(p) and [0, 1]. That is, the truth-set is
assumed to be a complete distributive lattice with 0, 1 whose
associated ordering is total. Both V(p) and the unit interval
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have these properties. The continuity properties of the unit
interval are never actually used in the construction of fuzzy
logic. In view of that, we henceforth make no distinction
between fuzzy logic and the EP(p, 0) subsystem.

We now recall the results obtained by Chang and Lee [19]
and Lee [20] regarding fuzzy logic.

Let F, G be any WFFs in the language of fuzzy logic. An
interpretation 7 satisfies F if T(F) = % under 1. I falsifies F if
T(F)= % under 7. F is unsatisfiable if it is falsified by every
interpretation. G is a logical consequence of Fif F A ~G is
unsatisfiable. Equivalently, G is a logical consequence of F if
G is satisfied in all interpretations in which F is satisfied.

Chang and Lee proved that, given any set .S of WFFs in
the language of fuzzy logic, if all the clauses in S have truth
values in the interval [q, b], where % <a=<b=1,then we
are guaranteed that all the logical consequences obtained by
repeatedly applying the resolution principle will have truth
value between a and b.

Now let us consider a formula A4 in the EP(p, 0)
subsystem. According to our definitions, 4 is %-true under an
interpretation 7 if and only if / satisfies 4 in the sense of
fuzzy logic. 4 is %—false under 7 if and only if 7 falsifies 4.
Taking that into account, and remembering that EP(p, m) is
isomorphic to EP(p, 0) by virtue of [.]”, the above results
can be reformulated as follows. If every clause in a set of
clauses EP(p, m) has truth value greater than or equal to
u(m), and the most unreliable clause has truth value g while
the most reliable clause has truth value b, then we are
guaranteed that any clause obtained by the resolution
principle has truth value in the range [a, b].

In conclusion, inference in a p-valued Extended Post
system can be made as follows. Assume that we start with a
set § of axiomatic ground clauses with truth values in V(p).
Let S’ be a subset of S, and assume that there exists an m in
V(p), m > %, such that all the clauses in S’ are either m-true
or m-false. Then we may invoke the EP(p, m) subsystem to
derive logical consequences from S’ in the usual manner,
e.g., by Robinson’s resolution rule. All the conclusions thus
derived will be m-true.

In the rest of this section we discuss some examples.

Examplel Letp=11;thus V(p)=1{0,0.1,---,0.9, 1}.
Let Ax [A(x), if there is danger of confusion] mean “x is an
athlete,” Ix mean “x is intelligent,” Cx mean “x has
courage,” Sx mean “x will succeed in his career,” Hx mean
“x will be happy.” Assume the axioms

Ax 2 Cx, (A1)
Ix )\ Cx D Sx. (A2)

Let a be an individual. Suppose that we know the truth
values of the clauses 4a and Ja. What consequences can be
derived from Al, A2?
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If T(4a) = u(8) = 0.8, we are able to infer the inequality
T(Ca) = 0.8 from Al. If, besides, T(Ia) = u(6) = 0.6, then
T(la {5\ Ca) = 0.8 > 0.7 = u(7). Thus, we are able to infer
T(Sa) = 0.7 from axiom A2.

If T(4a) = 0.8 and T(Ja) < 0.6, then again we are able to
infer T(Ca) = 0.8. However, la /6\ Ca evaluates to less than
0.6, hence less than 0.7; thus we cannot make any inference
about the career of a.

If T(Aa) < 0.8, then we are not able to infer anything
from Al, A2.

Example 2 Let all the predicate symbols preserve their
meanings. According to axiom Al, as soon as T(4a) = 0.8,
we infer 7(Ca) = 0.8. This may seem too drastic in some
situations. One might wish a weaker rule, e.g., one allowing
T(Ca) = 0.6 to be inferred from 7(A4a) = 0.8. Then, we
replace axiom Al with

Ax 2 (Cx ) K(08)). (B1)

Here K(0.8) denotes an 8-tautology (i.e., according to the
definition given in Section 4, a formula which takes the
value 0.8 under any interpretation). Again, if T(4a) < 0.8,
we are not able to infer anything. If 7(4a) = 0.8, then

T(Ca /6\ K(0.8)) = 0.8, whence T(Ca) = 0.6. Now, if

T(Ia) = 0.7, from axiom A2 we infer that 7(Sa) = 0.7, since
in this case T(la /5\ Ca) = max{T(la), T(Ca)} = T(la). If
T(Ia) < 0.7, we cannot make any inference about the career
of a.

Example 3  Let all the predicate symbols preserve their
meanings. We keep axiom B1 and replace axiom A2 with

(Ix  Cx) D (Sx /) HX). (B2)

If T(Aa) < 0.8, we infer nothing. If T(4a) = 0.8 and

T(Ia) < 0.7, we infer only that 7(Ca) = 0.6. If T(4a) = 0.8
and T(Ia) = 0.7, then we infer that T(Sa /5\ Ha) = 0.7; that
is, both Sa and Ha are 5-true, and at least one of them is
7-true.

6. Remarks on the use of EP logic in rule-based
systems

The examples at the end of the last section show how
reasoning can be done in EP systems. It was seen that
reasoning is possible provided certain numerical thresholds
are specified. Thus, in axiom A1 there is one threshold value
associated with the implication sign; in axiom A2 two
thresholds occur, one associated with the conjunction in the
antecedent and the other associated with the implication;
analogously for the other axioms.

In view of an actual use of EP logic in rule-based systems,
we must show, or at least indicate, how these numerical
values can be determined. For example, with reference to
axiom A1, how do we know that Ax ? Cx and that it is not,
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say, Ax 2 Cx? Indeed, there is no unique translation of a
sentence like “the athletes are courageous” into the EP
language (by the way, axioms Al and A2 are two distinct
translations).

The answer to this question is suggested by the nature
(from a logical point of view) of such sentences as “the
athletes are courageous.” Sentences like this are factual (or
logically indeterminate, as logicians also say). Their truth
value cannot be established on purely logical grounds, on the
mere basis of their form. It is necessary to institute
observations. Thus, only the observation of the actual world
can tell us whether the degree of truth of the statement
asserting that the athletes are courageous is 0.8 or 0.6.

Pursuing this line of reasoning, we must specify a
methodology for assessing the numerical values in the
axioms from our knowledge of the world. One of the most
known and theoretically motivated methodologies is the
statistical approach. We discuss its application in the present
context in some detail. Its strict application would be
impractical in most cases; however, it provides a general
criterion for the selection of numerical values in the axioms.

Let us first examine a specially suggestive example. Let Px
stand for “x took examination P,” and Qx stand for “x took
examination Q.” In many-valued logic we may assume that
T(Px) = p means that x took examination P and gained p
marks, and analogously for 7(@x) = p. Let us analyze the
implication

Px2(Qx )y K(0.8)), (6)

which is formally identical to axiom BI in Example 2. On
the basis of the theory developed before, the inclusion of this
axiom in an axiom system is equivalent to the assumption
that T(Px) = 0.8 implies T(Qx) = 0.6. In other words, if we
accept this axiom, it means that we expect that an individual
taking examination P and gaining 8 marks or more would
gain no less than 6 marks if he were to take examination Q.
Now the question is this: What factual evidence can lead
us to make assumption (6)? The answer is very simple. We
accept this rule if sufficient data are available for us to infer
that almost surely (i.e., with probability 1), if an individual
gains no less than 8 marks in examination P, then he or she
will be able to gain at least 6 marks in examination Q. In
other words, the conditional probability of the event
T(Qx) = 0.6 under the condition T(Px) = 0.8 should be
equal to 1:

prob{T(Qx) = 0.6 | T(Px)= 0.8} = 1.

Note that we are in a Bayesian setting. Bayes’ theorem holds
that

prob{T(Qx) = 0.6 | T(Px) = 0.8} prob{T(Px) = 0.8}
= prob{T(Px) = 0.8 | T(Qx) = 6} prob{T(Qx) = 0.6}.
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Note that, since prob{T(Px) = 0.8 | T(Qx) = 0.6} < 1, we
have

prob{T(Px) = 0.8} < prob{T(Qx) = 0.6}.

This is obvious: In this case the event 7(Px) = 0.8 almost
surely implies the event 7(Qx) = 0.6; thus, the probability of

the event T(Px) = 0.8 cannot be greater than the probability
of T(Qx) = 0.6.

Now we try to rephrase these conclusions in terms of
axiom B1 in Example 2 above. This axiom has exactly the
same form as the one just studied, but the meaning is
different: Ax stands for “x is an athlete,” and Cx stands for
“x has courage.” We can think of T(4x) and T(Cx) as
measures of the extent to which x is an athlete and,
respectively, a courageous individual. Then, if in the actual
world the individuals who are athletes to an extent no less
than 0.8 happen, with probability 1, to be courageous to an
extent no less than 0.6, we will accept axiom B1.

Let us now consider axiom B2 in Example 3. Although
this axiom is more complex than B1, nothing changes in
principle, and we have only to rephrase the conclusions
regarding B1 in this more involved situation. In other words,
the inclusion of B2 in the knowledge base is equivalent to
the assumption that 7(/x é\ Cx) = 0.7 almost surely implies
T(Sx /5\ Hx) = 0.7. The first inequality is equivalent to the
set of inequalities

T(Ix)= 0.6, (7
T(Cx) = 0.6, ®)
T(Ix)=0.7 or T(Cx)z=0.7. 9
The second inequality is equivalent to the set of inequalities

T(Sx)= 0.5, (10)
T(Hx)=0.5, (1
T(Sx)=0.7 or T(Hx)=0.. (12)

Thus, the condition that must be satisfied in order that B2
may be accepted as a rule is the following: There must be
empirical evidence that, whenever (7)—(9) are satisfied, then
(10)—(12) are also satisfied. More specifically, the conditional
probability of the event represented by the inequalities
(10)-(12), given that the event represented by (7)-(8) is true,
should be equal to 1.

The statistical approach has sound theoretical
motivations, but in most cases it cannot be put into practice
too strictly. How can we estimate the fraction of the athletes
who are courageous? Shall we draw a random sample of
athletes and perform some tests to assign an individual
degree of courage to each member of the sample?

It is considered more practical to rely upon the degree of
confidence of the expert in his or her expressed rule. Thus,
in the case of EP logic, the expert is expected to provide the
rules, together with the thresholds that occur in them. The
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statistical methodology is of use in that it provides the expert
with a criterion for assessing the thresholds. For example, an
expert will supply rule B2 if he or she feels confident that,
whenever (7)—(9) are satisfied, then almost surely (10)-(12)
are also satisfied.

7. Concluding remarks

In this paper we have presented a system of many-valued
logic suited for handling approximate or imprecise
knowledge.

On the one hand, the system has an algebraic foundation,
and on the other hand, it provides for translation of certain
recurrent patterns of informal reasoning to logical form.

A well-known requirement set forth by Birkhoff [22] on
many-valued logics, that the truth assignment function
(denoted T in this paper) should be a morphism from the set
of all the propositions to the set of the possible truth values,
is satisfied in this system. Indeed, the set of all the
propositions and the truth-set are here equipped with
isomorphic algebraic structures, based on the two unary
operations ~ and [.], a set of generalized ANDs, and a
conjugate set of generalized ORs.

In the system of logic presented in this paper, inference
can be performed by Robinson’s resolution principle, as in
ordinary two-valued logic. Thus the system is complete to
resolution, thereby satisfying one basic prerequisite for
incorporation into rule-based systems.
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