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Parallel
encrypted array
multipliers

by S. Vassiliadis

M. Putrino
E. M. Schwarz

An algorithm for direct two’s-complement and
sign-magnitude parallel multiplication is
described. The partial product matrix
representing the multiplication is converted to
an equivalent matrix by encryption. Its reduction,
producing the final result, needs no specialized
adders and can be added with any parallel array
addition technique. It contains no negative terms
and no extra “correction” rows; in addition, it
produces the multiplication with fewer than the
minimal number of rows required for a direct
multiplication process.

1. Introduction

The realization of multipliers for digital computers has been
considered by several scientists and engineers. Many
multiplication techniques and algorithms have been
developed and proposed in the past, and some have been
implemented in actual hardware. The conventional
interactive add-shift methods for multiplication are
inexpensive to implement in terms of hardware, but their
resulting execution times are too slow to satisfy the
increasing demand for speed. Given that circuit density and
speed have increased tremendously while hardware costs
have decreased, parallel-multiplication schemes for
multiplier designs can be implemented that do meet high
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speed requirements. A variety of parallel-multiplication
techniques and algorithms have been proposed in the past.
Among the major classes of multiplication techniques are
multi-bit overlapped scanning, parallel multiplication, and
direct multiplication for array-connected matrices. The
overlapped scanning technique has been described for two-
bit overlapping by A. D. Booth [1], and has been extended
to three- and four-bit overlapping by O. L. MacSorley [2].
The correctness of the three-bit overlapped scanning
technique has been proven by L. P. Rubinfield [3], and the
generalized proof for multi-bit overlapped scanning can be
found in [4]. The parallel-multiplication technique has been
introduced by L. Dadda [5], and parallel-multiplier
algorithms can be found in [6-8]. A variety of direct-
multiplication algorithms have been proposed in the past [9-
12] that can be implemented in array-connected
configurations.

Any proposed multiplication scheme for the realization of
a fast multiplier in essence produces a matrix that contains
rows equivalent to the partial products or modified partial
products. The resulting matrix that represents the
multiplication process has to be added to produce the final
product, and some kind of counter is used to satisfy this
purpose. The most commonly used, at present, are the 3/2
counters, otherwise called carry-save adders (CSAs).
However, there are schemes that propose m/n counters, with
m, n being some natural numbers greater than 3 and 2,
respectively [5], as for example 5/3, 7/3, 15/4, etc., and
generalized counters that receive serial successive weighted
input columns to produce their sum and carry elements,
taking into account the proper weighting [13, 14], as for
example 5/5/4. The counters are placed according to some
convenient scheme, e.g., those proposed by Dadda [5] and
Wallace [15], and are sometimes connected in a special
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manner, as described for instance in [16], to reduce delay. A
summary of the major classes of multipliers can be found in
[17] and [18].

The direct two’s-complement and sign-magnitude parallel
multipliers are of particular interest since those
representations are used extensively in digital computer
architectures. When the two’s-complement representation is
considered, additional complexity arises with respect to other
representations using direct-multiplication algorithms or
techniques. This is due to the fact that the sign of the
number cannot be separated from its absolute value, as is the
case with the sign-magnitude repesentation. The implication
is that it is not possible to produce the multiplication by
multiplying the two absolute values and then appending the
separately computed sign bit to the result. The proposed
direct two’s-complement algorithms must account for the
sign of the number in some way. This is because negative
elements will be present when the partial product matrix is
created. Those elements are the result of the multiplication
of the sign bit of Y (Y being the multiplier) with every bit of
X excluding the sign bit (X being the multiplicand) and vice
versa. Therefore, element subtraction and addition must be
performed during the reduction of the matrix. The addition
and subtraction of the elements of the matrix can be
achieved by using generalized types of counters, namely
counters that can add either positive or negative elements or
a combination of both, such as the 3-to-2 counters described
in [18]. Alternatively, the partial product matrix can be
“conveniently” manipulated to eliminate the “corrections”
due to the signs. However, the resulting matrix containing
modified partial products with only positive elements
may require additional rows. Element addition and
subtraction may result not only because of the nature of
the two’s-complement notation, but also because of the way
that an algorithm or technique creates the partial or
modified partial product matrix. Again, unless generalized
adders are used, the matrix must be manipulated to exclude
the negative elements.

This paper introduces a direct algorithm to realize the
two’s-complement and sign-magnitude multiplications most
suitable for array-connected configurations. The partial
product matrix produced by the algorithm is independent of
the notation used and contains no negative elements, thus
allowing the product to be formed using array addition
schemes with no generalized counter cells. The partial
product matrix is created by using three extra bits on most
of the rows, resulting in the encryption of the negative
elements, due to consideration of the two’s-complement
notation. The additional elements need no complex logical
cells for their computation. In addition, because of the
encryption of the sign, no extra rows need be added for the
“corrections” due to the sign of the two’s-complement-
represented numbers. On the contrary, one row has been
eliminated, with a negligible addition of complexity to the
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few extra elements of the matrix. The resulting matrix is
highly regular, and therefore suitable for VLSI designs and
implementations.

2. Two’s-complement and sign-magnitude
multiplication
For two’s-complement multiplications, the 2r-bit product P,
represented in binary as (P,,_,, P,,_», * * -, Py), is formed by
multiplying the #-bit multiplicand, X, represented in binary
as (X,_,, X,—p -+ - » X,), and the r-bit multiplier, Y,
represented in binary as (Y,_,, ¥,_,, - - -, Y,). By assuming X
and Y to be two-integer numbers such that X,_, and ¥, _, are
the sign bits, X and Y can be written as

n—-2

X=-X_2""+ 73 x.2,

i=0

n-2
Y=-Y,27+ 3 Y2

Jj=0

and the product XY is equal to

n=2 n-2
P=I+I0,-X,_2""' 3 ¥2-v, 27" T x2
Jj=0 i=0

n— 2(n—1)—
=I,+10, - X, Y2 =Y, X, 2 b=t

n=2 n=3
- <X,,_, TY2+Y, ¥ X,.z">2"“, (1)
j=1 i=0
where
Hs = Xn—l Yn—122(n—1)’
n—=2 n=2
i+j
Hij= 2 E Xzyjz g
i=0 j=0

The multiplication can be produced by adding the matrix in
Figure 1, which represents the product P as presented in
Equation (1).

An immediate observation is that some elements have to
be added and some must be subtracted. The implication is
that a generalized type of adder must be used, as described
for the direct two’s-complement array multiplier by Pesaris
[9]. Alternatively, subtraction elements can be eliminated,
usually with additional rows and consequent manipulation
of the multiplication matrix, as described for example in [10]
(see Figure 2).

For sign-magnitude multiplications, the 2x-bit product P,
represented in binary as (P,,_,, P,,_,, " - -, P,), is formed by
mutliplying the #-bit multiplicand, X, represented in binary
as (X,_,, X,_,, -, Xy), and the n-bit multiplier, Y,
represented in binary as (Y,_,, Y,_,, -, ¥). By assuming X
and Y to be two-integer numbers such that X,_, and Y, _, are

the sign bits, X and Y can be written as 537
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KXo X2 Xoes X, X, X, X

Y. Y., Yoy = Y Y, Y, Yy
XY,) XY, oo XY, XY, XY, XY,

(Xl YH—I) XI Y’l—z XI YZ Xl Yl XI YD
Y, ) ALY, XY, XY,
. X3 Y’I—Z X3 YU
(Xn—syn—l) .
XY, ) Xoa¥os oot XY, P 3 XY XY
XY XY, (XY - (K1) &.Y) K.Y
Pres Py Py Py e Py F, P L Py o0 B P, Py P,

}  The multiplication matrix corresponding to Equation (1). Parentheses, asin (X, ¥, _,), denote a negative term.

n—2
X=(-1"" 3 x2,

i=0

n-=2
Y= ¥ 12,
j=0
and
n—2 n-2
XY=(=)" (=) 3§ ¥ xy,2".
i=0 j=0

The computation of the multiplication can be achieved by
separately computing the sign of the final result, which is
equal to

SIGN=X,_ ,®7Y, |,

where @ is exclusive-OR, and multiplying the two absolute
values,

n=2 n-2 )

T ¥ xy2"

i=0 j=0

If it is desired to use the two’s-complement multiplier to
compute the multiplication for both representations, the
sign-magnitude number representation must be changed to
resemble the two’s-complement notation. The changing of
the sign-magnitude notation to the two’s-complement
notation, with respect to the multiplication, is trivial. It can
be achieved as follows.

Given that sign-magnitude multiplication involves the two
absolute numbers and the sign is computed separately, X
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and Y can be represented as

n—2
X=-X_2""+ 3% X2,

i=0

n=2
Y=-Y, 2"+ % Y2,

j=0
where X,_,=7Y,_, =0.

When the operands X, Y are presented as inputs, the
two’s-complement multiplier will produce the correct
answer, except for the sign bit of the result. However, the
sign bit can be computed separately and appended at the
sign position of the final result, disregarding the resulting
sign bit of the two’s-complement multiplication. Thus, it can
be assumed that the hardware of a two’s-complement
multiplier will produce both multiplications with one change
to accommodate the sign bit, which can be computed by

SIGN=[(X,_,®7Y, ) SI®[P,,_, - 5,

with § = 1 iff sign magnitude multiplication is being
considered and - indicating the logical AND function.

3. Encrypted array multiplication

This section is dedicated to the derivation and description
of an algorithm to produce the two’s-complement
multiplication function which, when the observations and
sign calculations described previously are implemented, will
produce the sign-magnitude multiplication as well.
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X X, X3 e X X, X X,
Y., Y., Y, RS Y, Y, Y,
XY, .. s oo XY, XY, XY, XY,
XY, Xy, XY XY,
XY, XY, XY,
XY, XY,
XY 0 P ) * XY XY, X XY
X XYy Xpi¥oy e X0 X T X T,
1 Y., XY XY b Y XY XY,
Xn-l
YVI—I
Py Py Py, Py o P P, P P, Py o Py P, P, Py

The Baugh—Wooley multiplication matrix.

The multiplication equation is transformed to an
equivalent one by encryption of the negative terms. This
transformation is achieved by proper element extension and
overflow deletion on every row corresponding to each
negative element that is present in a partial product. Then,
encrypted elements are formed to replace each pair of
extended element rows, respecting the binary addition of
those rows. Consequently, all of the negative encrypted
elements are eliminated, and finally, constants resulting from
the encryption are added into the matrix to eliminate extra
rows. The transformation of the multiplication matrix is
achieved as follows.

Assuming the multiplication as described by Equation (1),
the following holds true: For every j, it can be stated that

—Xn_]Yj2n_l+j=Xn_1Yj2n_l+j 2 2k.

k=0
This is because
if X, ,Y,=0
then it is trivially true;
and if X,_,Y,=1,

then
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i 14 é 2k

k=0

=224 2 4+ 27)
= 2n-—-l+j(2n+1 _ 20)

=22n+j _ 2n—1+j

Given that 0 < j = n — 2, then 2n + j = 2n. The portion 2

is not involved with the multiplication and need not be
considered.
Similarly,

_Yn_lXizn—H-i — Yn_lxvizn—lﬂ' 2 2k’
k=0

Thus, the multiplication described in Equation (1) is
equivalent to

n— 2(n—1)—1
P=I+1,-X,_ Y27 ~-Y, X2

n-2 n
+ E Xn_l)szn—l-f-j E 2k

J=1 k=0

n—3 n
+ Y Y, X273 2k
k=0

i=0

The implication is that the multiplication can be written as
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Xn* t X’l~2 Xﬂ—} XJ XZ XI XO
Yn* 1 Yn*! Yﬂ-‘} YJ YZ Y! YO

XY, XYooy v e A XY XY, XY, XY, o XY XY, XY XY,

Xl Yn*l Xl yrl*l .... b Xl YVV-I Xl A=l Xl YH‘Z Xl YZ XI yI Xl YU

XY, XY, e e tONY, XY, LY, XY,

* XY, X\ Yy
XY, veeee X, .Y, .
XooYoor (XY, ) XY, o0 XY X, XY, X, oYy

XoiYor XV XY, X Yos XY, X (X, Yo)

XoiYos Xoi Yoy XY LA AV R i 4

X’l—l y’l—‘ X -1 Y’l—4 X’IA! n—4

XY, X, Y, X, Y,

Py Py, s Py Pps e Py F, [ Pa Poy Py Py P, By

Y _Dand (X

Modified multiplication matrix. (X, _,

—

Table 1 Encryption table.

4; B, Encryption
n+j+1 n+j n—1+j
0 0 0 0
0 1 0 -1
1 0 -1 0
1 1 -1 0 1

P =1 +I,-X, Y2 -v,_ x, 2"
n=3 n
+ 3 X,.,Y,2"7 3 2
Jj=0 k=0

n=3 n
+3 Yn_lXizn—Hi D 2*
i=0

k=0

— n—1 2n~1)—1
=IL+I,-X,_Y2" -Y,_ X _,2

0

n=3 n
+ 2 (Xn-lY,»+12"+’ > 2
Jj=0 k=

+Y, X2 ¥ 2"). )

k=0

The multiplication matrix described by the previous
equation is shown in Figure 3.
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_, 1) denote the only negative terms.

It can be observed that while the matrix corresponds to
the multiplication equation, it contains a few negative
elements which can easily be eliminated with “element
extension.” An attempt to implement the matrix will result
in high cost in terms of hardware cells and delay. However,
this equation representing the equivalence to the
multiplication can be used as a starting point to produce
encryption of the negative elements, consequently reducing
the number of elements and rows in the multiplication
matrix described in Equation (2). The encryption is derived
as follows.

Theorem 1
The multiplication matrix is equivalent to

P= H: + Hij _ Xn—lY02n_‘ _ Yn_an_zzz(n—n—\

n=3
+ Z [(AJ . Bj)(2n+j—l _ 2n+j+l)
=0
- n—1+j = Al
—(4;- B2 —(4,. B)2"],
where
A=X,Y,,
Bj = Yn—lXj >

- is the logical AND, and ~ is the logical NOT.
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Proof
It must be proven that

n—-3 n n
s (X,,-,Yjﬂz"*" T 247, %2 3 z*)
j=0 k=0 k=0

n—=3
- z [(Aj X Bj)(2n+j—l _ 2n+j+l)

j=0
_ (/?J . Bj)zn—lﬂ'_ (Aj . Ej)2"+j].
For any given j, the following holds true.

Casel X, Y, =Y _ X=L

JHL
2n+j i 2k+ 2n—l+j i 2k
k=0 k=0
= 2n+j(2n+l - 20) + 2n—l+j(2n+l _ 20)
— 22n+j+l + 22n+j _ 2n+j _ 2n+j—l
= _2n+j _ 2n+j—l
- _2n+j+l + 2n+j _ 2n+j + 2n+j—l

= 2n+j-1 - 2n+j+l
Case2 X,_,Y,,=0 and Y, X;=1
2n—l+j i 2k = 2n—l+j(2n+l _ 20)
k=0
— 22n+j - 2n—l+j — __2n-l+j

Case3 X, Y, =1 and Y, X =0.

J
2n+j (2n+1 _ 20) - _2n+j.
Case4 X _Y.

n—1%j+1 = Xn—le = 0’
then trivially true. Thus, Theorem 1 holds true.

It is evident that depending on 4, and B,, for every row
beginning at the row enumerated as 0 and ending at the row
enumerated as n — 3 and for every row involving positions
2"+ 9™ and 2", an encryption will result, as
represented in Table 1.

Given that there are at most three bit positions in the
encryption, for uniformity, the following can be proven.

Theorem 2
The multiplication XY is equivalent to

P= ns + Hij - Xn_1 Yozn_l_ Yn_an_222(n—l)—l

n-3

+ 3 [(A,- ] Bj)(2n+j—l _ 2n+j+l)
j=0

+ (1?, . Bj)(zn—lﬂ' + 2n+j _ 2n+j+l)
+ (Aj ) Ej)(2n+j _ 2n+j+1)]’

with - and ~ as previously defined.
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Table 2 Uniform encryption table.

4; B; Encryption
n+j+1 n+j n—1+j
0 0 0 0 0
0 1 -1 1 1
1 0 -1 1 0
1 1 -1 0 1
Proof

Trivial, with geometric series properties applied to the terms
containing 4; and B,.

The implication is that three bits have been added to all of
the rows from 0 to n — 3 of the matrix such that for any
given A, B;, Table 2 will produce the right encryption for
the added bit positions.

Theorem 3

The encryption can be transformed into the following
equivalence:

n=3

2 [(A] . Bj)(2n+1—l _ 2n+j+l)

j=0

+ (/Zj . Bj)(zn—Hj + 2n+j _ 2n+j+l)

+ (Aj . Fj)(ztﬁ-j - 2n+j+l)]

n-3
= 3 [B27'" + (4,0 B2")

Jj=0
n-3

- 3 1 B)2"",
j=0

where - and ~ are as previously defined, | is the logical OR,
and @ is the logical exclusive-OR.

Proof

n—3

2 [(A_, . Bj)(2n+j—l _ 2n+j+l)
j=0

+ (.Zj . Bj)(zn—l+j + 2n+j _ 2n+j+1)

+ (Aj . Ej)(2n+j— 2n+j+1)]

n-3 )
=Y [(4;- B)+ ;- B
j=0

n-3
+ 3 [(4,- B)+(; - B2

Jj=0

n~3
= 2 1¢4 B)+ (3, B+ (4 B

j=0

If Q, R, and S are one of {0, 1}, then 541
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Q+R=(Q®R)+(Q-R)2,
Q+R+S=(QOROS)+[(Q-RIQ- IR - 92,
(4;-B)+(4;- B)=(4,;- B)®(4,- B)=B,,
;- B)+(4;- B)=4,®B,
and
(4;- B)+(4;- B)+(4;- B)

=(4;- B)®(4;- B)®(4; - B)

=B,®(4; - B)=B|(4; B)=B|4;.

Thus, Theorem 3 holds true.

Theorem 3 implies that for all rows, starting at row 0 and
ending at row n — 3, the encryption can be coded with three
additional bits, in a unique way, with simple logical
functions. Depending on j, i.e., the enumeration of the rows,
the encryption can be computed at position P by B, at
position 2"/ by A;® B;, and at position 2™ by A;- B,

An inconvenience occurs in producing the encryption for
every row in position 2", where an element will result
that indicates subtraction. Given that the production of a
matrix with no special adders is of interest, elements that
imply subtraction have to be eliminated. The elimination of
those elements can be achieved as follows.

Theorem 4
n—3 ) n-3 )
_ E (Aj I Bj)2n+j+l - 2 (A—j | Bj )2n+j+l + 2n+l + 22n—l .

j=0 j=0

Proof
n—3

E (AjIBj)2n+j+l +2n+l +22n—l

j=0

n-3

=5 [(Alej)2n+j+l +(Aj|Bj)2n+j+l
j=0

_ (Alej)2n+j+1] + 2n+1 + 22n—1’

given that

(Alej)"'(A,IBJ) =(IZJ . B-])"'(AJIB,)
=(4,- B)®(4;|B)
=(1,-B)®4,©B O, B)
~(-B)®40, B)
=104,=1.

Thus,

n=3

E (m;)zn+j+l+2n+l+22n—l
j=0

n-3 n—-3
= grHitl 3 (Alej)2n+j+1 4+ M1 g2l

Jj=0 Jj=0
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=2n+1(20+21+“.+2n—3)
n-3

- z (AjIBj)2n+j+l +2n+l +22n—l
j=0

n=3
— 2n+l(2n—2 _ 20) _ 2 (Aj | Bj)2n+j+l + 2n+l + 22n—l

j=0

n-3
— 22n-l - 2n+l _ z (AjIBj)2n+j+l + 2n+l + 22n—l

Jj=0

n~3
2n + j
=2 _ 2n l_j§0 (Alej)2n+j+l + 2n+l
) n—=3 1
=2"_ Eo (4,1 B2"*,
Because 2°" is not involved in the multiplication, it can be
excluded, and Theorem 4 holds true.
Theorem 4 can be viewed as an adaptation, to preserve
equivalence with multiplication and to transform negative
elements into positive elements, of the following theorem.

Theorem 4a
i+m ) i+m .

— 2 ¢( . )j 2k+j = E 5( ) )j 2k+j + 2i+k - 2i+k+m+l,
j=i j=i

such that

#(.); and ¢( ), are one of {0, 1}, with

¢(.); and ¢( ), mutually exclusive.

Proof
i+m
2 a( ) )j 2j+k + 2i+k - 2i+k+m+1
Jj=i
i+m _ . . .
= E [¢( ) )J+ ¢( . )j _ ¢( . )j]21+k+ 21+k_ 21+k+m+l
Jj=i
i+m i+m
- Z 2j+k _ E ¢( )j2j+k+2i+k_2i+k+m+l
J=i Jj=i
= [2i+k + 2i+k+1 +.ot 2i+k+m]
- Hﬁ:m ¢( ) )j2j+k + 2i+k _ 2i+k+m+l
j=i
=22+ 2' + .+ 2™
_ Hﬁ:m ¢( ) )j2j+k + 2i+k - 2i+k+m+l
J=i
= 21+k+m+1 _ 2i+k - ‘E:m ¢( ) )j2j+k + 2i+k _ 2i+k+m+l
J=i
i+m )
== ()2
jmi
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The theorem implies that the negative summation can be
transformed to a positive one with the addition and
subtraction of a 1 at positions 2™ and 2"**"™*" respectively;
i.e., all negative elements but one have been transformed to
positive ones. Regarding finite machine representation, the
negative element can be easily transformed to a positive one
via proper element extension and overflow elimination. In
the multiplication, as described previously, it is achieved as
follows.

Theorem 4a can be seen as equivalent to

i+m . i+m ) . .

_2 ¢(')j21+k= E 6(')j21+k +21+k+21+k+m+1. (3)

J=i je=i
This is evident because
i+m . . )

2. ¢( . )j21+k + 2;+k + 21+k+m+1
J=i
. i+m .
= 21+k+m+2 _ 2 ¢( ) )j21+k, (4)
Jj=t
and if 2”**™*? need not be considered, it can be concluded
that Equation (3) holds true.

In the case that it is not true that 2*“*™* need not be
considered, the elimination can be achieved as follows.

Let i+ m+ k+ 1 = a; if it is assumed that 2**” is the first
position indicating overflow, b being some integer, then

2a+b—l + 2a+b—2 4ot 2a+l + 2a = 2a+b _ 2a
Thus, by excluding 2% it can be stated that

2a+b—l + 2a+b-2 +.oo 4 2a+1 + 2a = _2a'

Then, Theorem 4a can be written as

i+m i+m
=% #()2 =3 §( )2 +2™
J=i Jei

+ 2a+ 2a+l oot 2a+b—1
I
with a= i+ m+ k + 1 and b, some integer that guarantees
the element elimination due to overflow, i.e., the exclusion
Of 2a+b
Theorem 4 implies that the multiplication XY is
equivalent to

- n—1 2(n—1)—
P=1,+1,-X, Y2 -¥,_Xx, 20"

n-3
+ % (827" + (4@ B)2")

j=0
n-3 .
+ z (A"'—"“jl Bj)2n+j+1 + 2n+1 + 22n-l'

j=0
The equation still contains two negative terms, ¥,_ X, _,,
which correspond to the multiplication matrix at position
2*"V"' and X,_, Y, at position 2"~ It can be observed that
-Y,_,X,_, can easily be eliminated, because
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-Y,_ X pHm=D=1 Y, X, (22n-—! 42y 22,.-3).

n-2
The previous equation holds true because terms not involved
with the multiplication need not be considered and because

2(n—1)— .
-Y,_,X,,2°*""! can be written as

Yn_an_z(ZZn—Hx + 22n—l+x—l Hoee
+ 22n—l + 22n—2 + 22(n—l)—l)

= Y,,_an._z [22n—1+x+1 - 22(n—l)—l]
= Y"-IX 22"+x - Yn—IXn—222"_3= _Yn—an—222n_3’

n—-2

with x being some integer =0.

The negative X,_, Y, can be eliminated with proper
element extension, described previously, or by the following.
Given that the multiplication is equivalent to

P=1+I,- Y, X, 2"

n—2
n-3
+X

Jj=1

[B;2""" +(4,® B)2"™ + (4,1 B, 2"

- C2"' + B2 + (4,9 B,)2"
+ (A—ol—B—o)2n+l + 2n+l + 22n—l,

where C = X,_,Y, and all the logical operators are as
previously defined, and because

ey
it can be stated that
—C2™' 4+ B2 + (4, ® By)2" + (4, | B,)2""
=(B,+CN2"" +[(4,9 B,) + C12"
+[(4,1B,) + C12"™' = 2™,
and therefore

P=1_+II,- Y, X, 2"

n-3

+ 3 B2 +,@B)2"

j=1
+( - B2+ B+ O
+[(4,9 B,) + C12" +[(4, - B,) + C2""
- C2n+2 + 2n+1 + 22n—l.

The negative term —C2"*? can be eliminated as follows.

Theorem 5
By + CR"' +[(4,® B) + C12"
+[(4, - B) + C™' - Cc2"*?
=(CO B2 +[4,9 (B, O)2"
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Proof
(By+ C)2"' +[(4,9 B,) + C2"
+[(4, - B)+CpR™ - 2™
=(B,®CN"" +(B,. C)2"
+(A,® B, ®CR"+ (4,9 B,) - C2™!
+[(4, - B)®CR™ +(,- B,- C)2"* - C2"™?
=(B,®C)2"" ' +[(B,- C)®4,9B,® C]2"
+[B,- C- (4,9 B, ® C)2""
+[((4,9B,) - C)® (4, - B,) ® C]2""
+[(4,9B,) - C- (4, - B)®C)R"*
+(,-B,.CR™ - 2™
But
(B, C)®4,©B,&C
=(C-B)® 4,9 B,
= 4,9 (C|By);

(B, - C-A4)® (B, - C)® (B, - C)
=B, 4, C;

[(4,®B) - Cl®, . B)®C
=[C- (4,®B)I® 4, - B,

[(C - 4D (B, - O) - [(4, -
=C - (4, ® By).

By ® C]

Thus,
(By+ C)2"' +[(4,© B,) + C|2"
+[(d, - B)+CpR™' - c2™?
=(By®C)2"" +[4,©(C| B)]2" + (B, - 4, - C)2""
+1(, - B))®(C - (4,9 B,))2""
+[C- (4,®B)2"* + (4, - B,. C)2"* - 2™
=(B,®C)2"" +[4,8(C| B,))2"
+[(B, - 4,- C)® (A, - B)®(C - (4,9 B,)2""
+1B, - 4, - C- (4, - B)®(C- (A, ®B,)) 2"
+[C- (4,9 B2+, - B,. C2"* = C2™
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(B, - 4, - C)® (A, - B)®[C - (4,9 B,)]

=C-[4, - B,)®4,9B,]®(, - B,)

=C.[,- B,)®4,)04,- B)

=C.(,-B)®,-B)=4,-B,-C
and
By-A4,-C-[(4,- B)®(C-4,)®(C- B,)]

=4, B,-C
Thus,
By + C)2" ' +[(4,® B,) + CI2"

+[(, - B,))+CR™' - Cc2™?
=(B,®CR"" +[4,®(C|B)I2"+ (4, - B,- C2™"'
+(dy - By - CR™ +[C - (4,9 B)2"*
+(A,- B, C)2™* - 2",

given that
[(4y - By - C)+(C - (4,® B,))12""*

=[(4y - By - C)®(C - 45)®(C - B)I2"*+0

=[4, - B,- C)®(C - B)2"",
and
A, B, - C2" +[(4,-B,- C)®(C - B)""*

=[A,- B, - C)®,- B,- C)® (C- B)R"* +0;
C-l4, - B)®(4,  B,)®B)=C.(B,®B)=C.
Thus, it can be concluded that
(B,®C)2"' +[4,8(C| By)I2"

+(,-B,.CR™ + 2™~ 2™
=(B,®CN"" +[4,9(C|B)I2"+ (4, - B, - T2,

and Theorem 5 holds true.
From Theorem 35, it follows that the multiplication XY is
equivalent to

P=1,+10,-Y, X, 2"
+ ij (B2 +(4,@ B2
j=
+ (Zj . l_?j)2"+j+']
+(B,®CR" +[4,® (B, | O)]2"
+A, - B, O + 2 2 ©)

which corresponds to the matrix in Figure 4. Such a matrix
can be transformed, taking into account the elimination of
the element —Y,_, X,_,2°*""~" and the addition
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Xn—l Xn—l Xn—] XJ XZ XI XO
1 YnAl Yn—z YnAJ Y, 3 Yz Yn Yo
4,B,C 4,8(3,1C) B,OC X7Y,, XY, XY, XY, XY,
©4,B, 4,0B, B Xy,, XY, XY, XY,
4,08, B, X,Y,., Y, XY,
By XY, XY,
XQYn—Z
.8,
AnAZEnAZ 4,,98B,,
Zn—JEn—J An-l & Bn-} Bn~] .
1 XY, XY, XY, XY, XY, X.Y, XY, XY,
P, PInvZ Py, PZn—4 P, P, P, P, P, P, Py P, P, P,

(4, - B,- C+1)2™",

as follows:
P=1,+1,+Y, X, 2"

+ Y;l—an—222(n_l) + Yn—lA,n—Zzzn_l
n—-3

E [szn—l+j+(Ajij)2n+j+(/qj . Fj)2n+j+l]

j=1
+(B,®C12"" +[4,9(B,| O)2"
+(Ay | B,| C)2" + (4, - B, - T2 + 27,

which corresponds to the multiplication matrix containing
no negative terms shown in Figure 5.

The matrix as presented in Figure 5 contains » — 1 rows
instead of », as normally required in the direct computation
of the multiplication. It contains three additional bits on
every row starting at the row enumerated as 1 (in effect, the
second row) and ending at the row enumerated n — 3 (in
effect, the n — 2 row). For every 1 < j < n — 3, the three bits
are added at position 2" computed by the logical AND of
Y,_, and Xj; at position 2™/ computed by the logical AND
of Y,_, and X, the logical AND of X,_, and Y, ,, and the
exclusive-OR of the resulting logical ANDs; and, finally, at
position 2"7*! computed by the logical AND of Y, and X,
the logical AND of X, _, and Y}, ,, and then the logical NOR
of their result.

At the first row and starting at position 2" and ending at
position 2"”, four elements are added and can be computed
by the logical cells shown in Figure 6.
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The multiplication matrix corresponding to Equation (5). (X _Y, _, ) denotes the only negative term.

An observation worth exploring is that while the rows for
the multiplication matrix have been reduced by one, there
are some elements that require more complex logical cells
than the simple logical AND. It can also be observed that
those elements are very few, especially when large operands
are considered, and their calculation should definitely not
add delay to an array-connected multiplier. This is because
they require less delay than a CSA adder cell. Thus, even if
no special attention is paid to the layout, they will not
penalize the addition of one full stage. In addition, those
quantities can be carefully calculated during the repowering
of the first stage.

A more important consideration is that the complex
elements can be added so that there is no need for any of the
above. This is because, in an array-connected multiplier,
they can be positioned at the end of the configuration, thus
producing no extra delay when added.

Thus, it can be concluded that a row can be eliminated
from the usual number of rows needed to produce an n X n
multiplication.

In the Appendix, it can be found that more rows can be
eliminated from the matrix configuration with the addition
of more complexity for the computation of a few elements.
Given that the time of the computation is of importance,
and the number of elements requiring complex calculations
is limited, it is worth doing so.

Another observation worth noting is that the matrix
contains two uniformities, one belonging to the encryption
bits and one belonging to the rest of the matrix. Thus, it can
be concluded that the layout of the multiplier achieves a
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X X, Xos oo X, X, X, X
Y., Y., Yoy = 1 Y, Y, Y,

A,B,C 4,1B1C 4,8(B|C) B,®C XY, , - -« XY, XY, XY, XY,

.A,B, 4,&B, B XY, XY, XY, XY,
. 4,98 B XY, XY, XY,
. B, XY, X,Y,
. XY, ., ¢
Y, X, 4.5,
Y. X., 4.8, , 4, ,08,, .
1 Xy Yo X, * X2Ys XY X1, XY, XY
Pry . Py Py, Py e Py P P, P P, Py oo By P By

¢ The final multiplication matrix.

—B,® C I —A,! B,1C

n—I|

| ]

Y —A,® (By|C) Y, | 1 .3.C
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4, Conclusions

The encryption algorithm proposed above is an approach

for the realization of two’s-complement multipliers with
direct multiplication. The negative terms present in
two’s-complement multiplication, produced by the fact that
the sign and the absolute value are inseparable, are
imbedded into the matrix as positive quantities with the
addition of three bits in the high-order position. The
implication is that there is no need for specialized adders
that take into account element addition and subtraction, and
furthermore, that no additional “correction” rows are needed
to perform the multiplication. Additionally, there is no need
for complete sign extension to preserve the equivalence of
the matrix if negative terms are to be excluded.

The resulting matrix can be seen as uniform, with most of
the initial matrix unaltered (i.e., each element is computed
by the logical AND of the quantities involved), and with the
addition of the encryption which consists of elements that
are more difficult to implement than the rest of the matrix.

Two out of three bit positions, for every row but the first
requiring encryption, can be computed with the logical
exclusive-OR or with the logical NOR of the required X, Y;.
However, except for the minimal amount of complexity
added to produce the matrix, the element realizations will
not result in increasing the delay needed to produce the
multiplication because they are not required immediately.

On the first row, the four required elements that are not
simple ANDs can be computed with simple logical cells.

A disadvantage of the encrypted multiplier is that some of
the encrypted elements require more difficult functions than
a simple AND to be computed, but it can be observed that
those elements can be swapped with elements that are
computed by ANDs and are further down in the matrix in
the same column, so that they are available when required.
Thus, in an array-connected multiplier, they will not
penalize the total multiplication delay.

In addition, the number of rows required to produce the
two’s-complement multiplier is equal to » — 1 instead of #,
and the difficult elements of the last rows are of a lesser
degree of complexity to compute than that of a three-way
exclusive-OR. Thus, it can be stated that the multiplier will
require less delay if compared to a direct two’s-complement
multiplier with no encryption.

Given its uniformity, the encrypted matrix results in a
high degree of regularity, thus making it suitable for VLSI
array-connected layouts.

Finally, it can be observed that it is possible to decrease
the number of rows of the multiplier with the addition of
complexity for the computations of some limited number of
elements, as described in the Appendix.

The algorithm will also produce multipliers that can
handle sign-magnitude notation, given that sign-magnitude
notation, with respect to multiplication, can be seen as
two’s-complement with a minimal change regarding the sign
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correction. The resulting multiplication matrix with proper
additional circuitry can also accommodate one’s
complement and unsigned notations for universal types of
operations.

Appendix A: Further row reduction

The encrypted matrix can be reduced as shown below.
Equation (5) can be transformed easily, so that the
multiplication can be expressed as follows:

P=1+1,-Y, X, 2"
n=3
+ 3 [B27+4,©B)2" + (4, . B)2""")
j=2
+(B,®C)2""' +B,2"+[4,9 (B,| C)12"
+(4,9B8)2"" +(4,- B, O™
+(d, - B2t 42 2
Given that
[B, + 4,9 (B,| C)]2"
= [B,®4,®(B,| C)]2"+ B, - [4,9 (B,| O)2"*,

and because
n—2 L n-3 )
o,=3% X,Y,2’+ ¥ Xx,v,2"
j=0 Jj=0
n—=2 n-2 .
+3 ¥ xYy2Y+xy,.,2"
=2 j=0
=0*+X,Y,,2""
Ui
by its definition, and
[E+(B,®CO)2" ' =(E®B,®CR"" +[E . (B,® O))2"
when
E=XY,_,,
the multiplication matrix is equivalent to
P=1+0*-Y, X, , 2% """
ij
n=3
+ 3 (B2 + 4,082 + (4, - B)2"'"")
i=2
+(, - B)2"* +(4,09B)2"" +(4,- B, ™"
+[B, - (4,9 (B, | CH]2"' +[E - (B,® C)]2"
+[B,©A4,®(B,| C)2" +(E®B,®C)2""
+ 2n+l + 22n-1
Since
(1+(4,®B)]2"" =, ®B)2"" +(4,® B,)2"",
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=< >

-
=

<

[

>

n—1—

~

i Logic cells fory, m, 8, and p.

[, - B,)+(4,®B)]2""*
=[(4, - B,)®A4,®B2"™"+0

=[(4,B,)® 4,12 = (4,] B,)2"",
and
[(4,®B,)+(,- B, C)2""
=[4, - B,- C)®4,®B,]2""
+[4,-B,-C.(4,®B)]2"".
Thus, the multiplication can be expressed as follows:
P=M,+1I*+7Y, X, 2"

+ Yn—an—Zzz(n_l) + Yn—l)(n—222n_l

n=3
+ Y [B2"'+(4,@B)2™ +(4, - B)2"']

j=2
+ 42" 482"+ 2"+ N2 2!
+p2n+2+¢2n+2+22n-1’
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(6)

y=E®B,®C,
5=B,®4,® (B,| C),
n=E.(8,®C),

A=B, - [4,® (B,| O)],
p=A,- B, -C)®1,®B,
p=4,|B,

and
v=4,-B,-C.4,®B),

which can be computed by the logic cells in Figures 7 and 8.

A representation of the matrix is reported in Figure 9. The
matrix still contains n — 1 rows. However, it can be
transformed, as in Figure 10, with

a=X_Y,®X,_ Y, and $=X,_Y,-X, Y,

The (n — 1)th row contains four elements starting at position
n — 1 and ending at position 7 + 2. In addition, the (n — 2)th
row contains a zero at position 7z + 3. Thus, with proper
addition, the four elements of the (n ~ 1)th row can be
eliminated. Therefore, the multiplication can be represented
with a matrix that contains n — 2 rows.
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XO |
—
Y 1
n
yO
Xn*l
Y, Y,
— M
XO
);l—l Xl
YO

X Xz X, X, X, X, Xo
Yn—l yn—z Yn—) YJ Y2 Yl YD
¥ A n XY,y o XY XY, XY, XY,
p M ) ¥ XY, XY, XY,
A,B, 4,9B, B, XY, , XY, XY,
' B, XY, XY,
* Y., '
Y X, A8, 2 *
Yn—an—Z 4,38, 4.9 B, .
! Xoi¥oo Y X, e XY, XY, XY XY, X,-2Y,
Py Py Py Prns e Py, P, P Pt LI
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Kot K Xy X, X XX
Yn—l Y -2 Y = YJ Y2 YI yO
XYy XY XY XY, Xo¥ XY, oo TXY, KY, XY, XY,
Xn*] Y6 XH—J Y5 Xn—l Y‘ Xn—J yJ X’l“] Yz X| yn‘] Xl Y2 X] yl XI Yu
1,B, 4,98, B, XY XY, XY,
B] X] le~Z X3 YO
XY, At
KXo Yo Z’r—l{n—l 4,.,B..,
! Y X 4,58, 4,98, *
Y, —IXn—Z .n-!En—l A 3 ® En—x B, -3 0 A n Y o X~—3 YO
0 “ 8
P2n~ ) PZ'I"Z PI"— Plll—‘ PVH'J PII"Z P’”_ L PPI P’l— ] Pn—l P’l'—] Pl P2 P‘ PD
a=X Y, 8X, .Y,
B=X_.Y XY,

{ The transformed multiplication matrix corresponding to Equation (6).

The same process can be applied to further reduce the
number of rows. However, depending on the length of the
operands, the number of “difficult” elements and the
complexity of producing them, and the additional
complexity added to the layout of the multiplier, the purpose
of such reductions becomes defeated at a certain point, and
no further reductions should be considered.
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