
536

Parallel
encrypted array
multipliers

by S. Vassiliadis
M. Putrino
E. M. Schwarz

An algorithm for direct two’s-complement and
sign-magnitude parallel multiplication is
described. The partial product matrix
representing the multiplication is converted to
an equivalent matrix by encryption. Its reduction,
producing the final result, needs no specialized
adders and can be added with any parallel array
addition technique. It contains no negative terms
and no extra “correction” rows; in addition, it
produces the multiplication with fewer than the
minimal number of rows required for a direct
multiplication process.

1. Introduction
The realization of multipliers for digital computers has been
considered by several scientists and engineers. Many
multiplication techniques and algorithms have been
developed and proposed in the past, and some have been
implemented in actual hardware. The conventional
interactive add-shift methods for multiplication are
inexpensive to implement in terms of hardware, but their
resulting execution times are too slow to satisfy the
increasing demand for speed. Given that circuit density and
speed have increased tremendously while hardware costs
have decreased, parallel-multiplication schemes for
multiplier designs can be implemented that do meet high

Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

speed requirements. A variety of parallel-multiplication
techniques and algorithms have been proposed in the past.
Among the major classes of multiplication techniques are
multi-bit overlapped scanning, parallel multiplication, and
direct multiplication for array-connected matrices. The
overlapped scanning technique has been described for two-
bit overlapping by A. D. Booth [11, and has been extended
to three- and four-bit overlapping by 0. L. MacSorley [2].
The correctness of the three-bit overlapped scanning
technique has been proven by L. P. Rubinfield [3], and the
generalized proof for multi-bit overlapped scanning can be
found in [4]. The parallel-multiplication technique has been
introduced by L. Dadda [5], and parallel-multiplier
algorithms can be found in [6-81. A variety of direct-
multiplication algorithms have been proposed in the past [9-
121 that can be implemented in array-connected
configurations.

a fast multiplier in essence produces a matrix that contains
rows equivalent to the partial products or modified partial
products. The resulting matrix that represents the
multiplication process has to be added to produce the final
product, and some kind of counter is used to satisfy this
purpose. The most commonly used, at present, are the 3/2
counters, otherwise called carry-save adders (CSAs).
However, there are schemes that propose m/n counters, with
m, n being some natural numbers greater than 3 and 2,
respectively [5], as for example 5/3, 7/3, 15/4, etc., and
generalized counters that receive serial successive weighted
input columns to produce their sum and carry elements,
taking into account the proper weighting [13, 141, as for
example 5/5/4. The counters are placed according to some
convenient scheme, e.g., those proposed by Dadda [5] and
Wallace [151, and are sometimes connected in a special

Any proposed multiplication scheme for the realization of

IBM 1. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

manner, as described for instance in [161, to reduce delay. A
summary of the major classes of multipliers can be found in
[171 and [181.

The direct two’s-complement and sign-magnitude parallel
multipliers are of particular interest since those
representations are used extensively in digital computer
architectures. When the two’s-complement representation is
considered, additional complexity arises with respect to other
representations using direct-multiplication algorithms or
techniques. This is due to the fact that the sign of the
number cannot be separated from its absolute value, as is the
case with the sign-magnitude repesentation. The implication
is that it is not possible to produce the multiplication by
multiplying the two absolute values and then appending the
separately computed sign bit to the result. The proposed
direct two’s-complement algorithms must account for the
sign of the number in some way. This is because negative
elements will be present when the partial product matrix is
created. Those elements are the result of the multiplication
of the sign bit of Y (Y being the multiplier) with every bit of
X excluding the sign bit (X being the multiplicand) and vice
versa. Therefore, element subtraction and addition must be
performed during the reduction of the matrix. The addition
and subtraction of the elements of the matrix can be
achieved by using generalized types of counters, namely
counters that can add either positive or negative elements or
a combination of both, such as the 3-to-2 counters described
in [181. Alternatively, the partial product matrix can be
“conveniently” manipulated to eliminate the “corrections”
due to the signs. However, the resulting matrix containing
modified partial products with only positive elements
may require additional rows. Element addition and
subtraction may result not only because of the nature of
the two’s-complement notation, but also because of the way
that an algorithm or technique creates the partial or
modified partial product matrix. Again, unless generalized
adders are used, the matrix must be manipulated to exclude
the negative elements.

This paper introduces a direct algorithm to realize the
two’s-complement and sign-magnitude multiplications most
suitable for array-connected configurations. The partial
product matrix produced by the algorithm is independent of
the notation used and contains no negative elements, thus
allowing the product to be formed using array addition
schemes with no generalized counter cells. The partial
product matrix is created by using three extra bits on most
of the rows, resulting in the encryption of the negative
elements, due to consideration of the two’s-complement
notation. The additional elements need no complex logical
cells for their computation. In addition, because of the
encryption of the sign, no extra rows need be added for the
“corrections” due to the sign of the two’s-complement-
represented numbers. On the contrary, one row has been
eliminated, with a negligible addition of complexity to the

IBM J. RES. DEVELOP, VOL. 32 NO. 4 JULY 1988

few extra elements of the matrix. The resulting matrix is
highly regular, and therefore suitable for VLSI designs and
implementations.

2. Two’s-complement and sign-magnitude
multiplication
For two’s-complement multiplications, the 2n-bit product P,
represented in binary as (P2n-l, P2n-2, . . . , Po), is formed by
multiplying the n-bit multiplicand, X , represented in binary
as (Xn+ Xn-2, . . . , Xo), and the n-bit multiplier, Y,
represented in binary as (Yn-l, YnW2, . . . , Yo). By assuming X
and Y to be two-integer numbers such that and yn-l are
the sign bits, X and Y can be written as

n-2

x = -xn-,2“-’ + 1 xi2i,
i=O

n-2

Y = -Yn-12n-’ + 1 q2’,
i=O

and the product XY is equal to
n-2 n-2

P = n, + nij - xn-12n-1 q2J - Yn-,2“-I 1 xj2j
j=O i=O

= n, + nij - xn-l Yo2n-1 - Y n-I x n-2 22(n-1)-’
1 n-2 17-3 \

j = I i=O

where

n, = xnpl Yn-122(n-1),

n,= xiq2i+J.
n-2 n-2

i=o j=o

The multiplication can be produced by adding the matrix in
Figure 1, which represents the product P as presented in
Equation (1).

An immediate observation is that some elements have to
be added and some must be subtracted. The implication is
that a generalized type of adder must be used, as described
for the direct two’s-complement array multiplier by Pesaris
[9]. Alternatively, subtraction elements can be eliminated,
usually with additional rows and consequent manipulation
of the multiplication matrix, as described for example in [101
(see Figure 2).

For sign-magnitude multiplications, the 2n-bit product P,
represented in binary as (P2n-l, P2n-2, . . . , Po), is formed by
mutliplying the n-bit multiplicand, X , represented in binary
as (Xn-l, . , Xo), and the n-bit multiplier, Y,
represented in binary as (Yn-l, Yn-2, . . , Yo). By assuming X
and Y to be two-integer numbers such that Xn-l and Yn-l are
the sign bits, X and Y can be written as

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

X= (-l)xn-l Xi2i,

Y = (- 1 p - 1 q 2 J ,

n-2

i=O

n-2

j = O

and

i=O j = O

The computation of the multiplication can be achieved by
separately computing the sign of the final result, which is
equal to

SIGN = Xn-l @ Yn-l,
where CT3 is exclusive-OR, and multiplying the two absolute
values,
n-2 n-2

Xi52'+J.
i=O j - 0

If it is desired to use the two's-complement multiplier to
compute the multiplication for both representations, the
sign-magnitude number representation must be changed to
resemble the two's-complement notation. The changing of
the sign-magnitude notation to the two's-complement
notation, with respect to the multiplication, is trivial. It can
be achieved as follows.

Given that sign-magnitude multiplication involves the two
absolute numbers and the sign is computed separately, X

and Y can be represented as
n-2

x = "xn-12n-1 + Xi2i,

Y=-Yn-12n-1 + I: q2J,
i=O

n-2

j = O

where = Yn-l = 0.

When the operands X, Yare presented as inputs, the
two's-complement multiplier will produce the correct
answer, except for the sign bit of the result. However, the
sign bit can be computed separately and appended at the
sign position of the final result, disregarding the resulting
sign bit of the two's-complement multiplication. Thus, it can
be assumed that the hardware of a two's-complement
multiplier will produce both multiplications with one change
to accommodate the sign bit, which can be computed by

SIGN = [(Xn-, @ Yn-l) SI @ [Pzn-1 * $1,
with S = 1 iff sign magnitude multiplication is being
considered and . indicating the logical AND function.

3. Encrypted array multiplication
This section is dedicated to the derivation and description
of an algorithm to produce the two's-complement
multiplication function which, when the observations and
sign calculations described previously are implemented, will
produce the sign-magnitude multiplication as well.

IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988 S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

"

The multiplication equation is transformed to an
equivalent one by encryption of the negative terms. This
transformation is achieved by proper element extension and
overflow deletion on every row corresponding to each
negative element that is present in a partial product. Then,
encrypted elements are formed to replace each pair of
extended element rows, respecting the binary addition of
those rows. Consequently, all of the negative encrypted
elements are eliminated, and finally, constants resulting from
the encryption are added into the matrix to eliminate extra
rows. The transformation of the multiplication matrix is
achieved as follows.

Assuming the multiplication as described by Equation (l) ,
the following holds true: For every j , it can be stated that

- x y,2n-l+j - - X y,2n-l+J
n

n-1 J n-l J 2k.
k=O

This is because

if = 0

then it is trivially true;

and i fXn-,q= 1,

n
-2n-l+j = 2n-l+j c 2k

k-0

- - 2"-1+'(20 + 21 + . . . + 2")
= 2n-l+j(2n+l - 2 O)
&+j - 2n-l+J.

Given that 0 5 j 5 n - 2, then 2n + j 2 2n. The portion 2'"+J
is not involved with the multiplication and need not be
considered.

Similarly,
n

- y n- I X i 2 n - l + i = yn-,xi2"-'+' 2k.
k=O

Thus, the multiplication described in Equation (1) is
equivalent to

P = n, + n, - xn-,Y02"-' -

+ X n - l y 2 n - l + j 1 2k

+ Yn-,xi2n-L+i 2k.

x 22(n-1)-L
n-l n-2

n-2 n

j - I k-0

n-3 n

i=O k-0

then The implication is that the multiplication can be written as

IBM J. RES. DEVELQP. VOL. 32 NO. 4 JULY 1988 S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

540

Table 1 Encryption table.

4 ' 1 Encryption
n + j + l n + j n - l + j

~~

0 0 0 0
0 1 0
1

-1
0 -1 0

1 1 -1 0 1

P = n, + n, - Yo2n-1 - Y n-I x n-2 22(n-1)-1
n - 3 n

+ xn-Iq.+12n+J 2k
j-0 k=O

n - 3 n

i=O k=O

n

j=O k=O

n \

+ Yn-1q2n-1+j c 2").
k=O

The multiplication matrix described by the previous
equation is shown in Figure 3.

It can be observed that while the matrix corresponds to
the multiplication equation, it contains a few negative
elements which can easily be eliminated with "element
extension." An attempt to implement the matrix will result
in high cost in terms of hardware cells and delay. However,
this equation representing the equivalence to the
multiplication can be used as a starting point to produce
encryption of the negative elements, consequently reducing
the number of elements and rows in the multiplication
matrix described in Equation (2). The encryption is derived
as follows.

Theorem 1
The multiplication matrix is equivalent to

P = n, + n, - Yo2n-L - Y n-1 x n-2 22(n-1)-1

+ [(A, . Bj)(2"'"' - 2n+J+1)
17-3

j-0

- (Jj . Bj)2n-l+j - (Aj . 8,)2"+'],

where

Aj=xn-lY,+l,

Bj = Yn-lq ,
. is the logical AND, and - is the logical NOT.

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

Proof
It must be proven that
n - 3 I n n \

1 (xn-1q+12"+j 1 2k+ Yn-I/y2n-1+j 2 2 7
j = O k=O k=O

n - 3
= 1 [(Aj . Bj)(2"+J" - 2"+J+l)

j - 0

- (Jj . Bj)2n-l+j - (Aj . Bj)2"+J].

For any given j , the following holds true.

Case 2 q+, = 0 and Yn-lXj = 1.
n

2n-l+j 1 2k = 2n-l+](2n+l - 2O)
k=O

- 22n+j - 2n- I + j = -2n- I + j . -

Case 3 q+, = 1 and Y,-,X, = 0.

2n+I (2n+l - 20) = -y+J

Case4 X,-,Y,+, =X,- ,Y ,=O;

then trivially true. Thus, Theorem 1 holds true.
It is evident that depending on A, and Bj , for every row

beginning at the row enumerated as 0 and ending at the row
enumerated as n - 3 and for every row involving positions
2n+J+1, 2"+j, and 2n-1+J, an encryption will result, as
represented in Table 1.

Given that there are at most three bit positions in the
encryption, for uniformity, the following can be proven.

Theorem 2
The multiplication XY is equivalent to

P= n, + I I i j - Yo2"-l- Yn-,xn-222'n-1)-'

+ r, [(Aj . Bj)(2n+j-l - 2n+J+1)
n-3

j = O

+ (xj . Bj)(2"-l+J + 2"+J - 2'+j+l)

+ (Aj . Bj)(2"+' - 2n+J+l)],

with . and - as previously defined.

Table 2 Uniform encryption table.

AJ *J Encryption
n + j + l n + j n - l + j

0 0 0 0 0
0 1 -1 1 1
1 0 - I 1 0
1 I -1 0 1

Proof
Trivial, with geometric series properties applied to the terms
containing A, and Bj.

the rows from 0 to n - 3 of the matrix such that for any
given A,, B,, Table 2 will produce the right encryption for
the added bit positions.

Theorem 3
The encryption can be transformed into the following
equivalence:

2 [(Aj . Bj)(2n+j-1 - 2"+'+l)

The implication is that three bits have been added to all of

n - 3

j = O

+ (Jj . Bj)(2""+J + 2"+J - 2'+j+I)

+ (A, . Bj)(2"+j - 2"+'+I)]

= 1 [Bj2"-l+J + (A j@ Bj)2"+J]
n-3

]=O

n-3

- 1 (Aj I Bj)2"+J+l,
j=O

where . and - are as previously defined, I is the logical OR,
and @ is the logical exclusive-OR.

Proof
n - 3

1 [(Aj . Bj)(2n+J-I - 2"+J+L)

+ (Jj . Bj)(2n-l+j + 2"+J - 2"+J+l)

+ (A] . 4)(2"+' - 2"+J+l)]

= 1 [(Aj . B,) + (Jj . Bj)]2""+'

j = O

n-3

j = O

n--3 . .

+ 1 [(Aj * 4) + (4 * Bj)]2"+j

- 1 [(A, . Bj) + (xj * Bj) + (Aj . 4)]2"+'+I.

j - 0

n-3

j = O

If Q, R, and S are one of (0, 11, then

IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988 S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

Q + R = (Q @ R) + (Q . R) 2 ' ,

Q + R + S = (Q @ R @ S) + [(Q . R) l (Q e S) I (R . S)] 2 ' ,

(Aj . Bj) + (2, Bj) = (Aj . Bj) @ (zj . Bj) = Bj ,

(Ij . Bj) + (A, Bj) = A j @ Bj ,

and

(Aj Bj) + (Jj Bj) + (A, * Bj)
= (Aj . Bj) @ (3 . Bj) @ (Aj f Bj)
=BjfB(Aj . B ,) = B j I (A j . B j) = B j I A j .

Thus, Theorem 3 holds true.
Theorem 3 implies that for all rows, starting at row 0 and

ending at row n - 3, the encryption can be coded with three
additional bits, in a unique way, with simple logical
functions. Depending on j , i.e., the enumeration of the rows, excluded, and Theorem holds true.

position 2"+' by Ai @ Bj , and at position 2"+J by A, . Bj .

every row in position 2n+i+', where an element will result

Because 2'" is not involved in the multiplication, it can be

the can be computed at position 2"-1+J Bj9 at Theorem 4 can be viewed as an adaptation, to preserve

An inconvenience occurs in producing the encryption for
equivalence with multiplication and to transform negative
elements into positive elements, of the following theorem.

that indicates subtraction. Given that the production of a Theorem 4a
matrix with no special adders is of interest, elements that i+m

imply subtraction have to be eliminated. The elimination of - 2 f$(.)j 2k+' = $(.) j 2k+J + 2i+k - 2i+k+m+1,
those elements can be achieved as follows. j - i j - i

i+m

Theorem 4 such that

n-3 n -3 f$(.) j and &.)j are one of {O, l), with

j - 0 j -0 f$(.)j and $(.), mutually exclusive.
- (Aj I Bj)2"+J+' = 1 (A j)2)2"+J+ ' + 2"+' + 2-I.

Proof
n-3

1 (q q) 2) 2 " + j + ' + + 22n-L
j=O

n-3

= [(q q) 2 " + J + ' + (Aj I Bj)2n+J+'

- (Aj I B j) 2 n + j + '] + 2"+' + 22n-1,

j = O

given that

Proof
i+m $(.) j 2 j + k + 2i+k - 2i+k+m+l

j - i

= [$(.),. + f$(.), - f$(.)j]2J+k+ 2i+k - 2i+k+m+l
i+m

j - i

i+m

= 2 j + k -
i+m @(.) j 2 j + k + 2i+k - 2i+k+m+l

j - i j = i

(A , I B ,) + (Aj I Bj) = (4 . Bj) + (Aj I Bj) = p i + k + 2i+k+l + . . . + 2i+k+rnl

= (Xj f Bj) @ (Aj I B,)

= (T . B j) @ A j @ B j @ (A j . Bj)

i+m - f$(.) j 2 j + k + 2i+k - 2i+k+m+l

j - i

= (4 Bj) @ Aj @ (Jj . Bj) = , i+k[20 + 2' + . . . + 2"]

=Ij@Aj= 1.

(Aqq)2)2"+j+' + y + ' + p n - 1

Thus,
n-3

j = O j - i

n-3 n -3 i+m

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

The theorem implies that the negative summation can be
transformed to a positive one with the addition and
subtraction of a 1 at positions 2i+k and 2i+k+m+l respectively;
i.e., all negative elements but one have been transformed to
positive ones. Regarding finite machine representation, the
negative element can be easily transformed to a positive one
via proper element extension and overflow elimination. In
the multiplication, as described previously, it is achieved as
follows.

Theorem 4a can be seen as equivalent to
i+m i+m

- I$(.) j 2 j + k = F(.)j j+k + 2i+k + 2i+k+m+l
* (3)

j - i j - i

This is evident because
i+m

&(.) j 2 j+k + 2i+k + 2i+k+m+l

j - i

i+m

= 2i+k+m+2 - E 4(.) j 2 j + k , (4)
j - i

and if 2i+k+m+2 need not be considered, it can be concluded
that Equation (3) holds true.

considered, the elimination can be achieved as follows.

position indicating overflow, b being some integer, then

2a+b-I + 2a+b-2 + . . . + 2"'' + 2" = 2a+b - 20.

Thus, by excluding 2a+b, it can be stated that

In the case that it is not true that 2i+k+m+2 need not be

Let i + m + k + 1 = a; if it is assumed that 2a+b is the first

2a+b-I + 2a+b-2 + . . . + 2"+' + 2" = -2".

Then, Theorem 4a can be written as
i+m i+m -e f#J(J j 2 j + k = E J(J j 2 J + k + 2 i + k
j - i j - i

+ 2" + 2"+1 + . . . + 2"+b4,
I with a = i + m + k + 1 and 6, some integer that guarantees

i the element elimination due to overflow, i.e., the exclusion
of 2a+b.

Theorem 4 implies that the multiplication XY is
equivalent to

P = n, + nij - xn-l Y02n-L - X 22(n-I)-l
n-l n-2

n-3

+ E (B j 2 " - I + J + (Aj @ B j) Z + ')

+ (q q) 2 " + j + l + 2"+' + 22n-I.

j-0

n-3

j-0

The equation still contains two negative terms, Yn-IXn-2,
which correspond to the multiplication matrix at position

-Yn-lXn-2 can easily be eliminated, because
22(n-1"I and Yo at position 2"". It can be observed that

IBM 1. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

- x 22(n-l)-l - , x (22n-l + 22n-2 + 22n-3),
n-I n-2

-
n-l n-2

The previous equation holds true because terms not involved
with the multiplication need not be considered and because
- x 22(n-I)-l

n-I n-2 can be written as
x (22n-I+x + 22n-l+x--L

n - I n-2
+...

+ 22n-1 + 22n-2 + 22(n-I)- l)

= Yn-IXn-2[22n-I+x+L - 22(n-I)-I 1
= y x 22n+* - y X 22n-3= - y x 22n-3,

with x being some integer 20.

element extension, described previously, or by the following.
Given that the multiplication is equivalent to

n - I n-2 n-I n-2 n-l n-2

The negative Yo can be eliminated with proper

P = n, + nij - Yn-,xn-22 2(n- I)- I

+ [B, 2"-I+J + (Aj @ Bj)2n+J + (q q) 2 n + j + 1]

- C2"" + Bo2n-I + (A, @ B,)2"

+ (A ,) 2 " + I + 2"+l +

n-3

j - I

where C = X,- I Yo and all the logical operators are as
previously defined, and because
-2n-I = 2"" + 2" + 2"+' - 2n+2,

4 2 " " + Bo2n-1 + (A, @ B,)2" + (A ,) 2 " + '

it can be stated that

= (Bo + C) 2 " - I + [(A, @ Bo) + C]2"

+ [(m) + c]2n+l - C2n+2,

and therefore

P = n, + nij - Yn-IXn-222(n-I)-I
n-3

+ [Bj 2n-1+J + (A j @ Bj)2"+J

+ (3 * Bj)2"+J+l] + (Bo + C)2""

+ [(A, @ B o) + C]2" + [(J, . Bo) + C]2"+'

- c2n+2 + 2n+l + 22n-I.

j - I

The negative term -C2n+2 can be eliminated as follows.

Theorem 5

(Bo + C)2"-l + [(A, @ Bo) + C]2"

+ [(2, * Bo) + C]2n+l - c2n+2

= (C @ Bo)2n-' + [A, @ (Bo I C)] 2 "

+ (2, - Bo * C) 2 " + ' .

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

Proof

(Bo + C)2"" + [(A, @ Bo) + C]2"

= (Bo @ C)2"" + (Bo * C)2"

+ [(A, . E,) + C]2"+I - c2"+2

+ (A, @ Bo @ C)2" + [(A, @ Bo) 1 C]2"+I

+ [(A, * E,) @ C]2"+' + (A, * E, . c)2"+2 - c2"+2

= (Bo @ C)2"" + [(Bo C) @ A , @ Bo @ C]2"

+ [Bo * c * (A,@B, @ C)]2"+I

+ [((A, @ Bo) . C) @ (A, * E,) @ C]2"+I

+ [(A, @ B o) . c * ((A, * E,) @ c)]2"+2

+ (2, . E, * c)2n+z - c2"+2.

But

(B o . C) @ A , @ B , @ C

= (C . E,) @ A, @ Bo

= A, @ (Cl 4));

(Bo ' c . A,) @ (Bo * C) @ (Bo * C)

= Bo * A, . C;

[(A, @ Bo) * C] @ (A, * E,) @ c
= [C * (A ,)] @ (A, . E,);

[(C * A,) @ (Bo ' C)l [(A, E,) @ CI

= c * (A, @ Bo).

Thus,

(Bo + C)2"" + [(A, @Bo) + C]2"

+ [(A, f Bo) + C]2"+l - c2"+2

+ [(A, * E,) @ (C . (A ,))] 2 " + '

+ [C * (A, @ B,)]2"+2 + (A, . Bo . c)2"+2 -

= (Bo @ C)2"" + [A, @ (C 1 B,)]2" + (Bo * A, . C)2"+'

= (Bo @ C)2"" + [A, @ (C 1 B,)]2"

+ [(Bo . A, * C)@ (A, * B,)@(C f (A ,))] 2 " + '

+ [Bo * A, * c ((A, * E,) @ (C * (A ,)))] 2 " + 2

+ [C . (A, @ B,)]2"+2 + (A, * E, . c)2"+2 - c2"+2.

544 But

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

(Bo * A , . C) @ (A,. E ,) @ [C . (A,@B,)I

= c . [(A, . Bo) @A, @ Bo] @ (A, . E,)

= c . [(A,. B,)@A,]@(A,. E,)

=c.(A0.B,)~(2,.B,)=A,.B,.c

B o . A, f c . [(X,. E ,) @ (C . A,)@(C. Bo)]

and

= A, . Bo . C.

Thus,

(Bo + C)2"-l + [(A, @ Bo) + C]2"

+ [(A, 1 Bo) + C]2"+l - c2"+2

+ (A, * Bo - c)2"+2 + [C (A, @ B,)]2"+2

+ (2, * E, . c)2"+2 - C2n+2,

= (Bo @ C)2"-l + [A, @ (C I B,)]2" + (X, * E, . C)2"+'

given that

[(A, Bo . C) + (C . (A, @ B,))]2"+2

= [(A, * Bo f C) @ (C * A,) 63 (C . B,)J2"+2 + 0

= [(A, . E, * C) @ (C . B,)]2"+2,

and

(X, . E, . c)2"+2 + [(A, . E, * C) @ (C f 8,)]2"+2

c . [(A,. E,)@(A, * E ,) @ B ,] = C . (B,@B,)=C.

(Bo @ C)2"" + [A, @ (C 1 B,)]2"

= [(Ao * E, * C) @ (A, * E, * C) @ (C . B,)]2"+2 + 0;

Thus, it can be concluded that

+ (A, . E, . C)2"+' + c2"+2 - c2"+2

= (Bo @ C)2"" + [A, @ (C I B,)]i" + (A, * E, C)2"+',

and Theorem 5 holds true.

equivalent to
From Theorem 5, it follows that the multiplication XY is

P= II, + rIij - Yn-IXn"222(n--I)-'

+ x [Bj 2""+' + (Aj @ Bj)2"+J

+ (3. . Bj)2"+j+l]

+ (Bo @ C)2"" + [A, @ (Bo I C)]2"

+ (A, E, * C)2"+l + 2"+l + 22n-I, (5)

"-3

j = I

which corresponds to the matrix in Figure 4. Such a matrix
can be transformed, taking into account the elimination of
the element -Yn-lXn-222(n-I)-I and the addition

IBM 1. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

(2, * E, . c+ ,) , ,+I ,

as follows:

P = n, + n, + Yn-lXn-22

+ y. X p n - 1)

2(n- I) - I

n-1 n-2 + Y n ~ l x n ~ 2 2 2 " - '

+ ,Bj2,-I+j + (Aj a3 Bj)2"+J + (4 . Ej)2n+'+1]

+ (Bo a3 C)2"-l + [A, a3 (Bo I C)]2"

+ (A, 1 Bo 1 c) 2 n + 1 + (2, . E, . c)2n+2 + 22n-1,

n-3

j= I

which corresponds to the multiplication matrix containing
no negative terms shown in Figure 5.

The matrix as presented in Figure 5 contains n - 1 rows
instead of n, as normally required in the direct computation
of the multiplication. It contains three additional bits on
every row starting at the row enumerated as 1 (in effect, the
second row) and ending at the row enumerated n - 3 (in
effect, the n - 2 row). For every 1 I j I n - 3, the three bits
are added at position 2""*' computed by the logical AND of
Yn-l and 4; at position 2"+J computed by the logical AND
of Yn-l and Xj, the logical AND ofX,,-, and Y,+,, and the
exclusive-OR of the resulting logical ANDs; and, finally, at
position 2'+'+l computed by the logical AND of Y,,-l and 4,
the logical AND ofX,-, and Y,+,, and then the logical NOR
of their result.

At the first row and starting at position 2""' and ending at
position 2'+', four elements are added and can be computed
by the logical cells shown in Figure 6.

An observation worth exploring is that while the rows for
the multiplication matrix have been reduced by one, there
are some elements that require more complex logical cells
than the simple logical AND. It can also be observed that
those elements are very few, especially when large operands
are considered, and their calculation should definitely not
add delay to an array-connected multiplier. This is because
they require less delay than a CSA adder cell. Thus, even if
no special attention is paid to the layout, they will not
penalize the addition of one full stage. In addition, those
quantities can be carefully calculated during the repowering
of the first stage.

A more important consideration is that the complex
elements can be added so that there is no need for any of the
above. This is because, in an array-connected multiplier,
they can be positioned at the end of the configuration, thus
producing no extra delay when added.

Thus, it can be concluded that a row can be eliminated
from the usual number of rows needed to produce an n X n
multiplication.

In the Appendix, it can be found that more rows can be
eliminated from the matrix configuration with the addition
of more complexity for the computation of a few elements.
Given that the time of the computation is of importance,
and the number of elements requiring complex calculations
is limited, it is worth doing so.

contains two uniformities, one belonging to the encryption
bits and one belonging to the rest of the matrix. Thus, it can
be concluded that the layout of the multiplier achieves a
high degree of regularity, making it suitable for VLSI design.

Another observation worth noting is that the matrix

IBM I. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988 S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

.Bo 63 C

,

-A,$ (BoIC)

Logic cells for the encryption elements.

S. VASSILIADIS, M. PUTRINO, A N D E. M. SCHWARZ IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

4. Conclusions
The encryption algorithm proposed above is an approach
for the realization of two's-complement multipliers with
direct multiplication. The negative terms present in
two's-complement multiplication, produced by the fact that
the sign and the absolute value are inseparable, are
imbedded into the matrix as positive quantities with the
addition of three bits in the high-order position. The
implication is that there is no need for specialized adders
that take into account element addition and subtraction, and
furthermore, that no additional "correction" rows are needed
to perform the multiplication. Additionally, there is no need
for complete sign extension to preserve the equivalence of
the matrix if negative terms are to be excluded.

The resulting matrix can be seen as uniform, with most of
the initial matrix unaltered (i.e., each element is computed
by the logical AND of the quantities involved), and with the
addition of the encryption which consists of elements that
are more difficult to implement than the rest of the matrix.

Two out of three bit positions, for every row but the first
requiring encryption, can be computed with the logical
exclusive-OR or with the logical NOR of the required Xi Y, .
However, except for the minimal amount of complexity
added to produce the matrix, the element realizations will
not result in increasing the delay needed to produce the
multiplication because they are not required immediately.

On the first row, the four required elements that are not
simple ANDs can be computed with simple logical cells.

A disadvantage of the encrypted multiplier is that some of
the encrypted elements require more difficult functions than
a simple AND to be computed, but it can be observed that
those elements can be swapped with elements that are
computed by ANDs and are further down in the matrix in
the same column, so that they are available when required.
Thus, in an array-connected multiplier, they will not
penalize the total multiplication delay.

In addition, the number of rows required to produce the
two's-complement multiplier is equal to n - 1 instead of n,
and the difficult elements of the last rows are of a lesser
degree of complexity to compute than that of a three-way
exclusive-OR. Thus, it can be stated that the multiplier will
require less delay if compared to a direct two's-complement
multiplier with no encryption.

Given its uniformity, the encrypted matrix results in a
high degree of regularity, thus making it suitable for VLSI
array-connected layouts.

Finally, it can be observed that it is possible to decrease
the number of rows of the multiplier with the addition of
complexity for the computations of some limited number of
elements, as described in the Appendix.

The algorithm will also produce multipliers that can
handle sign-magnitude notation, given that sign-magnitude
notation, with respect to multiplication, can be seen as
two's-complement with a minimal change regarding the sign

correction. The resulting multiplication matrix with proper
additional circuitry can also accommodate one's
complement and unsigned notations for universal types of
operations.

Appendix A: Further row reduction
The encrypted matrix can be reduced as shown below.
Equation (5) can be transformed easily, so that the
multiplication can be expressed as follows:

P = n, + n, - Yn-IXn-222(n-1)-I
n - 3

+ [Bj2,-,+j + (Aj @ Bj)2"+J + (Aj . Bj)2n+j+l]
j-2

+ (Bo 63 C)2"" + B, 2" + [A, @ (Bo I C)]2"

+ (A, @B,)2"+, + (J0 f Bo * €)2"+'

+ (2, . B,)2n+2 + 2n+l + 22n-1.

Given that

P I + A0 @ (Bo I 0 1 2 "

= [B, @Ao @ (Bo I C)]2" + B, . [A, @ (Bo I C)]2n+l ,

and because
n - 2 n -3

n, = x, < 2 J + x, q 2 J + l
j=O j - 0

n-2 n-2

+ x 1 xi q2j+j +x, Yn_,2"-'
i=2 j - 0

= n; + x, Yn-,2"-'

by its definition, and

[E +(Bo @ C)]2"-' = (E @ Bo @ C)2'"' + [E (.

when

E = X , Yn-2 ,
the multiplication matrix is equivalent to

P = n, + n; - Yn-,xn-222(n-l)-I

n - 3

Bo @ C)]2"

+ x [Bj2n-,+j + (Aj @ Bj)2"+J + (4 q)2n+j+7

+ (2, . E,)2n+2 + (A , @ B,)2n+1 + (J0 * Bo * C)2"+'

+ [B, . (A, @ (Bo I C))]2"+, + [E . (Bo @ C)]2"

+ [B, @Ao @ (Bo I C)]2" + (E @ Bo @ C)2""

+ 2n+l + 22n-1.

j = 2

Since

[1 + (A , @ B,)]2"+I = (2, @ B,)2n+l + (A, @ B,)2n+2,

then

IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988 S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

[(2, . E ,) + (A, @B,)]2"+*

= [(TI . B ,) @ A , @ B l] 2 n + 2 + 0

= [(2, I B l) @ A l] 2 n + 2 = (2, I Bl)2n+2,

and

[(A, @ B ,) + (J0 . Bo . @)]2"+I

= [(Ao . Bo . C) @Al a3 B,]2n+L

+ [Ao Bo * c * (2, @ B ,)] 2 n + 2 .

Thus, the multiplication can be expressed as follows:

P = n, + rI; + Yn-,Xn-,2 2(n- I)- I

+ X 2201-1)
n- l n-2 + Yn-IXn-222n-L

+ 2 [Bj2"-l+j + (Aj a3 Bj)2"+j + (Aj . 8,)2n+'+1]

+ y2"-I + 62" + q2" + x2"+' + p2n+1

+ p2n+2 + l)2n+2 + 22n-1,

n-3

j = 2

such that

y = E @ B o @ C ,

6 = B , a 3 A o @ (B o I C) ,

q = E . (B o a 3 C) ,

x = B, . [A, @ (Bo I C)l ,

p = (A o . B o . C)@A,@B, ,

P =A, I B,,

+=lo. B o . c . (2, @ B,) ,

and

which can be computed by the logic cells in Figures 7 and 8.
A representation of the matrix is reported in Figure 9. The

matrix still contains n - 1 rows. However, it can be
transformed, as in Figure 10, with

(Y = Xn-2 Yo @ X,- , Y, and p = Xn-2 Yo . X,- I Yl .

The (n - 1)th row contains four elements starting at position
n - 1 and ending at position n + 2. In addition, the (n - 2)th
row contains a zero at position n + 3. Thus, with proper

eliminated. Therefore, the multiplication can be represented
with a matrix that contains n - 2 rows.

(6) addition, the four elements of the (n - 1)th row can be

IBM I. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

Logic cells for A , p, and $.

549

IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988 S. VASSILUDIS, M. PUTRINO, A N D E. M. SCHWARZ

The same process can be applied to further reduce the
number of rows. However, depending on the length of the
operands, the number of "difficult" elements and the
complexity of producing them, and the additional
complexity added to the layout of the multiplier, the purpose
of such reductions becomes defeated at a certain point, and
no further reductions should be considered.

References
1. A. D. Booth, "A Signed Multiplication Technique" (Part 2),

Quart. J. Mech. & Appl. Math. 4,236-240 (1951).
2. 0. L. MacSorley, "High-speed Arithmetic in Binary

Computers," Proc. I R E 99,67-91 (January 1961).
3. L. P. Rubinfield, "A Proof of the Modified Booth's Algorithm

for Multiplication," IEEE Trans. Computers C-24, 10 14- 10 1 5
(October 1975).

4. S. Vassiliadis, E. M. Schwarz, and D. J. Hanrahan, "A General
Proof for Overlapped Multiple-Bit Scanning Multiplications," to
appear in IEEE Trans. Computers, accepted for publication
November 1987.

5. L. Dadda, "Some Schemes for Parallel Multipliers," AIta
Frequenza 34,349-356 (May 1965).

6. D. Ferrari and R. Stefanelli, "Some New Schemes for Parallel
Multipliers," Aka Frequenza 38,843-852 (November 1969).

7. L. Dadda, "On Parallel Digital Multipliers," Aha Frequenza 45,
574-580 (October 1976).

8. L. Dadda and D. Ferrari, " D i g i t a l Multipliers: A Unified
Approach," AIta Frequenza 37, 1079-1086 (November 1968).

9. S. D. Pesaris, "A 40-11s 17-Bit Array Multiplier," IEEE Trans.
Computers C-20,442-447 (April 1971).

10. C. R. Baugh and B. A. Wooley, "A Two's Complement Parallel
Array Multiplication Algorithm," IEEE Trans. Computers C-22,
1045-1047 (December 1973).

1 1. R. De Mori and A. Serra, "A Parallel Structure for Sign Number
Multiplication and Addition," IEEE Trans. Computers C-21,
1453-1454 (December 1972). 550

12. J. C. Majithia and R. Kita, "An Interactive Array for
Multiplications of Signed Magnitude Numbers," IEEE Trans.
Computers C-20,2 14-2 16 (February 197 1).

13. W. J. Stenzel, W. J. Kubitz, and G. H. Garcia, "Compact High-
Speed Parallel Multiplication Scheme," IEEE Trans. Computers
C-26,948-957 (October 1977).

14. L. Dadda, "Composite Parallel Counters," IEEE Trans.
Computers G29,942-946 (October 1980).

15. C. S. Wallace, "A Suggestion for Parallel Multipliers," IEEE
Trans. Electron Computers EC-13, 14-17 (February 1964).

16. B. R. Mercy, "Multiplier Speed Improvement by Skipping Cany
Save Adders," U.S. Patent 4,556,948, December 3, 1985.

17. S. Waser and M. Flynn, Introduction to Arithmetic for Digital
System Designers, CBS College Publishing, New York, 1982,
Ch. 4.

18. K. Hwang, Computer Arithmetic Principles, Architecture, and
Design, John Wiley & Sons, Inc., New York, 1979.

Received March 31, 1987; accepted for publication February
10.1988

I S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ IBM 1. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

Stamatis Vassiliadis IBM System Products Division, P.O. Box
6, Endicott, New York 13760. Dr. Vassiliadis received the Dr.Eng.
degree in electronic engineering from the Politecnico di Milano,
Milan, Italy, in 1978. He was most recently a member of the task
force that defined the high-level design for a new computer system,
for which he is currently the technical leader of the floating-point
unit development group. Before his current assignment he
participated in the design of the IBM 9370 Model 60. Since joining
IBM he has received the First Invention Filed Award, the first and
second levels of the Author’s Recognition Award, and the first level
of the IBM Invention Achievement Award. His research interests
include computer arithmetic, computer architecture and hardware
design, error detection and fault isolation for hardware
implementations, pipelined computers, and vector and parallel
processors. Dr. Vassiliadis is an adjunct professor at the Watson
School of Engineering, State University of New York at
Binghamton, and a member of the Computer Society of the Institute
of Electrical and Electronics Engineers.

Michael Putrino IBM System Products Division, P.O. Box 6,
Endicott, New York 13760. Mr. Putrino received the B.S. degree
(cum laude) in electrical engineering from Syracuse University in
1977. He also received an AS. degree in electrical technology from
Broome Community College, Binghamton, New York, in 1975. Mr.
Putrino joined IBM in 1977; he is currently a staff engineer and the
design coordinator for the execution unit of a high-performance
computer processor. His main interests lie within the scope of
computer arithmetic, computer architecture and hardware design,
error detection and fault isolation for hardware implementations,
pipelined computers, and parallel processors. He has received the
first level of the Author’s Recognition Award and the First Patent
Filed Award. Mr. Putrino is a member of the Institute of Electrical
and Electronics Engineers and the Computer Society of the IEEE.

Eric M. Schwarz IBM System Products Division, P.O. Box 6.
Endicott, New York 13760. Mr. Schwarz received the B.S.E.Sc.
degree from The Pennsylvania State University in 1983, and the
M.S.E.E. degree from Ohio University in 1984 under a Stocker
Fellowship. Since he joined IBM in 1984, his interest has been in
minicomputers, with emphasis on computer arithmetic and parallel
and pipelined architectures. He has received the First Patent Filed
Award and the first level of the Author’s Recognition Award, and
has filed three patents.

IBM J. RES. DEVELOP. VOL. 32 NO. 4 JULY 1988

55 1

S. VASSILIADIS, M. PUTRINO, AND E. M. SCHWARZ

