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Parallel 
encrypted  array 
multipliers 

by S. Vassiliadis 
M. Putrino 
E. M. Schwarz 

An  algorithm  for direct  two’s-complement  and 
sign-magnitude  parallel  multiplication  is 
described.  The  partial  product  matrix 
representing  the  multiplication  is  converted  to 
an  equivalent  matrix  by  encryption. Its reduction, 
producing  the  final  result, needs no specialized 
adders  and  can be added  with  any  parallel  array 
addition  technique.  It  contains  no  negative  terms 
and  no extra  “correction”  rows;  in  addition, it 
produces  the  multiplication  with  fewer  than  the 
minimal  number  of  rows  required  for  a  direct 
multiplication  process. 

1. Introduction 
The realization of multipliers for  digital computers has been 
considered by several  scientists and engineers. Many 
multiplication techniques and algorithms have  been 
developed and proposed in the past, and some have  been 
implemented in actual hardware. The conventional 
interactive add-shift methods for multiplication are 
inexpensive to implement in terms of hardware, but their 
resulting execution times are too slow to satisfy the 
increasing demand for speed. Given that circuit density and 
speed  have  increased tremendously while hardware costs 
have  decreased, parallel-multiplication schemes  for 
multiplier designs can be implemented that do meet high 
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speed requirements. A  variety of parallel-multiplication 
techniques and algorithms have  been  proposed in  the past. 
Among the major classes  of multiplication techniques are 
multi-bit overlapped scanning, parallel multiplication, and 
direct multiplication for array-connected matrices. The 
overlapped scanning technique has been  described for two- 
bit  overlapping by  A. D.  Booth [ 11, and has been extended 
to three- and four-bit overlapping by 0. L. MacSorley [2]. 
The correctness of the three-bit overlapped scanning 
technique has been proven by L. P. Rubinfield [3], and the 
generalized  proof for multi-bit overlapped scanning can be 
found in [4]. The parallel-multiplication technique has been 
introduced by L. Dadda [5], and parallel-multiplier 
algorithms can be found in [6-81. A  variety of direct- 
multiplication algorithms have  been  proposed in the past [9- 
121 that can be implemented in array-connected 
configurations. 

a  fast multiplier in essence produces a matrix that contains 
rows equivalent to the partial products or modified partial 
products. The resulting matrix that represents the 
multiplication process has to be added to produce the final 
product, and some kind of counter is  used to satisfy this 
purpose. The most commonly used, at present, are the 3/2 
counters, otherwise  called  carry-save adders (CSAs). 
However, there are schemes that propose m/n counters, with 
m, n being some natural numbers greater than 3 and 2, 
respectively [5], as for example 5/3, 7/3, 15/4,  etc., and 
generalized counters that receive  serial  successive  weighted 
input columns to produce their sum and carry elements, 
taking into account the proper weighting [ 13, 141, as for 
example 5/5/4. The counters are placed  according to some 
convenient scheme, e.g., those proposed by Dadda [5] and 
Wallace [ 151, and are sometimes connected in a  special 

Any proposed multiplication scheme for the realization of 
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manner, as described for instance in [ 161, to reduce  delay. A 
summary of the major classes  of  multipliers can be found in 
[ 171 and [ 181. 

The direct two’s-complement and sign-magnitude  parallel 
multipliers are of particular interest since those 
representations are used  extensively in digital computer 
architectures. When the two’s-complement representation is 
considered, additional complexity  arises  with  respect to other 
representations using direct-multiplication algorithms or 
techniques. This is due to the fact that the sign  of the 
number cannot be  separated  from its absolute value, as is the 
case  with the sign-magnitude repesentation. The implication 
is that it is not possible to produce the multiplication by 
multiplying the two  absolute  values and then appending the 
separately computed sign bit to the result. The proposed 
direct  two’s-complement algorithms must account for the 
sign  of the number in some way. This is  because  negative 
elements will  be present when the partial product matrix is 
created.  Those elements are the result of the multiplication 
of the sign bit of Y (Y being the multiplier) with  every  bit  of 
X excluding the sign bit ( X  being the multiplicand) and vice 
versa.  Therefore, element subtraction and addition must be 
performed during the reduction of the matrix. The addition 
and subtraction of the elements of the matrix can be 
achieved by using  generalized  types of counters, namely 
counters that can add either positive or negative elements or 
a combination of both, such as the 3-to-2 counters described 
in [ 181. Alternatively, the partial product matrix can be 
“conveniently” manipulated to eliminate the “corrections” 
due to the signs.  However, the resulting matrix containing 
modified partial products with  only  positive elements 
may  require additional rows. Element addition and 
subtraction may  result not only  because of the nature of 
the two’s-complement notation, but also  because of the way 
that an algorithm or technique creates the partial or 
modified partial product matrix. Again,  unless  generalized 
adders are used, the matrix must be manipulated to exclude 
the negative elements. 

This paper introduces a direct algorithm to realize the 
two’s-complement and sign-magnitude multiplications most 
suitable for array-connected configurations. The partial 
product matrix produced by the algorithm is independent of 
the notation used and contains no negative elements, thus 
allowing the product to be  formed  using array addition 
schemes  with no generalized counter cells. The partial 
product matrix is created by using three extra bits on most 
of the rows,  resulting in the encryption of the negative 
elements, due to consideration of the two’s-complement 
notation. The additional elements need no complex  logical 
cells  for their computation. In addition, because of the 
encryption of the sign, no extra rows  need  be added for the 
“corrections” due to the sign  of the two’s-complement- 
represented numbers. On the contrary, one row has been 
eliminated, with a negligible addition of complexity to the 
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few extra elements of the matrix. The resulting matrix is 
highly  regular, and therefore suitable for VLSI designs and 
implementations. 

2. Two’s-complement  and  sign-magnitude 
multiplication 
For two’s-complement multiplications, the 2n-bit product P, 
represented  in  binary as (P2n-l, P2n-2, . . . , Po), is formed by 
multiplying the n-bit multiplicand, X ,  represented in binary 
as (Xn+ Xn-2, . . . , Xo),  and the n-bit multiplier, Y, 
represented in binary  as ( Yn-l, YnW2, . . . , Yo). By assuming X 
and Y to be two-integer numbers such that and yn-l are 
the sign bits, X and Y can be written as 

n-2 

x = -xn-,2“-’ + 1 xi2i, 
i=O 

n-2 

Y =  -Yn-12n-’ + 1 q2’, 
i=O 

and the product XY is equal to 
n-2 n-2 

P =  n, + nij - xn-12n-1 q2J - Yn-,2“-I 1 xj2j 
j=O i=O 

= n, + nij - xn-l Yo2n-1 - Y n-I x n-2 22(n-1)-’ 
1 n-2 17-3 \ 

j =  I i=O 

where 

n, = xnpl Yn-122(n-1), 

n,= xiq2i+J. 
n-2 n-2 

i=o j=o  

The multiplication can  be produced by adding the matrix in 
Figure 1, which  represents the product P as presented in 
Equation (1). 

An immediate observation  is that some elements have to 
be added and some must  be subtracted. The implication is 
that a generalized type of adder must be  used, as described 
for the direct  two’s-complement array multiplier by Pesaris 
[9].  Alternatively, subtraction elements can be eliminated, 
usually  with additional rows and consequent manipulation 
of the multiplication matrix, as described  for  example in [ 101 
(see Figure 2). 

For sign-magnitude multiplications, the 2n-bit product P, 
represented in binary  as (P2n-l, P2n-2, . . . , Po), is formed by 
mutliplying the n-bit multiplicand, X ,  represented in binary 
as (Xn-l, . , Xo),  and the n-bit multiplier, Y, 
represented in binary as ( Yn-l, Yn-2, . . , Yo). By assuming X 
and Y to be  two-integer numbers such that Xn-l and Yn-l are 
the sign bits, X and Y can be written as 
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X= (-l)xn-l Xi2i, 

Y =  ( - 1 p - 1  q 2 J ,  

n-2 

i=O 

n-2 

j = O  

and 

i=O j = O  

The computation of the multiplication can be  achieved  by 
separately computing the sign  of the final  result,  which is 
equal to 

SIGN = Xn-l @ Yn-l, 
where CT3 is  exclusive-OR, and multiplying the two absolute 
values, 
n-2 n-2 

Xi52'+J.  
i=O j - 0  

If it  is  desired to use the two's-complement multiplier to 
compute the multiplication for both representations, the 
sign-magnitude number representation must be  changed to 
resemble the two's-complement notation. The changing of 
the sign-magnitude notation to the two's-complement 
notation, with  respect to the multiplication, is  trivial. It can 
be achieved as follows. 

Given that sign-magnitude multiplication involves the two 
absolute numbers and  the sign is computed separately, X 

and Y can be  represented  as 
n-2 

x = "xn-12n-1 + Xi2i, 

Y=-Yn-12n-1 + I: q2J, 
i=O 

n-2 

j = O  

where = Yn-l = 0. 

When the operands X, Yare presented as inputs, the 
two's-complement multiplier will produce the correct 
answer,  except for the sign bit of the result.  However, the 
sign bit can be computed separately and appended at the 
sign position of the final  result,  disregarding the resulting 
sign bit of the two's-complement multiplication. Thus, it can 
be assumed that the hardware of a two's-complement 
multiplier will produce both multiplications with one change 
to accommodate the sign bit, which can be computed by 

SIGN = [(Xn-, @ Yn-l) SI @ [Pzn-1 * $1, 
with S = 1 iff  sign magnitude multiplication is  being 
considered and . indicating the logical AND function. 

3. Encrypted array multiplication 
This section is dedicated to the derivation and description 
of an algorithm to produce the two's-complement 
multiplication function which,  when the observations and 
sign calculations described  previously are implemented, will 
produce the sign-magnitude multiplication as well. 
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The multiplication equation is transformed to  an 
equivalent one by encryption of the negative terms. This 
transformation is achieved by proper element extension and 
overflow deletion on every  row corresponding to each 
negative element that is present in a partial product. Then, 
encrypted elements are formed to replace  each pair of 
extended element rows,  respecting the binary addition of 
those rows. Consequently, all of the negative encrypted 
elements are eliminated, and finally, constants resulting from 
the encryption are added into the matrix to eliminate extra 
rows. The transformation of the multiplication matrix is 
achieved as follows. 

Assuming the multiplication as described by Equation (l) ,  
the following holds true: For every j ,  it can be stated that 

- x y,2n-l+j - - X y,2n-l+J 
n 

n-1 J n-l J 2k. 
k=O 

This is  because 

if = 0 

then it is trivially true; 

and i fXn-,q= 1, 

n 
-2n-l+j = 2n-l+j c 2k 

k-0 

- - 2"-1+'(20 + 21 + . . . + 2") 
= 2n-l+j(2n+l - 2 O )  
&+j - 2n-l+J. 

Given that 0 5 j 5 n - 2, then 2n + j 2 2n. The portion 2'"+J 
is not involved  with the multiplication and need not be 
considered. 

Similarly, 
n 

- y  n- I X i 2 n - l + i =  yn-,xi2"-'+' 2k. 
k=O 

Thus, the multiplication described in Equation (1) is 
equivalent to 

P = n, + n, - xn-,Y02"-' - 

+ X n - l y 2 n - l + j  1 2k 

+ Yn-,xi2n-L+i 2k. 

x 22(n-1)-L 
n-l n-2 

n-2 n 

j -  I k-0 

n-3 n 

i=O k-0 

then The implication is that the multiplication can be written as 
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Table 1 Encryption table. 

4 ' 1  Encryption 
n + j + l   n + j   n - l + j  

~~ 

0 0 0 0 
0 1 0 
1 

-1 
0 -1 0 

1 1 -1  0 1 

P = n, + n, - Yo2n-1 - Y n-I x n-2 22(n-1)-1 
n - 3  n 

+ xn-Iq.+12n+J 2k 
j-0 k=O 

n - 3  n 

i=O k=O 

n 

j=O k=O 

n \  

+ Yn-1q2n-1+j c 2"). 
k=O 

The multiplication matrix described by the previous 
equation is  shown in Figure 3. 

It  can  be  observed that while the matrix corresponds to 
the multiplication equation, it contains a few  negative 
elements which  can  easily  be eliminated with  "element 
extension." An attempt to implement the matrix will result 
in high cost in terms of hardware cells and delay.  However, 
this equation representing the equivalence to the 
multiplication can be  used as a starting point to produce 
encryption of the negative elements, consequently reducing 
the number of elements and rows in the multiplication 
matrix described in Equation (2). The encryption is  derived 
as  follows. 

Theorem 1 
The multiplication matrix is equivalent to 

P = n, + n, - Yo2n-L - Y n-1 x n-2 22(n-1)-1 

+ [(A, . Bj)(2"'"' - 2n+J+1) 
17-3 

j-0 

- (Jj . Bj)2n-l+j - (Aj . 8,)2"+'], 

where 

Aj=xn-lY,+l,  

Bj = Yn-lq , 
. is the logical  AND, and - is the logical NOT. 
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Proof 
It must be proven that 
n - 3  I n n \  

1 (xn-1q+12"+j 1 2k+  Yn-I/y2n-1+j 2 2 7  
j = O  k=O k=O 

n - 3  
= 1 [(Aj . Bj)(2"+J" - 2"+J+l) 

j - 0  

- (Jj . Bj)2n-l+j - (Aj . Bj)2"+J]. 

For any given j ,  the following holds true. 

Case 2 q+, = 0 and Yn-lXj = 1. 
n 

2n-l+j 1 2k = 2n-l+](2n+l - 2O) 
k=O 

- 22n+j - 2n- I + j  = -2n- I + j .  - 

Case 3 q+, = 1 and Y,-,X, = 0. 

2n+I (2n+l - 20) = -y+J 

Case4 X,-,Y,+, =X,- ,Y ,=O;  

then trivially true. Thus, Theorem 1 holds true. 
It is evident that depending on A, and Bj , for every row 

beginning at the row enumerated as 0 and ending at the row 
enumerated as n - 3 and for every  row  involving  positions 
2n+J+1, 2"+j, and 2n-1+J, an encryption will result, as 
represented in Table 1. 

Given that there are at most three bit positions in the 
encryption, for uniformity, the following can be  proven. 

Theorem 2 
The multiplication XY is equivalent to 

P= n, + I I i j  - Yo2"-l- Yn-,xn-222'n-1)-' 

+ r, [(Aj . Bj)(2n+j-l - 2n+J+1) 
n-3 

j = O  

+ (xj . Bj)(2"-l+J + 2"+J - 2'+j+l) 

+ (Aj . Bj)(2"+' - 2n+J+l)], 

with . and - as previously  defined. 

Table 2 Uniform encryption table. 

AJ *J Encryption 
n + j + l   n + j   n - l + j  

0 0 0 0 0 
0 1 -1 1 1 
1 0 - I  1 0 
1 I -1 0 1 

Proof 
Trivial, with  geometric  series properties applied to the terms 
containing A, and Bj. 

the rows  from 0 to n - 3 of the matrix such that for any 
given A,, B,, Table 2 will produce the right encryption for 
the added bit  positions. 

Theorem 3 
The encryption can be transformed into the following 
equivalence: 

2 [ (Aj . Bj)(2n+j-1 - 2"+'+l) 

The implication is that three bits have  been added to all of 

n - 3  

j = O  

+ (Jj . Bj)(2""+J + 2"+J - 2'+j+I) 

+ (A, . Bj)(2"+j - 2"+'+I)] 

= 1 [Bj2"-l+J + (A j@ Bj)2"+J] 
n-3 

]=O 

n-3 

- 1 (Aj I Bj)2"+J+l, 
j=O 

where . and - are as previously  defined, I is the logical OR, 
and @ is the logical  exclusive-OR. 

Proof 
n - 3  

1 [(Aj . Bj)(2n+J-I - 2"+J+L) 

+ (Jj . Bj)(2n-l+j + 2"+J - 2"+J+l) 

+ (A] . 4)(2"+' - 2"+J+l)] 

= 1 [(Aj . B,) + (Jj . Bj)]2""+' 

j = O  

n-3  

j = O  

n--3 . .  

+ 1 [(Aj * 4) + (4 * Bj)]2"+j 

- 1 [(A, . Bj) + (xj * Bj) + (Aj . 4)]2"+'+I. 

j - 0  

n-3 

j = O  

If Q, R, and S are one of (0, 11, then 
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Q + R = ( Q @ R ) + ( Q . R ) 2 ' ,  

Q + R + S = ( Q @ R @ S ) + [ ( Q . R ) l ( Q e S ) I ( R . S ) ] 2 ' ,  

(Aj . Bj) + (2, Bj) = (Aj . Bj) @ (zj . Bj) = Bj , 

(Ij . Bj) + (A, Bj) = A j  @ Bj , 

and 

(Aj Bj) + (Jj Bj) + (A, * Bj) 
= (Aj . Bj) @ (3 . Bj) @ (Aj f Bj) 
=BjfB(Aj  . B , ) = B j I ( A j .  B j ) = B j I A j .  

Thus, Theorem 3 holds true. 
Theorem 3 implies that for all  rows, starting at row 0 and 

ending at row n - 3, the encryption can be  coded  with three 
additional bits, in a unique way, with  simple  logical 
functions. Depending on j ,  i.e., the enumeration of the rows, excluded, and Theorem holds true. 

position 2"+' by Ai @ Bj , and  at position 2"+J by A, . Bj . 

every  row in position 2n+i+', where an element will result 

Because 2'" is not involved in the multiplication, it can be 

the can be computed at position 2"-1+J Bj9 at Theorem 4 can be  viewed as an adaptation, to preserve 

An inconvenience occurs in producing the encryption for 
equivalence  with multiplication and to transform negative 
elements into positive  elements, of the following theorem. 

that indicates subtraction. Given that the production of a Theorem 4a 
matrix with no special adders is of interest, elements that i+m 

imply subtraction have to be eliminated. The elimination of - 2 f$( . )j  2k+' = $( . ) j  2k+J + 2i+k - 2i+k+m+1, 
those elements can be achieved as follows. j - i  j -  i 

i+m 

Theorem 4 such that 

n-3 n -3  f$( . ) j  and &. )j  are one of {O, l),  with 

j - 0  j -0  f$( . )j  and $( . ), mutually exclusive. 
- (Aj I Bj)2"+J+' = 1 (A j )2 )2"+J+ '  + 2"+' + 2-I. 

Proof 
n-3 

1 ( q q ) 2 ) 2 " + j + '  + + 22n-L 
j=O 

n-3 

= [ ( q q ) 2 " + J + '  + (Aj I Bj)2n+J+' 

- (Aj I B j ) 2 n + j + ' ]  + 2"+' + 22n-1, 

j = O  

given that 

Proof 
i+m $(. ) j 2 j + k  + 2i+k - 2i+k+m+l 

j - i  

= [$( . ),. + f$( . ), - f$( . )j]2J+k+ 2i+k - 2i+k+m+l 
i+m 

j - i  

i+m 

= 2 j + k  - 
i+m @(. ) j 2 j + k  + 2i+k - 2i+k+m+l 

j - i  j = i  

( A , I B , )  + (Aj I Bj) = (4 . Bj) + (Aj I Bj) = p i + k  + 2i+k+l  + . . . + 2i+k+rnl 

= (Xj f Bj) @ (Aj I B,) 

= ( T .  B j ) @ A j @ B j @ ( A j .  Bj) 

i+m - f$(. ) j 2 j + k  + 2i+k - 2i+k+m+l 

j - i  

= (4 Bj) @ Aj @ (Jj . Bj) = , i+k[20 + 2' + . . . + 2"] 

=Ij@Aj= 1. 

(Aqq)2)2"+j+' + y + '  + p n - 1  

Thus, 
n-3 

j = O  j - i  

n-3 n -3  i+m 
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The theorem implies that the negative summation can be 
transformed to a  positive one with the addition and 
subtraction of a 1 at positions 2i+k and 2i+k+m+l respectively; 
i.e., all  negative elements but one have  been transformed to 
positive  ones.  Regarding  finite machine representation, the 
negative element can be  easily transformed to a  positive one 
via proper element extension and overflow elimination. In 
the multiplication, as described  previously, it is  achieved as 
follows. 

Theorem 4a can be  seen as equivalent to 
i+m i+m 

- I$(. ) j 2 j + k  = F( . )j  j+k + 2i+k + 2i+k+m+l 
* (3) 

j - i  j - i  

This is evident because 
i+m 

&( . ) j 2  j+k + 2i+k + 2i+k+m+l 

j - i  

i+m 

= 2i+k+m+2 - E 4(.  ) j 2 j + k ,  (4) 
j - i  

and if 2i+k+m+2 need not be  considered, it can be concluded 
that Equation (3) holds true. 

considered, the elimination can be  achieved as follows. 

position indicating overflow, b being some integer, then 

2a+b-I + 2a+b-2 + . . . + 2"'' + 2" = 2a+b - 20. 

Thus, by excluding 2a+b, it can be stated that 

In the case that it is not true that 2i+k+m+2 need not be 

Let i + m + k + 1 = a;  if it is assumed that 2a+b is the first 

2a+b-I + 2a+b-2 + . . . + 2"+' + 2" = -2". 

Then, Theorem 4a can be written as 
i+m  i+m -e f#J( J j 2 j + k  = E J( J j 2 J + k + 2 i + k  
j - i  j - i  

+ 2" + 2"+1 + . . . + 2"+b4, 
I with a = i + m + k + 1 and 6, some integer that guarantees 

i the element elimination due to overflow,  i.e., the exclusion 
of 2a+b. 

Theorem 4 implies that the multiplication XY is 
equivalent to 

P = n, + nij - xn-l Y02n-L - X 22(n-I)-l 
n-l  n-2 

n-3 

+ E ( B j 2 " - I + J  + (Aj @ B j ) Z + ' )  

+ ( q q ) 2 " + j + l  + 2"+' + 22n-I. 

j-0 

n-3 

j-0 

The equation still contains two  negative terms, Yn-IXn-2, 
which correspond to the multiplication matrix at position 

-Yn-lXn-2 can easily be eliminated, because 
22(n-1"I and Yo at position 2"". It can be observed that 
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- x 22(n-l)-l - , x (22n-l + 22n-2 + 22n-3), 
n-I  n-2 

- 
n-l  n-2 

The previous equation holds true because terms not involved 
with the multiplication need not be  considered and because 
- x 22(n-I)-l 

n-I n-2 can be written as 
x (22n-I+x + 22n-l+x--L 

n - I  n-2 
+... 

+ 22n-1 + 22n-2 + 22(n-I)- l )  

= Yn-IXn-2[22n-I+x+L - 22(n-I)-I 1 
= y x 22n+* - y X 22n-3= - y  x 22n-3, 

with x being some integer 20. 

element extension, described  previously, or by the following. 
Given that the multiplication is equivalent to 

n - I  n-2 n-I  n-2 n-l  n-2 

The negative Yo can be eliminated with proper 

P =  n, + nij - Yn-,xn-22 2(n- I)-  I 

+ [B, 2"-I+J + (Aj @ Bj )2n+J  + ( q q ) 2 n + j + 1 ]  

- C2"" + Bo2n-I + (A, @ B,)2" 

+ ( A , ) 2 " + I  + 2"+l + 

n-3 

j -  I 

where C = X,- I Yo and all the logical operators are as 
previously  defined, and because 
-2n-I = 2"" + 2" + 2"+' - 2n+2, 

4 2 " "  + Bo2n-1 + (A, @ B,)2" + ( A , ) 2 " + '  

it can be stated that 

= (Bo + C ) 2 " - I  + [(A, @ Bo) + C]2" 

+ [(m) + c]2n+l - C2n+2, 

and therefore 

P =  n, + nij - Yn-IXn-222(n-I)-I 
n-3 

+ [Bj 2n-1+J + ( A j  @ Bj )2"+J  

+ (3 * Bj )2"+J+l]  + (Bo + C)2"" 

+ [ (A,  @ B o )  + C]2" + [(J, . Bo) + C]2"+' 

- c2n+2 + 2n+l + 22n-I. 

j -  I 

The negative term -C2n+2 can be eliminated as follows. 

Theorem 5 

(Bo + C)2"-l + [(A, @ Bo) + C]2" 

+ [(2, * Bo) + C]2n+l - c2n+2 

= (C @ Bo)2n-' + [A, @ (Bo I C ) ] 2 "  

+ (2, - Bo * C ) 2 " + ' .  
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Proof 

(Bo + C)2"" + [(A, @ Bo) + C]2" 

= (Bo @ C)2"" + (Bo * C)2" 

+ [(A, . E,) + C]2"+I - c2"+2 

+ (A, @ Bo @ C)2" + [(A, @ Bo) 1 C]2"+I 

+ [(A, * E,) @ C]2"+' + (A, * E, . c)2"+2 - c2"+2 

= (Bo @ C)2"" + [(Bo C) @ A ,  @ Bo @ C]2" 

+ [Bo * c * (A,@B,  @ C)]2"+I 

+ [ ( (A,  @ Bo) . C )  @ (A, * E,) @ C]2"+I 

+ [(A, @ B o )  . c * ((A, * E,) @ c)]2"+2 

+ (2, . E, * c)2n+z - c2"+2. 

But 

( B o .  C ) @ A , @ B , @ C  

= (C . E,) @ A, @ Bo 

= A, @ (Cl 4)); 

(Bo ' c . A,) @ (Bo * C) @ (Bo * C) 

= Bo * A, . C; 

[(A, @ Bo) * C ]  @ (A, * E,) @ c 
= [C * ( A , ) ]  @ (A, . E,); 

[(C * A,) @ (Bo ' C)l [(A, E,) @ CI 

= c * (A, @ Bo). 

Thus, 

(Bo + C)2"" + [(A, @Bo)  + C]2" 

+ [(A, f Bo) + C]2"+l - c2"+2 

+ [(A, * E,) @ (C . ( A , ) ) ] 2 " + '  

+ [C * (A, @ B,)]2"+2 + (A, . Bo . c)2"+2 - 

= (Bo @ C)2"" + [A, @ (C 1 B,)]2" + (Bo * A, . C)2"+' 

= (Bo @ C)2"" + [A, @ (C 1 B,)]2" 

+ [(Bo . A, * C)@ (A, * B,)@(C f ( A , ) ) ] 2 " + '  

+ [Bo * A, * c ((A, * E,) @ (C * ( A , ) ) ) ] 2 " + 2  

+ [C . (A, @ B,)]2"+2 + (A, * E, . c)2"+2 - c2"+2. 
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(Bo * A , .  C) @ (A,. E , ) @ [ C .  (A,@B,)I 

= c . [(A, . Bo) @A, @ Bo] @ (A, . E,) 

= c .  [(A,. B,)@A,]@(A,. E,) 

=c.(A0.B,)~(2,.B,)=A,.B,.c 

B o .  A, f c .  [(X,. E , ) @ ( C .  A,)@(C. Bo)] 

and 

= A, . Bo . C. 

Thus, 

(Bo + C)2"-l + [(A, @ Bo) + C]2" 

+ [(A, 1 Bo) + C]2"+l - c2"+2 

+ (A, * Bo - c)2"+2 + [C (A, @ B,)]2"+2 

+ (2, * E, . c)2"+2 - C2n+2, 

= (Bo @ C)2"-l + [A, @ (C I B,)]2" + (X, * E, . C)2"+' 

given that 

[(A, Bo . C) + (C . (A, @ B,))]2"+2 

= [(A, * Bo f C) @ (C * A,) 63 (C . B,)J2"+2 + 0 

= [(A, . E, * C )  @ (C . B,)]2"+2, 

and 

(X, . E, . c)2"+2 + [(A, . E, * C) @ (C f 8,)]2"+2 

c .  [(A,. E,)@(A, * E , ) @ B , ] = C .  (B,@B,)=C.  

(Bo @ C)2"" + [A, @ (C 1 B,)]2" 

= [(Ao * E, * C)  @ (A, * E, * C) @ (C . B,)]2"+2 + 0; 

Thus, it can be concluded that 

+ (A, . E, . C)2"+' + c2"+2 - c2"+2 

= (Bo @ C)2"" + [A, @ (C I B,)]i" + (A, * E, C)2"+', 

and Theorem 5 holds true. 

equivalent to 
From Theorem 5, it follows that the multiplication XY is 

P= II, + rIij - Yn-IXn"222(n--I)-' 

+ x [Bj 2""+' + (Aj @ Bj)2"+J 

+ (3. . Bj)2"+j+l] 

+ (Bo @ C)2"" + [A, @ (Bo I C)]2" 

+ (A, E, * C)2"+l + 2"+l + 22n-I, ( 5 )  

"-3 

j =  I 

which corresponds to the matrix in Figure 4. Such a matrix 
can be transformed, taking into account the elimination of 
the  element -Yn-lXn-222(n-I)-I and the addition 
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(2, * E, . c+ , ) , ,+I ,  

as follows: 

P = n, + n, + Yn-lXn-22 

+ y. X p n - 1 )  

2(n- I ) -  I 

n-1 n-2 + Y n ~ l x n ~ 2 2 2 " - '  

+ ,Bj2,-I+j + (Aj a3 Bj)2"+J + (4 . Ej)2n+'+1] 

+ (Bo a3 C)2"-l + [A, a3 (Bo I C)]2" 

+ (A, 1 Bo 1 c ) 2 n + 1  + (2, . E, . c)2n+2 + 22n-1, 

n-3 

j= I 

which corresponds to the multiplication matrix containing 
no negative terms shown in Figure 5. 

The matrix as presented in Figure 5 contains n - 1 rows 
instead of n, as  normally required in the direct computation 
of the multiplication. It contains three additional bits on 
every  row starting at the row enumerated as 1 (in effect, the 
second row) and ending at the row enumerated n - 3 (in 
effect, the n - 2 row). For every 1 I j I n - 3, the three bits 
are added at position 2""*' computed by the logical AND of 
Yn-l and 4; at position 2"+J computed by the logical AND 
of Yn-l and Xj, the logical AND ofX,,-, and Y,+,, and the 
exclusive-OR  of the resulting  logical  ANDs; and, finally, at 
position 2'+'+l computed by the logical AND of Y,,-l and 4, 
the logical AND ofX,-, and Y,+,, and then the logical NOR 
of their result. 

At the first  row and starting at position 2""' and ending at 
position 2'+', four elements are added and can be computed 
by the logical  cells  shown in Figure 6. 

An observation  worth  exploring is that while the rows for 
the multiplication matrix have  been  reduced  by  one, there 
are some elements that require more complex  logical  cells 
than the simple  logical  AND. It can  also be observed that 
those elements are very  few,  especially when  large operands 
are considered, and their calculation should definitely not 
add delay to an array-connected multiplier. This is  because 
they require less  delay than a CSA adder cell. Thus, even if 
no special attention is  paid to the layout, they will not 
penalize the addition of one full  stage. In addition, those 
quantities can  be  carefully  calculated during the repowering 
of the first  stage. 

A more important consideration is that the complex 
elements can be added so that there is no need for any of the 
above. This is  because, in an array-connected multiplier, 
they  can be positioned at the end of the configuration, thus 
producing no extra delay  when added. 

Thus, it can be concluded that a row can be eliminated 
from the usual number of  rows  needed to produce an n X n 
multiplication. 

In the Appendix, it can be found that more rows can be 
eliminated from the matrix configuration with the addition 
of more complexity  for the computation of a few elements. 
Given that the time of the computation is of importance, 
and the number of elements requiring complex calculations 
is limited, it is  worth doing so. 

contains two uniformities, one belonging to the encryption 
bits and one belonging to the rest of the matrix. Thus, it can 
be concluded that the layout of the multiplier achieves  a 
high  degree  of  regularity, making it suitable for VLSI design. 

Another observation  worth noting is that the matrix 
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, 

-A,$ (BoIC) 

Logic cells for  the  encryption elements. 
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4. Conclusions 
The encryption algorithm proposed  above  is an approach 
for the realization of two's-complement multipliers with 
direct multiplication. The negative terms present in 
two's-complement multiplication, produced by the fact that 
the sign and the absolute value are inseparable, are 
imbedded into the matrix as positive quantities with the 
addition of three bits in the high-order  position. The 
implication is that there is no need  for  specialized adders 
that take into account element addition and subtraction, and 
furthermore, that no additional "correction"  rows are needed 
to perform the multiplication. Additionally, there is no need 
for complete sign extension to preserve the equivalence of 
the matrix if  negative terms are to be excluded. 

The resulting matrix can be  seen  as uniform, with  most  of 
the initial matrix unaltered (i.e.,  each element is computed 
by the logical AND of the quantities involved), and with the 
addition of the encryption which  consists of elements that 
are more difficult to implement than the rest of the matrix. 

Two out of three bit positions, for every  row but the first 
requiring encryption, can be computed with the logical 
exclusive-OR or with the logical NOR of the required Xi Y, . 
However,  except for the minimal amount of complexity 
added to produce the matrix, the element realizations will 
not result in increasing the delay  needed to produce the 
multiplication because  they are not required immediately. 

On the first  row, the four required elements that are not 
simple  ANDs can be computed with  simple  logical  cells. 

A disadvantage of the encrypted multiplier is that some of 
the encrypted elements require more difficult functions than 
a simple AND to be computed, but it can be  observed that 
those elements can  be  swapped  with elements that are 
computed by ANDs and are further down in the matrix in 
the same column, so that they are available  when  required. 
Thus, in an array-connected multiplier, they will not 
penalize the total multiplication delay. 

In addition, the number of  rows required to produce the 
two's-complement multiplier is equal to n - 1 instead of n, 
and the difficult elements of the last  rows are of a lesser 
degree  of  complexity to compute than that of a three-way 
exclusive-OR. Thus, it can  be stated that the multiplier will 
require less  delay  if compared to a direct  two's-complement 
multiplier with no encryption. 

Given its uniformity, the encrypted matrix results in a 
high  degree  of regularity, thus making it suitable for VLSI 
array-connected  layouts. 

Finally, it can be  observed that it is  possible to decrease 
the number of  rows  of the multiplier with the addition of 
complexity  for the computations of some limited number of 
elements, as described in the Appendix. 

The algorithm will  also produce multipliers that can 
handle sign-magnitude notation, given that sign-magnitude 
notation, with  respect to multiplication, can  be  seen as 
two's-complement  with a minimal change  regarding the sign 

correction. The resulting multiplication matrix with proper 
additional circuitry can also accommodate one's 
complement and unsigned notations for  universal  types of 
operations. 

Appendix A: Further row reduction 
The encrypted matrix can  be  reduced as shown below. 
Equation (5) can be transformed easily, so that the 
multiplication can  be  expressed as follows: 

P = n, + n, - Yn-IXn-222(n-1)-I 
n - 3  

+ [Bj2,-,+j + (Aj @ Bj)2"+J + (Aj . Bj)2n+j+l] 
j-2 

+ (Bo 63 C)2"" + B,  2" + [A, @ (Bo I C)]2" 

+ (A,  @B,)2"+,  + (J0 f Bo * €)2"+' 

+ (2, . B,)2n+2 + 2n+l + 22n-1. 

Given that 

P I  + A0 @ (Bo I 0 1 2 "  

= [B, @Ao @ (Bo I C)]2" + B, . [A, @ (Bo I C)]2n+l ,  

and because 
n - 2  n -3  

n, = x, < 2 J +  x, q 2 J + l  
j=O j - 0  

n-2  n-2 

+ x 1 xi q2j+j  +x, Yn_,2"-' 
i=2 j - 0  

= n; + x, Yn-,2"-' 

by its definition, and 

[E +(Bo @ C)]2"-' = (E  @ Bo @ C)2'"' + [E (. 

when 

E = X ,  Yn-2 , 
the multiplication matrix is equivalent to 

P =  n, + n; - Yn-,xn-222(n-l)-I 

n - 3  

Bo @ C)]2" 

+ x [Bj2n-,+j + (Aj @ Bj)2"+J + (4 q)2n+j+7 

+ (2, . E,)2n+2 + ( A ,  @ B,)2n+1 + (J0 * Bo * C)2"+' 

+ [B,  . (A, @ (Bo I C))]2"+,  + [E  . (Bo @ C)]2" 

+ [B, @Ao @ (Bo I C)]2" + (E  @ Bo @ C)2"" 

+ 2n+l + 22n-1. 

j = 2  

Since 

[ 1 + ( A ,  @ B,)]2"+I = (2, @ B,)2n+l + (A,  @ B,)2n+2, 

then 
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[(2, . E , )  + (A,  @B,)]2"+* 

= [(TI . B , ) @ A ,  @ B l ] 2 n + 2  + 0 

= [(2, I B l ) @ A l ] 2 n + 2  = (2, I Bl)2n+2, 

and 

[(A, @ B , )  + (J0 . Bo . @)]2"+I 

= [(Ao . Bo . C) @Al a3 B,]2n+L 

+ [Ao Bo * c * (2, @ B , ) ] 2 n + 2 .  

Thus, the multiplication can  be  expressed  as  follows: 

P =  n, + rI; + Yn-,Xn-,2 2(n- I)-  I 

+ X 2201-1) 
n- l  n-2 + Yn-IXn-222n-L 

+ 2 [Bj2"-l+j + (Aj a3 Bj)2"+j + (Aj . 8,)2n+'+1] 

+ y2"-I + 62" + q2" + x2"+' + p2n+1 

+ p2n+2 + l)2n+2 + 22n-1, 

n-3 

j = 2  

such that 

y = E @ B o @ C ,  

6 = B , a 3 A o @ ( B o I C ) ,  

q = E . ( B o a 3 C ) ,  

x = B, . [A, @ (Bo I C)l ,  

p = ( A o .  B o .  C)@A,@B, ,  

P =A, I B,, 

+=lo. B o .  c .  (2, @ B, ) ,  

and 

which can be computed by the logic  cells in Figures 7 and 8. 
A representation of the matrix is reported in Figure 9. The 

matrix still contains n - 1 rows. However, it can be 
transformed, as in Figure 10, with 

(Y = Xn-2 Yo @ X,- , Y, and p = Xn-2 Yo . X,- I Yl .  

The ( n  - 1)th row contains four elements starting at position 
n - 1 and ending at position n + 2. In addition, the (n  - 2)th 
row contains a  zero at position n + 3. Thus, with proper 

eliminated. Therefore, the multiplication can be represented 
with  a matrix that contains n - 2 rows. 

(6)  addition, the four elements of the ( n  - 1)th  row  can be 
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Logic cells for A ,  p, and $. 
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The same  process can be applied to further reduce the 
number of  rows.  However, depending on the length  of the 
operands, the number of  "difficult"  elements and the 
complexity of producing them, and the additional 
complexity  added to the layout of the multiplier, the purpose 
of such reductions becomes  defeated at a certain point, and 
no further reductions should be considered. 
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