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The performance of real-storage-management
algorithms in interactive systems suggests that
locality of reference extends to a significant
degree across users’ transactions. This paper
investigates this locality of reference by
analyzing page-reference strings gathered from
live systems. The data confirm the supposition:
They suggest that reference patterns are
dominated by system data references that are
implied by the user’s commands. Program
references appear to play only a minor role. The
user command sequence is an important factor
in the reference behavior of an interactive
session.

Introduction

o Scope

The concept of locality of reference has usually been applied
to individual programs and their data. The experience with
interactive systems, such as IBM’s CMS system, suggests that
the concept of locality of reference extends to larger
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contexts. Series of users’ interactions with the system can
show locality of reference. The user may issue many
different commands, invoking different programs and
referencing a variety of system and user data. Even so, we
can observe locality in the reference behavior shown by
users’ sessions. As we will see, this locality stems to a large
degree from two sources:

e References to operating system data related to a user’s
session comprise a large component of the total reference
pattern of the session.

e The page context of a user’s work often remains stable
over sequences of transactions.

Most of the existing work in this area concentrates on the
behavior of individual programs, excluding the contribution
to the reference pattern by the operating system [1-5]. This
study expands the scope of the analysis in two directions: It
includes the contribution to the reference strings by the
operating system; it extends beyond single user commands to
sequences of user transactions. In fact, our analysis ignores
locality of reference within individual transactions,
concentrating on locality of reference across transactions.

The remainder of this section discusses some concepts that
are necessary as background for the paper. The next section
describes the tools used in the data-collection and data-
reduction process. The third section presents and interprets
the reference patterns that we analyzed. The following
section describes the statistical data analysis, and the final
section sums up the most important points of the paper.
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o Background

About two decades ago, the principle of locality of reference
was formulated [1]. This principle holds that most programs
do not reference their memory space uniformly. Rather,
within a short time window, they reference only a small part
of their memory space, called the working set. As program
execution proceeds, the contents of the working set will
change, and possibly its size will do so as well. But the
working set, including the program code as well as the data,
is always only a small part of the total memory space of a
program.

Since that time, locality of reference has been exploited by
virtual-memory systems. These systems attempt to keep in
main memory only the working sets of programs. At the
same time, they create the appearance to programs that they
have their entire memory space available. This leads to a
very economical use of main memory while simplifying the
task of programming by giving programmers large virtual
memories.

The performance of virtual-memory operating systems
depends crucially on their ability to recognize the working
set of a program. Much work has been done in the areas of
measuring the memory demands of programs and modeling
their reference behavior [1-5]. The results of this work have
been fed back into the design of real-storage-management
algorithms.

One model that was found useful to describe program-
reference behavior is the phase-transition model [1, 3]. This
model assumes that a program favors a subset of its
segments (pages) during extended intervals called phases.
During these phases, the program’s working set changes very
little. After some time, a radical transition occurs in which
many of the pages in the working set are exchanged. The
phase-transition model consists of a macromodel and a
micromodel. The macromodel is a semi-Markov model
whose states are locality sets and whose “holding times” are
phases. This model is used to characterize program behavior
at the phase level. The micromodel concentrates on what
happens within a phase; e.g., it generates reference strings
over the pages of the locality set. Phases and transitions are
of equal importance to the reference behavior of a program:
Long phases dominate overall reference behavior, and
transitions, being unpredictable, account for a substantial
part of page faults.

These analyses and models are adequate when users’
programs dominate the aspects of system behavior that are
relevant to managing the pageable main memory. However,
on time-sharing systems supporting large numbers of users,
this assumption is no longer true. Most user transactions are
short [6], so that the programs called hardly have an
opportunity to capitalize on a working set. And many
operating-system data structures that had not been part of
pageable memory in early time-sharing systems had to be
made pageable in order to accommodate large numbers of

M. G. KIENZLE, J. A. GARAY, AND W. H. TETZLAFF

users. Therefore, operating-system data references
substantially influence the total reference pattern caused by a
user’s interaction,

Despite these changes in the execution environment,
virtual-memory-based time-sharing systems can display very
good performance. Measurements indicate that a large
portion of the pages referenced in one transaction are
referenced again in the following transaction. This leads to
two suppositions: 1) There is a significant locality of
reference across users’ transactions. 2) For good
performance, the operating-system data structures must
show good locality of reference.

The measurements and the analysis presented in this
paper test these two suppositions. The impact of the findings
on the real-storage-management algorithms is discussed in

[71.
Measurement data

o Characteristics

The data on which this study is based were measured on an
IBM VM/370 HPO system with users running CMS in their
virtual machines [8, 9]. CMS is a single-user operating
system that in itself does not implement virtual memory.
CMS runs in virtual machines supported by CP, the
underlying hypervisor supporting virtual memory. In a
sense, each virtual machine can be considered a single-user
workstation running the CMS operating system, with the CP
hypervisor supporting many such workstations on one large
computer. In supporting virtual memory, CP manages the
hardware reference bits of the storage pages used by the
virtual machines [10, 11]. As part of that support, CP can
record the numbers of pages that have been referenced
during certain intervals. These page-reference data are the
source for the reference strings used in this study. VM uses
pages of 4K bytes. Consequently, the address resolution of
the data is to blocks of 4K bytes.

The data generally include all references by a virtual
machine, with some exceptions noted later. The CMS
functions included in the references are program
management, command interpretation, terminal
management, and the file system. The user commands
invoke system utilities, such as editors and compilers, user-
written command procedures, and user programs. The data
from each virtual machine are recorded separately, so that it
is possible to construct reference strings for each virtual
machine.

The CP-provided functions whose references are not
inclued in the data comprise mainly dispatching of virtual
machines, paging, and parts of the I/O supervisor. In any
operating system, these functions are so heavily used that
either they are not pageable or their pages are naturally
resident in main memory. Their references would contribute
little if anything to paging.
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The CP scheduler divides transactions into scheduling
intervals. The first interval spans about 80 milliseconds of
virtual CPU time. The subsequent intervals are longer. At
the end of each interval, the real-storage manager resets the
reference bits in order to adjust the working set. We call the
pages referenced in one scheduling interval the reference set'
of that interval. The VM Monitor records the last reference
set of a user transaction. Short transactions—and the
majority of transactions fall into this class—span only one
scheduling interval (or queue stay, in VM/370 terminology).
For these transactions, all references are recorded. If a
transaction extends over several intervals, reference data are
lost. Thus, the time resolution of the reference data may be
viewed in terms of scheduling intervals, with only the last
reference set of a transaction being recorded.

We assume that the references within transactions show at
least as much locality as across transactions. This would
mean that the locality of complete reference strings would be
higher than shown in the data here. Also, we expect that
reference strings of long transactions are dominated by the
user programs rather than by the operating system. In this
case, the characteristics as described in prior studies probably
apply.

The emphasis of this study is on locality across
transactions and on short transactions that are prevalent in
interactive computing [6]. Therefore, the loss of data is not
as great a problem as it may look at first. However, for a
more general use of the reference data, a complete trace
would clearly be desirable. Table 1 shows the magnitude of
the data loss. The first data column gives the total number of
scheduling intervals; the next data column gives the number
of intervals for which reference data were recorded; and the
last column shows the percentage of intervals for which data
were recorded. These figures show that the large majority of
the transactions recorded are small (as is characteristic of
interactive systems) and that the extent of the missing data is
small enough not to invalidate the analysis.

For an extension of this study, more complete data would
be helpful. By writing the reference-data records at every
scheduling interval, we could obtain complete reference-
string traces. This would be especially helpful in the analysis
of systems whose major workload involves large
transactions. Production virtual machines that use MVS,
DOS/VSE, or V§/1 as their virtual operating systems
generally fall into this category.

o Sources

All data presented in the following sections were recorded at
- three different installations, from interactive user sessions or
from server virtual machines running CMS. One installation
is an educational institution, one supports a manufacturing

' CP uses the reference set as an approximation to the working set. But because the
intervals are quite long for working-set windows, and have different lengths, the
reference set is not a working set in the strict sense of the definition [1].
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Table 1 Missing data in reference strings.

Virtual Characterization Scheduling intervals
machine ID

Total Withref. Ref.
data data
(%)
VM 1 Initial example 296 229 71.3
VM 2 Interactive applications 425 402 94.5
VM 4 Service machine 553 448 81.0
VM 7 Typical example 298 220 73.8
VM 8 Example of phases 357 316 88.5
VM9 Service machine 400 222 55.5

plant, and one installation is in a service industry. All three
installations were running VM/HPO 3.4 at the time of
recording, and from each installation we analyzed the data
of five virtual machines running CMS. From the total of 15
virtual machines, we selected six virtual machines that had
the longest and the most complete reference strings. We also
made sure to include in the study a broad sample of the
different effects we observed.

o Measurement and analysis tools used

The data used in this analysis are available through the
VM/Monitor [8] for VM/HPO Releases 3.4 to 4.2. Earlier
and later releases of VM/HPO have real-storage-
management algorithms that would make it very expensive
to record the reference data. Therefore, on those other
releases the VM/Monitor does not provide page-reference
data.

For the reduction of the VM/Monitor data, we used a
data-reduction package developed at the IBM Thomas J.
Watson Research Center, and known as the Generalized
Reduction of Information (GRIN) program [12]. GRIN is a
program generator that has built-in knowledge of
VM/Monitor data and that offers a very-high-level language
for the specification of data-reduction requests. This makes it
well suited for exploratory data analysis.

After we extracted the relevant data from the
VM/Monitor files using the GRIN package, we used the
GRAFSTAT system [13] to perform the statistical analysis
for the graphic presentation of the data. GRAFSTAT allows
presentation of graphs on high-resolution displays as well as
on high-resolution printers.

o CMS storage layout

The storage layout of CMS is important for the
interpretation of the reference strings. We can identify four
major areas, as shown in Figure 1.

The low-CMS area occupies pages 0 to 31 of the address
space. This area contains a system-data area, a user-data
area, and the transient area. The system-data area holds
CMS system control blocks that are relatively static during
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the course of a user session. The user-data area can hold any
data that a user allocates which fit into the given amount of
space. (The terms user data and user programs, when used
subsequently, refer to all data and programs that are not part
of CMS, but are part of application programs, and are not in
the shared area.) The transient area is intended for special
commands whose programs fit into 8K bytes of memory.
The low-CMS area is generally broken down into many
small areas that are referenced independently of one another.

The user-program area starts at page 32. User-program
space is usually allocated upward from this address. First
comes the program-code area, where the CMS loader loads
the programs. Immediately above it is the program-data
area, where programs may allocate private data space.

The high-CMS area occupies the rest of a CMS virtual
machine. There, CMS allocates system-data areas and user-
data areas. The allocation direction is downward from the
top of the virtual machine. System data, such as CMS file-
system control blocks, often remain allocated for an entire
user session. User data, such as files being edited, are
generally transient. Most of the time, the system data are
allocated first and reside at the top, and the user data are
allocated below them. However, this is not always the case—
system data and user data can be intermixed, and there can
be unallocated pieces of storage between them.
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The shared-system area resides in an address range above
the virtual machine’s address range. It contains shared
segments that are very important for the reference behavior
and the performance of CMS. Many of the frequently used
programs, such as the command interpreter (REXX), the
system editor (XEDIT), the text formatter (SCRIPT/VS),
and the APL interpreter, reside here. The shared segments
also contain file directories for some read-only shared files.
These segments are read-only segments, and they are shared
among all the virtual machines in the system that connect to
them. The references to pages in these segments cannot be
traced to individual virtual machines, and are excluded from
the analysis here. Since only very frequently used programs
are loaded into shared segments, it can be assumed that they
are in storage most of the time and that they do not
significantly contribute to the paging traffic.

Data presentation

o Page-reference pattern

Figure 2 shows the page-reference pattern of a virtual
machine running CMS. The X-axis dimension represents
virtual page numbers. Each point along the X-axis represents
a page of storage of the virtual machine, sorted in the order
of the virtual addresses of the pages. The user whose
reference pattern the graph shows has a virtual machine with
256 pages, or one megabyte, of virtual storage.

Each point on the Y-axis represents the last or only
scheduling interval of a transaction. The transactions are
arranged in time sequence, with the time increasing from the
bottom to the top of the graph. Thus, the Y-axis is not
proportional to real time, but it is approximately
proportional to the virtual CPU time of the user’s virtual
machine. The user in the graph originated 267 transactions
during the measurement interval.

Each dot in the graph represents a page reference. A
vertical line shows all the scheduling periods during which a
particular page has been referenced. A horizontal line depicts
the pages that were referenced during one scheduling period.

o Interpretation of the reference pattern

VM 1 is the only virtual machine whose actual CMS storage
map we could obtain, and whose activity during the
measurement period we know to some degree. This gives us
some help in relating the reference patterns to the users’
activities. In the measurement interval, the user of VM1
spent most of his time editing, using the XEDIT editor
supplied with CMS. He also sent some files to another
system and he built some libraries.

The references in the low-CMS area show a very regular
pattern. Some pages are referenced in practically every
transaction. Other pages form groups that are often
referenced together. Some pages are referenced rarely or not
at all. The pattern in this area is quite distinct, and virtually
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all CMS reference strings we analyzed show a similar
pattern. While the patterns are similar, they rarely match
completely. In particular, the pages that are referenced in
virtually every transaction are not the same for all users.
They depend on the configuration of the virtual machine, on
some details of the CMS initialization, and on the initial
user-command sequence. The number of pages referenced in
every transaction can be as low as five or as high as the
entire area between page 0 and page 31.

VM 1 references the user program area very sparsely. The
two programs of major size are probably the calls to build a
library, and the six programs of only four pages are probably
the programs to send files to another system.

The user-data area in the high-CMS area, from
approximately page 80 to page 190, shows a sparse reference
pattern. The lower part of this area, up to about page 165,
contains the files being edited. The upper part contains
XEDIT macros. The long contiguous reference strings in the
file area are probably due to loading or saving of files being
edited, or to commands to make a global change in the file.

The system-data area in the high-CMS area, from about
page 190 to the top of the virtual machine, is divided into
distinct subareas that are referenced together. Most of these
subareas represent CMS-file system directories. These
directories are being searched linearly for the resolution of
file names. Very often, all directories are searched to resolve
one file name.

The references are very sparse, and are scattered over the
entire address space. The utilization of virtual storage is
quite low. For this kind of reference pattern, virtual storage
is very appropriate since it requires only referenced pages to
be resident in real storage. This pattern probably developed
because CMS always ran on virtual memory systems,
Systems where all user storage must be backed by real
storage usually cannot afford this generous approach to
memory usage.

The reference sets vary frequently and by large numbers of
pages. This points to the need for an algorithm that can react
quickly to changes in the reference set.

Many blocks of pages are often referenced together and
are then dropped together from the reference set. In some
cases, pages that are frequently referenced together are not
adjacent in the address space. In fact, many of the reference
gaps are as consistent as the pages referenced. A good
storage-management algorithm can exploit these facts.

While at first glance the reference pattern appears to show
some phases, at closer inspection these phases cover only a
small extent of the overall reference pattern. The user-data
area in particular appears to be referenced quite
unpredictably. The low-CMS area and the file directories in
the high-CMS area contain some groups of pages that appear

2 Starting with Release 4 of CMS/SP, the linear search has been replaced by a hashing
scheme to resolve file names. This considerably reduces the working-set size. The
reference pattern shows how large the impact of this change can be.
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to be referenced in phases, but these phases extend only over
short ranges of pages. As we will see later, these phases are
not significant enough for real-storage management to
exploit.

& Some special reference patterns

The page-reference pattern of VM | shows many important
effects and serves well as an introductory example. The
following sections show reference patterns from other virtual
machines to present a more complete view of the reference
patterns we have observed.

User programs and command sequences: An interactive
application?

VM 2, as seen in Figure 3, shows the greatest user program
activity of the virtual machines we examined. The shapes of
the reference patterns in the user-program area are highly
repetitive. They suggest that the user repeated similar, quite
lengthy command sequences several times during the
measurement period. A possible explanation for the
regularity and repetition in the reference behavior is that this
user executed many transactions within one interactive
application. The regular use of the file-directory areas and
the user-program and data areas supports this hypothesis.
Within the repetitive patterns, we can observe phases and
phase transitions, even though the working sets vary
considerably within the phases. In all areas, many blocks are
reused frequently together, a pattern that should lead to good
performance of the real-storage-management algorithms.
The reference pattern in the low-CMS area is very similar to
the pattern shown by VM 1.
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Very repetitive behavior: Server machines?

VM 4 (Figure 4) shows the most regular behavior of any of
the virtual machines we examined. While we do not know
the function of this virtual machine, we conjecture that it
performs a very limited function. A special-purpose server
virtual machine, for instance, would produce a reference
pattern like this. The constant storage usage in the user-
program area, in the user-data area, and in the area of the
CMS file directories supports this view. Even the low-CMS
area shows no variation of the reference pattern. This
predictable pattern will put only a minimum load on the
real-storage-management algorithms. In terms of the phase/
transition model, this user shows only one phase.

VM 9 (Figure 5) is a mail server. The pattern shows very
consistent use of the low private CMS area, the user-program
area, and the area where the file directories are located. It
would appear that this virtual machine has only two private
CMS minidisks. The user-data area shows some storage
blocks whose boundary pages are referenced in every
transaction but whose internal data are referenced quite
sparsely and in a random pattern. A server machine does not
necessarily have a completely predictable reference pattern
like that of VM 4. From Table 1, we know that we captured
only 55% of the reference sets of VM 9. This means that this
machine had many large transactions spanning more than
one scheduling interval.

A typical user

The reference pattern of VM 1 serves as an example because
it shows most of the important issues quite well. But it is not
typical for most of the interactive users observed. While it is
difficult to establish a typical user pattern based on 15 users
from three installations, VM 7 (Figure 6) represents an
interactive user typical for our sample. VM 7 has a fairly
regular reference pattern with some spurts of user-program
executions, but the majority of the references occur in the
CMS areas. In particular, there is a concentration of
references in the high-system-data area where the CMS file
directories are stored, from about page 850 to the top of
virtual memory. The user-data area, here from about page
800 to page 850, is referenced heavily and regularly. The
mean reference set of this user is considerably larger than the
reference sets of the other virtual machines in this study.
This is mainly due to the large number of file system
directories the user has in memory. The references are quite
consistent from one transaction to the next. At a glance, the
reference pattern shows obvious phases.

User with phase behavior

VM 8 (Figure 7), belonging to an interactive user, shows the
most distinct phases in its reference pattern of all patterns we
examined. The long series of transactions with no changes in
the reference set should lead to very good performance of the
real-storage-management algorithms. These phases of
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constant reference sets occur particularly when there is no
user-program activity. The large reference gap between page
500 and page 1680 indicates an unusual allocation pattern.
This area, more than four megabytes of storage, has been
allocated before the area around page 400, whose reference
pattern indicates that it probably contains file directories.
The large area may still be allocated, or it may have been
freed. This kind of storage fragmentation is unusual in the
CMS environment.

o Summary of reference patterns

The CMS-data areas dominate the reference patterns. Most
of these areas contain CMS system data and remain
allocated through a user’s session. They are referenced
implicitly by the user’s commands, and their reference
pattern is consistent, very often for long sequences of
transactions. Since a large part of the references are
controlled by the operating system, the data structures of the
operating system are crucial for the reference and paging
behavior of the system.

The user data, referenced explicitly by the user’s programs
and commands, and the user-program references represent a
smaller portion of the pages referenced. Their reference
patterns are less predictable, except in server virtual
machines or when a user remains in an interactive
application for an extended time.

If the virtual machine provides interactive service to a
user, the user’s behavior ultimately controls the reference
behavior. The user’s command sequences explicitly reference
his data and implicitly reference CMS system data. These
data references together far outweigh the impact of the code
references, even if the user is running programs in his own
virtual machine rather than executing programs from the
shared segments. Many data references are also due to I/O
operations, rather than to references from the CPU. Because
of the small impact of the code references, it is probably not
worthwhile organizing short running programs to control
code-reference behavior.

Data analysis

o Overview

In this section, we present a statistical analysis of the
reference data. Table 2 gives an overview of some reference-
set statistics of the virtual machines analyzed. The column
VM size gives the virtual-machine size in megabytes. The
column Transactions shows the total number of transactions
the virtual machines handled during the recording interval.
The column RS size mean pages gives the mean reference-
set size in pages. In order to illustrate how the reference-set
size varies, the next column, RS size coeff. var., shows the
coefficient of variation (i.e., the mean divided by the
standard deviation) of the reference-set size. The columns
referring to reference-set-contents change show the difference
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from one transaction to another of the pages that are in the
reference set. The first of the two columns, Mean chg./mean
RS, shows the mean number of pages by which consecutive
reference sets change, as a fraction of the reference-set size.
The second column, Coeff. var., shows the coefficient of
variation of the reference-set changes.

The mean reference-set sizes vary greatly between the
virtual machines, but the reference-set size of a given virtual
machine does not change very much in the course of a
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Table 2 Reference-set statistics.

Virtual Characterization VM size Transactions RS size RS contents chg.
machine ID (MB)

Mean Coeff- Mean chg. Coeff.

pages var. /mean RS var.
VM | Initial example 1 296 37.2 0.68 0.67 1.12
VM2 Interactive application 2 425 29.2 0.65 0.43 1.63
VM 4 Service machine 3 553 54.4 0.08 0.09 1.00
VM 7 Typical example 4 298 95.4 0.47 0.35 1.60
VM 8 Example of phases 7 357 83.7 0.35 0.17 2,18
VM9 Service machine 1 400 38.3 0.20 0.35 0.71

session. The standard deviation of the reference-set size is

smaller than the mean for all the virtual machines examined.

The mean change in the reference-set contents appears to be
closely related to the change in the mean reference-set size.
Most of the time the change is either an addition of pages to
the existing reference set or a loss of pages. Less often, there
is an addition to one area balanced by a loss in another area.
The reference patterns bear out this observation. The
coefficient of variation of reference-set changes is generally
larger than one. This points to a large variation in the
working-set changes.

& Reference and rereference data

This section analyzes the reference frequency and the
rereference frequency for each of the pages in the virtual
machines. The reference count of a page is the number of
scheduling intervals during the measurement interval in
which that page has been referenced. To normalize the
reference count, it is expressed as reference frequency:

reference count

reference sets in
measurement interval

reference frequency =

A rereference is defined as a reference of a page when that
page has also been referenced in the immediately preceding
scheduling interval. The rereferences are also expressed as
frequencies, relative to the total number of references:

rereference count

rereference frequency = .
f Jrequency reference count

The rereference frequency is a measure of locality of
reference. There are two types of rereferences. The first type
comes from a very dense but random reference pattern. If a
page is referenced in most transactions, then its rereference
frequency must also be very high. The peaks in the reference
graphs in Figures 9 and 10 (shown later) clearly are of this
type. The other type of rereference is due to true locality of
reference. This type of rereference is possible at either high
or low reference frequency. At high reference frequency, the
two types of rereference cannot be distinguished, and a
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distinction is not relevant. If a low reference frequency is
accompanied by a high rereference frequency, the cause is
true locality of reference. The difference between these two
types may be important to real-storage-management
algorithms that distinguish between short-term history and
longer-term history. When a phase transition occurs, these
algorithms should discard the short-term history, the pages
referenced due to true locality of reference. But they should
maintain the longer-term history, keeping the pages with
high reference frequency over an extended time.

Figure 8 gives the mean number of pages referenced and
rereferenced for each reference set in the measurement
interval. Figures 9 and 10 show the reference and the
rereference frequencies of VM | and VM 2, respectively.
The frequencies of the other virtual machines display no
essential differences from the ones shown here.

The user-data areas in the two virtual machines show
relatively high locality. However, due to the low reference
frequencies of these areas, this locality has very little impact
on real-storage-management performance. The reference
frequency varies widely across the address range. This shows
a potential that could be exploited by algorithms that take a
more detailed reference history into account.

& Phaseftransition model

This section explores whether phases of working-set use are
prominent enough that they could be used by the real-
storage manager. If real-storage-management algorithms are
to exploit phases of more or less constant reference sets, a
large percentage of all reference sets must be part of some
phase. The phases of little change in the working set can be
important for algorithms that rely on past history for their
next decisions. When a phase transition occurs, the past
history may not be relevant to future behavior. Algorithms
for adjusting working sets and prepaging could take
advantage of the phase/transition behavior of reference
patterns. For instance, if phases with only small changes in
the working sets are prevalent, swapping entire working sets
may give better performance than demand paging. When the
scheduler observes a phase transition, the prior working set
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can be discarded and a switch to demand paging made. The

phase/transition models reported in the literature, for
instance in [3], define the phases on the basis of an analysis
of individual programs. This approach is not feasible in our
study. The phases must be discerned from a statistical
analysis of the reference patterns.

We define the (relative) difference between consecutive
reference sets as
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Distribution of reference-set changes between consecutive

transactions

Figure 11 shows the cumulative distribution of the

differences between subsequent reference sets. The X-axis

shows the percentage of reference-set changes. The Y values

show the percentage of transactions in which the reference-

set changes compared to the previous transactions are greater

than or equal to the percentage given by their X values.
Because of the more predictable behavior of the server

virtual machines (VM 4 and VM 9), the change distributions 1 shows a nearly triangular form of the distribution. A

drop off sharply. The virtual machines experience practically  triangular shape of the distribution would indicate a uniform

no changes greater than 75%. The distributions for the other  distribution of the size of the reference-set changes.

virtual machines drop off sharply only to the 10%-change

1 Reference and rereference frequencies of VM 2.

mark. After that, they decline much more gradually, Phase distributions

indicating a significant number of larger changes. These Figure 11 shows that despite the drastic drops in the

distributions have longer tails, showing considerable distributions, there are many adjacent transactions between

numbers of transactions with changes larger than 100%. which the reference sets change only little. The reference

These large changes may indicate a shift in user activity. VM patterns, though, show that any phases of completely 531
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identical reference sets are very short. For phases of reference

sets to be significant, the period of little or no change should
be considerably longer than just two transactions. Also,
defining a phase as a series of reference sets that are
completely identical is too restrictive to be useful.
Consequently, we define a phase as a series of transactions
whose reference sets change less than a given percentage
between subsequent transactions,

IVVi_ W’—ll
— " <
.

¥

CT,

where CT is a change-threshold.

Figures 12 and 13 show the extent of phases in the
reference patterns of the six virtual machines of the analysis.
Figure 12 shows the cumulative distribution of the phase
lengths at several change-threshold values. The X-axis shows
the phase length in transactions, and the Y-axis gives the
percent of phases whose length is greater than or equal to X.
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Cumulative distribution of reference-set changes between transactions.

The phases in most virtual machines are very short. Even
at change-thresholds as high as 60% of the reference set,
most of the phases are shorter than five transactions. VM 4
is an exception. At a change-threshold of 20%, VM 4 spends
the entire measurement interval in one phase.

Long phases can stretch over many transactions, so their
impact on the system is much larger than the impact of
short phases. Figure 13 takes this into account by showing
the cumulative distribution of transactions according to the
length of the phases to which they belong.

Using a change-threshold of 20%, we see that more than
half of the transactions are part of phases that are five
transactions or shorter. Even VM §, whose reference pattern
appears to show pronounced phase behavior, shows a
substantial number of transactions in longer phases only at a
60% change-threshold. VM 4 again is an exception.

What does this evidence mean for the design of real-
storage-management algorithms? An algorithm could, for
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instance, exploit phases by swapping entire reference sets
while the virtual machine is in a phase of little change, and
by using demand paging at other times. For such an
approach to be practical, the change-threshold should not be
higher than 20%. Moving 20% more pages than needed
represents a considerable overhead. Current algorithms often
manage to predict reference sets to within 20% [7]. With a
20% change-threshold, most of the virtual machines have
some phases that are quite long. However, the majority of
the phases are so short that they would be difficult to exploit
even if there were an algorithm that could detect the phase
transitions instantly. If it took an algorithm several
scheduling intervals to detect a phase transition, the resulting
excess paging [/O traffic would be quite large. We know of
no algorithm that reliably detects phase transitions—other
than after the fact and with considerable CPU overhead.

For the exceptional cases where phases can be found, such
as in VM 4, most algorithms will perform well even if they
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do not exploit the phases. Thus, there is no need for
algorithms to detect phases in the few instances where they
can be exploited.

In addition to the preceding analysis, we tried to
determine whether the time-dependent behavior of the
virtual machines yields any clues for predicting phase
transitions. We produced a scatter plot of the reference-set
changes between two subsequent transactions over the real
time between the transactions. The plots showed no
correlation between the two variables. That is, our sample
showed no strong phases of reference behavior that are tied
to time periods of user activity.

Conclusions
o Locality of reference across transactions

The data show that there is a great amount of locality of
reference across transactions in interactive systems. Without
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this phenomenon, interactive time-sharing systems
supporting hundreds of users, such as VM/CMS, would
probably not be viable. In a way, the data presented in this
study show explicitly what has been either known or
assumed for some time.

This finding is relevant beyond time-sharing systems as
well. It shows that in a single-user, interactive environment,
the locality of reference is significant enough to make
virtual-memory operating systems worthwhile. In a single-
user workstation, the operating system code cannot be
shared; thus, for this case the code references would have to
be included in the reference pattern important for paging.
But we believe this would not substantially change the
overall reference behavior.

o Dominance of operating-system references

The reference behavior of highly interactive systems under
VM is dominated by the data structures of the virtual

M. G. KIENZLE, J. A, GARAY, AND W, H, TETZLAFF

operating system, and by the users’ behavior, rather than by
the behavior of the individual application programs. There
are several specific memory areas that each have their own
characteristic reference patterns. As the individual
transactions get more computation-intensive, the application
program and its data references will probably start to
dominate the reference pattern. The missing data on long-
running transactions in this study mask this effect in the
presented data.

o Dominance of data references

In the environment we studied, the data references have a far
larger impact on the overall reference pattern than the code
references. Most of the code references are to shared code
segments. Even if code references were counted, data
references would probably be predominant, since I/O
operations often cause many data references with few code
references.
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The data structures for shared code must be defined very
carefully, since their impact on system performance
increases with the degree of sharing.

o Applications

VM 4 and VM 9 are both server virtual machines, yet their
reference behavior differs radically. Often, server virtual
machines constitute a large part of the load on a system, and
sometimes they are very ill-behaved. The method of analysis
shown in this paper could be used to analyze the reference
patterns of such server machines and to improve their
reference behavior by redesigning internal data structures. It
appears that VM 9 could benefit from such a redesign.

o Phase-transition model

The data presented exhibit some phase behavior. But the
phases are not pronounced enough for the real-storage-
management algorithms to exploit. Even if the phases were
more distinct, for effective use the algorithms would have to
be able to recognize phase transitions quickly and with little
overhead. Considering the data we found and this problem
for the algorithms, exploiting the phase behavior appears to
be a direction that is not worthwhile pursuing.
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