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The  performance of real-storage-management 
algorithms  in  interactive  systems  suggests  that 
locality of reference  extends to a significant 
degree  across  users’  transactions.  This  paper 
investigates  this  locality of reference by 
analyzing  page-reference strings  gathered  from 
live  systems.  The  data  confirm  the  supposition: 
They  suggest  that reference  patterns  are 
dominated  by  system data  references that are 
implied by the  user’s  commands.  Program 
references  appear to  play  only a minor role.  The 
user  command  sequence is  an important  factor 
in  the  reference behavior  of  an  interactive 
session. 

Introduction 

Scope 
The concept of locality of reference has usually  been  applied 
to individual programs and their data. The experience  with 
interactive systems,  such as IBM’s CMS system,  suggests that 
the concept of locality of reference extends to larger 
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contexts.  Series of  users’ interactions with the system can 
show  locality  of  reference. The user  may  issue many 
different commands, invoking different  programs and 
referencing a variety of  system and user data. Even so, we 
can observe  locality in the reference  behavior  shown by 
users’  sessions. As we  will  see, this locality stems to a large 
degree  from  two  sources: 

References to operating system data related to a user’s 
session  comprise a large component of the total reference 
pattern of the session. 

over  sequences of transactions. 
The page context of a user’s  work  often remains stable 

Most of the existing  work in this area concentrates on the 
behavior of individual programs,  excluding the contribution 
to the reference pattern by the operating system [ 1-51. This 
study expands the scope of the analysis in two  directions: It 
includes the contribution to the reference strings by the 
operating system; it extends beyond single  user commands to 
sequences of user transactions. In  fact, our analysis  ignores 
locality of reference  within individual transactions, 
concentrating on locality of reference  across transactions. 

are necessary as background for the paper.  The  next  section 
describes the tools used in the data-collection and data- 
reduction process. The third section  presents and interprets 
the reference patterns that we analyzed. The following 
section  describes the statistical data analysis, and  the final 
section sums up the most important points of the paper. 523 

The remainder of this section  discusses some concepts that 
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Background 
About two decades ago, the principle of  locality  of  reference 
was formulated [ 11. This principle holds that most programs 
do not reference their memory space uniformly. Rather, 
within a short time window, they reference  only a small part 
of their memory space,  called the working  set. As program 
execution proceeds, the contents of the working  set will 
change, and possibly its size  will do so as well.  But the 
working set, including the program code as well as the  data, 
is always  only a small part of the total memory space  of a 
program. 

virtual-memory systems. These systems attempt to keep in 
main memory only the working sets of  programs. At the 
same time, they create the appearance to programs that they 
have their entire memory space  available. This leads to a 
very economical use of main memory while  simplifying the 
task  of programming by giving programmers large virtual 
memories. 

The performance of virtual-memory operating systems 
depends crucially on their ability to recognize the working 
set  of a program. Much work has been done in the areas of 
measuring the memory demands of programs and modeling 
their reference behavior [ 1-51. The results  of this work  have 
been fed back into the design  of real-storage-management 
algorithms. 

One model that was found useful to describe program- 
reference behavior is the phase-transition model [ 1,3]. This 
model assumes that a program favors a subset  of its 
segments  (pages) during extended intervals called  phases. 
During these phases, the program’s  working  set  changes  very 
little.  After some time, a radical transition occurs in which 
many of the pages in the working  set are exchanged. The 
phase-transition model consists of a macromodel and a 
micromodel. The macromodel is a semi-Markov model 
whose states are locality  sets and whose “holding times” are 
phases. This model is used to characterize program behavior 
at the phase  level. The micromodel concentrates on what 
happens within a phase; e.g., it generates reference strings 
over the pages  of the locality set. Phases and transitions are 
of equal importance to  the reference behavior of a program: 
Long  phases dominate overall  reference behavior, and 
transitions, being unpredictable, account for a substantial 
part of  page  faults. 

These analyses and models are adequate when  users’ 
programs dominate the aspects of  system behavior that  are 
relevant to managing the pageable main memory. However, 
on time-sharing systems supporting large numbers of users, 
this assumption is no longer true. Most  user transactions are 
short [6], so that the programs called hardly have an 
opportunity to capitalize on a working  set. And many 
operating-system data structures that had not been part of 
pageable memory in early time-sharing systems had to be 

524 made pageable in order to accommodate large numbers of 

Since that time, locality  of  reference has been exploited by 
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users. Therefore, operating-system data references 
substantially influence the total reference pattern caused by a 
user’s interaction. 

Despite  these  changes in the execution environment, 
virtual-memory-based time-sharing systems can display very 
good performance. Measurements indicate that a large 
portion of the pages  referenced  in one transaction are 
referenced  again in the following transaction. This leads to 
two suppositions: 1) There is a significant  locality of 
reference  across  users’ transactions. 2) For good 
performance, the operating-system data structures must 
show  good  locality  of  reference. 

The measurements and the analysis presented in this 
paper test  these two suppositions. The impact of the findings 
on the real-storage-management algorithms is discussed in 
171. 

Measurement  data 

Characteristics 
The data  on which this study is based  were measured on an 
IBM VM/370 HPO system  with  users running CMS in their 
virtual machines [8,9]. CMS  is a single-user operating 
system that in itself does not implement virtual memory. 
CMS runs in virtual machines supported by CP, the 
underlying hypervisor supporting virtual memory. In a 
sense,  each virtual machine can be considered a single-user 
workstation running the CMS operating system,  with the CP 
hypervisor supporting many such workstations on one large 
computer. In supporting virtual memory, CP manages the 
hardware reference bits of the storage  pages  used  by the 
virtual machines [ 10, 1 11. As part of that support, CP can 
record the numbers of  pages that have been  referenced 
during certain intervals. These page-reference data  are  the 
source  for the reference strings used in this study. VM uses 
pages  of 4K bytes. Consequently, the address resolution of 
the  data is to blocks  of 4K bytes. 

The data generally include all references by a virtual 
machine, with some exceptions noted later. The CMS 
functions included in the references are program 
management, command interpretation, terminal 
management, and  the file  system. The user commands 
invoke system utilities, such as editors and compilers, user- 
written command procedures, and user programs. The data 
from each virtual machine are recorded separately, so that  it 
is possible to construct reference strings for each virtual 
machine. 

The CP-provided functions whose  references are  not 
inclued in the data comprise mainly dispatching of virtual 
machines, paging, and parts of the 1/0 supervisor. In any 
operating system, these functions are so heavily  used that 
either they are not pageable or their pages are naturally 
resident in main memory. Their references  would contribute 
little if anything to paging. 
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The CP scheduler  divides transactions into scheduling 
intervals. The first interval spans about 80 milliseconds of 
virtual CPU time. The subsequent intervals are longer. At 
the end of each interval, the real-storage  manager  resets the 
reference  bits in order to adjust the working  set. We call the 
pages referenced in one scheduling  interval the refirence set ' 
of that interval. The VM Monitor records the last  reference 
set  of a user transaction. Short  transactions-and the 
majority of transactions fall into this class-span only one 
scheduling interval (or queue stay, in VM/370  terminology). 
For these transactions, all  references are recorded. If a 
transaction extends over  several  intervals,  reference data are 
lost. Thus, the time resolution of the reference data may  be 
viewed in terms of  scheduling  intervals,  with  only the last 
reference  set of a transaction being  recorded. 

least as much locality as across transactions. This  would 
mean that the locality  of complete reference strings would  be 
higher than shown in  the data here.  Also, we expect that 
reference  strings of long transactions are dominated by the 
user programs rather than by the operating system. In this 
case, the characteristics as described in prior studies probably 

We assume that the references within transactions show at 

apply. 
The emphasis of this study  is on locality  across 

transactions and on short transactions that are prevalent in 
interactive computing [6] .  Therefore, the loss of data is not 
as great a problem as it may look at first.  However, for a 
more general use of the reference data, a complete trace 
would  clearly be desirable. Table 1 shows the magnitude of 
the data loss. The first data column gives the total number of 
scheduling  intervals; the next data column gives the number 
of intervals for  which  reference data were recorded; and the 
last column shows the percentage  of intervals for which data 
were  recorded. These figures  show that the large majority of 
the transactions recorded are small (as  is characteristic of 
interactive systems) and that the extent of the missing data is 
small enough not to invalidate the analysis. 

For an extension of this study, more complete data would 
be  helpful. By writing the reference-data records at every 
scheduling interval, we could obtain complete reference- 
string traces. This would be especially  helpful in the analysis 
of systems  whose major workload  involves  large 
transactions. Production virtual machines that use  MVS, 
DOS/VSE, or VS/ 1 as their virtual operating systems 
generally  fall into this category. 

0 Sources 
All data presented in the following  sections  were  recorded at 

. three different installations, from interactive user  sessions or 
from server virtual machines running CMS. One installation 
is an educational institution, one supports a manufacturing 

' CP uses the  reference  set as an  approximation  to  the  working set. But because the 
intervals are quite  long  for  working-set  windows,  and  have  different  lengths,  the 
reference  set  is  not  a  working  set  in  the strict sense of the definition [I]. 
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Table 1 Missing  data in reference  strings. 

Virtual 
machine ID 

VM 1 
VM 2 
VM 4 
VM 7 
VM 8 
VM 9 

Characterization Scheduling intervals 

Total With ref: Ref: 
data data 

(%I 

Initial example 296 229 77.3 
Interactive  application. 425 402 94.5 
Service machine 553 448 81.0 
Typical  example 298 220 73.8 
Example ofphases 357  316 88.5 
Service machine 400 222 55.5 

plant, and one installation is in a service industry. All three 
installations were running VM/HPO 3.4 at the time of 
recording, and from  each installation we analyzed the data 
of  five virtual machines running CMS. From the total of 15 
virtual machines, we  selected  six virtual machines that had 
the longest and the most complete reference  strings. We also 
made sure to include in the study a broad sample of the 
different  effects we observed. 

0 Measurement and analysis tools used 
The data used in this analysis are available through the 
VMJMonitor [SI for VM/HPO Releases  3.4 to 4.2.  Earlier 
and later releases  of VM/HPO have  real-storage- 
management algorithms that would make it very  expensive 
to record the reference data. Therefore, on those other 
releases the VMJMonitor does not provide  page-reference 
data. 

For the reduction of the VMJMonitor data, we used a 
data-reduction package  developed at the IBM Thomas J. 
Watson  Research Center, and known as the Generalized 
Reduction of Information (GRIN) program [ 121. GRIN is a 
program generator that has  built-in  knowledge  of 
VM/Monitor data and that offers a very-high-level  language 
for the specification of data-reduction requests. This makes it 
well suited for exploratory data analysis. 

VMJMonitor files  using the GRIN package, we  used the 
GRAFSTAT  system [ 131 to perform the statistical  analysis 
for the graphic presentation of the data. GRAFSTAT allows 
presentation of graphs on high-resolution  displays as well as 
on high-resolution printers. 

After  we extracted the relevant data from the 

0 CMS storage layout 
The storage layout of CMS is important for the 
interpretation of the reference  strings. We can identify four 
major areas, as shown in Figure 1. 

The low-CMS area occupies pages 0 to 3 1 of the address 
space. This area contains a system-datu area, a user-datu 
area, and the transient area. The system-data area holds 
CMS  system control blocks that are relatively static during 
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The shared-system area resides in an address  range  above 
the virtual machine's address range. It contains shared 
segments that are very important for the reference behavior 
and the performance of  CMS. Many of the frequently  used 
programs,  such as the command interpreter (REXX), the 
system editor (XEDIT), the text formatter (SCRIPT/VS), 
and  the APL interpreter, reside  here. The shared segments 
also contain file directories for some read-only shared files. 
These  segments are read-only  segments, and they are shared 
among all the virtual machines in the system that connect to 
them. The references to pages in these  segments cannot be 
traced to individual virtual machines, and are excluded from 
the analysis  here.  Since  only  very frequently used programs 
are loaded into shared  segments,  it can be  assumed that they 
are in storage  most of the time and that they do not 
significantly contribute to the paging  traffic. 

Data presentation 

Page-reference pattern 
Figure 2 shows the page-reference pattern of a virtual 
machine running CMS. The X-axis dimension represents 
virtual page numbers. Each point along the X-axis  represents 
a page of storage of the virtual machine, sorted in the order 
of the virtual addresses of the pages. The user whose Î  ." ^" "" . ...I. _ _  . .. ... . -. . - ." .. ..". . .. ". - .. . . . - . . .. 

reference pattern the graph  shows has a virtual machine with 
256 pages, or one megabyte, of virtual storage. 

Each point on the Y-axis represents the last or only 
scheduling interval of a transaction. The transactions are 

the course of a user  session. The user-data area can hold any arranged in time sequence,  with the time increasing from the 
data that a user  allocates  which  fit into the given amount of 
space. (The terms user data and user programs, when  used 
subsequently,  refer to all data  and programs that are not part 
of  CMS, but are part of application programs, and are not in 
the shared  area.) The transient area is intended for special 
commands whose programs fit into 8K bytes of memory. 
The low-CMS area is  generally broken down into many 
small areas that are referenced independently of one another. 

The user-program area starts at page 32. User-program 
space  is  usually  allocated  upward from this address.  First 
comes the program-code area, where the CMS loader loads 
the programs. Immediately above it is the program-data 
area, where  programs  may allocate private data space. 

The high-CMS area occupies the rest of a CMS virtual 
machine. There, CMS  allocates  system-data areas and user- 
data areas. The allocation direction is downward from the 
top of the virtual machine. System data, such as  CMS  file- 
system control blocks,  often remain allocated for an entire 
user  session. User data, such as files being edited, are 
generally transient. Most of the time, the system data are 
allocated first and reside at the top, and the user data are 
allocated  below them. However, this is not always the case- 
system data and user data can be intermixed, and there can 

526 be unallocated pieces  of  storage  between them. 

bottom to the top of the graph. Thus, the Y-axis is not 
proportional to real time, but it is approximately 
proportional to the virtual CPU time of the user's virtual 
machine. The user in the graph originated 267 transactions 
during the measurement interval. 

vertical line shows  all the scheduling periods during which a 
particular page has been  referenced. A horizontal line depicts 
the pages that were referenced during one scheduling  period. 

Each dot in the graph  represents a page reference. A 

Interpretation of the reference pattern 
VM 1 is the only virtual machine whose actual CMS  storage 
map we could obtain, and whose  activity during the 
measurement period we know to some  degree. This gives us 
some help in relating the reference patterns to the users' 
activities. In the measurement interval, the user of  VM1 
spent most of his time editing, using the XEDIT editor 
supplied  with  CMS. He also sent some files to another 
system and he built some libraries. 

pattern. Some pages are referenced in practically  every 
transaction. Other pages form groups that are often 
referenced together. Some pages are referenced  rarely or not 
at all. The pattern in this area is quite distinct, and virtually 

The references in the low-CMS area show a very regular 



all  CMS  reference strings we analyzed  show  a similar 
pattern. While the patterns are similar, they  rarely match 
completely. In particular, the pages that are referenced in 
virtually  every transaction are not the same  for  all  users. 
They depend on the configuration of the virtual machine, on 
some  details of the CMS initialization, and on the initial 
user-command sequence. The number of  pages referenced in 
every transaction can be  as  low as five or as  high as the 
entire area between  page 0 and page 3 1. 

VM I references the user  program area very  sparsely. The 
two  programs of major size are probably the calls to build  a 
library, and the six programs of only four pages are probably 
the programs to send files to another system. 

approximately page 80 to page 190, shows  a  sparse  reference 
pattern. The lower part of this area, up to about page 165, 
contains the files being  edited. The upper part contains 
XEDIT macros. The long contiguous reference  strings in the 
file area are probably due to loading or saving  of  files  being 
edited, or  to commands to make a  global  change in the file. 

The system-data area in the high-CMS area, from about 
page 190 to the top of the virtual machine, is  divided into 
distinct subareas that are referenced  together.  Most of these 
subareas represent CMS-file  system directories.  These 
directories are being  searched  linearly for the resolution of 
file names.  Very often, all directories are searched to resolve 
one file name.2 

The references are very  sparse, and are scattered over the 
entire address  space. The utilization of virtual storage  is 
quite low.  For this kind of reference pattern, virtual storage 
is  very appropriate since it requires only  referenced pages to 
be  resident in real  storage. This pattern probably  developed 
because  CMS  always ran on virtual memory  systems. 
Systems  where  all  user  storage must be  backed  by  real 
storage  usually cannot afford this generous approach to 
memory usage. 

The reference  sets  vary frequently and by large numbers of 
pages. This points to the need for an algorithm that can react 
quickly to changes in the reference  set. 

Many  blocks of  pages are often referenced together and 
are then dropped together from the reference  set. In some 
cases,  pages that are frequently referenced together are not 
adjacent in the address space. In fact, many of the reference 
gaps are as consistent as the pages  referenced. A good 
storage-management algorithm can exploit  these  facts. 

some  phases, at closer  inspection  these  phases  cover  only  a 
small extent of the overall  reference pattern. The user-data 
area in particular appears to be  referenced quite 
unpredictably. The low-CMS area and the file directories in 
the high-CMS area contain some groups of  pages that appear 

The user-data area in the high-CMS area, from 

While at first  glance the reference pattern appears to show 

* Starting  with  Release 4 of CMS/SP, the linear search  has been replaced by a hashing 
scheme  to  resolve  file names. This considerably reduces the  working-set size. The 
reference  pattern shows how large the impact of this change can be. 
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to be  referenced in phases, but these  phases extend only  over 
short ranges of pages. As we  will  see later, these  phases are 
not significant enough for  real-storage management to 
exploit. 

Some special reference patterns 
The page-reference pattern of  VM 1 shows many important 
effects and serves  well  as an introductory example. The 
following  sections  show  reference patterns from other virtual 
machines to present  a more complete view  of the reference 
patterns we  have observed. 

User programs and command sequences: An interactive 
application? 
VM 2, as seen in Figure 3, shows the greatest  user  program 
activity of the virtual machines we examined. The shapes of 
the reference patterns in the user-program area are highly 
repetitive.  They suggest that the user  repeated  similar, quite 
lengthy command sequences  several times during the 
measurement period. A possible explanation for the 
regularity and repetition in the reference behavior is that this 
user  executed many transactions within one interactive 
application. The regular  use  of the file-directory  areas and 
the user-program and data areas supports this hypothesis. 
Within the repetitive patterns, we can observe  phases and 
phase transitions, even though the working sets vary 
considerably within the phases. In all  areas, many blocks are 
reused frequently together,  a pattern that should lead to good 
performance of the real-storage-management  algorithms. 
The reference pattern in the low-CMS area is  very similar to 
the pattern shown by  VM 1. 

M. G. KIENZLE, J. A. GARAY, AND W. H. TETZLAFF 



400 

8 300 

p 200 8 
100 

0 - 
0 100 200 300 400 500 

Page number 

8 200 
E 
8 150 

100 
x 

0 

0 200 400 600 

Page number 

0 50 100 150 200 

Very repetitive behavior: Server machines? 
VM 4 (Figure 4) shows the most  regular behavior of any of 
the virtual machines we examined.  While we do not know 
the function of this virtual machine, we conjecture that it 
performs a very limited function. A special-purpose  server 
virtual machine, for instance, would produce a reference 
pattern like  this. The constant storage usage in the user- 
program area, in the user-data  area, and in the area of the 
CMS file directories supports this view.  Even the low-CMS 
area shows no variation of the reference pattern. This 
predictable pattern will put only a minimum load on the 
real-storage-management  algorithms. In terms of the phase/ 
transition model, this user  shows  only one phase. 

VM 9 (Figure 5 )  is a mail  server. The pattern shows  very 
consistent use of the low  private  CMS area, the user-program 
area, and the area where the file directories are located. It 
would appear that this virtual machine has only  two private 
CMS  minidisks. The user-data area shows some storage 
blocks  whose boundary pages are referenced in every 
transaction but whose internal data are referenced quite 
sparsely and in a random pattern. A server machine does not 
necessarily  have a completely  predictable  reference pattern 
like that of  VM 4. From Table 1, we know that we captured 
only 55% of the reference  sets of  VM 9. This means that this 
machine had many large transactions spanning more than 
one scheduling interval. 

A typical user 
The reference pattern of  VM 1 serves as an example  because 
it shows  most  of the important issues quite well. But it is not 
typical for most of the interactive users observed.  While it is 
difficult to establish a typical  user pattern based on 15 users 
from three installations, VM 7 (Figure 6 )  represents an 
interactive user  typical for our sample. VM 7 has a fairly 
regular  reference pattern with some spurts of user-program 
executions, but the majority of the references occur in the 
CMS  areas. In particular, there is a concentration of 
references in the high-system-data area where the CMS file 
directories are stored, from about page  850 to the top of 
virtual memory. The user-data area, here  from about page 
800 to page  850,  is  referenced  heavily and regularly. The 
mean reference  set of this user  is  considerably  larger than the 
reference  sets of the other virtual machines in this study. 
This is mainly due to the large number of  file  system 
directories the user has in memory. The references are quite 
consistent from one transaction to the next.  At a glance, the 
reference pattern shows  obvious  phases. 

Page number 
User with phase behavior 
VM 8 (Figure 7), belonging to an interactive user,  shows the 
most distinct phases in its reference pattern of  all patterns we 
examined. The long  series of transactions with no changes in 
the reference  set should lead to very  good performance of the 
real-storage-management  algorithms.  These  phases of 
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constant reference  sets occur particularly  when there is no 
user-program  activity. The large  reference  gap  between  page 
500 and page 1680 indicates an unusual allocation pattern. 
This area, more than four megabytes of storage,  has  been 
allocated  before the area around page 400, whose  reference 
pattern indicates that it probably contains file directories. 
The large area may  still be allocated, or it may  have  been 
freed. This kind of storage fragmentation is unusual in the 
CMS environment. 

Summary of reference patterns 
The CMS-data areas dominate the reference patterns. Most 
of these  areas contain CMS system data and remain 
allocated through a user’s session.  They are referenced 
implicitly by the user’s commands, and their reference 
pattern is consistent, very  often  for long sequences of 
transactions. Since a large part of the references are 
controlled by the operating system, the data structures of the 
operating system are crucial  for the reference and paging 
behavior of the system. 

The user data, referenced  explicitly  by the user’s programs 
and commands, and the user-program  references  represent a 
smaller portion of the pages referenced. Their reference 
patterns are less  predictable,  except in server virtual 
machines or when a user remains in an interactive 
application for an extended time. 

If the virtual machine provides interactive service to a 
user, the user’s behavior ultimately controls the reference 
behavior. The user’s command sequences  explicitly  reference 
his data and implicitly  reference  CMS  system data. These 
data references together far  outweigh the impact of the code 
references,  even if the user  is running programs in his  own 
virtual machine rather than executing  programs from the 
shared segments.  Many data references are also due to If0 
operations, rather than to references  from the CPU. Because 
of the small impact of the code references, it is  probably not 
worthwhile  organizing short running programs to control 
code-reference  behavior. 

Data analysis 

Overview 
In this section, we present a statistical  analysis of the 
reference data. Table 2 gives an overview  of some reference- 
set  statistics of the virtual machines analyzed. The column 
VM size gives the virtual-machine size in megabytes. The 
column Transactions shows the total number of transactions 
the virtual machines handled during the recording  interval. 
The column RS size mean  pages gives the mean reference- 
set  size in pages. In order to illustrate how the reference-set 
size  varies, the next column, RS size coeff: var., shows the 
coefficient  of variation (i.e., the mean divided by the 
standard deviation) of the reference-set  size. The columns 
refemng to reference-set-contents  change  show the difference 
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from one transaction to another of the pages that are in the 
reference set. The first  of the two columns, Mean chg.fmean 
RS, shows the mean number of  pages  by  which consecutive 
reference  sets  change, as a fraction of the reference-set  size. 
The second column, Coeff: var., shows the coefficient  of 
variation of the reference-set  changes. 

The mean reference-set  sizes  vary  greatly  between the 
virtual machines, but the reference-set  size  of a given virtual 
machine does not change very much in the course of a 
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Table 2 Reference-set  statistics. 

Virtual 
machine ID 

Characterization 

VM 1 
VM 2 
VM 4 
VM I 
VM 8 
VM 9 

Initial  example 
Interactive  application 
Service  machine 
Typical  example 
Example of phases 
Service  machine 

1 
2 
3 
4 
I 
1 

Transactions RS size RS contents  chg. 

Mean Coeff Mean chg.  Coeff 
pages var. fmean RS var. 

296  31.2  0.68 0.61 
425 

1.12 
29.2 0.65 0.43 

553 
1.63 

54.4 0.08 0.09 1 .00 
298 95.4 0.41 0.35  1.60 
351 83.1 0.35 0.11 2.18 
400 38.3 0.20 0.35 0.1 1 

session. The standard deviation of the reference-set  size  is 
smaller than the mean for  all the virtual machines examined. 
The mean change in the reference-set contents appears to be 
closely  related to the change in the mean reference-set  size. 
Most of the time the change  is either an addition of pages to 
the existing  reference  set or a  loss  of  pages. Less often, there 
is an addition to one area balanced by a  loss in another area. 
The reference patterns bear out this observation. The 
coefficient  of variation of reference-set  changes  is  generally 
larger than one. This points to a  large variation in  the 
working-set  changes. 

Reference  and  rereference  data 
This section  analyzes the reference  frequency and the 
rereference  frequency for each of the pages in the virtual 
machines. The reference  count of a  page  is the number of 
scheduling intervals during the measurement interval in 
which that page has been  referenced. To normalize the 
reference count, it is  expressed as referencefrequency: 

reference frequency = reference  count 
reference sets in 
measurement  interval 

A rereference is  defined as a  reference of a page when that 
page has also  been  referenced in  the immediately preceding 
scheduling interval. The rereferences are also  expressed as 
frequencies,  relative to the total number of  references: 

rereference frequency = 
rereference  count 
reference  count * 

The rereference  frequency  is  a  measure  of  locality  of 
reference. There are two  types  of  rereferences. The first type 
comes from a  very  dense but random reference pattern. If a 
page  is  referenced in most transactions, then its rereference 
frequency must also be  very  high. The peaks in  the reference 
graphs in Figures 9 and 10 (shown later) clearly are of this 
type. The other type of rereference  is due to true locality  of 
reference. This type of  rereference  is  possible at either high 
or low reference  frequency.  At  high  reference  frequency, the 
two  types of rereference cannot be distinguished, and a 

distinction is not relevant. If a low reference  frequency  is 
accompanied by a high rereference  frequency, the cause  is 
true locality of reference. The difference  between  these  two 
types  may  be important to real-storage-management 
algorithms that distinguish  between short-term history and 
longer-term  history.  When  a  phase transition occurs,  these 
algorithms should discard the short-term history, the pages 
referenced due to true locality of reference.  But they should 
maintain the longer-term  history,  keeping the pages with 
high reference  frequency  over an extended time. 

rereferenced  for  each  reference  set in the measurement 
interval. Figures 9 and 10 show the reference and the 
rereference  frequencies of  VM 1 and VM 2, respectively. 
The frequencies of the other virtual machines display no 
essential  differences from the ones shown  here. 

The user-data areas in the two virtual machines show 
relatively high locality.  However, due to the low  reference 
frequencies of these  areas, this locality has very little impact 
on real-storage-management performance. The reference 
frequency  varies widely across the address  range. This shows 
a potential that could  be  exploited  by algorithms that take a 
more detailed  reference  history into account. 

Figure 8 gives the mean number of  pages  referenced and 

Phaseltransition  model 
This section  explores  whether  phases of  working-set  use are 
prominent enough that they could  be  used  by the real- 
storage  manager. If real-storage-management algorithms are 
to exploit  phases of more or less constant reference sets, a 
large  percentage  of  all  reference  sets must be part of some 
phase. The phases of little change in the working set can be 
important for algorithms that rely on past  history  for their 
next  decisions.  When  a  phase transition occurs, the past 
history  may not be  relevant to future behavior.  Algorithms 
for adjusting working sets and prepaging could take 
advantage of the phase/transition behavior  of  reference 
patterns. For instance, if  phases  with only small changes in 
the working  sets are prevalent,  swapping entire working  sets 
may  give better performance than demand paging.  When the 
scheduler  observes  a  phase transition, the prior working  set 
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can be discarded and a  switch to demand paging  made. The 
phase/transition  models  reported in the literature, for 
instance  in [3], define the phases on the basis  of an analysis 
of individual  programs. This approach is not feasible in our 
study. The phases must be discerned  from  a  statistical 
analysis of the reference  patterns. 

reference  sets as 
We  define the (relative)  difference  between  consecutive 

Since not all the reference  sets  have the same  size, the 
change  percentage can be  larger than 100%. Now  we can 
analyze the variation of the reference  sets  over  sequences  of 
transactions. We look  first at the extents of the reference-set 
differences in subsequent transactions, and then at phases  of 
reference  sets. 

Distribution of reference-set  changes  between  consecutive 
transactions 
Figure 11 shows the cumulative distribution of the 
differences  between  subsequent  reference  sets. The X-axis 
shows the percentage of  reference-set  changes. The Y values 
show the percentage  of transactions in which the reference- 
set  changes compared to the previous transactions are greater 
than or equal to the percentage given  by their X values. 

Because  of the more  predictable  behavior  of the server 
virtual  machines (VM 4 and VM 9), the change distributions 
drop off sharply. The virtual  machines  experience  practically 
no changes  greater than 75%. The distributions for the other 
virtual  machines drop off sharply  only to the 10%-change 
mark. After that, they  decline much more  gradually, 
indicating  a  significant number of  larger  changes.  These 
distributions have  longer  tails,  showing  considerable 
numbers of transactions with  changes  larger than 100%. 
These  large  changes  may  indicate  a  shift  in  user  activity. VM 
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1 shows  a  nearly triangular form of the distribution. A 
triangular shape of the distribution would indicate a uniform 
distribution of the size  of the reference-set  changes. 

Phase distributions 
Figure 11 shows that despite the drastic drops in the 
distributions, there are many adjacent transactions between 
which the reference  sets  change  only  little. The reference 
patterns, though, show that any phases  of completely 
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Cumulative distribution of reference-set changes between transactions 

identical reference  sets are very short. For phases of reference 
sets to be significant, the period of little or no change should 
be  considerably  longer than just two transactions. Also, 
defining a phase as a series of reference  sets that are 
completely identical is too restrictive to be useful. 
Consequently, we define a phase as a series of transactions 
whose  reference  sets  change  less than a given  percentage 
between subsequent transactions, 

5 CT, 
I w, - Y.-, I 

Si 

where CT is a change-threshold. 
Figures 12 and 13 show the extent of phases in the 

reference patterns of the six virtual machines of the analysis. 
Figure 12 shows the cumulative distribution of the phase 
lengths at several  change-threshold  values. The X-axis  shows 
the phase  length in transactions, and the Y-axis  gives the 

532 percent of phases  whose  length  is  greater than or equal to X. 

The phases in most virtual machines are very short. Even 
at change-thresholds as high as 60% of the reference  set, 
most of the phases are shorter than five transactions. VM 4 
is an exception. At a change-threshold of 20%, VM 4 spends 
the entire measurement interval in one phase. 

Long  phases can stretch over many transactions, so their 
impact on the system  is much larger than the impact of 
short phases.  Figure 13 takes this into account by showing 
the cumulative distribution of transactions according to the 
length of the phases to which they belong. 

Using a change-threshold of 20%, we  see that more than 
half  of the transactions are part of phases that are five 
transactions or shorter. Even  VM 8, whose  reference pattern 
appears to show pronounced phase behavior, shows a 
substantial number of transactions in longer  phases  only at a 
60% change-threshold. VM 4 again  is an exception. 

What  does this evidence mean for the design  of  real- 
storage-management  algorithms? An algorithm could, for 
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instance, exploit  phases by swapping entire reference  sets 
while the virtual machine is in a phase of little change, and 
by using demand paging at other times. For such an 
approach to be practical, the change-threshold should not be 
higher than 20%. Moving 20% more pages than needed 
represents a considerable  overhead. Current algorithms often 
manage to predict  reference  sets to within 20% [7]. With a 
20% change-threshold,  most of the virtual machines have 
some phases that are quite long.  However, the majority of 
the phases are so short that they would  be  difficult to exploit 
even  if there were an algorithm that could detect the phase 
transitions instantly. If it took an algorithm several 
scheduling intervals to detect a phase transition, the resulting 
excess  paging 1/0 traffic  would  be quite large.  We know of 
no algorithm that reliably detects phase  transitions-other 
than after the fact and with  considerable CPU overhead. 

as in VM 4, most algorithms will perform well even if they 
For the exceptional  cases  where  phases can be found, such 

do not exploit the phases. Thus, there is no need  for 
algorithms to detect phases in the few instances where  they 
can be  exploited. 

In addition to the preceding  analysis, we tried to 
determine whether the time-dependent behavior of the 
virtual machines yields any clues  for  predicting  phase 
transitions. We produced a scatter plot of the reference-set 
changes  between  two subsequent transactions over the real 
time between the transactions. The plots  showed no 
correlation between the two  variables. That is, our sample 
showed no strong phases of reference behavior that are tied 
to time periods of user  activity. 

Conclusions 

Locality of reference  across  transactions 
The data show that there is a great amount of locality of 
reference  across transactions in interactive systems. Without 
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this phenomenon, interactive time-sharing systems 
supporting hundreds of users, such as VMICMS,  would 
probably not be  viable. In a way, the data presented in this 
study show  explicitly  what has been either known or 
assumed for some time. 

This finding  is  relevant  beyond  time-sharing  systems as 
well. It shows that  in a single-user, interactive environment, 
the locality of reference is significant enough to make 
virtual-memory operating systems  worthwhile. In a single- 
user workstation, the operating system code cannot be 
shared, thus, for this case the code references  would  have to 
be included in  the reference pattern important for paging. 
But  we  believe this would not substantially change the 
overall  reference  behavior. 

Dominance of operating-system references 
The reference  behavior  of  highly interactive systems under 

534 VM is dominated by the data structures of the virtual 

operating system, and by the users' behavior, rather than by 
the behavior of the individual application programs. There 
are several  specific memory areas that each  have their own 
characteristic reference patterns. As the individual 
transactions get more computation-intensive, the application 
program and its data references will probably start to 
dominate the reference pattern. The missing data on long- 
running transactions in this study mask this effect in the 
presented data. 

Dominance of data references 
In the environment we studied, the data references  have a far 
larger impact on the overall  reference pattern than  the code 
references.  Most  of the code  references are to shared code 
segments.  Even  if  code  references  were counted, data 
references  would  probably  be predominant, since I 1 0  
operations often cause many data references  with few code 
references. 
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The data structures for  shared  code must be defined very 
carefully, since their  impact  on system performance 
increases with the degree of sharing. 

0 Applications 
VM 4 and  VM 9 are  both server  virtual  machines, yet their 
reference behavior differs radically. Often, server virtual 
machines  constitute a large part of the load on a system, and 
sometimes they are very ill-behaved. The  method of  analysis 
shown in  this  paper could be used to analyze the reference 
patterns of such server  machines and  to  improve  their 
reference behavior by redesigning internal  data structures. It 
appears  that  VM 9 could benefit from such a redesign. 

0 Phase-transition model 
The data presented  exhibit some phase  behavior. But  the 
phases are not pronounced  enough  for  the real-storage- 
management  algorithms  to exploit. Even if the phases were 
more distinct, for effective use the algorithms  would  have to 
be able to recognize phase transitions quickly and with  little 
overhead.  Considering the  data we found  and  this problem 
for  the algorithms,  exploiting the phase  behavior appears to 
be a direction that is not worthwhile  pursuing. 
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