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What is
measured

when you
measure

a resistance?—
The Landauer
formula revisited

by A. Douglas Stone
Aaron Szafer

We re-examine the question of what constitutes
the physically relevant quantum-mechanical
expression for the resistance of a disordered
conductor in light of recent experimental and
theoretical advances in our understanding of the
conducting properties of mesoscopic systems. It
is shown that in the absence of a magnetic field,
the formula proposed by Biittiker, which
expresses the current response of a multi-port
conductor in terms of transmission matrices, is
derivable straightforwardly from linear response
theory. We also present a general formalism for
solving these equations for the resistance given
the scattering matrix. This2 Landauer-type
formula reduces to g = (e /h)Tr(tt*), where g is
the conductance and t is the transmission
matrix, for the two-probe case. It is suggested
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that this formula provides the best description of
the present class of experiments performed in
two-probe or multi-probe measuring
configurations, and that the subtleties leading to
various different Landauer formulae are not
relevant to these experiments. This is not
because of the large number of channels in real
conductors, but is due to the fact that apparently
no present experiment probes a “local chemical
potential” in the conductor. Certain standard
objections to deriving a Landauer-type formula
from linear response theory are answered.
Applications of this formula to fluctuations in
disordered multi-probe conductors are
discussed.

1. Introduction

It is entirely appropriate that a volume on the physics of
mesoscopic systems contain an updated discussion of the
Landauer formula. The new discoveries concerning the
novel conducting properties of small systems have certainly
clarified and sharpened many of the issues that have been
raised by a variety of authors who have attempted to
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understand the relationship between the conductance of a
quantum-mechanical system and an associated scattering
problem. Furthermore, Landauer’s great insight, that
conduction in solids can be thought of as a scattering
problem, has certainly been of great practical importance in
guiding our intuition to an understanding of quantum
transport in mesoscopic systems. This paper has somewhat
the character of a review article, and is divided into four
main sections. First, we summarize the major developments
in modern thinking about the Landauer formula since 1980,
leading up to the very recent developments relating to the
physics of multi-probe mesoscopic devices. Second, we
present a complete and rigorous derivation of a multi-probe
generalization of the Landauer formula from linear response
theory. This formula was first written down explicitly and
justified on phenomenological grounds by Biittiker [1]. An
alternative representation of the current response of a multi-
probe conductor in terms of Green functions, starting from
the Kubo formula, has been widely employed recently to
calculate voltage fluctuations in mesoscopic multi-probe
devices [2-7]; these calculations give excellent qualitative,
and reasonable quantitative, agreement with experiment.
Our calculations prove the explicit equivalence of the Green
function approach to that of Biittiker (in the absence of a
magnetic field). The proof requires a nontrivial application
of scattering theory, and we find that the previous literature
on this subject contains a number of technical errors, which
we correct. The equivalence of the two approaches, and the
success of the Green function calculations, suggest that this
newly proposed multi-probe Landauer formula captures
most of the relevant physics of these mesoscopic devices.
Third, we discuss the plausibility of the formula on physical
grounds, and its relationship to other Landauer formulae
which have been proposed in the literature. Most of the
points we make have been made by other authors (to whom
we shall refer at appropriate points); however, the new
collective wisdom of the field concerning these issues has not
been assembled in one article. Fourth, we discuss very briefly
the applications of this formula to conductance and voltage
fluctuations in small devices.

The basic purpose of this exercise is twofold. On one
hand, due to previous controversies concerning the “correct”
Landauer formula, many researchers in the wider
community have been cautious about employing this
approach in quantitative calculations of transport
phenomena. By showing that this most recent multi-channel
generalization is equivalent to a well-defined linear response
calculation (and indeed equivalent to precisely the
calculation that one standardly performs for these systems),
we hope to show that there is no more rigorous formalism.
Calculations explicitly appealing to this Landauer formula
are no more or less convincing than they would be in the
Green function approach (unless of course the actual
calculational technique employed for evaluating the formula
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is less accurate or involves more unverified assumptions).
Conversely, some authors have suggested that there are
subtle physical assumptions implicit in the Landauer
approach which cannot be included naturally in standard
linear response theory. We show that this is not the case, at
least for the particular formula we derive, and explicitly
discuss several of the frequently raised objections to a linear
response calculation of the conductance. In the spirit of
Landauer, we occasionally give our somewhat subjective
characterizations of the prevailing sentiment about certain
issues at certain times. Let us emphasize that our intention is
not to assign priority or credit to certain individuals, but
rather to allow an interested bystander to read this paper and
sort out the rather confusing developments concerning this
topic over the past eight years.

2. Historical background
As is now well known, Landauer proposed the novel point of
view that transport should be viewed as a consequence of
incident carrier flux [8] in this very journal in 1957 [9], and
later gave a more complete discussion in 1970 [9], when he
proposed that the conductance of a one-dimensional
conductor sandwiched between two phase-randomizing
reservoirs (where all the dissipation occurs) is given by
eT
where T and R are the transmission and reflection
coeflicients of the conductor treated as a single complex
scattering center, and only one spin direction is included.
The formula (1) was rediscovered in 1980 by Anderson et al.
[10], who brought it to the attention of the wider transport
community by proposing a generalization of the formula to
the many-channel case and employing it in a rigorous
formulation of the scaling theory of localization. However,
this approach was a complete success only in the strictly
one-dimensional case, which, though quite interesting
theoretically, had little impact on experimental work on
quantum transport phenomena.

The rekindled theoretical interest in Equation (1) at this
time led to several attempts to reexamine it in the 1D case,
and also to generalize it to higher dimensions (many
transverse scattering channels), so that it could be used in
quantitative calculations of the conducting properties of real
physical systems. Landauer’s original derivation of Equation
(1) was not based on standard linear response theory, but on
a sort of “counting argument,” and an appeal to the Einstein
relation between the mobility and the diffusion constant [9].
A slightly higher electrochemical potential in, e.g., the left
reservoir creates a current due to the presence of filled
“right-going” states in the left reservoir and unfilled “left-
going” states in the right reservoir; the magnitude of the
current is just proportional to 7, the transmission coefficient
of the resistor connecting them. In steady state, the particle
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densities in the leads are also unequal, differing by factors of
(1 + R) and (1 — R), due to the reflected and transmitted
particles. This creates a density gradient proportional to 2R
over the length of the sample. Relating the current and the
density gradient by means of a diffusion equation, one
obtains the diffusion coefficient of the sample, and, by using
the Einstein relation, its conductance, given by Equation (1).
The argument contained several steps that were apparently
difficult to formalize in the language of standard linear
response theory; this motivated a number of authors to
attempt to derive Equation (1) using that approach.

The initial result was obtained by Economou and
Soukoulis [11], who derived the result g = (eZ/h)T, in the
strictly 1D quantum limit, instead of (1). Shortly thereafter,
in a calculation most relevant to our work below, Fisher and
Lee [12] generalized this result to N channels, obtaining the
result

N

g= % Tr(tt") )

where t is the N X N transmission matrix connecting the
incident flux in the various channels on one side of the
disordered region to the outgoing flux in the channels on the
other side. (The Hermitian conjugate is represented by a
dagger, and 7 is the trace of the matrix.) It is important to
note that they obtained this result exactly, for the linear
response of the system to an applied field with spatial
variation only in the disordered region (the precise
description of their calculation and assumptions is given
below, when we present our generalization). Several authors
[10, 13, 14], both before and after the work of Fisher and
Lee appeared, proposed multi-channel generalizations of (1)
which reduced to (2) in certain limits.

Equation (2) of course contradicts Equation (1) (in the
one-channel case), and has the counterintuitive feature that,
as the scattering caused by the disordered region goes to zero
(the transmission matrix goes to the identity), the
conductance of the system goes to N(¢/h), not to infinity;
i.e., the resistance of a “perfect” conductor is not zero
according to (2). This feature of Equation (2) was considered
very puzzling and suspicious by many researchers (at least
one of the present authors included), and initially this led to
critical scrutiny of the derivations leading to (2).
Independently, Thouless [15] and Langreth and Abrahams
[16] produced alternative derivations that yielded Equation
(1) in the one-channel case. Neither of these derivations
actually revealed a straightforward calculational error in the
derivations leading to (2); rather, they argued on physical
grounds that one had to perform a self-consistent linear
response calculation in order to get a physically meaningful
result, and upon performing slightly different versions of
such a calculation, both were able to obtain Equation (1) in
the one-channel case. We argue below that it is now not at
all clear that the self-consistency conditions that these
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authors impose correspond better to the physical conditions
relevant to real conductance measurements than those
imposed in the derivations leading to Equation (2).
However, it is probably accurate to say that at that time the
general sentiment was relief that some kind of linear
response derivation could be made to yield the result that
was “obviously” correct on physical grounds. In addition, at
that time Langreth and Abrahams generalized their
approach to many channels and obtained an implicit
formula for the conductance in terms of the transmission
and reflection coefficients, which in general could not be re-
expressed as a simple explicit function of these quantities;
this suggested that for the many-channel case a generalized
Landauer formula might be of little practical value in
calculations. Indeed, the only significant quantitative
application of a Landauer formula to many-channel
quantum transport at that time was by Lee and Fisher [17],
who used the “incorrect” formula (2) to test the scaling
theory of localization in 2D and 3D, and obtained
reasonably good agreement with the expected behavior of the
scaling function 8(g).

At about the same time, Engquist and Anderson [18] also
reexamined the derivation of Equation (1), but not from the
point of view of finding a rigorous derivation from linear
response theory. Instead, they introduced a fundamentally
new point of view by stressing the need to consider the
actual physical conditions corresponding to a measurement.
In particular, they argued that if there is a current flowing
out of one reservoir and into the other, strictly speaking the
chemical potential of the reservoirs is not well-defined, and
instead one should consider a system with (at least) four
reservoirs, two to act as current source and sink, and two
which define reference chemical potentials for the voltage
measurement. It was also pointed out that this theoretical
definition corresponded closely to a common measuring
configuration, in which the current through the entire circuit
is controlled by some large resistance in series with the
sample of interest, so that a fixed current can be fed in
through one set of leads, and the resulting voltage drop
across regions of the sample can be measured by attaching
different sets of voltage leads [this is known as a four-probe
(or, if there are many voltage leads, multi-probe)
measurement]. The basic physical idea underlying the new
derivation by Engquist and Anderson was that once the
current was imposed, one would “turn on” the voltmeter,
i.e., let current flow back and forth between the current leads
and the measuring reservoirs until the net current into each
reservoir was zero (on average); then the measuring
reservoirs would possess well-defined chemical potentials.
The current in the current leads divided by the induced
chemical potential difference gave the conductance in this
four-probe configuration. Engquist and Anderson then
introduced a scattering matrix to describe the scattering of
particles between the current leads and the measuring
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reservoirs. The crucial assumption that they made was that
the measuring reservoirs were weakly coupled to the current
leads; then, with several auxiliary assumptions which had
much the same flavor as those in Landauer’s original
argument, they were able to derive the formula (1) (to lowest
order in the small coupling to the measuring reservoir). The
authors also made clearly a point of tremendous importance
for recent work on mesoscopic conductors: “The measured
resistances for sections of the chain add linearly. Because of
long-range coherence for each energy, however, they are
determined by all scatterers in the sample, not just those
between the measurement points (italics added) . . . . Only
when the inelastic scattering is strong enough to destroy
phase coherence between the measurement points can local
resistances be defined.”

The implications of this insight for conductance
measurements in mesoscopic systems were not appreciated
at the time; however, the derivation of Equation (1) was
welcome. Not only could it be derived explicitly from linear
response theory, but it was apparently correct on physical
grounds since it was the result corresponding to a four-probe
measurement. Such a conclusion was somewhat hasty; it was
by no means clear that the assumption of weak coupling to
the measuring reservoir corresponded to a typical
experimental four-probe measurement. It has been argued
[1, 19], and we argue below, that such an assumption does
not correspond well to the measuring configuration of
typical multi-probe mesoscopic conductors.

Little further progress was made in understanding the
questions raised by the Landauer formula and its
generalizations until 1985, when Buttiker et al. [13] extended
the approach of Engquist and Anderson to the many-
channel case. They were (at least in part) motivated by a
calculation due to Gefen et al. [20], which computed the
conductance of a one-channel ring in a magnetic field using
Equation (1) and proposed that the usual (4/e period)
Aharonov-Bohm effect might be observable in small
normal-metal rings. Biittiker et al. again considered current
fed in from two reservoirs acting as source and sink, but
stressed that the “local chemical potential” difference
between the two ends of the sample was not equal to the
difference between the chemical potentials of the current
reservoirs; instead, it was smaller due to the nonequilibrium
distribution of carriers in the leads. They defined the “local
chemical potential” as the chemical potential that would
correspond to that density of carriers if they were in
equilibrium, and suggested, in the spirit of Engquist and
Anderson, that this is the chemical potential that a weakly
coupled voltage probe would measure. This approach of
course gave Equation (1) in the one-channel case, and a
generalization of it to many channels:

2 2 Ziv:l
g=(%2 T,,-) =
ij 2,(1 +2jRij—2j];j)vi
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where T; and R,; are the transmission and reflection
probabilities from channels i to j and v, is the longitudinal
velocity associated with channel i (these quantities are
defined more precisely in Section 4). This result had been
obtained earlier by Azbel [14], but the discussion by Buttiker
et al. greatly clarified the physical assumptions upon which
(3) is based. Thus, unlike those of Langreth and Abrahams,
this set of assumptions leads to an explicit formula for g in
terms of the scattering matrix of the sample, even in the
multi-channel case. Note, however, that this is still a two-
probe formula; the properties of the voltage leads do not
enter into the measured conductance, and the scattering
matrix elements involved only refer to scattering between the
current reservoirs. The origin of the difference between the
result obtained by Biittiker et al. and that obtained by
Langreth and Abrahams was pointed out by the former, and
is quite important in the context of our present concerns. It
arose from the different assumptions each made about the
“local chemical potential” in the leads. Biittiker et al. defined
it in the manner described above, which has the consequence
that the carrier densities in the different channels of the leads
must be out of equilibrium. Langreth and Abrahams defined
the density difference between the two leads by insisting that
there be a single chemical potential for all the channels in
each lead. Biittiker et al. have a brief discussion of the
plausibility of the different hypotheses. The important point
for us, however, is that it had become clear that any
derivation which required defining a “local chemical
potential” in the leads, which was different from that of the
current reservoirs, would require a set of physical
assumptions about the quasi-equilibrium in the leads.
Therefore, there might be no “correct” multi-channel
Landauer formula; the result obtained appeared to be
sensitive to rather abstract and difficult-to-verify assumptions
about the nature of the leads.

In summary, by 1985, just prior to the point at which
mesoscopic systems became fashionable, the original 1D
Landauer formula [Equation (1)] was prospering. It had
been derived five or six different ways, including “rigorously”
from linear response theory. However, the multi-channel
generalizations of Equation (1) were not doing so well. There
appeared to be no unique generalization, and since almost
any calculation which proposed to make quantitative contact
with experiment required considering a large number of
channels, it was unclear whether calculations using the
Landauer approach would be of great value. The general
community was aware that there were subtle and substantial
issues relating to the validity of any particular formula, and
therefore regarded the approach with suspicion. On the other
hand, most researchers were perfectly happy to perform
guantitative calculations on small systems using the Kubo
linear response formalism and diagrammatic techniques,
apparently believing that somehow one did not have to

confront these issues in that approach. We show below that 387
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using the Kubo formalism does amount to making a choice
of the appropriate multi-channel Landauer formula; it is
equivalent to choosing Equation (2) in the two-probe case,
and the natural generalization of those assumptions to the
many-probe case. In other words, it is equivalent to
assuming that a conductance measurement at fixed current
measures the chemical potential at a set of reservoirs, and
not the “local chemical potential” in the sample. On the
basis of the agreement of recent experimental and theoretical
results, and some new physical arguments, this is apparently
a rather good assumption, as is discussed below.

3. The Bronze Age of mesoscopics

About this time the cogitations of theorists on these topics
were beginning to be disturbed by the sometimes unsettling
confrontation with reality, in the form of a series of
landmark experiments on the conductance of ultra-small
metallic devices measured primarily in multi-probe
configurations [21-34]. These experiments revealed for the
first time the presence of both the normal-metal Aharonov-
Bohm effect and the sample-specific time-independent
magnetoresistance fluctuations, which later became known
as “universal conductance fluctuations” [35-40]. Two recent
review articles [22, 23] describe in detail the experiments,
their motivation, and some of the related theoretical work,
focusing primarily on the Aharonov-Bohm effect. These
experimental advances made the question of the appropriate
approach for calculating quantum conductance substantially
more interesting and important than it had appeared to be
prior to the new discoveries; however, it is impossible to do
them complete justice here, and readers are referred to

[22, 23]. We focus on several points of relevance to the issue
of the appropriate multi-probe multi-channel generalization
of the Landauer formula.

The earliest published experimental data on aperiodic
“reproducible noise” in the magnetoresistance of
conventional normal metals is due to the IBM group
[21, 24]. However, as intriguing as their results were, they
were treated with some suspicion for two reasons: First,
although many authors had discussed the possibility of
observing periodic magnetoresistance oscillations in multiply
connected conductors [13, 20, 41], no one had anticipated
finding aperiodic behavior. Second, the magnetoresistance
noise was observed to be asymmetric around B=0; i.e.,
g(B) # g(—B), which at least some authors took to be a
violation of one of Onsager’s relations [42]. The Fisher-Lee
formula [Equation (2)] must yield an exactly symmetric
conductance under field reversal, due to an exact symmetry
of the S-matrix; however, the formula [Equation (3)] of
Azbel and Biittiker et al. does not possess this property.

The symmetries of the S-matrix in the presence of a
field are insufficient to imply g(B) = g(—B) in Equation
(3), and Biittiker and Imry [42] suggested at that time
that the asymmetry allowed by Equation (3) might
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provide the explanation for the experimental observation.

Numerical simulations of small metallic conductors by
Stone [36] clearly established that aperiodic conductance
fluctuations as a function of magnetic field or Fermi energy
with many of the features observed in the experiments were
obtainable simply from the multi-channel Landauer
formula. Stone initially used Equation (3); however, he
found that results obtained using Equation (2) were
quantitatively very close to those obtained from Equation (3)
[43]. Although it is easy to show that Equation (3)
approaches Equation (2) when all the 7, are much less than
one, in fact Imry argued that the convergence is much more
rapid [39]; all that is needed is ( g) < N(&*/h) (where N is
the number of channels, or equivalently, /[/L << 1, where [ is
the elastic mean free path and L is the sample length). This
condition is essentially what distinguishes the metallic or
diffusive regime from the ballistic regime, and was satisfied
by all samples measured except in the most recent
experiments [44]. Thus, the approximate agreement of
Equations (2) and (3) found by Stone in the simulations was
not too surprising. The only feature distinguishing the two
formulae in the simulations was that Equation (3) did yield
an asymmetry in the magnetoconductance, while Equation
(2) did not. However, the magnitude of the asymmetry
found in the simulations was much smaller than that
observed in the experiment, suggesting that Equation (3)
could not fully explain the observed effect.

Shortly after the numerical simulations, there were a series
of experimental breakthroughs in this area, beginning with
the dramatic observation by Webb et al. [25] of the A/e
Aharonov-Bohm effect in a normal metal. This stimulated
further theoretical efforts to understand quantitatively these
quantum fluctuation phenomena. It was rapidly shown that
both the aperiodic magnetoresistance fluctuations and the
h/e Aharonov-Bohm effect were manifestations of the same
random interference effect. Calculations [35, 37-40] were
performed both analytically (using diagrammatic
perturbation theory) and numerically, predicting that the
rms amplitude of such conductance fluctuations should
always be of order (ez/h) independent of the average
conductance, hence the term “universal conductance
fluctuations™ (UCF). Lee and Stone considered a two-probe
model, and explicitly appealed to the Landauer formula of
Equation (2) to establish these results; Al’tshuler and
coworkers made no such explicit appeal, but, as we discuss
below, the formalism they used (including the boundary
conditions imposed) was equivalent to Equation (2). The
universality of rms(g) was only established for this two-
probe case, and only when the inelastic mean free path, L, ,
was greater than or equal to the sample length L (a
quantitative extension to the case L, << L was also made
[35]). It is the opinion of one of the authors that the
limitations of the two-probe theory were not fully
appreciated in the earliest papers on the UCF, leading to
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some confusion about the sense in which the measured
fluctuations were expected to be universal. Most of the
experiments to be explained were done in a multi-probe
measuring configuration, and the sample length in the two-
probe theory was somewhat naively assumed to correspond
to the spacing of the voltage probes in the multi-probe
measurements. In fact, this correspondence worked
extremely well in explaining the magnitude and correlation
length of the conductance fluctuations in all the early
experiments [35), and therefore its general validity was not
examined too closely.

The only qualitative feature of the experiments that
remained unexplained was the magnetic field asymmetry in
the conductance fluctuations, which, as noted above, was
completely ruled out by any approach equivalent to
Equation (2) above. In hindsight it scems obvious that the
failure of theories based on Equation (2) to predict the
observed asymmetry was a reflection of the limitations of the
two-probe theories; however, this was not so clear at the time
[45]. The inadequacy of the two-probe theory to describe the
complete range of multi-probe experiments became more
apparent, however, as the experimentalists began to study
samples with many measuring probes attached at points
along the current leads separated by a distance much less
than L, [27-29]. Here the naive application of the two-
probe theory to a multi-probe measurement ran up against a
paradox. Suppose the measurement is performed in a Hall
geometry, with the voltage probes opposite one another and
perpendicular to the current flow; then the average voltage
developed between the two leads will be zero (in the absence
of a magnetic field), and as one changes, e.g., the impurity
configuration of the sample at fixed current, the ratio of the
current to the voltage will fluctuate around an infinite value.
If one insists on calling this a measurement of the
conductance of the current channel between the leads, these
“conductance” fluctuations will certainly be much greater
than ¢’/h, and such a measuring configuration is not even
roughly in correspondence with the two-probe measurement
assumed in Equation (2). The point is that in the two-probe
theory the sample length provides a coherence cutoff very
similar to that due to true inelastic scattering [35]; therefore
it corresponds well to a multi-probe measurement (excluding
consideration of the asymmetry) when L, is approximately
equal to the probe spacing. It corresponds very poorly when
L, is much greater than the probe spacing. However, in this
case, as noted by Engquist and Anderson, the phase-coherent
sample is not just the part of the current leads between the
voltage probes; it includes upstream and downstream
portions of the current leads, and also, crucially, the voltage
leads as well. What is needed, then, is a formalism and a
theory for describing the voltage fluctuations of multi-probe
devices at fixed current.

The realization that such an extension of the theory was
needed was due to many authors [1-6, 28, 29, 46]; certainly,
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however, one should mention Benoit et al. [27, 28] and
Skocpol et al. [29] on the experimental side, and Isawa,
Ebisawa, and Maekawa [3] and Biittiker [1] on the
theoretical side. Maekawa et al. [3] were the first to attempt
to calculate voltage fluctuations using the Kubo formula,
explicitly including the effects of the voltage leads in the
calculation. Although there were minor technical errors in
their initial approach, many of their results turned out to be
correct, and certainly the physical motivation of their work
was correct. However, they did not connect their approach
to the Landauer formalism. Biittiker, on the other hand,
proposed an extension of the multi-channel Landauer
formula to multi-probe devices. The argument was
extremely simple, but differed from the arguments described
above in one crucial feature. Biittiker considered a four-
probe device leading to four reservoirs with different
chemical potentials, and assumed that all the leads were
macroscopically the same; i.e., there was no qualitative
distinction between current and voltage leads. Then he
evaluated the current flowing into or out of each reservoir by
the standard Landauer counting argument: The current
flowing between two reservoirs with a chemical potential
difference Ap = p, — p, is just (e2/h)T12A;L, where T, is the
transmission coefficient from one to two in the one-channel
case, and the trace of the transmission matrix times its
Hermitian conjugate in the many-channel case. Then he
departed from the previous arguments discussed above by
arguing, in effect, that the density or voltage difference
corresponding to this current is really the difference of the
chemical potentials of the reservoirs (and not some local
chemical potential difference in the leads), at least in the case
where the current flows only between two of the reservoirs
and the chemical potential differences are measured between
the other two. This simple argument leads to the
straightforward generalization of Equation (2) to the case of
N, leads:

Trit ! IR m#n,

mn-mn

C)]
Trir - 1},

nn- nh

g’"! =

where the conductance coefficients {g,,,} are given in terms
of the transmission and reflection matrices between leads m
and ». Bittiker made the crucial assumption that this
formulation was valid in the presence of a magnetic field, the
only effect of which was to reduce the symmetry of the S-
matrix due to the breaking of time-reversal symmetry.

The usefulness of this formulation was that it was now
easy to define an Onsager-like conductance tensor by
imposing the appropriate boundary conditions on the
incoming and outgoing currents, which could easily be
shown to have the familiar symmetries, simply due to the
symmetries of the S-matrix. It could also easily be shown
that the resistance, defined as the ratio of the voltage drop
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between reservoirs 1 and 2 (with no current flowing) to the
current between reservoirs 3 and 4, need not be symmetric
when the field was reversed, since it was expressed as a
combination of elements of this Onsager tensor with
differing symmetry under field reversal. He also showed in
this formulation that by interchanging current and voltage
leads, it was possible to obtain composite resistances which
are symmetric or antisymmetric under field reversal. This
was a fact well known to experimentalists [47], but this
procedure usually was not necessary when measuring a long
wire in a four-probe configuration. The importance of
employing this more correct procedure was convincingly
demonstrated at the same time by Benoit et al. [27],
confirming that the mysterious asymmetry was really due to
mistakenly studying a transport coefficient which does not
have any simple symmetry under field reversal. Of course,
under normal circumstances, in macroscopic wires with
voltage probes well-separated along the leads, this quantity
will have such a symmetry to a very good approximation
[22], and therefore it was not immediately obvious that one
should look for such an explanation.

For the reasons just discussed, the multi-probe Landauer
formula of Equation (4) is quite appealing. On the basis of
this formula, and some simple assumptions about the
statistical behavior of the S-matrix in the diffusive regime,
Biittiker [46] went on to propose a theory of the voltage
fluctuations in a three-port device that would explain
qualitatively the observed experimental behavior. Fairly
recent Kane et al. [2], Baranger et al. [6], Hershfeld and
Ambegaokar [4], and DiVincenzo and Kane [7] have all
performed quantitative calculations of voltage fluctuations in
multi-probe conductors based either directly on Equation (4)
or on applications of the Kubo formula which can be put in
an apparently equivalent form, with the transmission
matrices replaced by various matrix elements of the relevant
Green function. These calculations (discussed briefly below)
are in quite good qualitative and semiquantitative agreement
with experiment, although they showed that the statistical
assumptions made by Biittiker were, in general, not correct
[2, 6]. However, what has still not been done anywhere in
the literature is to show that Equation (4) can be explicitly
derived from linear response theory, and if so, in what model,
with what assumptions. We provide such a derivation,
for the case of zero magnetic field, in the following section.

4, Derivation of Buttiker’s formula from linear
response theory

In this section we compute the 7 = 0, dc current response of
a multi-probe disordered system in the absence of a
magnetic field. The result, when expressed in terms of the
quantum-mechanical reflection and transmission coefficients
of the system, is precisely Equation (4) above.

o Definition of the model
We define below a precise quantum-mechanical model of a
multi-probe conductor, and then solve it rigorously in the
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linear response approximation. We do not assume the Kubo
formula; instead, we calculate the formula from first
principles using the density-matrix formulation of the many-
particle Schrodinger equation. Our purpose is to exhibit
explicitly the careful treatment of all boundary conditions,
and the physical motivation for the order of limits taken. We
find that an appropriate intermediate stage of the derivation
yields expressions identical to those obtained by recent
approaches starting from the Kubo formula [2, 5], so the
initial section of our derivation is included primarily for
pedagogical reasons.

The quantum-mechanical model we use is intended to
correspond roughly to an experiment in which the leads of
the multi-probe system are connected to oscillating voltage
sources of dominant frequency €, and the in-phase ac
current response (i.e., the dissipative component of the
current) at each lead is measured. In order to have the
frequency well-defined, the experiment is run for a long
enough time, 1/3, to allow many oscillations. This requires
that the two experimentally controllable parameters ¢ and 8
be chosen to satisfy

Q>4 ()]

In principle, the dc current response of the system is then
obtained by extrapolating the result to @ — 0, always
maintaining the condition (5). It is worth noting that in fact
almost all experiments measuring the “dc” current response
of mesoscopic multi-probe devices are performed at small
but finite ac driving frequency [and, of course, they are run
for a long enough time to satisfy condition (5)]. Therefore,
any model calculation where the results depend on 2 and &
being literally zero is suspect. Our calculation is valid for
small but finite Q@ and § (where “small” is measured with
respect to other relevant physical time scales, such as
scattering times). Further discussion of the accuracy and
validity of our model in describing experiments of the type
considered above is deferred to the following sections. The
main goal of this section is to solve carefully a well-defined
quantum-mechanical problem.

We consider a system consisting of N, infinite, perfectly
conducting, straight “leads” of arbitrary widths, attached to a
disordered region of arbitrary shape (see Figure 1). The
absence of a magnetic field makes the distinction between
simply and multiply connected systems irrelevant. Time-
reversal symmetry is assumed, and the carriers are taken to
be noninteracting fermions at 7" = 0. We restrict our
discussion to two dimensions and to spinless particles (under
the assumption that all quantities are spin-diagonal), for the
purpose of avoiding the excessive proliferation of indices in a
notation that is already quite complicated. The derivation in
the more general case runs completely parallel to that given
here and most of the equations (though not all) are formally
identical; one only needs to bear in mind that in the general
case there are two transverse directions instead of one, that
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some symbols represent spin matrices instead of c-numbers,
and the time-reversal operator T has a different meaning.

The Hamiltonian for each particle, before we turn on the
driving field, is

1
H,=> P+ UX), (6)

where U(x) vanishes outside the disordered region. The
eigenstates {, ] of the unperturbed Hamiltonian are zero at
all the boundaries except at infinity, and they can be chosen
to form a delta-function normalized orthogonal basis of the
Hilbert space. Because these states will be labeled by both
discrete channel indices and continuous energy indices, their
proper normalization is somewhat subtle. This technical
point is important because it relates directly to the correct
definition of a unitary S-matrix for this problem, a point
which we address in detail in Appendix A. Time-reversal
invariance implies that {7} is also an orthonormal basis of
eigenstates of H, (where T is the time-reversal operator). In
each lead, the hard-wall boundary conditions impose a
quantization of the transverse momentum, leading to a finite
number of propagating solutions for any fixed energy e,
referred to as channels. All channels with transverse energies
larger than ¢ will have amplitudes that decay exponentially
along the lead in the outgoing direction from the disordered
region. The regions of the leads that are far enough from the
disordered region to ensure that all the decaying channels at
energy ¢ have vanishing amplitudes will be called the
asymptotic region.

Our derivation proceeds in three steps: First we use the
linear response approximation to obtain an expression for
the generalized conductance coefficients in terms of the
eigenstates of the unperturbed system. Then we translate the
result into the language of Green functions. Finally, we use
scattering theory to relate the Green functions to the
quantum-mechanical reflection and transmission amplitudes
of the system, in order to express the linear response
coefficients in terms of those quantities and compare the
result with Equation (4). The final two stages in the
derivation are very similar in spirit to the approach used by
Fisher and Lee [12] to derive Equation (2).

o Conductance coefficients in terms of exact eigenstates
Following the usual linear response approach, we initially
assume that a fixed external electric field E(x, ¢) is imposed
on our system, and find the current response of the system
1o first order in E(x, 7). However, the crucial point emerges
shortly that only the electrical potential in the asymptotic
region need be specified to determine fully the current
response [2].

Driving field
We take E(x, £) to be given by
E(x, 1) = E(x)cosQz - ', )
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The system consists of a disordered region (shaded area) and N;
infinite perfectly conducting “‘leads’’ attached to it. The *‘leads’” are
straight, but have arbitrary widths.

where E(x) is assumed to be zero in the asymptotic region
but is otherwise unconstrained. @ and & are going to be taken
1o zero at the end of the calculation, in a way consistent with
(5), for the reasons discussed above. Choosing a gauge in
which the scalar potential is identically zero,

B )= -1 2% (x50) ®

and the Hamiltonian for each particle (of charge e and mass
M) becomes

1 e :
H=m<p—zA) + U(x). )

Since we want to use (6) as the unperturbed Hamiltonian,
the choice of A(x, ¢) is restricted, in addition to Equation (8),
by the further condition

A(x, t— —) =0, (10)
Let £(w) be the Fourier transform of the time-dependent
part of E(x, ?),

~ ” dt — fw
E(w)Ef -z—ﬂ_cosﬂt PP

I B T
T4rlo+ Q-0 ©w—Q—1id
L + 1 ] 11

+ .
w+Q+id wo—Q+id
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Then,
E(x, 1) = E(x) f dwE(w)e™", (12)
and

A, £) = —c f E(x, t’)dt’

= cE(x) f dwE(w) e, (13)
w+in

The positive infinitesimal parameter n has been introduced
in the denominator to define the integral at w = O while at
the same time preserving (10). Unlike the parameters  and
6, which have physical significance for nonzero values, 7 is a
true infinitesimal, introduced simply to define the Fourier
transform of A in terms of the Fourier transform of E.
Before embarking on the calculation, we point out that the
Maxwell equation
|V X EXx )=

——(X | ~2|B|, (14)

together with the condition |B| ~ | E| (which is a
consequence of the V X B Maxwell equation), implies that
V X E =0 to first order in the small quantities 2 and | E |.
Therefore, at the level of approximation at which we are
working, the line integral between any two points is path-
independent; i.e., we could have chosen to work in a gauge
where there is only a time-dependent scalar potential and no
A field at all. Later in the calculation we use the fact that
there exists a scalar function V(x) such that

E(x) = -V V(x), (15)

even though at this point we have made a different gauge
choice.

Equations of motion in linear response
To begin the derivation, we identify in (9) the part of H that
is linear in E, and neglect the quadratic one:

e
=H +\—-——J)p-A+A.
H=H, ( 2Mc)(p A+A.p)
=H,+H,. (16)
Using (13), we get for the Fourier transform of H,

ﬁl(x, w)

’e" 7 (VB0 +EQ - V)E) = (17)
Since we are treating our system as approximately
noninteracting, the exact many-body eigenstates can always
be expressed as Slater determinants of single-parficle
wavefunctions. For such a system, the expectation value of
any single-body operator O,, evolving according to the time-
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dependent Schrodinger equation, can be expressed as

(0,) = Tr{p(t)0,}, where p(¢) is the single-particle density
matrix satisfying the equation of motion iA(d/dt)pe(t) =
{H, p]. The unperturbed system in equilibrium at T= 0 is
then described by the density matrix

po= 2SI (V. ], (18)

with f(e,) = 0(e — ¢,), while the perturbed system is
described, up to linear order in E(x), by the density operator
p(t)=p,+ p,(2). (19)

The Fourier transform of the equation of motion for p(¢),
also up to linear order in E(x), gives

hw(3| = [Ho’ 5\] + [Hp po]- (20)
Evaluating (20) between states («| and | 8) and solving for
(65> We get

Seg) = /)

+ho+in " F 1)

(0=
Ba

where the positive infinitesimal quantity » in the
denominator has been introduced again to define the Fourier
integral when ¢, + fiw = ¢, — ¢, + fiw = 0 and ensure that
p,(t— =) =0.

Expectation value of the current density operator
The current response is given by the expectation value of the
current density operator

i668) = 5n(9gv + vn(x)]

=5 M{"(X)[p -2 A, t)]

+ [p - ‘—; A, t)]n(x)}, 22)

where n(x) is the particle density operator. The coordinate
representation of j(x, 7) = j,(x) + j,(x, ?) is obtained from

(x'1Jx) 1 ¢)
’e" St B =0V + V736" = 0l(x') 3)
and
e _:_ez ’r_ ’
x'1j,(x, Ol¢) = Mo A(x, DB(x" — x)¥(x’). (24)

The expectation value of j(x, ¢) is obtained, as usual, by
multiplying it by the density operator and taking the trace.
Keeping terms up to first order in E,

(§(x, 1)) = Trip,do} + Tripeii} + Tripdo}- (25)

Next, we use the orthonormal basis {y_} of eigenstates of H,
to compute the traces. The matrix elements of the density
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operators p, and p,(¢) can be read from (18) and (21). Those
of j,(x), at finite x, are found from (23) to be

(0L = | /<4, 1 X i1
—ieh
=S W, (26)

where an integration by parts has been performed, and the
integral over the part of the boundary that is not at infinity
vanishes because the wavefunctions are zero there. The
symbol W,_(x) in (26) is defined following Economou and
Soukoulis [11] by

W, 0=y Vy (x)
=7 ()[ VY. (x)] - [VY )Y, (x). @7

For later use, we point out here two properties of W,

W,.(x) = ~W,(x) 28)
and
“’(TB)(Ta)(x) = W;a(x), (29)

where Ta, T8 are the time-reversed states corresponding to
¥, and y¥,. Note also that as a consequence of (28) and (29),

W(Ta)(Ta)(x) = _waa(x)- (30)

Using (24), we find the matrix elements of j, (x, ) to be

6,60 = | e 1x) & 019,
= =27 AG DUEEV, (%) (3D

Going back to (25), we see that the equilibrium term
Tr{p, jo} vanishes as a consequence of time-reversal
invariance [Equation (30)]:

Tripoio(x)}

2 (Ta| pjo(x) | Ta)}

7

1
=5[2 (] poio®) ] @) +

_ieh

M [Ea:f ()W, (x)+ Za:f (éq)W(TaXTa)(X)] =0. (32)
The second term in (25) gives rise to the diamagnetic term
Trioii(6 0 = = 3 A D) A1 (33

and the third term is

Trip, (£)j,(X)}
_ —ieh f ® e S =fle)
=i J dwe 5——% - (H),W..(%).
(34)
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Asymptotic
region of
lead 5

C, is atransverse line in lead n located in the asymptotic region where
the electric field is zero. At each lead we define local coordinates
(x,> ¥,) and we indicate by %, the normal to C,. The part of the
total system bounded by the lines {C, } is called ..

i

034 1)as €an be calculated from (17), and after an integration
by parts in which the integral over the boundary is found to
vanish because either y is zero or E =0 at infinity, we get

ieh P N —i
Z—A}I:fdx E(x’) - W_,(x )].E(w) ot (35)

(Hl)ag =

Cancellation of the diamagnetic term

At this point we have to introduce some further notation: In
the asymptotic region of each lead n, where there is no
electric field, we consider a transverse line C,, and define
local coordinates (x,, y,) as indicated in Figure 2. We call 4,
the portion of the system that is bounded by the “surfaces”
{Cpb+e vy CNL}. Roughly speaking, these “surfaces”
correspond to the interfaces between the disordered region
and the perfect leads; however, to be completely rigorous we
choose them to be far enough away from the disordered
region so that the propagating channels have assumed their
asymptotic forms in terms of reflection and transmission
matrices, and the evanescent waves have decayed to a
negligible amplitude.

The integral in (35) can be restricted to the domain 4,
since E = 0 outside of it. After using (15) and integrating by
parts, we are left, in addition to a line integral over the
curves C,, with an integral over 4. That integral can be
further transformed by means of the following relation,
which is a consequence of the single-particle Schrodinger
equation:
2M

V.W,00=— ;” 6 U HO,(%). (36)
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The result we obtain is

i 2M
f dx'E(x’) - W (x')=~— b v, f W, - x, dy, — -hT €5a f dx’ V(x’)np:‘(x')wﬁp(x'), 37
n=1 C, A
where the constants ¥, multiplying the line integrals are the
constant values of the voltage V(x) on the leads external to
the curves {C,}. We are now going to transform (34) using
the equality
1 1 A(w + in)

eﬁa+hw+in=:;_(€a+hw+i7l)fpa' )

The first part in (38) gives rise to

—ieh f(eg) _f(ea)
2M )

(H)) s W, (%)

af €50

( )( p 2. {—i VK, =25 5 [fle) = fIW, 00 [, V(x')¢*<x')¢ﬂ(x')} (39)
aB

w+in =1l

where we have used (37) and we have defined

Kxm Zf(ﬂ) 1) ()fw ‘.

n
af

(40)
After splitting the square bracket, writing explicitly W,.(x),
using the closure relation Y, ¢ (xX)¥*(x’) = §(x — x’) and
then (15), the second term in braces in (39) gives

3 B0 A0, 1)

and therefore the contribution of (39) to Tr{p,(1)j,(x)} is

J: dwe ™" <——> E(w )w_H { E V.K, +—E(X)Zf(e )Ilﬁ(X)I} 42)

n=1

Looking at (13), we see that the second term in (42) cancels
the diamagnetic term (33). Adding up the contributions of
the first term in (42) and the second term in (38), we obtain

_[enY f N i JSe) = fe) f , 1 o i
(J(x, 1)) (2M) » d"’{'zl VK, @+ in + lhg o Wga(x)( dx'E . W, m E(w)e

(43)

Identification of reactive and dissipative terms

We now consider ¢ < 0, and perform the integration dw by
closing the contour in the upper complex w-plane [48]. After
setting n = 0, we are left with

oh 2 e,,, e—im eiﬂt
(i, 1)) =(2—) 2 { 3 VK [n+za+-9+i6]

hzf( el )wﬂ,,(x)( f dx’E-Waﬂ>[ A ]} (44)

€6a €. FHQ+ RS g — hQ+ RS
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Now we take 4 — 0 and make use of Dirac’s formula lim_,
1/(x £ ie) = P(1/x) ¥ ix3(x) inside the “integral” 3, to get

(j(x,t)>=<m){2 Vo, S22 lzhzf(eﬁ) fle) ”(fd'E w)

aff

—ifde 1 . i, l .
. [e <P<fga 7 Q) — ind(e,, + hQ)) +e (1"<eﬂu _— Q) — ind(ey, — hQ))]}

Then, we write e*'™ = cosQr + isin @z and we group the

terms that multiply cos Q¢ and sin ¢, respectively.
By exchanging dummy labels o < 8 and making use of

(28), we get the equality
f(&) — fle,) , 1 ) ( 1 )]
ETWﬁa(X)fde-waﬂPeﬂu_hQ i-Peﬂa"'hQ
feg) — fle,) 1 , - , .
= % a - P( = Q>[w‘,a(x) f dx'E - W, T WE(x) f dx'E . waﬁJ.

After the square brackets are split, the second term arising
from (46) can be shown to equal the first by using (29) and
by noticing that the sum can be carried out using the basis
{Ty,} instead of {¢_}. Consequently, the expression with the
minus sign in (46) vanishes, while that with the plus sign can
be written as

f (f ) - f (éa) 1 ) ,
¥y P(% — m)[wg.,(x) f dx’E - W_ + W_(x) f dx'E - Wﬂa]

o, eﬂa

with the help of (28). The same trick used in obtaining (46)
shows that

s 19T g o [ axe - Wi, - 4 = s, + h0)

a,f Ba

2 Seg) = fe) s

€5

(5, ~ hQ)[WBa(x) f dX’E - W, = W*(x) f dx’E . w:ﬁ],

and also, as before, the expression with the minus sign
vanishes.

The results obtained leave us with a current density
{j(x, t)) that is composed of a dissipative term that oscillates
as cosQ¢,

e h 7!' f(eg) _f(fa)
(JD(xa t)) = M { 2

ag eﬁa

W, (x) f dx'E - W_;[8(e,, — Q) + (e, + hQ)]}coth,

and a reactive term that oscillates as sin ¢,

N A h o Sle) = fie) ( i )
(JR(X’ t)) - 4Mz {5 2 K,K" 2 2 P P . — hQ

n=1

Ba

. [ W,.(x) f dx'E - W_ + W_(x) f dx’E . W‘,a]}sinﬂt.

(45)

(46)

C)

(48)

49

(350

IBM J. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988 A. DOUGLAS STONE AND AARON SZAFER

395




396

dc limit

Since we are interested in the behavior of (j(x, )) when
Q — 0, we now proceed to consider that limit in (49) and
(50). The relevant experiments are usually performed at
temperatures T and frequencies @ such that AQ <« k, T, so
we consider the limit Q@ — 0 before taking 7'— 0. We first
write

s XS w o [ avE Wi zm0= 3
ap Ba hy

and observe that in the limit Q—»0and 7 — 0

fe M1 of|
TTTERe 3 'F(a = —d(e, — ¢,). (52)

Consequently, (51) leads to the simple expression
-2 W, (x) f dx’E(x) - W_,(x"), (53)
ap

in which we have used ¥ a o 1o represent a sum extended
over all states o and 8 with energies ¢, = ¢, = ¢...

We can further transform (49) by taking advantage of (37)
to obtain

NL

2 V;[ 2 W, (x) f W, - X, dy"], (54)

n=1 ap Ca

with which the dissipative current density becomes

{n(x, 1))
Nlet’n

=Y [ 5 )2 Wﬁa(x)f W, %, dyn]V,,coth. (55)

n=1 4M B C,,

We now look at the reactive piece of the current density. In
the limit @ — 0, the “integrand” in the second sum in (50)
becomes odd under the exchange of dummy indices a < 8,
and therefore the sum vanishes. The resulting low-frequency
expression,

. en N .
(Jex, 1)) = e Z:l 9 K, V sinQt, (56)

n

has the property that unless all {K} are zero, the reactive
current grows monotonically with decreasing Q, and can
become arbitrarily large as the driving field is turned on
more and more slowly. One expects this behavior for a pure
noninteracting electron gas, but not in the presence of
scattering; and somehow the transition between the two
cases must show up in a correct calculation of these
coeflicients. Since the dissipative current is our main focus in
this paper, we shall not pursue this question further at this
time.
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We note here the fact that the current density at every
position is found to depend only on the constant values the
electric potential V(x) has in the asymptotic region. We can
then regard {j(x, t)) as the response of the system to
voltages applied at the leads (an easily realized experimental

Je,  hQ) = fle,

=¢,ThQ

)
s Wﬂa(x)fdx’E-Waﬂ, 1)

condition), rather than to a specific externally imposed E(x)
(something which is rather hard to realize experimentally).
This point was first made (to the best of our knowledge) by
Kane et al. [2], who make a physical argument concerning
the natural electric field to consider if one is content to
examine the system on length scales much larger than the
screening length. We return to this point below.

By integrating (55) over the curve C,, we find the total
outgoing dissipative current I, at lead m to be

L,=3 g,V 7)
where the generalized conductance coeflicients are given by

213
W’ f . )(f . )
= Al w, % d W, %, dy,).
& 4M2§n < e, e X D\ S, s T @

(58

Before we go on, let us cast (58) in a form that shows
explicitly the units of g,,,. Our choice of dimensionless
wavefunctions and the normalization condition

L V¥ (x’) = 8(x — x") show that 3 has dimensions of
inverse length square, whereas the integrals in (58) are
dimensionless. Therefore, recalling that ¥ ; ; involves two
energy delta-functions,

e[ o f
8 =75 [-A;aﬁﬂ ( » W, - X, dym>

: ( f W, - %, dy,,ﬂ (59)

leadn

has units of ¢°// as expected. We remark that (58) is a basis-
independent formula, in the sense that it can be computed
using any orthonormal basis to the subspace of eigenvectors
of H, with eigenvalue e.

e Conductance coefficients in terms of Green functions
Since our ultimate goal is to express the coefficients g,,, in
terms of the quantum-mechanical reflection and
transmission coeflicients of the system, one would then be
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tempted to use scattering states {¢ "} to evaluate (58).
Scattering states are the standard eigenbasis for scattering
problems [50]; they correspond to a single incoming wave
and outgoing waves whose amplitudes are essentially the
reflection and transmission amplitudes (we define these
states with great care below). This is in fact the way Langreth
and Abrahams [16] proceed in their derivation of a multi-
channel Landauer formula. However, as was first pointed
out by Fisher and Lee [12], in the multichannel case the
scattering states do not form an orthonormal basis, so their
use in (58) is prima facie unjustified. The basic reason for
the nonorthogonality of the scattering states in this problem
is that in a waveguide type of geometry the propagating
states carry different amounts of flux per unit probability
density; thus, unitarity of the S-matrix, which guarantees
conservation of flux, does not imply that the states {y "} are
orthogonal. Since in one dimension the states of a given
energy carry the same flux, this problem does not arise in the
one-dimensional case; similarly, in the spherical scattering
geometry all the states carry the same flux at infinity, so
again the problem does not arise. A proof of the
nonorthogonality of the scattering states is given in
Appendix A, along with a careful discussion of the
appropriate definition of the S-matrix for this problem.
Nonetheless, despite the fact that the exact eigenstates in
Equation (58) are assumed to be orthonormal in its
derivation, it turns out that the evaluation of (58) using the
nonorthogonal states {npf:)} yields the correct result. Thus, in
this particular context the extra contributions to the
expectation value of the current due to the nonorthogonality
of the states must cancel; however, the reason for this, and
how general a result it is, remains unclear to the authors
[49].

In [12], Fisher and Lee noted this problem; they then
introduced the clever idea of avoiding it by relating the
conductance to the Green functions of scattering theory and
then relating the S-matrix directly to the Green functions
and not the {¢”}. Our method follows that general
approach, but our derivation differs from theirs not only in
that it extends the result to the case of a multiprobe system,
but also in that it is computationally more straightforward.
Some further notation is required at this point: We represent
by x,, a point in the asymptotic region of lead m whose local
coordinates, as defined in Figure 2, are (x,,, ,,). We start by
using Dirac’s formula to express the difference between G
and G, the full Green functions of the problem, in terms
of the exact eigenstates of H,:

AG(x,x")
= (G -G7)x, x’)

Zwa<x)w:(x')[ 1 ‘e-el-i,,]

e—e +in

~2mi 3 ¥, (WX )o(e = ¢,). (60)
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Using definition (27), we can expand the expression
appearing in (58) as follows:

W, (x,) - X, W_(x])- X,

a
ax,

= VIO 5 WV,
a

+
ax,

9.2 GD] 5 [, W E,))

2

— W W] —— [, x,)]

9x,,0x,

2

d
dx,0x,

[ (x ))& W (x,,)] (61)
It is here that our derivation makes contact with the usual
Kubo formula. Using (51)~(53) in (49), one can immediately
find that the conductivity tensor is given by

233
eh
4MZ’ % W, ()@ W, (x"),

Oruno(X X)) = (62)
which can be seen to be precisely the Kubo conductivity
tensor by using (61) and (60) to express it in terms of the
Green functions. Combining Equations (58), (60), and (61)
yields the Green function expressions for the g, obtained
and evaluated in perturbation theory, e.g., by Kane et al.

12, 5.

We now call x(»,,) the normalized transverse sine waves
corresponding to channel a in the asymptotic region of lead
m, and define the Fourier transforms of the Green functions
by

() Y — (@ ’ (m) )
G(X,, X)) =X G2 (x, X)X, (V)X g W)
a,a’

(63)

Combining (58), (60), (61), and (63) and taking advantage of
the orthonormality of the x ’s, we obtain
233 2
§F  —
ch v [AGM. AG,,
167 M~ o0 ax ox’

m n

gmn =

I —AG‘,,H],
ax’ ax,,

n

(64)
where AG . and AG,. stand for AG,.(x,,, x,) and

AG, (x., x,), respectively, and x,,, X, are points on the
curves C and C,.

& Conductance coefficients in terms of S-matrix elements
We now intend to express the Green functions in (64) in

terms of the reflection and transmission coefficients of the 397
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system, and then substitute the result in (64) to obtain g, in
terms of those coefficients. It is important to note that the
operators G involved are singular and are not ordinary
operators on the Hilbert space [50], so standard operator
manipulations can lead to incorrect results [51]. The
properties of these operators are well-described in Messiah’s
classic book on quantum mechanics, where he introduced
them with the warning: “ . . . their manipulation requires
caution and a certain flair.” We shall certainly use caution
and hopefully exhibit some flair in our proof below.

Relation of Green functions to elements of the S-matrix

Let us denote by ¥, and ¢, ,, the eigenstates of the
Hamiltonians with and without disorder, respectively, that
have only one incident wave from infinity, coming through
lead n, in channel a. As usual, the two states are related by

the equation

Vino®) = (%) + L, dx'Gx, X YUK, (X ").
(65)

The forms of ¥, o and ¢, ., in the asymptotic region of the
system are given by

o) 0
exp{ —ik."x,} f,”’(yn)+2r3n..,,e xp {ik )%}

Vi a k®
Bina(X) = 3
s explikx }

La’ Yinara \/I?

a

x5y

and

-
exp{—ik,x,} exp {ikx )
X )+t T s ———

e e [
Yorn(®) =3 ’
exp{ikff.)x,} o

— X, (¥)

t
ina'a a
, ’ [ 1
L'a k :1,)

where the B in (66) stands for “ballistic,” and all the k’s are
defined to be positive. This emphasizes an important new
feature of the multi-probe problem with a disordered region
of arbitrary shape: Even in the absence of bulk disorder, the
“free” scattering states involve transmitted and reflected
waves, due to the geometry of the system. They are not
simply quantized plane waves, and this complicates the
derivation as compared to that of Fisher and Lee or
Langreth and Abrahams. However, this feature is also of
physical importance, since it reflects the fact that in very
clean devices, the dominant scattering mechanism may be
surface scattering due to the device geometry; one would like
then to ensure that this formula is valid in that “ballistic”
limit as well. We also call the attention of the reader to the
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XA,

nonstandard definition of the reflection and transmission
coefficients in (66) and (67). As discussed in Appendix A,
these definitions are needed in order to ensure that these
quantities are the matrix elements of a unitary S-matrix.
We begin by considering x to be a point on lead m, closer
to the disordered region than C,, (i.e., x is inside .4). Due to
the equation satisfied by G(x, x'), we can make the
substitution ,
(+) , " _ h V
G (x,x)U(x)—(e+ i

)G‘*’(x, x’) — &(x - x’)

(68)
in the integral in (65), and after a couple of integrations by
parts, we obtain for that term

2 N
’ + ’
3w 2 J, VidealsD G‘ o X[) = B00X,)-
(69)
Using the asymptotic forms (66), we get
LA G‘*’( X))
<
ex ik( X} 3
=Yt .. Pl %} 3 GO, x)) I#n (10)
a kO ox]

for x in lead n,
(66)

for x in lead / # n,

for x in lead n,
(67)

for x in lead / # n,

and

3 ,
[ 2 6% xp
Cn ax;

exp {—zk( x} 3

N k™ ax,

iTe exp{ikx’} 3

a ’ \’ k(':) ax’ n

a

— G“)x,, x)

— Gx,, x1), (71)

where G'7)(x, x’) is the Fourier transform of G™(x, x’) with
respect to y’ only. Substituting (70) and (71) into (65), and
carrying out the differentiations, we obtain
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G(.:)(x, x’) contains only outgoing waves [50] in the sense
that if we consider a fixed x, and look at the dependence of
G(,:’(x, x’)on x’ at a point x’ in the asymptotic region,
farther than x from the scattering sources, then

G(_:)(x, x’)~explik,x’}. (73)

The condition in italics is irrelevant when x and x’ belong to

different leads, but is important when both points lie on the

same lead. Writing

G x")=Z G0, x" )x,(¥") (74)
b

and taking advantage of (73) to evaluate the derivatives in

(72), we arrive at

& 2 2ikGx,, x1)

(n,a)
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a
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Comparing with (67) and identifying the coefficients of the
x’s, we obtain

G(x,,x)) = [6baexp{lk(")(x - x N+,

(n)
a

(n)

(+) 'y —

Gba (xm’ xn) - " tmn,ba

a b

We call the attention of the reader to the fact that the Green
function in (76), which corresponds to the case in which
both points x and x’ are on the same lead, does not only
contain outgoing waves at x (the point standing closer to the
disordered region) [52]. Similar expressions can be obtained
for G|, by using the general relationship

G(x, x') =[G (x’, x)I*. (78)

Final result for g,
To obtain g, all that remains to be done is to substitute
(76) and (77) into (64). When m # n,

3 m ,
a G (%, X7) = £k G2 (%, X7, (79)
ax! 2 690, x!) = 2k GO, x]). (80)

n
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To obtain the analogous formulas for G5 (x’, x,), we
simply exchange labels a «» b, m & n, and x & x’ in (79)
and (80). Computing AG and AG, using (78) and
substituting into (64), we obtain

2
h m)y (7 +
pay R R LA CEly

+ [GShxs, x )17

gmn =

m# n, 81)

which can be immediately transformed by means of (77) to
yield
1>+ |t m#n,  (82)

2
mn = 41l'h 2 mn,aa’ nm,a'aI }

a,a’
where the sums on g and a’ run over the channels of leads
m and n, respectively. We can cast (82) into a nicer form by
defining the matrices ¢,,, whose elements are

S (83)

(tmn )aa ’ mn,aa

When we represent Hermitian conjugation by a dagger and
the trace in the space of the matrices just defined by T, (82)

= explikyx, + ik"x ’}] x, <X, (76)
m# n. (77)
acquires the more compact form
2
Bon =37 Trltynln + tt ) m#En (84)

This formula can be further simplified by appealing to time-
reversal invariance, to yield the familiar-looking

2
g, == 57 Tt} m*n. (85)
In the special case of a two-lead system, (85) can be obtained
from (84) by using only the unitarity conditions satisfied by r
and ¢, as noted in [12]. This can easily be seen by taking the
trace of Equations (115) and (118) and comparing them.
Had we considered two coupled spin polarizations, we would
have arrived at Equation (82) too, except that now the
channel label would need to be interpreted as an index for

A. DOUGLAS STONE AND AARON SZAFER

399




400

channel and spin, and the trace in (85) would be over those
“composed indices.”

In order to obtain g,,,, we can avoid a somewhat lengthy
calculation by noticing that as a consequence of (36) and
(58) [see Equations (98)-(100) in Appendix A],

N

gmn = 2 gmn = 0‘ (86)

n=1 m=1

2

Using (84) in (86), we arrive at

2
&= "2 Tr{ 2 (bt rnmrlm>}, (87)

m
m#n
which can be transformed into

2
e

8n=57, Trir,r, — 1) (88)

by means of the cyclic property of the trace, and the
unitarity conditions (115) and (118). Equations (57), (85),
and (88) complete the rigorous derivation of Equation (4).
Equation (4) expresses the current response of the multi-
probe conductor in terms of applied external voltages on the
leads. Often in experiments the measurements are done
under conditions where the injected current is effectively
fixed, and the induced voltages are measured. This requires
inverting Equation (4) for a given set of injected currents.
This is not entirely straightforward, since the matrix g, is
not invertible. Explicit solutions for the voltage response to
an applied current for the three- and four-probe cases have
been given by Biittiker [1, 46]; a general procedure for
solving Equation (4) for arbitrary injected currents and an
arbitrary number of probes is given in Appendix B.

5. Can a perfect conductor have a resistance
after all?

We have now seen that the multi-probe Landauer formula
proposed by Biittiker [Equation (4)] can be explicitly derived
from linear response theory for a particular model system. In
the limit of only two probes, this formula reduces to the one
derived previously by Fisher and Lee [Equation (2)], which
eight years ago caused such consternation because it
predicted that a “perfect conductor” would still have a finite
resistance, R, = (Ne’/h)™". In particular, the work of
Thouless [15] and Langreth and Abrahams [16] suggested
that although Equation (2) was derivable from standard
linear response theory, it was physically implausible because
it failed to take into account important self-consistency
conditions. If this is correct in the two-probe case, it is by no
means clear that a similar criticism should not be leveled at
Equation (4). In addition, there was the physical argument
originally due to Engquist and Anderson [18] and
generalized by Biittiker et al. [13], which suggested that
Equations (1) and (3) were appropriate for describing a four-
probe measurement. However, the correctness of these
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original criticisms of Equation (2) is now much more
doubtful than it appeared initially; particularly insofar as
they were given plausibility by the intuitive expectation that
a “perfect conductor” should exhibit zero resistance. Imry
[53] and more recently Landauer [54] have emphasized that
the minimum resistance obtained from Equation (2) can be
thought of as a true contact resistance, which would
influence a real two-probe measurement. Therefore, it is by
no means clear that a finite perfect conductor, connected to
reservoirs, should be expected to exhibit zero resistance. We
summarize these arguments with slight modifications;
readers are referred to [53] and [54] for more details.

The argument can be stated as follows. Consider in free
space two macroscopic closed containers each containing
degenerate neutral Fermi gases in equilibrium at T = 0, with
different chemical potentials p, and u,. Imagine now poking
a small hole in the side of each container, connecting them
with a perfect tube, and observing the time-dependent
current that flows between them. On very long time scales it
is possible for the current to oscillate as the excess density
sloshes back and forth between the two containers, since this
is essentially a many-body analogue of a double-well
quantum system. But on a shorter time scale one expects an
approximately steady-state current to flow from the gas of
higher density to that of lower density (this quasi-steady state
will occur for times such that the density change in the
reservoirs induced by the current flow is much less than the
initial density difference). The actual value of the steady-
state current will in principle depend on the shape of the
apertures leading out of the two containers and on the
absolute value of the chemical potentials, since this
determines the particle wavelengths, and there will be
diffraction effects at the opening. However, one can imagine
impedance-matching the tube to the apertures, or averaging
over different shapes and sizes of apertures. Then, estimating
the current that will flow as p, approaches g, is simply a
matter of counting the density of momentum states at the
Fermi level in each container which will correspond to
propagating states in the tube of width W, and then
weighting each state by the current it carries along the tube.
This is really equivalent (up to numerical factors of the order
of unity) to the standard Landauer counting argument for
the current, and Imry shows that a simple calculation yields
I= a(Nez/h)(ul — 1), where a is a constant of the order of
unity.

Thus, in this case it is clear that although the tube itself is
a “perfect conductor” in the sense that it contains no
scattering centers, there is a contact or “spreading resistance”
necessarily present when connecting the two reservoirs that
on average is of the order of the resistance R, = (Ne*h)™!
predicted by Equation (2) for a perfect conductor. Note that
in this example, it is clear that the resistance involved really
is a contact resistance, since it does not depend at all on the
length of the tube connecting the containers, and this could
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be determined experimentally. If one now introduces
scatterers into the tube, an obvious extension of the
argument predicts a current proportional to Tr(tt* ). Thus, if
one measures the conductance by dividing the current by the
chemical potentials z, and p,, measured by probing the
density of the gas in the containers far away from the
opening to the tube connecting them, one will obtain a value
of the order of that predicted by Equation (2). If one could
instead probe the average density of carriers at the ends of
the tube, without significantly affecting the density, one
would measure a smaller difference in the effective chemical
potentials, since not all the available momentum states are
filled (there is a net current flowing); presumably one would
infer a larger conductance, given approximately by
Equations (1) and (3).

In other words, the point made by Biittiker et al. [13] is
certainly correct; there will be a true density gradient
extending from the ends of the tube some distance into the
reservoirs. If it is possible to measure the local
nonequilibrium density in the leads, by a four-probe
measurement, without substantially changing that density
when introducing further probes, then it seems reasonable
that the conductance could be well approximated by an
effective two-probe formula, such as Equation (3), which
does not depend on the scattering properties of the leads.
This is what the assumption of weak coupling to the
measuring reservoirs achieves in the models of Engquist and
Anderson and Biittiker et al. However, in the context of
multi-probe measurements on mesoscopic conductors, it
appears difficult to realize such an ideal weakly coupled
measurement. Typically the voltage leads are about the same
size and conductivity as the “current leads.” More
importantly, if much of the sample is phase-coherent (in the
sense that the inelastic scattering length is of the order of or
greater than the sample size), the transmission properties of
the main channel are substantially affected by excursions
into the leads. In such a situation, a formula such as
Equation (4) that treats current and voltage probes on equal
footing appears essential for a proper description of the
conducting properties of the system. It may be possible to
find an experimental realization of a weakly coupled voltage
measurement, €.g., by using a scanning tunneling
microscope [19]. However, whether such a probe would
really correspond to the ideal weak coupling needed for
Equations (1) and (3) remains an open question, as we
discuss in the final section.

Returning to the “two-probe measurement” discussed
above, we have argued for the inevitable presence of a
contact or spreading resistance in the context of this
idealized model for simplicity. However, we emphasize that
this is an important and well-known physical effect that
must be taken into account in understanding point contacts
between real conductors [55]. More than twenty years ago
Sharvin [56] estimated the spreading resistance due to a
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point contact, and in the limit when the aperture width is
much less than the mean free path in the conductors, Imry
[53] has shown that his formula yields a contact resistance of
the order of R,.

Very recently Van Wees et al. [57] have seen dramatic
evidence for this quantum contact resistance, by observing
steps in the conductance of ballistic point contacts at values
of the Fermi energy corresponding to the onset of successive
1D sub-bands. The experiments observe quantized
conductance values very close to Nez/h, whereas the present
theoretical arguments would only predict a contact resistance
of this order of magnitude. This suggests that the impedance-
matching and diffraction effects at the junction to the
constriction do not substantially alter the simple arguments
cited above, a finding which requires further theoretical
study to be fully understood.

The crucial point of this discussion is to emphasize that
not only Equation (4), but also Equation (2) corresponds
rather well to one common kind of resistance measurement.
In the ideal system it corresponds to connecting the
reservoirs, measuring the current that flows between them,
and then measuring the density difference far away from the
points of connection between the two reservoirs. In a more
realistic system, Equation (2) provides a good approximate
description of a real “two-probe” measurement, in which the
voltage induced by a given current is measured between
points on two bulk electrodes. Therefore we conclude that
Equation (4), including the two-probe and one-channel
limits, is the physically relevant Landauer formula for all the
present experiments. The fact that Equation (2) predicts a
maximum achievable conductance is not unphysical, but
reflects the inevitable presence of a contact resistance
whenever current flows between two reservoirs. Those who
cannot accept the notion that a perfect conductor can be
said to have a finite resistivity (as opposed to resistance) will
perhaps be consoled by the thought that because R, is a
contact resistance (i.c., it scales inversely with area, but is
independent of length), the resistivity, p = (4/L)R,
corresponding to R, does indeed go to zero as the sample
size goes to infinity (at fixed shape).

6. What about self-consistency?
In the preceding section we have argued that the approaches
that obtain Equation (1) instead of Equation (2) by invoking
an ideal weakly coupled four-probe measurement are not in
general convincing because such a measurement does not
correspond well to a real experimental resistance
measurement. Our argument does not clearly address the
alternative approaches for obtaining Equation (1) based on
self-consistent linear response theory due to Thouless [15]
and Langreth and Abrahams [16]. The approaches of these
authors are similar in spirit but differ in detail.

Thouless, in an influential comment entitled ‘*Why
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considered a finite one-dimensional system with periodic
boundary conditions, i.e., a ring, consisting of a small
disordered segment imbedded in an otherwise perfect
conductor. He does not consider attaching leads anywhere
on the ring, and does not discuss any coupling between the
electrons in the ring and, e.g., the lattice. Therefore the
object he considers is an isolated quantum-mechanical
system with discrete energy levels. Then, it seems that this
model corresponds more closely either to a microwave
absorption experiment or to an experiment where the
current is generated by a time-varying flux through the loop,
than to a two-probe measurement. Both of these situations
have been discussed in detail in the literature [41]. Thouless
calculates in the usual way the linear response to a uniform
ac field applied only across the disordered region, imposing
the further condition that the frequency @ of the field cannot
be taken smaller than the level spacing of the ring [58]. He
shows that under this condition the uniform field generates a
spatially nonuniform current in the ordered section of the
ring. He then argues that this result shows that such a linear
response calculation is unphysical because it allows these
macroscopic charge density waves, which would be
forbidden if one had properly accounted for the electron—
electron interactions. Therefore, linear response theory is
only sensible if one assumes that the electrons generate a
self-consistent field to cancel out these charge density waves.
Thouless shows that the correction to Equation (2) due to
the internal field is precisely what is needed for the response
to the total field to be given by Equation (1).

The simplicity of the result obtained by this self-consistent
argument is impressive and suggests that Equation (1) does
have something to do with the response of a closed
conducting system to an applied ac field. However, it is not
obvious that this self-consistency requirement should apply
to an open system, where the disordered sample is connected
directly to bulk electrodes. As we emphasized above, the
total current flowing in and out of various leads in the
conductor is not dependent on the detailed electric field
distribution within the conductor, but only depends on the
voltage applied at the end of the disordered portion of the
leads. The infinite perfect leads in our model calculation are
intended (in the absence of a more complete description) to
simulate the effect of macroscopic electrodes which
introduce substantial inelastic scattering and irreversibility.
Therefore, it is not clear that a self-consistency requirement
imposed to avoid charge density waves far away from the
disordered region, which are supposed to correspond to
points well inside the reservoir, is meaningful for the open
systems we are attempting to model.

Langreth and Abrahams do consider an infinite system, in
fact, exactly the same system as Fisher and Leg, i.e., a finite
multi-channel two-probe disordered conductor imbedded in
an infinite perfect conductor. They also note that a spatially
uniform finite frequency field imposed over the disordered
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region alone will lead to charge density waves in the ordered
leads. Like Thouless, they argue that therefore the field
cannot be assumed to be zero in the ordered region, but
must be determined self-consistently by the condition that
the current density remain uniform for finite frequency and
that far away from the disordered region the conductivity is
given by that of a homogeneous 1D electron gas. They seem
to imply that these conditions are necessary even for a
system of neutral particles responding to a density gradient,
of the type considered in the discussion above. They state
that these conditions are the correct ones to impose in order
to represent an experiment in which a fixed current is driven
through the sample, and the induced voltage is measured.
Their linear response calculation then differs from our own
and that of Fisher and Lee because there appear additional
contributions to the current in the disordered region due to
the field in the perfect leads. This approach, like that of
Thouless, yields Equation (1) in the one-channel case.

Langreth and Abrahams went on to generalize their results
to many channels. In order to accomplish this, just like
Biittiker et al., they had to make some assumptions about
how to define the chemical potential in the leads (since they
were not allowing it to be treated as an externally imposed
quantity). They assumed that all channels, whether left-going
or right-going, were in perfect equilibrium with one another
on both sides of the sample (this differs from the
assumptions of Biittiker et al., as discussed in [13]). Thus,
for Langreth and Abrahams the leads do behave like
reservoirs in the sense that there is assumed to be enough
inelastic scattering there to equilibrate all the channels. This
reflects a very sensible desire to put the “reservoirs” more
explicitly into the linear response calculation (a development
which we believe is important for future progress in this
area). However, the “reservoirs” responsible for the
hypothesized equilibration of the channels in the leads have
the property that their chemical potentials depend on the
scattering properties of the conductor connecting them. This
assumption leads to a different and more complex
generalization of Equation (1) than that of Biittiker et al.,
but its properties have not been studied fully enough to
determine how significantly it differs from Equation (2) or
Equation (4) in various limits.

It seems very likely that a calculation of the type
performed by Langreth and Abrahams can be done for a
multi-probe system and would yield a result different from
that of Equation (4). To be more specific, our calculation
appears to predict the same long-wavelength variation in the
current density in the ordered leads found by these authors
for the two-probe case, although we have not studied this
question carefully. However, the wavelength of these
variations will go to zero as  goes to zero, so it is only in
the limit of truly infinite leads that this effect is important.
Insofar as the infinite leads are supposed to mimic the effects
of inelastic scattering and phase randomization in a bulk

IBM J. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988




electrode feeding current into the system, it is not clear that
these charge density waves reflect a true physical effect, as
opposed to an artifact of the model.

In summary, the results of Langreth and Abrahams and of
Thouless depend crucially on effects in the perfect leads, and
essentially deny that it is possible to imagine the boundary
condition of a fixed external voltage. This is troubling,
because even in an interacting system, the notion of
measuring the current flowing between two reservoirs with
an electrochemical potential difference which is independent
(to arbitrarily good approximation) of the properties of the
conductor connecting them seems perfectly reasonable.
(How can this fail to be true as the size of the reservoirs goes
to infinity?) In the case of Langreth and Abrahams, they are
essentially arguing that the boundary condition of a fixed
external current would generate a different linear response
than that of a fixed external voltage. As we discuss below,
what is needed to really clarify this issue further is a model
calculation which actually includes a representation of the
reservoirs or bulk electrodes in quasi-equilibrium. We
cannot dismiss entirely the concerns of these authors in the
absence of such a calculation. However, as matters stand,
given the agreement between calculations based on Equation
(4) and experiment, and our physical understanding of the
origin of the contact resistance it predicts in the two-probe
case, it is not clear that the self-consistency conditions
imposed in these calculations are relevant to the present
class of experiments.

7. Where are the reservoirs?

Having discussed the physical plausibility of Equations (2)
and (4) as compared to other Landauer formulae, we now
turn briefly to several common objections to deriving a
Landauer-type formula rigorously from linear response
theory.

First, it is often suggested, particularly in the writings of
Landauer [8, 54], that the presence of those mysterious but
useful “phase-randomizing reservoirs” is essential for a
correct derivation of a dissipative resistance. There are
several reasons for this suggestion. It is often pointed out
that in the standard Landauer argument for Equation (1), it
is essential to use the scattering states {¢"} and not the
states {7} related to them by time-reversal, since time-
reversal reverses the current carried by the state without
interchanging the densities on either side of the scattering
region. Hence Landauer argued that since the states {y*"}
give a positive conductance, use of the states { '} would
give a negative conductance. The presence of the phase-
randomizing reservoir is invoked to rule out on physical
grounds the use of the time-reversed states, which require
precise phase coherence between waves incident from
opposite sides of the disordered region. In our calculation
the results from linear response theory are obviously basis-
independent because the induced current density is
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expressed as a trace over states. Moreover, although in
general we have not performed the calculation using either
{¢ ™} or {¢7} since neither are an orthonormal basis, in the
one-dimensional case, when they are orthonormal, we have
checked explicitly that the same result is obtained, when
either the {¢") or {¢7} are substituted into Equation (58).

The second objection is that there cannot be dissipation in
a system in which there is only elastic scattering, and the
reservoirs are needed to dissipate the energy arising from the
resistance of the conductor. This is of course correct in the
following sense: The resistance we calculate in linear
response is really a measure of the energy fed into the system
by the external field. If there is no source of dissipation in
the system, it will heat up under the influence of the field,
and the linear response approximation will rapidly become
invalid. The construct of reservoirs reminds us that some
degree of inelastic scattering is necessary for linear response
theory to make sense. Of course, if a calculation is able to
include inelastic scattering explicitly, as can be done by
including interaction effects in the Green function
calculations performed using Equation (4), then it is clearly a
matter of taste whether or not one speaks of a reservoir
which causes phase-randomization and dissipation.

A related argument is that, strictly speaking, no finite
closed system can exhibit irreversibility and dissipation; this
raises the interesting question of the conditions under which
energy fed in can be fully recovered [54]. It appears that this
is an objection to calculations that attribute a resistance to a
finite quantum system, and this is why we explicitly consider
an infinite system, with continuous states, in our
calculations. It is evident that in some respects the infinite
perfect leads of this model do simulate the phase-
randomizing effect of inelastic scattering at least in the
diffusive regime. This point is explicitly demonstrated in
recent numerical simulations by Baranger et al. [6]. There it
is shown that subdividing a conductor by attaching perfect
leads at uniform intervals along its length causes the voltage
fluctuations to increase as a function of that length as if the
voltage fluctuations in each segment were uncorrelated, just
the same effect as occurs when the inelastic mean free path is
made shorter than the sample length (without introducing
additional perfect leads) [33, 35].

Much of the physical motivation for a Landauer formula
approach to quantum resistance has been a desire to
represent the current (i.e., the incident carrier flux) as the
source of the voltages induced in the sample, whereas the
linear response formalism naturally regards the fields as the
source of the currents. The somewhat obvious point should
be made about Equation (4) that once derived, it can be
used either to find the currents induced by fixed voltages or
the voltage differences induced by fixed currents. Since the
matrix g,,, is noninvertible, there are some minor technical
problems when starting with imposed currents and
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procedure for solving this problem is discussed in Appendix
B. Of course, this does not address the much more
complicated problem of how to calculate the final steady-
state charge distribution, taking into account self-consistent
screening [54], but one apparently need not solve this
problem to understand voltage fluctuations in mesoscopic
metal conductors.

In summary, although it may be important and useful to
stress the distinction between open and closed systems by
invoking the concept of a phase-randomizing reservoir in
deriving a resistance, it is not essential to introduce such a
concept to derive Equation (4). The infinite perfect leads
apparently simulate the phase-randomization of electrons
which escape into the leads invoked in the intuitive
derivation of Equation (4). Some of the limitations of this
model for truly representing the bulk electrodes of an
experiment are discussed below.

8. Theories of voltage fluctuations

In this section we discuss briefly the quantitative calculations
of voltage fluctuations in mesoscopic conductors which have
been performed recently in order to explain the observed
behavior in the relevant experiments.

Briefly, the experiments [27-29] had shown voltage
fluctuations ((3¥V)’ ) which varied linearly with the probe
spacing L for L, << L and then changed over to an
apparently constant value for L, = L. The value of the
corresponding conductance fluctuations for L, ~ L was
always observed to be ((3G)’ )" ~ (e*/h). By appropriate
lead-switching operations, it was possible in some cases to
examine separately the behavior of the field-symmetric and
antisymmetric fluctuations [27, 28]; the former were
observed to have the behavior just described, whereas the
latter were found to be approximately independent of probe-
spacing even for L, < L. Several experiments showed a
nonlocal behavior in which voltage leads remote from the
current paths nonetheless exhibited voltage fluctuations
[28, 29], and even a remote Aharonov-Bohm effect [31].
Several quantitative analytic and numerical calculations of
voltage fluctuations have recently been undertaken to
account for these effects [2-6].

The diagrammatic calculations [2, 4, 7] start from the
expression for the conductance coefficients g, , in terms of
Green functions, and employ the impurity-averaging
technique to calculate quantities like (( gm,,)2 ) to lowest
order in the small parameter (k./ )™, where / is the elastic
mean free path. The only point at which the geometry of the
device enters the calculation is in choosing the boundary
conditions on the differential equation which determines the
“diffusion propagator” { GV(x, x" )G 7(x’, x)). The
standard boundary conditions [38] set this quantity equal to
zero on the boundary with the leads, and set its normal
derivative to zero on the “insulating” boundaries. Imposing
these boundary conditions on a finite surface cuts off the
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well-known small momentum divergence of the diffusion
propagator at momenta of the order of the inverse of the size
of the disordered region. In the case of a two-probe wire, this
finite-size cutoff enters the calculations in much the same
way as the cutoff due to inelastic scattering; thus, as noted
above, the two-probe theory of universal conductance
fluctuations in a finite-size conductor at 7" = 0 gives good
agreement with observations on wires with probes separated
by approximately the inelastic diffusion length. The crucial
point in this context is that these standard boundary
conditions on the diffusion propagator can be shown to be a
coarse-grained version of the boundary conditions
appropriate for our model of a finite disordered region with
hard walls, connected to infinite perfect leads at appropriate
points [59]. Therefore our results show that T = 0
diagrammatic calculations based on the impurity-averaging
technique are precisely equivalent to calculating voltage
Sluctuations using the multi-probe Landauer formula,
Equation (4). One of the major goals of this review is to
emphasize the equivalence of this version of the Landauer
approach and the Kubo formula approach at 7= 0.

It is nonetheless worth noting that the two approaches are
only strictly equivalent in the absence of inelastic scattering
(the effects of finite temperature in causing “energy-
averaging” [35, 36] can be included easily in either
approach). The S-matrix appearing in Equation (4) is for
elastic scattering between the various channels at the Fermi
surface. It may be possible to generalize this approach to
include inelastic scattering channels as well, but this has not
been done, and would require a very different derivation
from the one we have provided above. However, as noted
above, adding perfect leads at various points along the
conductor can simulate to some extent the dephasing effects
of inelastic scattering. In the two-probe case this is
particularly simple, because there is only one length scale
associated with the distance between the two ends of the
disordered leads, and one can roughly identify this with the
inelastic scattering length. In the multi-probe case, Baranger
et al. [6] have shown by careful numerical studies that by
choosing appropriate geometries it is possible to reproduce
almost all of the observed experimental effects (not relating
to the asymmetry). It is worth noting that these calculations
use precisely Equation (4) and not any equivalent
formulation. Initially the diagrammatic calculations also
employed the artifice of perfect leads to simulate inelastic
scattering, with some success [3].

Nonetheless, in the multi-probe case there is no longer one
length scale associated with the finite-size cutoff, and
therefore there is at best a rough equivalence between the
spatially localized “inelastic scattering” introduced by the
leads and true spatially homogeneous inelastic scattering. In
particular, the voltage fluctuations calculated from Equation
(4) depend on the fictitious boundary conditions of “perfect”
leads, i.e., results depend in general on the distance along the
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voltage leads from the main channel to the beginning of the
perfect leads, a length which has no real analogue in the
experiments. Later versions of the diagrammatic Green
function calculations eliminated this unphysical length
simply by introducing an inelastic scattering term into the
differential equation for the diffusion propagator mentioned
above [2, 4]. Then it can be shown that if L, is much less
than the distances from the main channel to the beginning
of the perfect leads, the boundary condition imposed there
drops out of the problem, and one obtains results which only
depend on physically meaningful lengths. An important
further refinement was that recently Kane et al. [2] have
developed a Kubo formula approach which is valid in the
limit of weak magnetic field and weak disorder, and this has
allowed them to calculate the field-symmetric and
antisymmetric voltage fluctuations in this approximation;
this justifies results independently obtained by Isawa et al.
(3D-

These calculations are able to reproduce the following
features of the experimental data on voltage fluctuations in
multi-probe devices:

1. The linear dependence on probe-spacing for L, < L
changing over to a weaker size-dependence when L, = L,
at a value consistent with the universal conductance
fluctuations.

2. The difference in the L-dependence of the symmetric and
antisymmetric parts of the voltage fluctuations.

3. The nonlocal behavior of the voltage fluctuations.

4. The asymmetric phase behavior of the normal-metal
Aharonov-Bohm effect.

Further, the recent calculations of Kane et al. [2] predict that
the voltage fluctuations are not strictly constant for L, > L
but should still have a linear L-dependence with a smaller
slope than for L,, << L. They suggest that such a behavior is
actually consistent with the experimental data which were
interpreted to indicate no L-dependence. The quantitative
values for the fluctuations predicted by the theory agree with
experiment up to factors of two. There is no obvious reason
that the agreement should not be even better than that, so
the residual discrepancy may indicate that there is some
further physics to be understood in these systems. On the
whole, however, it is fair to say that the theory based on
Equation (4) has done a quite creditable job of describing the
experiments.

9. Open questions about open systems

There are at least four issues left open by the derivation and
discussion of Equation (4) above. These relate to 1) the
validity of Equation (4) in the presence of a magnetic field;
2) the feasibility of performing a true “weakly coupled”
measurement; 3) the possibility of including a model of the
“reservoir” or bulk measuring electrode in a rigorous
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quantum-mechanical calculation; and 4) the neglect of true
fluctuations in the local electric field in the conductor.

First we consider the issue of the validity of Equation (4)
in the presence of a magnetic field. The derivation we have
presented depends explicitly on time-reversal symmetry in
the absence of a magnetic field. Biittiker’s derivation is
claimed to be valid even in the presence of a field, except
that the elements of the S-matrix appearing in Equation (4)
have a reduced symmetry. It is quite possible that this claim
is correct, at least in some approximation; but the conditions
necessary for its correctness need to be determined. In
particular, Kane et al. have shown that the generalized Kubo
formula due to Streda [60] can be employed to calculate
voltage fluctuations in the limit of weak field and weak
disorder [2], because in this limit the conductivity tensor is
still approximately divergenceless. They did not show that
the formula they use is equivalent to Biittiker’s in this
approximation. What is needed is to derive, in the presence
of a field, a relationship between the Green function and the
S-matrix similar to the one we have derived, and then insert
this relationship into the generalized linear response
expression. We point out that such a generalization will not
be completely trivial, because the formula we have derived
for g,,, in terms of the transmission matrices, Equation (84),
if it were valid in the presence of a field, would have the
property that even when the symmetry of the transmission
matrices is reduced by a magnetic field, B
(T,(B)=T,, (—B)], we would still ind g, .(B)=g,,,(—B).
The conductance coefficients proposed by Buttiker do not
have this symmetry. However, there is no expectation that
such a symmetry would hold in the presence of a field, and
indeed such a symmetry would invalidate the natural
explanation for the observed asymmetry in the
magnetoresistance. Therefore, such a derivation will not
consist of simply justifying the one we have presented above
in the presence of a field.

There is also apparently a more fundamental question
concerning the validity of Equation (4) in the presence of a
field, first noted by Lee.* Equation (4) involves only Fermi
surface properties of the electronic system, whereas the
Streda [60] generalization of the Kubo formula mentioned
above consists of two terms: the so-called classical term
expressed in terms of Green functions at the Fermi surface,
treated by Kane et al., and the “nonclassical term” which
depends on all the states below the Fermi surface. The latter
is related to the derivative of the density of states with
respect to magnetic field, and can be assumed small for a
typical metal. Nonetheless, such a term exists and apparently
cannot be reproduced by Equation (4), suggesting that
Equation (4) is never strictly valid in the presence of a field.
The qualifier “apparently” is important, since it has been
suggested that edge states at the Fermi level may fill the role

® P. A. Lee, Physics Department, Massachusetts Institute of Technology, Cambridge,
MA 02139.
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of this nonclassical term for a finite system [61]. Recently a
different multi-channel Landauer formula has been proposed
for the case of high magnetic field in order to discuss the
quantum Hall effect [61]. Although this formula is really
based on Equation (3) and not on Equation (4), it does
express the Hall resistance in terms only of quantities at the
Fermi level by appealing to the existence of extended edge
states.

Another question clearly raised by our discussion, but not
yet answered, is whether it is possible to perform an ideal
weakly coupled voltage measurement of the sort envisioned
by Engquist and Anderson and by Biittiker et al. It has been
suggested that one might attempt such a measurement by
putting a tunnel barrier between the voltage leads and
current leads, or by using a scanning tunneling microscope
as a voltage probe [19]. This will certainly achieve a weak
coupling between the probes and the sample. But will it
achieve an ideal measurement in the sense that the voltage
measured is a property of the sample, independent of the
nature of the voltage probes? It seems quite possible that
such a measurement will be even more sensitive to the
properties of the probes, for the same reason that the
resistance of a finite system in the localized regime fluctuates
exponentially with changes in its configuration of disorder
[10]. This question certainly requires further study; but at
the moment it appears quite possible that in the mesoscopic
regime there is no way to experimentally measure the four-
probe resistance of a microstructure and obtain a result
independent of the microscopic nature of the voltage probes
used.

The third major issue relates not only to Equation (4) but
to the Landauer approach generally. There is, of course, no
reason to expect the resistance of a quantum-mechanical
system to be independent of the manner in which it is
measured. That is to say, there is no reason to expect to be
able to make an arbitrary distinction between the “resistor”
and the measuring “reservoirs,” and then find that the
measured resistance depends only on the properties of the
resistor. This can be seen most explicitly in our discussion of
the contact resistance predicted by Equation (2). The true
contact resistance associated with any particular two-probe
device will depend on the details of the junction between the
channel and the bulk electrodes; it is only equal to (Ne’/h)™'
in some average sense. This may be relatively unimportant
when the channel is much longer than the inelastic scattering
length, but it may be quite important in the new generation
of ballistic devices, where it really may be necessary to
impedance-match the channel to the bulk electrodes to
minimize reflection at the junction. Similarly, the voltage
induced by an imposed current in a multi-probe
configuration will depend on the shape of the voltage probes.
More generally, we have the physical picture of the bulk
electrodes acting as an equilibrating reservoir, and there is no
reason in principle why a theoretical model for such a
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reservoir cannot be included in a quantum-mechanical
calculation. As pointed out by Landauer [54], such a
calculation would be rather similar in spirit to the now well-
developed techniques for calculating tunneling in the
presence of dissipation [62]. Such a model would perhaps be
conceptually more attractive than simply introducing an
inelastic cutoff into the relevant Green functions, as is now
done.

Finally, we are back to the question that started Landauer
along this road many years ago. What is the true electric
field distribution in a conductor when a steady-state current
is flowing? The theory based on Equation (4) does not
answer this question at all, for we have seen that it is only
sensitive to the values of the potential imposed at the edges
of the disordered region. This is understandable, since
throughout our discussions we have treated the carriers as
noninteracting quasi-particles. In real conductors self-
consistent screening must be taken into account, and for a
good metal the total electric field resulting from an
externally applied voltage in steady state would presumably
fluctuate only on microscopic length scales. Therefore, in
linear response it is possible to treat only the electric field
corresponding to zero net charge density within the
conductor. Nonetheless, as Landauer has pointed out [9], the
true local fields can be important for such processes as
electromigration. A complete quantum-mechanical
description of these local field effects remains an open
problem,

Acknowledgments

The authors would particularly like to thank R. Landauer
for an extremely enlightening discussion of several of the
issues treated in this paper. We would also like to thank H.
Baranger, Y. Imry, P. Lee, D. DiVincenzo, and N. Read for
helpful discussions, and P. Lee for providing us with details
of the calculations in [12]. This work was partially supported
by NSF Grant DMR-8658135.

Appendix A

In this appendix we study the consequences of flux
conservation when dealing with a multi-channel problem (as
opposed to a single-channel one), and show that the
requirement of flux conservation is incompatible with the
orthogonality of the scattering states {\05:')}.

o Consequences of flux conservation
The scattering state ¥, ,, is, by definition, the eigenstate of
the Hamiltonian, with a given energy, chosen to have only
one incident wave from infinity, coming through channel a
of lead n. The prescribed asymptotic behavior determines the
functional form of \pf,:f,)(x) in the asymptotic region, and it is

customary in scattering theory to define reflection and
transmission amplitudes by

IBM J. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988




Hexp{—ik"x Ix"(1,) + T Frora €XPEKT X IX0(D,)]

Vonn® =
Uy ]
ﬁ 2 tlna aexp“k( )x]lx( )(yl)

#is an overall real normalization factor that does not affect
the ratios of the amplitudes of the scattered waves to the
incoming wave, namely, the #’s and ?’s. For a fixed energy,
the set {;.,} containing all possible (#, @) is a linearly
independent and complete set in the energy subspace (i.e., a
basis to that subspace). For a time-reversal invariant
Hamiltonian, the time-reversal transformed states of {¥, .,
are also a basis to the same subspace. Those states are called
W(,, a)} and their behavior in the asymptotic region can be

obtained by time-reversing (89). This yields

Nlexp (ikx, Ix P (v,) + 2 7 e EXDi—ike XX D(V,)]

Vor(®) =
Doy O
7 E 1% q eXp =ik X)X (V)

The usual procedure for defining the scattering matrix is to
define a matrix S by

=25

,b)

4, bXn, a)¢(l b)(x) Oon
The matrix elements of S can be determined by the
following argument. Let us consider a point x,, in lead

m # n. After (90) is substituted into (91), the only terms in
the right-hand side of (91) that have outgoing waves at x,,
are

2 (m,bXn,a) ﬁexp {lk(M)x } X(m)( ym)~
b

92)

On the other hand, looking at (89), we see that the terms
with outgoing waves at x,, in the left-hand side of Equation
(91) are

2 Lo ba Nexpliky"x, Jxo(p,,)- (93)
Comparing (92) and (93), we obtain
Sm,b)(n,a) t’mn ba m # n. (94)

In a similar fashion, when we consider a point x,, at lead n,
we obtain

S(n,b)(n,a) = T ba- 95)
Equations (94) and (95) can be written compactly as
fll t_ 12 EINL
S= L 22 by (96)
tN,_l N2 F NLNL
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for x in lead n,

(89)
for x in lead [ # n.
where 7,, and 7, are the matrices defined by
(rrm)ba - rm ba® (tmn)ba E mn ba* (97)

In the usual scattering problem, the condition of flux
conservation requires the matrix S to be unitary. We now
show that this is not so for a multi-channel problem.

In the asymptotic region, where there are no electric fields,
the elements of the current density operator between any
eigenstates ¥, and ¥, of the Hamiltonian, whether or not
they are orthonormal, are given by (26). In our context flux

for x in lead n,
(90)

for x in lead / # n.

conservation is stated by Equation (36). If we take there ¥,
and ¢, such that ¢, = ¢, then

V.W_,x)=0 (98)

and an integration of (98) over the domain _¢ defined in
Section 4 (in the subsection on cancellation of the
diamagnetic term) gives

>: Yo, = 99)
where we have defined
Yg; Ef W, - X, dy,
G
= f VR 2= 0,05 di, (100)
ax,

This is the expression for flux conservation. To see what it

implies for the 7 and f coefficients, we take « and g to be

scattering states. Taking y, = ¢, and ¥, = ¥/, in (100),

we obtain
Y =n72i[-6 k) + 2 P valmarsko ] (101)
YO =mn2i 2 ¥ alnaske  1#n, (102)

and so, after a little rearrangement, (99) gives 407
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k(n)
2 f:n,a’afnn,a'b (:) ™
a’ V ka kbﬂ
)
+ 2 [ lnaalnab - ]=6ab' (103)
,/ (n) 7 (n)
ka kb

l#n

When we take in (100) ¥, = ¥, and ¥, = ¥, with m = n,
we get

Y? =12 S Pl A (104)
YO =0"2i 2 TR AN S (105)
YO =n*2i z 2 dmaks,  I#nm, (106)
and (99) now gives
k)
E rnna a“nm,a’b _(JT_—U”:
ka kb
k('7)
+Ztmnaa mmab_L_
/ (n) g (m)
ka kb
K
+ 3 [2 X i ———] =0. (107)
; ” in,a’a‘lma’b r———ki")kzm)

I#n.m

We can restate Equations (103) and (107) in a clearer
matrix notation by defining the diagonal matrices K and Q:

Kmn,aa' = 5mn60a’ kfzm)x (108)
1

Qrnaat = Opndaar —7==> (109)
k(m)

and then write (103) and (107) in matrix form as

(KSQ)'KSQ=1. (110)

Thus we have shown that in general current conservation
does not imply that the matrix § defined by Equation (96)
satisfies the standard unitarity relation $'3 = 1, but rather,
the more complicated formula (110). In the special case
where the outgoing momenta in all the channels are the
same, it is easy to see that the condition (110) reduces to the
unitarity of 5, however, in our case it does not. Therefore
Equation (96), which in the usual case defines a unitary
scattering matrix, does not do so for a multi-channel
waveguide-scattering geometry. It seems preferable to reserve
the term S-matrix for a unitary object; therefore, it is natural
to define the generalized S-matrix (unitary for all of the
geometries considered) by

S=KS5Q. (111)

It is obvious from (110) that S so defined is unitary. This
definition is equivalent to defining new reflection and
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transmission amplitudes in the same manner as Fisher and
Lee [12],

Vi
Tona'b ™= Tanars ;?’ (112)
liao = tinas k(bn)- (113)

These amplitudes can be thought of as the ratios of the
amplitudes of the scattered waves to the amplitude of an
incoming plane wave, when we normalize all waves to unit
longitudinal flux. When expressed in terms of r and ¢, the
scattering waves h&(n a)} look as shown in (67) (up to an
overall normalization constant).

In terms of these redefined transmission and reflection
matrices, the matrix .S has the familiar form

Iy l, ! 1IN,
s=|f = o by |, (114)
tN,_l tN'_Z rNy_Nx.

The unitarity of S then implies the simpler relations

Fonlon E Lt =1 (115)
I#n
and
re +tr + % the, =0. (116)
I;érlt,m

Another set of equations satisfied by the r’s and ¢’s can be
obtained by noting that as a consequence of (110) and (111),
det(S) # 0, and so S is the inverse of .S from the right too:

Sst=1; (117)
then, expanding (117), one gets
Tanl 2ty ty=1 (118)
I#n
and
AANE S Z Lty = (119)
I#nm

To summarize, we have found that flux conservation implies
that S, rather than S, is unitary.

o Nonorthogonality of scattering states
We can now proceed to show that the scattering states {¢
are not orthogonal. Let us first note that

WO = (P Iy = W 1), (120)

which is a consequence of the antiunitarity of 7.
In order to define sensibly an orthonormal basis for states
which are not square-integrable, it is necessary to consider a

)

(n,a)
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continuum of states, so that delta-function normalization
makes sense in terms of integrals over a continuous density
of states. Therefore, although in our calculation only the
states precisely at ¢z come into the dc limit, we must define
our states in the larger space of propagating states with
variable energy. Thus we consider now two scattering states
v pand ¥, ., where e and ¢’ can refer to states of
different energy. If the set l\p:‘::,,a)l were orthonormal, we
would have

(‘,’S')xa) | \l’i+()na)) = 6(€ € ’)6(n,a)(n',a')’ (121)
which, as a consequence of Equation (120), would imply
<¢:;,b) | 4/(:,)(1',b')> =d(e—¢’ )6(I,b)(l’,b’)' (122)

On the other hand, using (91),
o) -+
<ws:n,a) | w;‘,(n’,a’)

= X gz.bXn,a)(é)SI’,b'xn',a')(e’)<¢:I),b)I\bi":()l’b’)>' (123)

[(X2) (9]

Therefore, if {¢" )} were orthonormal, we could substitute

&(n.a

(121) and (122) into (123) and obtain

5(6 € ’ )6(n,a)(n',a’)

=2 g(a‘tl,b)(n.a)(‘)gu,b)(n',a')(f)‘s(‘E =€) (124)
@b

which implies
S')S(e) = 1. (125)

In short, we have shown that the orthonormality of the set
{¥\ ) implies that the matrix 5 defined in Equation (96)
must be unitary. But we have just shown that current
conservation implies that S is not unitary [it is the matrix S
defined by (114) that is unitary.] Therefore Wi::,a)} is not
orthonormal. Since states with different energies are certainly
orthogonal due to the Hermitian character of the
Hamiltonian, we conclude that {\b‘(:)“)} (for a fixed energy) is
not an orthogonal set. Langreth and Abrahams [16] assumed
that the matrix defined by Equation (96) was unitary; hence,
they incorrectly stated that the scattering states were
orthogonal. To emphasize this point further, we note that
there is no choice of normalization which makes these states
orthogonal. Flux conservation implies that states chosen to
consist of a single incident wave from infinity and outgoing

waves in all the channels cannot be orthogonal.

Appendix B

In Section 4 we studied the current response of a multi-
probe system driven by voltages applied to its leads, and
obtained Equation (126) below. However, there is a whole
class of experiments performed under conditions in which
the currents through the leads are fixed and the voltages at
the leads are the measured quantities. In this appendix we
show a general procedure to obtain the voltage response
when the conductance coefficients g, , are known.
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e Definition of the problem
The conductance coefficients g,,, are defined by the relation

m=1,2,---,N,, (126)

which can be regarded as a representation of the N, -
dimensional vector equation

[1)=g|V) (127)
in the standard basis {|e, )}
1 0
0
ley =15 [ le) =175 |- (128)
0 1

With this notation (¢, |7 ) = I, is the current into lead n. On
the other hand, following Biittiker [1], we can characterize
the voltage response of the system by defining resistance
coefficients R, .. ., as the ratios of the voltage differences
between leads m and # to the current flowing from lead m’
to lead n’, when all other leads draw no current:

V.-V, {1=1,,, =,

Rt = I I,=0 for I#n',m’.

(129)
It is obvious that the {R, ... ..} should be obtainable from
the {g,,,}, since the latter contain all the information
concerning the dissipative response of the system to applied
voltages in the leads. Naively, in order to compute R

one would like to set . = —1, . = I and all other currents to
zero, i.e.,
[Iy=1Ile,)—1Ile,.) (130)

in (127), invert the equation for | V), and finally compute
the expression in (129) by taking the difference between V,,
and V. Nevertheless, it is not possible to proceed in that
manner without some further elaboration, since g is not
invertible, as we see below.

o Solution to the problem

The singularity of the matrix g derives from the constraints
imposed on it by two basic features of the currents and
voltages in any system, namely the arbitrariness in the
choice of the zero reference level for the voltages and the
conservation of current (Kirchoff ’s law). To see how this
happens, let us define | 4, ) to be the unit vector
proportional to (1, 1, ---, 1),

|al>=—\/§—v_:(|e,>+|e2>+~--+|eNL>). (131)
With this notation, a shift in the zero voltage reference level
corresponds to replacing | V') with | V') — (const.)| g, ).
Since upon that replacement the current in (127) has to
remain unchanged regardless of the value we choose for the
constant, we must have
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gla,)=0; (132)

therefore, | a,) is an eigenvector of g with eigenvalue 0.
Consequently, given a solution | V) of (127), there is a
whole family of solutions of (127) that differ from | V') by a
multiple of the vector | a, ). We will assume that 0 is a
nondegenerate eigenvalue of g, so only the eigenvector | a,)
has eigenvalue 0. Therefore it is also true that any two
solutions of (127) differ by a multiple of | 4, }. In particular,
we will search for the solution | ¥’} that has no component
along | a,) (i.e., | V') perpendicular to | a,) or

{a,| V') =0), and then obtain any other solution | V') by
adding (const.)| a, ) to the former. The requirement of
current conservation ¥ ¢, I, =0 also has a simple
expression in terms of the notation just defined, namely

(a, | I') = 0. In other words, this equation states that all
physical | I')’s (i.e., currents satisfying Kirchoff ’s law) are
perpendicular to the vector | @, ). Since | I) in (127) must
satisfy this requirement regardless of what voltages | V') we
apply to the leads, we conclude from (127) that

(a,18=0. (133)

In short, we have found that the freedom of choice for the
zero reference level for the potentials and the requirement of
current conservation constraint implies that any possible g
must have the vector | g, ) as a right and left eigenvector
with eigenvalue 0. By going back to Equation (86), we note
that the conductance coefficients g, obtained from the
“microscopic theory” for a system in the absence of a
magnetic field do indeed satisfy the above constraints [in
that context (132) and (133) were seen to be consequences of
current conservation and the symmetric character of g].
Furthermore, we have made the observation that for our
purposes Equation (127) can be thought of as holding
between vectors | V'’ ) and | I') in the (N, — 1)-dimensional
subspace perpendicular to | g, ). In this subspace g does not
have a zero eigenvalue and therefore can be inverted.
Instead of bringing the matrix g, intoa 1 & (N, — 1)
block form and then inverting the (N, — 1)-dimensional
block, it is more convenient to proceed as follows. We found
in Section 4 that in the absence of a magnetic field the
conductance matrix g is real and symmetric, so its nonzero
eigenvalues {AH}HN;Z have corresponding eigenvectors
{ a")}::z that can be taken to be orthonormal. By writing g
in terms of its spectral representation

g= 2 \la)a,| +0]a)a,l, (134)

n=2

we see explicitly that even though g is singular as a
transformation in the whole N, -dimensional space, it is
invertible when regarded as a transformation from the
(N, — 1)-dimensional subspace of vectors perpendicular to
| a, ) onto itself. The solution to the equation we want to
solve,
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N

[Iy=3 Ala,)a,|V'), (135)
n=2

is easily found to be

M

S 184,11 =1V, (136)

n=2 "'n

which is certainly not changed if we subtract 0 from the left-
hand side to obtain

3 L a,a,1 =12y i =17 RED)

n=2

But the matrix in square brackets is the inverse of the N, -
dimensional matrix g defined by

NL
g= X Mla,)a,| ~ la)a,|

n=2

g~ la))al, (138)

and Equation (137) is what we would have obtained had we
started with

11y =g|l V") (139)

instead of (127). Roughly speaking, we have been able to
invert Equation (127) in the smaller subspace by resorting to
the artifice of defining the nonsingular matrix g and
inverting Equation (139) in the whole space instead.
Considering the kth component of (137), we get

M
Vi=X (& N, k=1,2,---,N, (140)
=1

and by setting I, =~I_.=Iand I,=0 for [#n’, m’ in the
equation above, we obtain the voltages {V'; ] we were looking
for

V=@ VoI = @ 1

In principle the ¥, ’s in (129) may differ from the V] ’s just
found by a constant, but of course the physical quantities
R,... ., only depend on the voltage differences and those are
insensitive to the value of that constant. By specializing
(141) to the cases k = m and k = n, using

V!~ V.=V, -V, and substituting into the definition
(129), we arrive at the final result

Rm’n’,mn = (g—l)mn' + (g_l)nm'
~ @& Y = @ V- (142)

To summarize, in order to find the coefficients R .,.. ,,..
given Equation (126), we simply obtain g from g by
subtraction:

k=1,2,---,N_.  (141)

MLy ... 1

and then compute the four elements of ' indicated in
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(142), which require the evaluation of one N; X N, and four
(N, — 1) X (¥ — 1) determinants.

Finally, we point out that even though we made use of the
symmetric character of g in writing (134), a property that we
do not expect to hold in the presence of a magnetic field,
that assumption is not necessary to derive (142). The
essential feature for the validity of (142) is that there exists a
basis in which g is represented by a block-diagonal matrix
with a zero in the position (1, 1) and a nonsingular (N — 1)
x (N — 1) block. Since Kirchoff’s Law and the freedom to
define the zero of voltage imply that | a, > is always a left
and right eigenvector of g with eigenvalue 0, any basis
consisting of | a, > and a set of basis vectors to the subspace
orthogonal to | @, > will lead to the required form for g. We
can then find the inverse transformation to the (N — 1)-
dimensional block by inverting the N X N matrix obtained
from g by replacing the zero in position (1, 1) with a —1. In
basis-independent language, that replacement corresponds to
subtracting | @, > < @, from g, so the N-dimensional matrix
to be inverted is still exactly g defined in (143), and Equation
(142) is valid in all cases.

Biittiker [1] has analyzed the symmetries of four-probe
resistance measurements by assuming that Equation (4) is
valid even in the presence of a magnetic field B. As noted in
our conclusions, this is a substantial assumption, and its
range of validity remains to be determined by a microscopic
derivation. Buttiker shows that the symmetries of the S-
matrix are insufficient to imply that R, ,..(B) =
R, ..n(—B), but they do imply that the quantities
R mdB) xR, .. (B) are symmetric (antisymmetric)
under field reversal. Accepting the validity of Equation (4), it
is a simple exercise to extend those results to a general multi-
probe system by using Equation (142). An outline of the
proof goes as follows: As a consequence of (4) and the
transformation of the S-matrix under time-reversal, the
matrix g(B) goes into its transpose when we reverse the field,
and from (143) it is clear that g also has that property:
£,..(B) = g,,(—B). Since the determinant of a matrix equals
that of its transpose, and

A, [8(—B)] = 4,,[8"(B)] = A4, [&B)],

where 4, () is the determinant of the cofactor matrix of the
element g,,,, one obtains

& 'B),., = [87(B)],,

This result combined with Equation (142) implies the
symmetry relations given above.

(144)

(145)
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