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We re-examine  the  question  of  what  constitutes 
the  physically  relevant  quantum-mechanical 
expression  for  the  resistance  of  a  disordered 
conductor in light of  recent  experimental  and 
theoretical  advances in our  understanding  of  the 
conducting  properties  of  mesoscopic  systems. It 
is shown  that in the  absence  of  a  magnetic  field, 
the formula  proposed  by Biittiker, which 
expresses  the  current  response  of  a multi-port 
conductor in terms  of  transmission  matrices, is 
derivable  straightforwardly  from  linear  response 
theory. We also  present  a  general  formalism  for 
solving  these  equations  for  the  resistance  given 
the  scattering  matrix.  Thiq  Landaupr-type 
formula  reduces to g = (e /h)Tr(tt ), where g is 
the  conductance  and t is the transmission 
matrix,  for  the  two-probe  case. It is suggested 
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that this formula  provides  the best description  of 
the  present class of  experiments  performed in 
two-probe  or  multi-probe  measuring 
configurations,  and  that  the  subtleties  leading to 
various  different  Landauer  formulae  are not 
relevant to these  experiments.  This is not 
because  of  the large number  of  channels in real 
conductors,  but is due to the fact that  apparently 
no  present  experiment  probes  a “local chemical 
potential” in the  conductor.  Certain  standard 
objections to deriving a  Landauer-type  formula 
from  linear  response  theory  are  answered. 
Applications  of this formula to fluctuations in 
disordered  multi-probe  conductors  are 
discussed. 

1. Introduction 
It  is  entirely  appropriate  that a  volume on the  physics of 
mesoscopic  systems  contain  an  updated  discussion of the 
Landauer  formula.  The  new  discoveries  concerning  the 
novel  conducting  properties of small  systems  have  certainly 
clarified  and  sharpened  many of the  issues  that  have  been 
raised  by a variety of authors  who  have  attempted to 
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understand the relationship between the conductance of a 
quantum-mechanical system and an associated  scattering 
problem. Furthermore, Landauer’s  great  insight, that 
conduction in solids can be thought of as a scattering 
problem, has certainly been  of great practical importance in 
guiding our intuition to an understanding of quantum 
transport in mesoscopic  systems. This paper has somewhat 
the character of a review article, and is  divided into four 
main sections. First, we summarize the major developments 
in modem thinking about the Landauer formula since  1980, 
leading up to the very  recent developments relating to the 
physics  of multi-probe mesoscopic  devices.  Second, we 
present a complete and rigorous derivation of a multi-probe 
generalization of the Landauer formula from linear response 
theory. This formula was  first written down  explicitly and 
justified on phenomenological grounds by Biittiker [I]. An 
alternative representation of the current response of a multi- 
probe conductor in terms of Green functions, starting from 
the Kubo formula, has been  widely  employed  recently to 
calculate voltage fluctuations in mesoscopic multi-probe 
devices  [2-71; these calculations give excellent qualitative, 
and reasonable quantitative, agreement with experiment. 
Our calculations prove the explicit equivalence of the Green 
function approach to that of Buttiker (in the absence of a 
magnetic  field). The proof requires a nontrivial application 
of scattering theory, and we find that the previous literature 
on this subject contains a number of technical errors, which 
we correct. The equivalence of the two approaches, and the 
success  of the Green function calculations, suggest that this 
newly proposed multi-probe Landauer formula captures 
most of the relevant  physics of these  mesoscopic  devices. 
Third, we discuss the plausibility of the formula on physical 
grounds, and its relationship to other Landauer formulae 
which  have  been  proposed in the literature. Most of the 
points we make have  been made by other authors (to whom 
we shall  refer at appropriate points); however, the new 
collective  wisdom  of the field concerning these  issues  has not 
been  assembled in one article. Fourth, we discuss  very  briefly 
the applications of this formula to conductance and voltage 
fluctuations in small devices. 

The basic purpose of this exercise  is  twofold. On one 
hand, due to previous controversies concerning the “correct” 
Landauer formula, many researchers in the wider 
community have  been cautious about employing this 
approach in quantitative calculations of transport 
phenomena. By showing that this most recent multi-channel 
generalization  is equivalent to a well-defined linear response 
calculation (and indeed equivalent to precisely the 
calculation that one standardly performs for these  systems), 
we hope to show that there is no more rigorous  formalism. 
Calculations explicitly  appealing to this Landauer formula 
are no more or less convincing than they  would  be in the 
Green function approach (unless  of course the actual 
calculational technique employed for evaluating the formula 
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is  less accurate or involves more unverified assumptions). 
Conversely, some authors have  suggested that there are 
subtle physical assumptions implicit in the Landauer 
approach which cannot be included naturally in standard 
linear response theory. We  show that this is not the case, at 
least  for the particular formula we derive, and explicitly 
discuss  several of the frequently raised objections to a linear 
response calculation of the conductance. In the spirit of 
Landauer, we occasionally give our somewhat  subjective 
characterizations of the prevailing sentiment about certain 
issues at certain times. Let us emphasize that our intention is 
not to assign priority or credit to certain individuals, but 
rather to allow an interested bystander to read this paper and 
sort out the rather confusing developments concerning this 
topic over the past  eight  years. 

2. Historical background 
As is  now  well known, Landauer proposed the novel point of 
view that transport should be  viewed as a consequence of 
incident carrier flux [8] in this very journal  in 1957 [9], and 
later gave a more complete discussion in 1970  [9],  when  he 
proposed that the conductance of a one-dimensional 
conductor sandwiched  between two phase-randomizing 
reservoirs  (where  all the dissipation occurs) is given  by 

e2 T 
g = h R ’  

where T and R are the transmission and reflection 
coefficients  of the conductor treated as a single  complex 
scattering center, and only one spin direction is included. 
The formula (1) was rediscovered in 1980 by Anderson et al. 
[lo], who brought it to the attention of the wider transport 
community by proposing a generalization of the formula to 
the many-channel case and employing it in a rigorous 
formulation of the scaling theory of localization. However, 
this approach was a complete success  only in the strictly 
one-dimensional case, which, though quite interesting 
theoretically, had little impact on experimental work on 
quantum transport phenomena. 

The rekindled theoretical interest in Equation (1) at this 
time led to several attempts to reexamine it in  the 1D case, 
and also to generalize it to higher dimensions (many 
transverse scattering channels), so that it could be used in 
quantitative calculations of the conducting properties of real 
physical  systems.  Landauer’s  original derivation of Equation 
(1) was not based on standard linear response theory, but on 
a sort of “counting argument,” and an appeal to the Einstein 
relation between the mobility and the diffusion constant [9]. 
A slightly  higher  electrochemical potential in, e.g., the left 
reservoir creates a current due to the presence of  lilled 
“right-going’’ states in the left  reservoir and unfilled  “left- 
going” states in the right  reservoir; the magnitude of the 
current is just proportional to T, the transmission coefficient 
of the resistor connecting them. In steady state, the particle 385 
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densities in  the leads are also unequal, differing by factors of 
(1 + R )  and (1 - R ) ,  due to the reflected and transmitted 
particles. This creates a density gradient proportional to 2R 
over the length of the sample. Relating the current and the 
density gradient by means of a  diffusion equation, one 
obtains the diffusion  coefficient  of the sample, and, by using 
the Einstein relation, its conductance, given  by Equation (1). 
The argument contained several  steps that were apparently 
difficult to formalize in  the language of standard linear 
response theory; this motivated a number of authors to 
attempt to derive Equation (1) using that approach. 

The initial result was obtained by Economou and 
Soukoulis [ 1 11, who  derived the result g = (e2/h)T, in  the 
strictly 1 D quantum limit, instead of  (1). Shortly thereafter, 
in a calculation most relevant to our work  below,  Fisher and 
Lee [ 121 generalized this result to N channels, obtaining the 
result 

g= - Tr(tt+) e2 
h 

where t is the N X N transmission matrix connecting the 
incident flux in the various channels on one side  of the 
disordered region to the outgoing flux in  the channels on the 
other side. (The Hermitian conjugate is represented by a 
dagger, and Tr is the trace of the matrix.) It is important to 
note that they obtained this result exactly, for the linear 
response of the system to an applied field  with spatial 
variation only in the disordered region (the precise 
description of their calculation and assumptions is given 
below,  when we present our generalization). Several authors 
[ 10,  13,  141, both before and after the work  of Fisher and 
Lee appeared, proposed multi-channel generalizations of (1) 
which reduced to (2)  in certain limits. 

Equation (2)  of course contradicts Equation (1)  (in the 
one-channel case), and has the counterintuitive feature that, 
as the scattering caused by the disordered region  goes to zero 
(the transmission matrix goes to the identity), the 
conductance of the system  goes to N(e*/h), not to infinity; 
i.e., the resistance of a  “perfect” conductor is not zero 
according to (2). This feature of Equation ( 2 )  was considered 
very  puzzling and suspicious by many researchers (at least 
one of the present authors included), and initially this led to 
critical scrutiny of the derivations leading to (2). 
Independently, Thouless [ 151 and Langreth and Abrahams 
[ 161 produced alternative derivations that yielded Equation 
(1) in the one-channel case. Neither of these derivations 
actually  revealed  a straightforward calculational error in  the 
derivations leading to (2); rather, they argued on physical 
grounds that one had to perform a self-consistent linear 
response calculation in order to get a physically  meaningful 
result, and upon performing slightly  different  versions of 
such a calculation, both were able to obtain Equation (1) in 
the one-channel case.  We argue  below that it is  now not at 

386 all  clear that  the self-consistency conditions that these 
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authors impose correspond better to the physical conditions 
relevant to real conductance measurements than those 
imposed in the derivations leading to Equation (2). 
However, it is probably accurate to say that at that  time  the 
general sentiment was  relief that some kind of linear 
response derivation could be made to yield the result that 
was “obviously” correct on physical grounds. In addition, at 
that time Langreth and Abrahams generalized their 
approach to many channels and obtained an implicit 
formula for the conductance in terms of the transmission 
and reflection  coefficients,  which in general could not be  re- 
expressed as a simple explicit function of  these quantities; 
this suggested that for the many-channel case a  generalized 
Landauer formula might be  of little practical value in 
calculations. Indeed, the only significant quantitative 
application of a Landauer formula to many-channel 
quantum transport at that time was  by  Lee and Fisher [ 171, 
who used the “incorrect” formula (2)  to test the scaling 
theory of localization in 2D and 3D, and obtained 
reasonably  good agreement with the expected behavior of the 
scaling function B(g). 

At about  the same time, Engquist and Anderson [ 181 also 
reexamined the derivation of Equation (l) ,  but not from the 
point of view of finding  a  rigorous derivation from linear 
response  theory. Instead, they introduced a hndamentally 
new point of  view  by stressing the need to consider the 
actual physical conditions corresponding to a measurement. 
In particular, they argued that if there is a current flowing 
out of one reservoir and  into the other, strictly speaking the 
chemical potential of the reservoirs is not well-defined, and 
instead one should consider a  system  with (at least) four 
reservoirs,  two to act as current source and sink, and two 
which  define  reference chemical potentials for the voltage 
measurement. It was also pointed out  that this theoretical 
definition corresponded closely to a common measuring 
configuration, in which the current through the entire circuit 
is controlled by some large  resistance in series  with the 
sample of interest, so that a k e d  current can be fed in 
through one set of  leads, and  the resulting  voltage drop 
across  regions  of the sample can be measured by attaching 
different sets of  voltage leads [this is known as a four-probe 
(or, if there are many voltage  leads, multi-probe) 
measurement]. The basic  physical idea underlying the new 
derivation by  Engquist and Anderson was that once the 
current was  imposed, one would “turn  on”  the voltmeter, 
i.e., let current flow back and forth between the current leads 
and  the measuring reservoirs until the net current into each 
reservoir was zero (on average); then the measuring 
reservoirs  would possess well-defined chemical potentials. 
The current in the current leads divided by the induced 
chemical potential difference  gave the conductance in this 
four-probe configuration.  Engquist and Anderson then 
introduced a scattering matrix to describe the scattering of 
particles  between the current leads and the measuring 
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reservoirs. The crucial assumption that they made was that 
the measuring  reservoirs  were  weakly  coupled to the current 
leads; then, with  several  auxiliary assumptions which  had 
much the same  flavor as those in Landauer’s  original 
argument, they  were able to derive the formula ( I )  (to lowest 
order in the small  coupling to the measuring  reservoir). The 
authors also made clearly  a point of tremendous importance 
for recent work on mesoscopic  conductors: “The measured 
resistances  for  sections  of the chain add linearly.  Because  of 
long-range  coherence for each  energy,  however,  they are 
determined by all scatterers in the sample, not just those 
between  the  measurement points (italics  added) . . . . Only 
when the inelastic  scattering  is strong enough to destroy 
phase  coherence  between the measurement points can local 
resistances be defined.” 

The implications of this insight  for conductance 
measurements in mesoscopic  systems  were not appreciated 
at the time; however, the derivation  of Equation (1) was 
welcome. Not  only  could it be derived  explicitly  from linear 
response  theory, but it was apparently correct on physical 
grounds since it was the result  corresponding to a  four-probe 
measurement.  Such  a  conclusion  was  somewhat  hasty; it was 
by no means clear that the assumption of  weak coupling to 
the measuring  reservoir  corresponded to a  typical 
experimental  four-probe  measurement. It has been  argued 
[ 1,191, and we argue below, that such an assumption does 
not correspond well to the measuring  configuration of 
typical  multi-probe  mesoscopic  conductors. 

questions raised  by the Landauer formula and its 
generalizations until 1985, when  Biittiker et al. [ 131 extended 
the approach of  Engquist and Anderson to the many- 
channel case. They  were (at least in part) motivated by a 
calculation due to Gefen et al. [ZO], which computed the 
conductance of a one-channel  ring in a  magnetic field  using 
Equation (1) and proposed that the usual (h/e period) 
Aharonov-Bohm  effect  might  be  observable in small 
normal-metal rings. Biittiker et al.  again  considered current 
fed in from two  reservoirs acting as source and sink, but 
stressed that the “local  chemical potential” difference 
between the two ends of the sample was not equal to the 
difference  between the chemical potentials of the current 
reservoirs,  instead, it was smaller due to the nonequilibrium 
distribution of carriers in the leads.  They  defined the “local 
chemical  potential” as the chemical potential that would 
correspond to that density of  carriers ifthey were  in 
equilibrium, and suggested, in the spirit of Engquist and 
Anderson, that th is  is the chemical potential that a weakly 
coupled  voltage probe would  measure. This approach of 
course gave Equation (1) in the one-channel case, and a 
generalization  of it to many channels: 

Little further progress  was made in understanding the 
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where Tij and R,  are the transmission and reflection 
probabilities  from channels i to j and vi is the longitudinal 
velocity  associated  with channel i (these quantities are 
defined  more  precisely in Section 4). This result  had  been 
obtained earlier by  Azbel [ 141, but the discussion by Biittiker 
et al.  greatly  clarified the physical assumptions upon which 
(3) is  based. Thus, unlike those of  Langreth and Abrahams, 
this set of assumptions leads to  an explicit formula for g in 
terms of the scattering  matrix of the sample,  even in the 
multi-channel case. Note, however, that this is still  a  two- 
probe formula; the properties  of the voltage  leads do not 
enter into the measured conductance, and the scattering 
matrix elements involved  only  refer to scattering  between the 
current reservoirs. The origin of the difference  between the 
result obtained by Biittiker et al. and  that obtained by 
Langreth and Abrahams was pointed out by the former, and 
is quite important in the context of our present  concerns. It 
arose  from the different assumptions each made about the 
“local  chemical potential” in the leads.  Biittiker et al. defined 
it in the manner described  above,  which  has the consequence 
that the carrier densities in the different channels of the leads 
must be out of equilibrium. Langreth and Abrahams  defined 
the density  difference  between the two  leads by insisting that 
there be a single  chemical potential for all the channels in 
each  lead.  Biittiker et al.  have  a  brief  discussion  of the 
plausibility of the different  hypotheses. The important point 
for us, however,  is that it had become  clear that any 
derivation  which  required  defining  a  ”local  chemical 
potential” in the leads,  which  was  different from that of the 
current reservoirs,  would require a  set of  physical 
assumptions about the quasi-equilibrium in the leads. 
Therefore, there might be no “correct” multi-channel 
Landauer formula; the result obtained appeared to be 
sensitive to rather abstract and difficult-to-verify assumptions 
about the nature of the leads. 

In summary, by 1985, just prior to the point at which 
mesoscopic  systems  became  fashionable, the original 1D 
Landauer formula [Equation (I)] was prospering.  It had 
been  derived  five or six different ways, including “rigorously” 
from linear response  theory.  However, the multi-channel 
generalizations of Equation (1) were not doing so well. There 
appeared to be no unique generalization, and since almost 
any calculation which  proposed to make quantitative contact 
with experiment required  considering  a  large number of 
channels, it was unclear  whether calculations using the 
Landauer approach would  be  of  great  value. The general 
community was aware that there were subtle and substantial 
issues  relating to the validity  of any particular formula, and 
therefore  regarded the approach with  suspicion. On the other 
hand, most  researchers were  perfectly  happy to perform 
quantitative calculations on small systems  using the Kubo 
linear response  formalism and diagrammatic techniques, 
apparently believing that somehow one did not have to 
confront these  issues in that approach. We  show  below that 
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using the Kubo formalism does amount to making a choice 
of the appropriate multi-channel Landauer formula; it is 
equivalent to choosing Equation (2) in the two-probe  case, 
and the natural generalization of those assumptions to the 
many-probe case. In other words, it is equivalent to 
assuming that a conductance measurement at fixed current 
measures the chemical potential at a set of reservoirs, and 
not the “local  chemical potential” in the sample. On the 
basis  of the agreement of recent experimental and theoretical 
results, and some new physical arguments, this is apparently 
a rather good assumption, as is  discussed  below. 

3. The  Bronze  Age of mesoscopics 
About this time the cogitations of theorists on these topics 
were  beginning to be disturbed by the sometimes unsettling 
confrontation with  reality, in the form of a series of 
landmark experiments on the conductance of ultra-small 
metallic  devices  measured primarily in multi-probe 
configurations [2 1-34].  These experiments revealed  for the 
first time the presence of both the normal-metal Aharonov- 
Bohm  effect and  the sample-specific time-independent 
magnetoresistance fluctuations, which later became known 
as “universal conductance fluctuations” [35-401. Two recent 
review articles [22,23] describe in detail the experiments, 
their motivation, and some of the related theoretical work, 
focusing primarily on the Aharonov-Bohm  effect.  These 
experimental advances made the question of the appropriate 
approach for calculating quantum conductance substantially 
more interesting and important  than it had appeared to be 
prior to the new discoveries;  however, it is  impossible to  do 
them complete justice here, and readers are referred to 
[22,23]. We focus on several points of relevance to the issue 
of the appropriate multi-probe multi-channel generalization 
of the Landauer formula. 

The earliest  published experimental data on aperiodic 
“reproducible noise” in the magnetoresistance of 
conventional normal metals is due to the IBM group 
[2 1,241.  However, as intriguing as their results  were, they 
were treated with some suspicion for two  reasons:  First, 
although many authors had discussed the possibility of 
observing  periodic magnetoresistance oscillations in multiply 
connected conductors [ 13,20,41],  no one had anticipated 
finding aperiodic behavior.  Second, the magnetoresistance 
noise was observed to be asymmetric around B = 0; i.e., 
g(B) # g(-B), which at least some authors took to be a 
violation of one of  Onsager’s relations [42]. The Fisher-Lee 
formula [Equation (2)] must yield an exactly symmetric 
conductance under field reversal, due to  an exact symmetry 
of the S-matrix; however, the formula [Equation (3)] of 
Azbel and Biittiker et al. does not possess this property. 
The symmetries of the S-matrix in  the presence of a 
field are insufficient to imply g(B) = g(-B) in Equation 
(3), and Biittiker and Imry [42]  suggested at that time 

388 that the asymmetry allowed by Equation (3) might 
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provide the explanation for the experimental observation. 
Numerical simulations of  small metallic conductors by 

Stone [ 361 clearly  established that aperiodic conductance 
fluctuations as a function of magnetic field or Fermi energy 
with many of the features observed in  the experiments were 
obtainable simply from the multi-channel Landauer 
formula. Stone initially used Equation (3); however,  he 
found that results obtained using Equation (2) were 
quantitatively very  close to those obtained from Equation (3) 
[43].  Although it is  easy to show that Equation (3) 
approaches Equation (2) when  all the T, are much less than 
one, in fact Imry argued that  the convergence  is much more 
rapid [39];  all that is  needed  is ( g )  << N(e2/h) (where N is 
the number of channels, or equivalently, I/L << 1 ,  where I is 
the elastic mean free path and L is the sample length). This 
condition is  essentially  what  distinguishes the metallic or 
diffusive  regime from the ballistic  regime, and was  satisfied 
by all samples measured  except in the most  recent 
experiments [44]. Thus, the approximate agreement of 
Equations (2) and (3) found by Stone in the simulations was 
not too surprising. The only feature distinguishing the two 
formulae in the simulations was that Equation (3) did yield 
an asymmetry in the magnetoconductance, while Equation 
(2) did not. However, the magnitude of the asymmetry 
found in  the simulations was much smaller than that 
observed in  the experiment, suggesting that Equation (3) 
could not fully  explain the observed  effect. 

of experimental breakthroughs in this area, beginning  with 
the dramatic observation by Webb et al. [25] of the h/e 
Aharonov-Bohm effect in a normal metal. This stimulated 
further theoretical efforts to understand quantitatively these 
quantum fluctuation phenomena. It was  rapidly  shown that 
both the aperiodic magnetoresistance fluctuations and the 
h/e Aharonov-Bohm  effect  were manifestations of the same 
random interference effect. Calculations [35, 37-40]  were 
performed both analytically (using diagrammatic 
perturbation theory) and numerically, predicting that the 
rms amplitude of such conductance fluctuations should 
always be of order (ez/h) independent of the average 
conductance, hence the term “universal conductance 
fluctuations” (UCF). Lee and Stone considered a two-probe 
model, and explicitly appealed to the Landauer formula of 
Equation (2) to establish  these  results;  Al’tshuler and 
coworkers made no such explicit appeal, but, as we discuss 
below, the formalism they used (including the boundary 
conditions imposed) was equivalent to Equation (2). The 
universality of rms(g) was only established for this two- 
probe  case, and only  when the inelastic mean free path, Li,, 
was greater than or equal to the sample length L (a 
quantitative extension to the case Li, << L was  also made 
[35]). It is the opinion of one of the authors that the 
limitations of the two-probe theory were not fully 
appreciated in the earliest  papers on the UCF, leading to 

Shortly after the numerical simulations, there were a series 
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some confusion about  the sense in which the measured 
fluctuations were  expected to be universal.  Most of the 
experiments to be  explained  were done in a multi-probe 
measuring  configuration, and  the sample length in  the two- 
probe theory was  somewhat  naively  assumed to correspond 
to the spacing  of the voltage probes in  the multi-probe 
measurements. In fact, this correspondence worked 
extremely well in explaining the magnitude and correlation 
length of the conductance fluctuations in all the early 
experiments [35], and therefore its general  validity was not 
examined too closely. 

The only qualitative feature of the experiments that 
remained unexplained was the magnetic field asymmetry in 
the conductance fluctuations, which, as noted above, was 
completely ruled out by any approach equivalent to 
Equation (2) above. In hindsight it seems obvious that the 
failure of theories based on Equation (2) to predict the 
observed asymmetry was a  reflection  of the limitations of the 
two-probe theories; however, this was not so clear at the time 
[45]. The inadequacy of the two-probe theory to describe the 
complete range of multi-probe experiments became more 
apparent, however, as the experimentalists began to study 
samples  with many measuring probes attached at points 
along the current leads separated by a distance much less 
than Lin [27-291. Here the naive application of the two- 
probe theory to a multi-probe measurement ran  up against  a 
paradox. Suppose the measurement is performed in a Hall 
geometry,  with the voltage  probes opposite one another and 
perpendicular to the current flow; then the average  voltage 
developed  between the two leads will be zero (in the absence 
of a magnetic field), and as one changes, e.g., the impurity 
configuratibn of the sample at fixed current, the ratio of the 
current to the voltage  will fluctuate around an infinite value. 
If one insists on calling this a measurement of the 
conductance of the current channel between the leads,  these 
“conductance” fluctuations will certainly be much greater 
than e2/h, and such a measuring configuration is not even 
roughly in correspondence with the two-probe measurement 
assumed in Equation (2). The point is that in the two-probe 
theory the sample length provides  a coherence cutoff very 
similar to that due to true inelastic scattering [35]; therefore 
it corresponds well to a multi-probe measurement (excluding 
consideration of the asymmetry) when Lin is approximately 
equal to the probe spacing. It corresponds very  poorly  when 
Lin is much greater than the probe spacing.  However, in this 
case, as noted by  Engquist and Anderson, the phase-coherent 
sample is not just  the part of the current leads between the 
voltage  probes; it includes upstream and downstream 
portions of the current leads, and also,  crucially, the voltage 
leads as well. What is needed, then, is  a formalism and a 
theory for describing the voltage fluctuations of multi-probe 
devices at fixed current. 

The realization that such an extension of the theory was 
needed was due to many authors [ 1-6,28,29,46]; certainly, 

IBM J.  RES. DEVELOP.  VOL. 32 NO. 3 MAY 1988 

however, one should mention Benoit et al. [27,28] and 
Skocpol et al. [29] on the experimental side, and Isawa, 
Ebisawa, and Maekawa [3] and Biittiker [ 11 on the 
theoretical side.  Maekawa et al. [3] were the first to attempt 
to calculate voltage fluctuations using the Kubo formula, 
explicitly including the effects  of the voltage  leads in  the 
calculation. Although there were minor technical errors in 
their initial approach, many of their results turned out to be 
correct, and certainly the physical motivation of their work 
was correct. However,  they did not connect their approach 
to the Landauer formalism. Buttiker, on the other hand, 
proposed an extension of the multi-channel Landauer 
formula to multi-probe devices. The argument was 
extremely  simple, but differed from the arguments described 
above in  one crucial feature. Buttiker considered  a four- 
probe device leading to four reservoirs  with  different 
chemical potentials, and assumed that all the leads  were 
macroscopically the same; i.e., there was no qualitative 
distinction between current and voltage  leads. Then he 
evaluated the current flowing into  or out of each  reservoir by 
the standard Landauer counting argument: The current 
flowing  between  two  reservoirs  with  a chemical potential 
difference A p  = pI - p2 is just (e2/h)TI2Ap, where T I ,  is the 
transmission coefficient from one to two in the one-channel 
case, and  the trace of the transmission matrix times its 
Hermitian conjugate in  the many-channel case. Then he 
departed from the previous arguments discussed  above by 
arguing, in effect, that the density or voltage  difference 
corresponding to this current is really the difference of the 
chemical potentials of the reservoirs (and not some local 
chemical potential difference in the leads), at least in the case 
where the current flows only  between  two  of the reservoirs 
and the chemical potential differences are measured  between 
the other two. This simple argument leads to the 
straightforward generalization of Equation (2) to the case  of 
NL leads: I e2 

NL g,, = - h Tr{t,,,t~,,L m + n, 
1, = c g , Y n  

n= I e2 
g,, = - Trbnnrnn - 11, 

t 
h 

where the conductance coefficients { g,,, ) are given in terms 
of the transmission and reflection matrices between  leads rn 
and n. Buttiker made the crucial assumption that this 
formulation was valid in  the presence of a magnetic field, the 
only  effect  of  which  was to reduce the symmetry of the S- 
matrix due to the breaking of time-reversal symmetry. 

The usefulness of this formulation was that it was now 
easy to define an Onsager-like conductance tensor by 
imposing the appropriate boundary conditions on the 
incoming and outgoing currents, which could easily  be 
shown to have the familiar symmetries, simply due to the 
symmetries of the S-matrix. It could also  easily  be  shown 
that the resistance,  defined as the ratio of the voltage drop 
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between  reservoirs  1 and 2 (with no current flowing) to the 
current between  reservoirs 3 and 4, need not be symmetric 
when the field  was r e v e d ,  since it was  expressed as a 
combination of elements of this Onsager tensor with 
differing symmetry under field  reversal. He also  showed in 
this formulation that by interchanging current and voltage 
leads, it was  possible to obtain composite resistances  which 
are symmetric or antisymmetric under field  reversal. This 
was a  fact well known to experimentalists [47], but this 
procedure usually  was not necessary  when measuring a long 
wire in a four-probe configuration. The importance of 
employing this more correct procedure was  convincingly 
demonstrated at the same time by  Benoit et al. [27], 
confirming that  the mysterious asymmetry was  really due to 
mistakenly studying a transport coefficient  which does not 
have any simple symmetry under field  reversal.  Of course, 
under normal circumstances, in macroscopic  wires  with 
voltage  probes  well-separated along the leads, this quantity 
will have such a symmetry to a  very good approximation 
[22], and therefore it was not immediately obvious that  one 
should look for such an explanation. 

For the reasons just discussed, the multi-probe Landauer 
formula of Equation (4) is quite appealing. On the basis  of 
this formula, and some simple assumptions about the 
statistical behavior of the S-matrix in  the diffusive  regime, 
Biittiker [46] went on  to propose a theory of the voltage 
fluctuations in a three-port device that would explain 
qualitatively the observed experimental behavior.  Fairly 
recent Kane et al. [2], Baranger et al. [6], Hershfeld and 
Ambegaokar [4], and DiVincenzo and Kane [7] have all 
performed quantitative calculations of  voltage fluctuations in 
multi-probe conductors based either directly on Equation (4) 
or on applications of the  Kubo formula which can be put in 
an apparently equivalent form, with the transmission 
matrices replaced by various matrix elements of the relevant 
Green function. These calculations (discussed  briefly  below) 
are in quite good qualitative and semiquantitative agreement 
with experiment, although they showed that the statistical 
assumptions made by Biittiker  were, in general, not correct 
[2,6]. However,  what has still not been done anywhere in 
the literature is to show that Equation (4) can be explicitly 
derived from linear response theory, and if so, in what model, 
with  what assumptions. We provide such a derivation, 
for the case  of  zero magnetic field, in the following  section. 

4. Derivation of Buttiker’s  formula  from  linear 
response theory 
In this section we compute the T = 0, dc current response of 
a multi-probe disordered system in  the absence  of  a 
magnetic field. The result, when expressed in terms of the 
quantum-mechanical reflection and transmission coefficients 
of the system,  is  precisely Equation (4) above. 

9 Definition of the model 
We  define  below  a  precise quantum-mechanical model of a 
multi-probe conductor, and then solve it rigorously in  the 

linear response approximation. We do not assume the  Kubo 
formula; instead, we calculate the formula from first 
principles  using the density-matrix formulation of the many- 
particle Schrodinger equation. Our purpose is to exhibit 
explicitly the careful  treabment of all boundary conditions, 
and the physical motivation for the order of limits taken. We 
find that an appropriate intermediate stage  of the derivation 
yields  expressions identical to those obtained by recent 
approaches starting from the  Kubo formula [2,5], so the 
initial section of our derivation is included primarily for 
pedagogical  reasons. 

The quantum-mechanical model we use is intended to 
correspond roughly to an experiment in which the leads of 
the multi-probe system are connected to oscillating  voltage 
sources  of dominant frequency Q, and the in-phase ac 
current response (i.e., the dissipative component of the 
current) at each  lead  is measured. In order to have the 
frequency  well-defined, the experiment is run for a long 
enough time, 1/6, to allow many oscillations. This requires 
that  the two experimentally controllable parameters Cl and 6 
be  chosen to satisfy 

In principle, the dc current response  of the system  is then 
obtained by extrapolating the result to Q + 0, always 
maintaining the condition (5). It is worth noting that in fact 
almost all experiments measuring the “dc” current response 
of mesoscopic multi-probe devices are performed at small 
but finite ac driving frequency [and, of course, they are  run 
for a long enough time to satisfy condition (5)]. Therefore, 
any model calculation where the results depend on Q and 6 
being literally zero is suspect. Our calculation is valid for 
small but finite Cl and 6 (where  “small”  is measured with 
respect to other relevant physical time scales,  such as 
scattering times). Further discussion  of the accuracy and 
validity  of our model in describing experiments of the type 
considered above is deferred to the following  sections. The 
main goal  of th is  section is to solve  carefully  a  Well-defined 
quantum-mechanical problem. 

We consider a  system consisting of N, infinite, perfectly 
conducting, straight “leads”  of arbitrary widths, attached to a 
disordered region  of arbitrary shape (see Figure 1). The 
absence  of a magnetic field  makes the distinction between 
simply and multiply connected systems irrelevant. Time- 
reversal symmetry is  assumed, and  the carriers are taken to 
be noninteracting fermions at T 0. We restrict our 
discussion to two dimensions and  to spinless  particles (under 
the assumption that all quantities are spin-diagonal), for the 
purpose of  avoiding the excessive proliferation of indices in a 
notation that is already quite complicated. The derivation in 
the more general case runs completely  parallel to that given 
here and most  of the equations (though not all) are formally 
identical, one only needs to bear in mind that  in  the general 
case there are two transverse directions instead of one, that 
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some symbols represent spin matrices instead of  c-numbers, 
and the time-reversal operator T has a different  meaning. 

The Hamiltonian for each  particle,  before we turn  on the 
driving field, is 

H, = - pz + U(x), 
1 

2M (6) 

where U(x) vanishes outside the disordered region. The 
eigenstates I J h .  1 of the unperturbed Hamiltonian are zero at 
all the boundaries except at infinity, and they can be  chosen 
to form a delta-function normalized orthogonal basis  of the 
Hilbert space.  Because  these states will be labeled  by both 
discrete channel indices and continuous energy  indices, their 
proper normalization is somewhat subtle. This technical 
point is important because it relates  directly to the correct 
definition of  a unitary S-matrix for t h i s  problem,  a point 
which  we address in detail in Appendix A. Time-reversal 
invariance implies that { Tqm] is  also an orthonormal basis  of 
eigenstates of H, (where Tis the time-reversal operator). In 
each  lead, the hard-wall boundary conditions impose a 
quantization of the transverse momentum, leading to a  finite 
number of propagating solutions for any fixed  energy c, 

referred to as channels. All channels with transverse energies 
larger than c will have amplitudes that decay exponentially 
along the lead in  the outgoing direction from the disordered 
region. The regions  of the leads that are far enough from the 
disordered region to ensure that all the decaying channels at 
energy tF have  vanishing amplitudes will be  called the 
asymptotic region. 

Our derivation proceeds in three steps: First we  use the 
linear response approximation to obtain an expression  for 
the generalized conductance coefficients in terms of the 
eigenstates  of the unperturbed system. Then we translate the 
result into the language of Green functions. Finally, we  use 
scattering theory to relate the Green functions to the 
quantum-mechanical reflection and transmission amplitudes 
of the system, in order to express the linear response 
coefficients in terms of those quantities and compare the 
result  with Equation (4). The final two stages in the 
derivation are very similar in spirit to the approach used  by 
Fisher and Lee [ 121 to derive Equation (2). 

Conductance coeficients in terms of exact  eigenstates 
Following the usual linear response approach, we initially 
assume that a k e d  external electric field E(x, t )  is imposed 
on  our system, and find the current response  of the system 
to first order in E(x, t ) .  However, the crucial point emerges 
shortly that only the electrical potential in  the asymptotic 
region  need  be  specified to determine fully the current 
response [2]. 

Drivingjeld 
We take E(x, t )  to be  given  by 

E(x, t )  = E(x)cosL?t - e-”“, 

IBM J. RES. DEVELOP.  VOL. 32 NO. 3 MAY 1988 

The system consists of a disordered region (shaded area) and NL 
infiniteperfectlyconducting “leads” attached toit. The ‘‘leads’’ are 
straight, but have arbitrary widths. 

where E(x) is assumed to be zero in the asymptotic region 
but is otherwise unconstrained. Q and 6 are going to be taken 
to zero at the  end of the calculation, in a way consistent with 
( 3 ,  for the reasons discussed  above.  Choosing  a  gauge in 
which the scalar potential is identically  zero, 

1 aA 
E(x, t )  = -- - (X, t),  c a t  (8) 

and the Hamiltonian for each particle (of  charge e and mass 
M )  becomes 

H=&(p-:A)I + U(x). (9) 

Since we want to use (6)  as the unperturbed Hamiltonian, 
the choice of A(x, t) is restricted, in addition to Equation (S) ,  
by the further condition 

A(x, t + -00) = 0. (10) 

Let E(U)  be the Fourier transform of the  timedependent 
Part of tX 

=-[ i -1 + -1 
4u w + L ? - i f i  o -Q- i f i  

+ 
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A(x, t) = -c J E(x, t ’ )dt ’ 
-m 

= cE(x) Jm dw&w) - e 
-m w + iq 

-i 

The positive  infinitesimal parameter q has been introduced 
in the denominator to define the integral at w = 0 while at 
the same time preserving (10). Unlike the parameters f2 and 
6 ,  which  have  physical  significance for nonzero values, q is a 
true infinitesimal, introduced simply to define the Fourier 
transform of A in terms of the Fourier transform of E. 
Before embarking on the calculation, we point out that the 
Maxwell equation 

together with the condition I B I - I E I (which  is a 
consequence of the V X B Maxwell equation), implies that 
V X E = 0 to first order in  the small quantities Q and I E I .  
Therefore, at the level  of approximation at which we are 
working, the line integral  between any two points is path- 
independent; i.e.,  we could have  chosen to work in a gauge 
where there is  only a time-dependent scalar potential and no 
A field at all. Later in the calculation we  use the fact that 
there exists a scalar function V(x) such that 

E(x) = -V V(X), (15) 

even though at this point we have made a different  gauge 
choice. 

Equations of motion in linear  response 
To begin the derivation, we identify in (9) the part of H that 
is linear in E, and neglect the quadratic one: 

= Ho + H I .  (16) 

Using (1 3), we  get for the Fourier transform of H I  

ii, (x, w )  

= - (V E(x) + E(x) V)&w) G. ieh -i 
2 M  (17) 

Since we are treating our system as approximately 
noninteracting, the exact many-body  eigenstates can always 
be  expressed as Slater determinants of single-paaicle 
wavefunctions. For such a system, the expectation value of 
any single-body operator 0, , evolving according to the time- 392 
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dependent Schriidinger equation, can be  expressed as 
(0,) = Tr{p(t)O, 1, where p ( t )  is the single-particle  density 
matrix satisfying the equation of motion ih(d/dt)p(t) = 

[H,  p ] .  The unperturbed system in equilibrium at T 1 0 is 
then described by the density matrix 

with f(t,) 1 B ( t ,  - em), while the perturbed system  is 
described, up to linear order in E(x), by the density operator 

The Fourier transform of the equation of motion for p ( f ) ,  

also up to linear order in E(x), gives 

Evaluating (20) between states (a I and I ,13 ) and solving for 
(i, we  get 

where the positive infinitesimal quantity q in the 
denominator has been introduced again to define the Fourier 
integral  when eon + hw = to - e, + hw = 0 and ensure that 
p l ( t +  -m) = 0. 

Expectation  value of the  current  density  operator 
The current response  is  given  by the expectation value of the 
current density operator 

j(x, t)  = -[n(x)v + vn(x)] 
e 
2 

= p-{n(x)[p 2 M  - : A(x, t)] 

where n(x) is the particle density operator. The coordinate 
representation of j(x, t) = j,(x) + j, (x, t )  is obtained from 

(x’ljo(41+) 

= - [S(X’ - x)V’ + V‘6(X’ - x)]+(x’) 
- ieh 
2 M  

and 

The expectation value of j(x, t)  is obtained, as usual, by 
multiplying it by the density operator and taking the trace. 
Keeping terms up  to first order in E, 

Next, we use the orthonormal basis I$,) of eigenstates of Ho 
to compute the traces. The matrix elements of the density 
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operators po and p, ( t )  can be  read from (18) and (21). Those 
of jo(x), at finite x, are found from (23) to be 

where an integration by parts has been  performed, and the 
integral  over the part of the boundary that is not at infinity 
vanishes because the wavefunctions are zero there. The 
symbol W,,(x) in (26) is defined  following Economou and 
Soukoulis [ 111  by 

W,,(X) = +;(x)  +-(x) 

= +;(x)[v+a(x)l  - [V+,*(x)Ma(x). (27)  

For later use, we point out here  two properties of Woe: 

Wea(X) = -w:,w (28)  

W(T,XTa,(X) = w;a(x) ,  (29)  

and 

where Ta, Tfi are the time-reversed states corresponding to 
$a and $,. Note also that as a consequence of (28) and (29), 

w,,X,,cx> = -Waa(x). (30)  

Using (24), we find the matrix elements of j, (x, r )  to be 

[ j l ( x ,  01, = J dx’(+,I   x’>  (x’   l j , (x ,  t)l+,) 
’ e‘ 

Mc 
=-- 4x7  t )$ ,*(x)+dx) .  (3 1) 

The second term in (25) gives rise to the diamagnetic term 

(34)  
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8 C,, is a transverse line in lead n located in the asymptotic region where 
) the electric field is zero. At each lead we define local coordinates 
i ( x n ,  y,) and we indicate by fi, the  normal  to C,,. The part of the 
j total system bounded by the lines {Cn} is called d. 

can be calculated from (17), and after an integration 
by parts in which the integral  over the boundary is found to 
vanish  because either $ is zero or E = 0 at infinity, we  get 

-i 

Cancellation of the diamagnetic term 
At this point we have to introduce some further notation: In 
the asymptotic region of each lead n, where there is no 
electric  field, we consider a transverse line C,,, and define 
local coordinates (x,, y,)  as indicated in Figure 2. We call A, 
the portion of the system that is bounded by the “surfaces” 
(C, , - , CNJ. Roughly  speaking,  these  “surfaces” 
correspond to the interfaces between the disordered region 
and  the perfect  leads,  however, to be  completely  rigorous we 
choose them to be far enough away from the disordered 
region so that  the propagating channels have assumed their 
asymptotic forms in terms of reflection and transmission 
matrices, and the evanescent  waves  have  decayed to a 
negligible amplitude. 

The integral in (35) can be  restricted to the domain A, 
since E = 0 outside of it.  After  using (1 5 )  and integrating by 
parts, we are left, in addition to a line integral over the 
curves C,, with an integral over A. That integral can be 
further transformed by means of the following relation, 
which  is  a consequence of the single-particle  Schrodinger 
equation: 
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The result we obtain is 

394 

where the constants V, multiplying the line integrals are the 
constant values  of the voltage V(x) on the leads external to 
the curves (C, 1. We are now  going to transform (34) using 
the equality 

1  1 h(o  + iq) =” 
cue + hw + iv cum (eua + hw + iq)cua* (38) 

The first part in (38) gives  rise to 

where  we  have  used (37) and we  have defined 

After  splitting the square bracket,  writing  explicitly WUu(x), 
using the closure  relation za  +a(xW.,+(x’) = 6(x - x’) and 
then ( 1 S), the second term in braces in (39) gives 

4 M  
- E(x) X f ( ~ a ) m 4 ~ a ( x ) ,  
h2 (41) 

01 

and therefore the contribution of (39) to Tr(pl(t)j,,(x)} is 

Looking at (1 3), we  see that the second term in (42) cancels 
the diamagnetic  term (33). Adding up the contributions of 
the first term in (42) and the second term in (38), we obtain 

Identification of reactive  and dissipative terms 
We  now consider t < 0, and perform the integration dw by 
closing the contour in the upper complex w-plane [48]. After 
setting q = 0, we are left  with 

(44) 
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Now  we take 6 + 0 and make use of Dirac’s formula lime+o 
l/(x f ic) = P( l/x) T i d ( x )  inside the “integral” ,, to get 

Then, we write e*’”‘ = cosnt f isin Qt and we group the 
terms that multiply cos Q t and sin D t ,  respectively. 

(28), we  get the equality 
By exchanging dummy labels (Y c* p and making use of 

After the square brackets are split, the second term arising 
from (46) can be shown to equal the first  by  using (29) and 
by noticing that the  sum can be carried out using the basis 
Tfi, J instead of [ f ia) .  Consequently, the expression  with the 

minus sign in (46) vanishes,  while that with the plus sign can 
be written as 

with the help of (28). The same trick used in obtaining (46) 
shows that 

and also, as before, the expression  with the minus sign 
vanishes. 

The results obtained leave us with  a current density 
( j(x, t ) )  that is composed of  a  dissipative term that oscillates 
as cosnt, 

and a  reactive term that oscillates as sin fi t, 

cos nt, 



dc limit We note here the fact that the current density at every 
Since we are interested in  the behavior of (j(x, t ) )  when  position is found to depend only on the constant values the 
Q + 0, we now  proceed to consider that limit in (49) and electric potential V(x) has in  the asymptotic region. We can 
(50). The relevant experiments are usually  performed at  then regard (j(x, t ) )  as the response of the system to 
temperatures T and frequencies Q such that hQ << k,T, so voltages applied at  the leads (an easily  realized experimental 
we consider the limit Q + 0 before taking T + 0. We  first 
write 

and observe that in  the limit a-0 and T + 0 

Consequently, ( 5  1) leads to the simple expression 

(53) 

in which  we have  used 2 a,8 to represent  a sum extended 
over all states a and ,8 with  energies ea = t, = tF. 

to obtain 
We can further transform (49) by taking advantage of (37) 

with  which the dissipative current density becomes 

We  now look at the reactive  piece  of the current density. In 
the limit Q + 0, the “integrand” in the second sum in (50) 
becomes odd under the exchange of dummy indices a c, p, 
and therefore the sum vanishes. The resulting  low-frequency 
expression, 

e2h2 N~ 1 
(jR(x,t)) =- - K,csinQt,  

4M2 ,,=I 0 

has the property that unless all (K,] are zero, the reactive 
current grows monotonically with  decreasing Q, and can 
become arbitrarily large as the driving field is turned on 
more and more slowly. One expects this behavior for a pure 
noninteracting electron gas, but not in  the presence of 
scattering; and somehow the transition between the two 
cases must show up in a correct calculation of these 
coefficients.  Since the dissipative current is our main focus in 
this paper, we shall not pursue this question further at this 

396 time. 

condition), rather than to a  specific externally imposed E(x) 
(something which is rather hard to realize  experimentally). 
This point was  first made (to the best  of our knowledge)  by 
Kane et al. [2], who make a  physical argument concerning 
the natural electric field to consider if one is content to 
examine the system on length  scales much larger than  the 
screening length. We return to this point below. 

By integrating ( 5 5 )  over the curve C,,,, we find the total 
outgoing dissipative current Z, at lead m to be 

(57) 

where the generalized conductance coefficients are given  by 

Before  we  go on, let us cast ( 5 8 )  in a form that shows 
explicitly the units of g,,,,,. Our choice of dimensionless 
wavefunctions and the normalization condition 
Ea $:(x)$,(x’) = 6(x - x’) show that x, has dimensions of 
inverse  length square, whereas the integrals in ( 5 8 )  are 
dimensionless.  Therefore,  recalling that x:,, involves two 
energy delta-functions, 

has units of e2/h as expected. We remark that ( 5 8 )  is  a  basis- 
independent formula, in  the sense that it can be computed 
using any orthonormal basis to the subspace of eigenvectors 
of H, with  eigenvalue tF. 

Conductance coeficients in terms of Green functions 
Since our ultimate goal is to express the coefficients g,,,, in 
terms of the quantum-mechanical reflection and 
transmission coefficients of the system, one would then be 
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tempted to use scattering  states {$:)I to evaluate (58). 
Scattering states are the standard eigenbasis  for  scattering 
problems [SO]; they  correspond to a single incoming wave 
and outgoing waves  whose amplitudes are  essentially the 
reflection and transmission amplitudes (we  define these 
states  with  great  care  below). This is in fact the way Langreth 
and Abrahams [ 161 proceed in their derivation of a multi- 
channel Landauer formula.  However, as was  first pointed 
out by Fisher and Lee [ 121, in the  multichannel  case  the 
scattering states do not form an  orthonormal basis, so their 
use in (58)  is prima facie unjustified. The basic  reason  for 
the nonorthogonality  of the scattering states in this problem 
is that in a waveguide  type  of  geometry the propagating 
states carry different amounts of  flux  per unit probability 
density;  thus, unitarity of the S-matrix, which  guarantees 
conservation  of  flux,  does not imply that the states {$?I are 
orthogonal.  Since in one dimension the states of a given 
energy  carry the same  flux, this problem  does not arise  in the 
one-dimensional case; similarly,  in the spherical  scattering 
geometry  all the states cany the same  flux at infinity, so 
again the problem  does not arise. A proof of the 
nonorthogonality of the scattering states is  given in 
Appendix A, along  with a careful  discussion of the 
appropriate definition  of the S-matrix for this problem. 
Nonetheless,  despite the fact that the exact  eigenstates  in 
Equation (58) are assumed to be orthonormal in its 
derivation, it turns  out that the evaluation of (58) using the 
nonorthogonal states {$?) yields the correct  result. Thus, in 
this particular context the extra contributions to the 
expectation  value  of the current due to the nonorthogonality 
of the states must  cancel;  however, the reason  for  this, and 
how general a result it is, remains unclear to the authors 
1491. 

In [ 121, Fisher and Lee  noted this problem;  they then 
introduced the clever  idea  of  avoiding it by relating the 
conductance to the Green functions of scattering  theory and 
then relating the S-matrix directly to the Green functions 
and not the {+:)I. Our method  follows that general 
approach, but our derivation  differs from theirs not only in 
that it extends the result to the case  of a multiprobe system, 
but also in that  it is computationally more  straightforward. 
Some further notation is  required at this point: We represent 
by x, a point in the asymptotic  region  of  lead rn whose  local 
coordinates, as defined in Figure  2, are (x,, y,). We start by 
using  Dirac’s formula to express the difference  between G(+) 
and G(-), the full Green functions of the problem, in terms 
of the exact  eigenstates  of H,,: 

AG(x, x’)  

i (G“’ - @-))(x, x ’ )  

Using definition (27), we can expand the expression 
appearing in (58) as follows: 

It  is  here that our derivation  makes contact with the usual 
Kubo formula.  Using (51)-(53) in (49), one can immediately 
find that the conductivity  tensor  is  given by 

which can be  seen to be  precisely the Kubo conductivity 
tensor by  using  (6  1) and (60) to express it in terms of the 
Green functions. Combining Equations (58),  (60), and (61) 
yields the Green function expressions  for the g,, obtained 
and evaluated in perturbation theory, e.g.,  by Kane et al. 
[2,51. 

We  now  call x;””( y,)  the normalized  transverse  sine waves 
corresponding to channel a in the asymptotic region  of  lead 
m, and define the Fourier transforms of the Green functions 
by 

G(*)(x,, x;) = G:;,(x,, ~~)xb~’(~,)xb“(CV~).  (63) 

Combining (58 ) ,  (60),  (61), and (63) and taking advantage of 
the orthonormality of the X ’s, we obtain 

a,a’ 

a a -  -- 
ax, ax; AG,,. - AG,., 

- 
where AG,,. and AG,., stand for AG,,.(x,, x,!,) and 
AG,,,(x,!,,  x,), respectively, and x,,  x: are Points on the 
curves C, and C,. 

Conductance coeficients in terms ofS-matrix elements 
We  now intend to express the Green functions in (64) in 
terms of the reflection and transmission  coefficients  of the 397 
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system, and then substitute the result in (64) to obtain g,,,, in 
terms of those  coefficients. It is important to note that the 
operators G(*) involved are singular and are not ordinary 
operators on the Hilbert  space [50], so standard operator 
manipulations can  lead to incorrect  results [5  11. The 
properties of these  operators are well-described in Messiah’s 
classic  book on quantum mechanics,  where  he  introduced 
them with the warning: “ . . . their manipulation requires 
caution and a  certain  flair.” We  shall certainly use caution 
and hopefully  exhibit  some  flair in our proof  below. 

Relation of Green  functions to elements of the S-matrix 
Let us denote by $:::) and q+(n,a) the eigenstates  of the 
Hamiltonians with and without  disorder,  respectively, that 
have  only one incident wave from  infinity,  coming  through 
lead n, in channel a. As usual, the two  states are related  by 
the equation 

nonstandard definition of the reflection and transmission 
coefficients in (66) and (67). As discussed in Appendix  A, 
these  definitions are needed in order to ensure that these 
quantities are the matrix  elements of a  unitary  S-matrix. 

We  begin  by considering x to be a point on lead m, closer 
to the disordered  region than C,,, (i.e.. x is inside A). Due to 
the equation satisfied  by G(+)(x, x ’ ) ,  we can make the 
substitution 

G(+)(x, x’)U(X’) = ( c + - *Z2)G(+’(x, x’ )  - 6(x - x’) 

(68) 
in the integral in (65), and after a  couple of integrations by 
parts, we obtain for that term 

(69) 
Using the asymptotic forms (66), we  get 

exp {ikjflx,) 3 
The forms of $::a, and q+n,u) in the asymptotic region ofthe = tln,u,a - G!:!(~xrn, x,!) I # n (70) 
system are given  by a’ ax; 

cp { -ikf)x,) exp { iklf!.,) 
Xb“‘CY,) + c rnn,u.u x$)( y,) for x in lead n, 

0’ @ 

and 

for x in lead I # n, 

exp { ik$)x,) 
Xb“‘(Y,, + c r,,,,., x$)( y,) for x in lead n, 

(I’ @ 

Xh‘!(Y/) for x in lead I # n, 

where the B in (66) stands for “ballistic,” and all the k’s are 
defined to be  positive. This emphasizes an important new 
feature of the multi-probe  problem  with  a  disordered region 
of arbitrary  shape:  Even in the absence  of  bulk  disorder, the 
“free”  scattering  states  involve transmitted and reflected 
waves, due to the geometry  of the system. They are not 
simply  quantized  plane  waves, and this complicates the 
derivation as compared to that of  Fisher and Lee or 
Langreth and Abrahams.  However,  this  feature  is  also  of 
physical  importance,  since it reflects the fact that in very 
clean  devices, the dominant scattering  mechanism may  be 
surface  scattering due to the device  geometry; one would  like 
then to ensure that this  formula is valid in that “ballistic” 

398 limit as well.  We  also call the attention of the reader to the 

and 

where G!Z)(x, x’)  is the Fourier transform of G(+)(x, x ’ )  with 
respect to y’ only.  Substituting (70) and (71) into (65), and 
carrying out the differentiations, we obtain 
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G!:’(x, x ’ )  contains only  outgoing  waves [50] in the sense To obtain the analogous formulas for GZ’(xA, x,,,), we 
that if  we consider a fixed x ,  and look at the dependence of simply  exchange  labels a t-f b, m t-f n, and x c* x’ in (79) 
G!:’(x, x ’ )  on x’ at a point x’  in  the asymptotic region, and (80). Computing AG and m, using (78) and 
farther than x from the  scattering  sources, then substituting into (64), we obtain 

different  leads, but is important when both points lie on the 
same  lead.  Writing 

(74) which can be immediately transformed by means of (77) to 
yield 

and taking advantage of (73) to evaluate the derivatives in e’ 
(72), we amve at g,, = - c { I t , , , , ,  I + I t,,,,,, 1’1 m + n, (82) 

4*h u,a’ 

h2 $::,b,(x,) = - E 2ik:’GE(xm, x : )  where the sums on a and a’ run over the channels of  leads 
2M b m and n, respectively.  We can cast (82) into a nicer form by 

defining the matrices t,,,, whose elements are 

Comparing with (67) and identifying the coefficients of the When we represent Hermitian conjugation by a dagger and 
x’s ,  we obtain the trace in the space of the matrices just defined  by Tr, (82) 

We call the attention of the reader to the fact that  the Green 
function in (76), which corresponds to the case in which 
both points x and x’ are on the same lead, does not only 
contain outgoing  waves at x (the point standing closer to the 
disordered region) [52]. Similar expressions can be obtained 
for GLi’ by using the general relationship 

Gii’(x, x ’ )  = [ G T ( x ’ , x ) ] * .  (78) 

Final  result for g,, 
To obtain g,,,,, all that remains to be done is to substitute 
(76) and (77) into (64). When m # n, 
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acquires the more compact form 

e2 g,, = - Tr(t,,,,tLn + t , , , , t~,) m Z n. 
47rh (84) 

This formula can be further simplified  by appealing to time- 
reversal invariance, to yield the familiar-looking 

g,, = - e’ Tr{t,, , , t~, m # (85) 
27rh 

In the special case of a two-lead  system, (85) can be obtained 
from (84) by  using  only the unitarity conditions satisfied  by r 
and t, as noted in [ 121. This can easily  be  seen  by taking the 
trace of Equations ( 1 15) and ( 1 18) and comparing them. 
Had we considered  two coupled spin polarizations, we would 
have arrived at Equation (82) too, except that now the 
channel label  would  need to be interpreted as an index for 
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channel and spin, and the trace in (85) would  be  over those 
“composed  indices.” 

In order to obtain g,,, we can avoid a somewhat lengthy 
calculation by noticing that as a consequence of (36) and 
(58)  [see Equations (98)-(  100) in Appendix A], 

NL N L  c gmn = c g,, = 0. (86) 
n= 1 m= 1 

Using (84) in (86), we amve at 

m f n  

which  can  be transformed into 

by means of the cyclic property of the trace, and the 
unitarity conditions (1 15) and (1  18). Equations (57),  (85), 
and (88) complete the rigorous derivation of Equation (4). 

Equation (4) expresses the current response of the multi- 
probe conductor in terms of applied external voltages on the 
leads. Often in experiments the measurements are done 
under conditions where the injected current is  effectively 
fixed, and the induced voltages are measured. This requires 
inverting Equation (4) for a given  set  of injected currents. 
This is not entirely straightforward, since the matrix gmn is 
not invertible.  Explicit solutions for the voltage  response to 
an applied current for the three- and four-probe cases  have 
been  given  by Buttiker [ 1,461; a general procedure for 
solving Equation (4) for arbitrary injected currents and an 
arbitrary number of probes  is  given in Appendix B. 

5. Can a  perfect conductor  have  a  resistance 
after all? 
We have  now  seen that the multi-probe Landauer formula 
proposed by Buttiker [Equation (4)] can be  explicitly  derived 
from linear response theory for a particular model  system. In 
the limit of  only  two  probes, this formula reduces to the one 
derived  previously by Fisher and Lee [Equation (2)],  which 
eight  years  ago  caused such consternation because it 
predicted that a “perfect conductor” would  still  have a finite 
resistance, R, = (Ne2/h)-’. In particular, the work  of 
Thouless [ 151 and Langreth and Abrahams [ 161  suggested 
that although Equation (2) was derivable from standard 
linear response theory, it was  physically implausible because 
it failed to take into account important self-consistency 
conditions. If this is correct in  the two-probe  case, it is by no 
means clear that a similar criticism should not be  leveled at 
Equation (4).  In addition, there was the physical argument 
originally due to Engquist and Anderson [ 181 and 
generalized by Buttiker et al. [ 131, which  suggested that 
Equations (1) and (3)  were appropriate for describing a four- 

400 probe measurement. However, the correctness of  these 
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original criticisms of Equation (2) is  now much more 
doubtful than it appeared initially; particularly insofar as 
they  were  given  plausibility  by the intuitive expectation that 
a “perfect conductor” should exhibit zero resistance. Imry 
[53] and more recently Landauer [54] have  emphasized that 
the minimum resistance obtained from Equation (2) can be 
thought of as a true contact resistance,  which  would 
influence a real  two-probe measurement. Therefore, it is  by 
no means clear that a jn i te  perfect conductor, connected to 
reservoirs, should be expected to exhibit zero resistance. We 
summarize these arguments with  slight  modifications; 
readers are referred to [ 531 and [54] for more details. 

The argument can be stated as follows. Consider in free 
space  two macroscopic closed containers each containing 
degenerate neutral Fermi gases in equilibrium at T = 0, with 
different chemical potentials pI and p2. Imagine  now  poking 
a small hole in  the side of each container, connecting them 
with a perfect tube, and observing the time-dependent 
current that flows between them. On very  long time scales it 
is  possible for the current to oscillate as the excess density 
sloshes  back and forth between the two containers, since this 
is essentially a many-body analogue of a double-well 
quantum system.  But on a shorter time scale one expects an 
approximately steady-state current to flow from the gas of 
higher density to that of lower  density (this quasi-steady state 
will occur for times such that the density change in the 
reservoirs induced by the current flow is much less than  the 
initial density difference). The actual value of the steady- 
state current will in principle depend on the shape of the 
apertures leading out of the two containers and on the 
absolute value  of the chemical potentials, since this 
determines the particle  wavelengths, and there will  be 
diffraction  effects at  the opening.  However, one can imagine 
impedance-matching the tube to the apertures, or averaging 
over  different shapes and sizes  of apertures. Then, estimating 
the current  that will  flow as pl approaches p, is  simply a 
matter of counting the density of momentum states at the 
Fermi level in each container which will correspond to 
propagating states in  the tube of width W, and then 
weighting  each state by the current it carries along the tube. 
This is  really equivalent (up to numerical factors of the order 
of unity) to the standard Landauer counting argument for 
the current, and Imry shows that a simple calculation yields 
I =  a(Ne2/h)(pl  - p,), where a is a constant of the order of 
unity. 

Thus, in this case it is  clear that although the tube itself  is 
a “perfect conductor” in the sense that it contains no 
scattering centers, there is a contact or “spreading  resistance” 
necessarily  present  when connecting the two  reservoirs that 
on average is of the order of the resistance R, = (Nez/h)-’ 
predicted by Equation (2) for a perfect conductor. Note that 
in this example, it is clear that the resistance  involved  really 
is a contact resistance,  since it does not depend at all on the 
length  of the tube connecting the containers, and this could 
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be determined experimentally.  If one now introduces 
scatterers into the tube, an obvious extension of the 
argument predicts  a current proportional to Tr(ttt ). Thus, if 
one measures the conductance by dividing the current by the 
chemical potentials 1.1, and p2, measured by probing the 
density of the gas in  the containers far away from the 
opening to the tube connecting them, one will obtain a  value 
of the order of that predicted by Equation (2). If one could 
instead probe the average density of carriers at the ends of 
the tube, without significantly  affecting the density, one 
would  measure  a smaller difference in the effective chemical 
potentials,  since not all the available momentum states are 
filled (there is  a  net current flowing);  presumably one would 
infer  a  larger conductance, given approximately by 
Equations (1) and (3). 

In other words, the point made by Buttiker et al. [ 131 is 
certainly correct; there will  be a true density gradient 
extending from the ends of the tube some distance into the 
reservoirs.  If it is  possible to measure the local 
nonequilibrium density in the leads, by a four-probe 
measurement, without substantially changing  that density 
when introducing further probes, then it seems  reasonable 
that the conductance could be  well approximated by an 
effective  two-probe formula,’ such as Equation (3),  which 
does not depend on the scattering properties of the leads. 
This is what the assumption of  weak coupling to the 
measuring  reservoirs  achieves in  the models of  Engquist and 
Anderson and Buttiker et al.  However, in the context of 
multi-probe measurements on mesoscopic conductors, it 
appears difficult to realize such an ideal  weakly coupled 
measurement. Typically the voltage leads are about the same 
size and conductivity as the “current leads.” More 
importantly, if much of the sample is phase-coherent (in the 
sense that the inelastic  scattering  length  is of the order of or 
greater than  the sample size), the transmission properties of 
the main channel are substantially affected  by  excursions 
into the leads. In such a situation, a formula such as 
Equation (4) that treats current and voltage  probes on equal 
footing appears essential  for  a proper description of the 
conducting properties of the system. It may  be  possible to 
find an experimental realization of a  weakly coupled voltage 
measurement, e.g.,  by using  a scanning tunneling 
microscope [ 191. However,  whether such a probe would 
really correspond to the ideal  weak coupling needed for 
Equations (1) and (3) remains an open question, as we 
discuss in the final  section. 

Returning to the “two-probe measurement” discussed 
above, we have argued for the inevitable presence of a 
contact or spreading resistance in the context of this 
idealized model for simplicity.  However, we emphasize that 
this is an important and well-known  physical  effect that 
must be taken into account in understanding point contacts 
between  real conductors [55]. More than twenty years  ago 
Sharvin  [56] estimated the spreading resistance due to a 

point contact, and  in the limit when the aperture width  is 
much less than  the mean free path  in the conductors, Imry 
[53] has shown that his formula yields  a contact resistance of 
the order of R,,. 

Very  recently  Van  Wees et al.  [57]  have  seen dramatic 
evidence for this quantum contact resistance, by observing 
steps in  the conductance of ballistic point contacts at values 
of the Fermi energy corresponding to the onset of  successive 
1 D sub-bands. The experiments observe quantized 
conductance values  very  close to Ne2/h, whereas the present 
theoretical arguments would only predict a contact resistance 
of this order of magnitude. This suggests that  the impedance- 
matching and diffraction effects at the’junction to the 
constriction do not substantially alter the simple arguments 
cited  above,  a  finding  which requires further theoretical 
study to be  fully understood. 

The crucial point of this discussion is to emphasize that 
not only  Equation (4), but also Equation ( 2 )  corresponds 
rather well to one common kind of resistance measurement. 
In the ideal system it corresponds to connecting the 
reservoirs, measuring the current that flows between them, 
and then measuring the density difference far away from the 
points of connection between the two  reservoirs. In a more 
realistic  system, Equation (2) provides  a  good approximate 
description of a  real  “two-probe” measurement, in which the 
voltage induced by a  given current is measured between 
points on two bulk electrodes. Therefore we conclude that 
Equation (4), including the two-probe and one-channel 
limits, is the physically relevant Landauer formula for  all the 
present experiments. The fact that Equation (2) predicts  a 
maximum achievable conductance is not unphysical, but 
reflects the inevitable presence of a contact resistance 
whenever current flows  between two reservoirs.  Those  who 
cannot accept the notion that a  perfect conductor can be 
said to have  a  finite  resistivity (as opposed to resistance) will 
perhaps be  consoled  by the thought that because R,, is  a 
contact resistance (i.e., it scales  inversely  with area, but is 
independent of  length), the resistivity, p = (A/L)R, 
corresponding to R, does indeed go to zero as the sample 
size goes to infinity (at fixed  shape). 

6. What about self-consistency? 
In the preceding  section we have  argued that the approaches 
that obtain Equation (1) instead of Equation (2) by invoking 
an ideal  weakly coupled four-probe measurement are not in 
general convincing because such a measurement does not 
correspond well to a  real experimental resistance 
measurement. Our argument does not clearly address the 
alternative approaches for obtaining Equation (1) based on 
self-consistent linear response theory due to Thouless [ 151 
and Langreth and Abrahams [ 161. The approaches of these 
authors are similar in spirit but differ in detail. 

Landauer’s  Formula for Resistance Is Right” [15], 
Thouless, in an influential  comment  entitled  “Why 
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considered  a  finite one-dimensional system  with  periodic 
boundary conditions, i.e., a  ring,  consisting of a small 
disordered  segment imbedded in an otherwise  perfect 
conductor. He does not consider attaching leads  anywhere 
on the ring, and does not discuss any coupling between the 
electrons in the ring and, e.g., the lattice. Therefore the 
object  he considers is an isolated quantum-mechanical 
system  with  discrete  energy  levels. Then, it seems that this 
model corresponds more closely either to a  microwave 
absorption experiment or  to  an experiment where the 
current is  generated by a  time-varying  flux through the loop, 
than to a  two-probe measurement. Both of these situations 
have  been  discussed in detail in the literature [41]. Thouless 
calculates in the usual way the linear response to a uniform 
ac field applied only  across the disordered region, imposing 
the further condition that the frequency fl of the field cannot 
be taken smaller than the level  spacing  of the ring [58 ] .  He 
shows that under this condition the uniform field  generates  a 
spatially nonuniform current in the ordered section of the 
ring. He then argues that this result shows that such  a linear 
response calculation is unphysical because it allows  these 
macroscopic  charge density waves,  which  would  be 
forbidden if one had properly accounted for the electron- 
electron interactions. Therefore, linear response theory is 
only  sensible if one assumes that  the electrons generate a 
self-consistent  field to cancel out these  charge density waves. 
Thouless  shows that the correction to Equation (2) due to 
the internal field  is precisely what  is  needed for the response 
to the total field to be  given  by Equation (1). 

argument is  impressive and suggests that Equation (1) does 
have something to  do with the response of a closed 
conducting system to  an applied ac field.  However, it is not 
obvious that this self-consistency requirement should apply 
to an open system,  where the disordered sample is connected 
directly to bulk electrodes. As  we emphasized above, the 
total current flowing in  and  out of various leads in the 
conductor is not dependent on the detailed electric field 
distribution within the conductor, but only depends on the 
voltage applied at  the end of the disordered portion of the 
leads. The infinite perfect  leads in our model calculation are 
intended (in the absence of a more complete description) to 
simulate the effect  of macroscopic electrodes  which 
introduce substantial inelastic scattering and irreversibility. 
Therefore, it is not clear that a  self-consistency requirement 
imposed to avoid charge density waves far away from the 
disordered region,  which are supposed to correspond to 
points well inside the reservoir,  is  meaningful for the open 
systems we are attempting to model. 

Langreth and Abrahams do consider an infinite  system, in 
fact,  exactly the same system as Fisher and Lee,  i.e., a  finite 
multi-channel two-probe disordered conductor imbedded in 
an infinite perfect conductor. They also note that a  spatially 
uniform finite  frequency  field imposed over the disordered 

The simplicity of the result obtained by this self-consistent 
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region alone will  lead to charge density waves in the ordered 
leads.  Like  Thouless, they argue that therefore the field 
cannot be assumed to be  zero in the ordered region, but 
must be determined self-consistently  by the condition that 
the current density remain uniform for finite  frequency and 
that far away from the disordered region the conductivity is 
given  by that of a homogeneous 1D electron gas. They seem 
to imply that these conditions are necessary  even  for  a 
system  of neutral particles responding to a  density gradient, 
of the type considered in the discussion  above.  They state 
that these conditions are the correct ones to impose in order 
to represent an experiment in which a fixed current is driven 
through the sample, and the induced voltage  is measured. 
Their linear response calculation then differs from our own 
and  that of  Fisher and Lee  because there appear additional 
contributions to the current in the disordered region due to 
the field in the perfect  leads. This approach, like that of 
Thouless,  yields Equation (1) in the one-channel case. 

to many channels. In order to accomplish this, just like 
Buttiker et al., they had to make some assumptions about 
how to define the chemical potential in  the leads  (since  they 
were not allowing it to be treated as an externally imposed 
quantity). They  assumed that all’channels, whether  left-going 
or right-going,  were in perfect equilibrium with one another 
on both sides of the sample (this differs from the 
assumptions of Buttiker et al., as discussed in [ 131). Thus, 
for Langreth and Abrahams the leads do behave  like 
reservoirs in  the sense that there is assumed to be enough 
inelastic scattering there to equilibrate all the channels. This 
reflects  a  very  sensible  desire to put the “reservoirs” more 
explicitly into the linear response calculation (a development 
which we  believe is important for future progress in this 
area).  However, the “reservoirs”  responsible for the 
hypothesized equilibration of the channels in the leads  have 
the property that their chemical potentials depend on the 
scattering properties of the conductor connecting them. This 
assumption leads to a  different and more complex 
generalization of Equation (1) than  that of Buttiker et al., 
but its properties have not been studied fully enough to 
determine how  significantly it differs from Equation (2) or 
Equation (4) in various  limits. 

performed by Langreth and Abrahams can be done for a 
multi-probe system and would  yield  a  result  different from 
that of Equation (4). To be more specific, our calculation 
appears to predict the same long-wavelength variation in  the 
current density in  the ordered leads found by these authors 
for the two-probe case, although we have not studied this 
question carefully.  However, the wavelength of these 
variations will go to zero as fl goes to zero, so it is  only in 
the limit of truly infinite leads that this effect is important. 
Insofar as the infinite leads are supposed to mimic the effects 
of inelastic scattering and phase randomization in a bulk 

Langreth and Abrahams went on to generalize their results 

It seems  very  likely that a calculation of the type 
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electrode feeding current into the system, it is not clear that 
these  charge density waves  reflect  a true physical  effect, as 
opposed to an artifact of the model. 

In summary, the results of Langreth and Abrahams and of 
Thouless depend crucially on effects in  the perfect  leads, and 
essentially deny that it is  possible to imagine the boundary 
condition of a  fixed external voltage. This is troubling, 
because  even in an interacting system, the notion of 
measuring the current flowing  between  two  reservoirs  with 
an electrochemical potential difference  which  is independent 
(to arbitrarily good approximation) of the properties of the 
conductor connecting them seems  perfectly  reasonable. 
(How can this fail to be true as the size  of the reservoirs goes 
to infinity?) In the case of Langreth and Abrahams, they are 
essentially  arguing that the boundary condition of a fixed 
external current would generate a  different linear response 
than  that of a fixed external voltage.  As  we discuss below, 
what  is  needed to really  clarify this issue further is  a  model 
calculation which actually includes a representation of the 
reservoirs or bulk electrodes in quasi-equilibrium. We 
cannot dismiss entirely the concerns of  these authors in the 
absence of such a calculation. However, as matters stand, 
given the agreement between calculations based on Equation 
(4) and experiment, and our physical understanding of the 
origin of the contact resistance it predicts in  the two-probe 
case, it is not clear that the self-consistency conditions 
imposed in these calculations are relevant to the present 
class  of  experiments. 

7. Where  are  the  reservoirs? 
Having  discussed the physical  plausibility of Equations (2) 
and (4) as compared to other Landauer formulae, we  now 
turn briefly to several common objections to deriving  a 
Landauer-type formula rigorously from linear response 
theory. 

First, it is often suggested, particularly in  the writings of 
Landauer [8,54], that the presence of those mysterious but 
useful “phase-randomizing reservoirs”  is  essential for a 
correct derivation of  a  dissipative  resistance. There are 
several  reasons for this suggestion. It is often pointed out 
that in the standard Landauer argument for Equation ( l ) ,  it 
is  essential to use the scattering states (J.“’) and not the 
states { J.“’) related to them by time-reversal,  since time- 
reversal  reverses the current carried by the state without 
interchanging the densities on either side of the scattering 
region. Hence Landauer argued that since the states I+(+’] 
give a  positive conductance, use of the states (J.“’) would 
give a  negative conductance. The presence of the phase- 
randomizing reservoir  is  invoked to rule out on physical 
grounds the use of the time-reversed  states,  which require 
precise  phase coherence between  waves incident from 
opposite sides of the disordered region. In our calculation 
the results  from linear response theory are obviously  basis- 
independent because the induced current density  is 

expressed as a trace over  states. Moreover, although in 
general we have not performed the calculation using either 
(IC.‘+’) or (J.“’] since neither are an orthonormal basis, in the 
one-dimensional case,  when they are orthonormal, we have 
checked  explicitly that the same result  is obtained, when 
either the (I)(+’) or {$(-’I are substituted into Equation (58). 

The second objection is that there cannot be dissipation in 
a  system in which there is  only  elastic scattering, and the 
reservoirs are needed to dissipate the energy  arising from the 
resistance of the conductor. This is of course correct in the 
following  sense: The resistance we calculate in linear 
response  is  really  a measure of the energy  fed into the system 
by the external field.  If there is no source of dissipation in 
the system, it will  heat up under the influence of the field, 
and  the linear response approximation will rapidly  become 
invalid. The construct of reservoirs reminds us that some 
degree of inelastic scattering is  necessary  for linear response 
theory to make sense.  Of course, if a calculation is  able to 
include inelastic scattering explicitly, as can be done by 
including interaction effects in  the Green function 
calculations performed using Equation (4), then it is clearly  a 
matter of taste whether or not one speaks of a  reservoir 
which  causes phase-randomization and dissipation. 

A  related argument is that, strictly speaking, no finite 
closed  system can exhibit irreversibility and dissipation; this 
raises the interesting question of the conditions under which 
energy  fed in can be fully  recovered  [54]. It appears that this 
is an objection to calculations that attribute a  resistance to a 
finite quantum system, and this is why  we explicitly consider 
an infinite system,  with continuous states, in  our 
calculations. It is evident that  in some respects the infinite 
perfect  leads of this model do simulate the phase- 
randomizing effect  of  inelastic scattering at least in the 
diffusive  regime. This point is  explicitly demonstrated in 
recent numerical simulations by Baranger et al.  [6]. There it 
is  shown that subdividing a conductor by attaching perfect 
leads at uniform intervals along its length  causes the voltage 
fluctuations to increase as a function of that length as if the 
voltage fluctuations in each  segment were uncorrelated, just 
the same effect as occurs when the inelastic mean free path is 
made shorter than  the sample length (without introducing 
additional perfect  leads) [33, 351. 

approach to quantum resistance has been  a  desire to 
represent the current (i.e., the incident carrier flux) as the 
source of the voltages induced in the sample,  whereas the 
linear response formalism naturally regards the fields as the 
source of the currents. The somewhat obvious point should 
be made about Equation (4) that once derived, it can be 
used either to find the currents induced by  fixed  voltages or 
the voltage  differences induced by  fixed currents. Since the 
matrix g,, is noninvertible, there are some minor technical 
problems when starting with imposed currents and 
calculating voltage  response from Equation (4).  A  general 

Much of the physical motivation for a Landauer formula 
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procedure for solving this problem is discussed in Appendix 
B.  Of course, this does not address the much more 
complicated problem of  how to calculate the final  steady- 
state charge distribution, taking into account self-consistent 
screening [54], but one apparently need not solve this 
problem to understand voltage fluctuations in mesoscopic 
metal conductors. 

In summary, although it may  be important and useful to 
stress the distinction between open and closed  systems by 
invoking the concept of a phase-randomizing reservoir in 
deriving  a  resistance, it is not essential to introduce such  a 
concept to derive Equation (4). The infinite perfect  leads 
apparently simulate the phase-randomization of electrons 
which  escape into the leads  invoked in  the intuitive 
derivation of Equation (4). Some of the limitations of this 
model for truly representing the bulk electrodes of an 
experiment are discussed  below. 

8. Theories of voltage  fluctuations 
In this section we discuss  briefly the quantitative calculations 
of voltage fluctuations in mesoscopic conductors which  have 
been  performed  recently in order to explain the observed 
behavior in the relevant experiments. 

Briefly, the experiments [27-291 had shown  voltage 
fluctuations ( (6 V)’ ) which  varied  linearly  with the probe 
spacing L for Li, << L and then changed  over to  an 
apparently constant value for L, 2 L. The value of the 
corresponding conductance fluctuations for Lin - L was 
always  observed to be ((6G)’ ) ’” - (ez/h). By appropriate 
lead-switching operations, it was  possible in some cases to 
examine separately the behavior of the field-symmetric and 
antisymmetric fluctuations [27,28]; the former were 
observed to have the behavior just described,  whereas the 
latter were found to be approximately independent of probe- 
spacing  even for Lin << L. Several experiments showed  a 
nonlocal  behavior in which  voltage  leads remote from the 
current paths nonetheless  exhibited  voltage fluctuations 
[28,29], and even  a remote Aharonov-Bohm effect [31]. 
Several quantitative analytic and numerical calculations of 
voltage fluctuations have  recently  been undertaken to 
account for these  effects [2-61. 

The diagrammatic calculations [2,4,7] start from the 
expression for the conductance coefficients g,, in terms of 
Green functions, and employ the impurity-averaging 
technique to calculate quantities like ( ( gm,$ ) to lowest 
order in  the small parameter (bl)”, where 1 is the elastic 
mean free path. The only point at which the geometry  of the 
device enters the calculation is in choosing the boundary 
conditions on the differential equation which determines the 
“diffusion propagator” ( G(+)(x, x’)G(-)(x’, x)). The 
standard boundary conditions [38] set this quantity equal to 
zero on the boundary with the leads, and set its normal 
derivative to zero on the “insulating” boundaries. Imposing 
these boundary conditions on a  finite  surface cuts off the 404 
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well-known small momentum divergence of the diffusion 
propagator at  momenta of the order of the inverse of the size 
of the disordered region. In the case  of  a  two-probe  wire, this 
finite-size  cutoff enters the calculations in much the same 
way as the cutoff due to inelastic scattering; thus, as noted 
above, the two-probe theory of  universal conductance 
fluctuations in a  finite-size conductor at T = 0 gives good 
agreement with observations on wires  with  probes  separated 
by approximately the inelastic  diffusion  length. The crucial 
point in this context is that these standard boundary 
conditions on the diffusion propagator can be  shown to be  a 
coarse-grained  version of the boundary conditions 
appropriate for our model of a  finite disordered region  with 
hard walls, connected to infinite perfect leads at appropriate 
points [59]. Therefore  our  results  show  that T = 0 
diagrammatic calculations  based on the impuritpaveraging 
technique  are precisely equivalent to calculating  voltage 
fluctuations using  the multi-probe Landauer formula, 
Equation (4). One of the major goals of this review is to 
emphasize the equivalence of this version of the Landauer 
approach and  the  Kubo formula approach at T = 0. 

It is  nonetheless worth noting that the two approaches are 
only  strictly equivalent in the absence of inelastic scattering 
(the effects  of  finite temperature in causing  “energy- 
averaging” [35,36] can be included easily in either 
approach). The S-matrix appearing in Equation (4) is for 
elastic scattering between the various channels at  the Fermi 
surface. It may  be  possible to generalize this approach to 
include inelastic scattering channels as well, but this has not 
been done, and would require a  very  different derivation 
from the one we  have provided above.  However, as noted 
above, adding perfect  leads at various points along the 
conductor can simulate to some extent the dephasing effects 
of inelastic  scattering. In the two-probe  case this is 
particularly simple,  because there is  only one length  scale 
associated  with the distance between the two ends of the 
disordered leads, and  one can roughly identify this with the 
inelastic scattering length. In the multi-probe case,  Baranger 
et al. [6] have  shown  by careful numerical studies that by 
choosing appropriate geometries it is  possible to reproduce 
almost all of the observed experimental effects (not relating 
to the asymmetry). It is worth noting that these calculations 
use  precisely Equation (4) and not any equivalent 
formulation. Initially the diagrammatic calculations also 
employed the artifice of perfect  leads to simulate inelastic 
scattering,  with some success [3]. 

length  scale  associated  with the finite-size  cutoff, and 
therefore there is at best  a  rough equivalence between the 
spatially  localized “inelastic scattering” introduced by the 
leads and true spatially homogeneous inelastic  scattering. In 
particular, the voltage fluctuations calculated from Equation 
(4) depend on the fictitious boundary conditions of “perfect” 
leads,  i.e.,  results depend in general on the distance along the 

Nonetheless, in the multi-probe case there is no longer one 
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voltage  leads from the main channel to the beginning of the 
perfect  leads, a length  which has no real  analogue in the 
experiments. Later versions of the diagrammatic Green 
function calculations eliminated this unphysical  length 
simply  by introducing an inelastic scattering term into the 
differential equation for the diffusion propagator mentioned 
above [2,4]. Then it can be shown that if Li,  is much less 
than the distances from the main channel to the beginning 
of the perfect  leads, the boundary condition imposed there 
drops out of the problem, and one obtains results  which  only 
depend on physically  meaningful  lengths. An important 
further refinement  was that recently Kane et al. [2] have 
developed a Kubo formula approach which  is  valid in the 
limit of weak magnetic field and weak disorder, and this has 
allowed them to calculate the field-symmetric and 
antisymmetric voltage fluctuations in this approximation; 
this justifies  results independently obtained by  Isawa et al. 

These calculations are able to reproduce the following 
features of the experimental data on voltage fluctuations in 
multi-probe devices: 

[31). 

1. The linear dependence on probe-spacing  for L, << L 
changing  over to a weaker  size-dependence  when Lin 2 L, 
at a value consistent with the universal conductance 
fluctuations. 

2. The difference in the L-dependence of the symmetric and 
antisymmetric parts of the voltage fluctuations. 

3. The nonlocal behavior of the voltage  fluctuations. 
4. The asymmetric phase behavior of the normal-metal 

Aharonov-Bohm effect. 

Further, the recent calculations of Kane et al. [2] predict that 
the voltage fluctuations are not strictly constant for Lin >> L 
but should still  have a linear L-dependence with a smaller 
slope than for Li, << L. They suggest that such a behavior  is 
actually consistent with the experimental data which  were 
interpreted to indicate no L-dependence. The quantitative 
values  for the fluctuations predicted by the theory agree  with 
experiment up to factors of two. There is no obvious reason 
that the agreement should not be  even better than that, so 
the residual  discrepancy  may indicate that there is some 
further physics to be understood in these  systems. On the 
whole,  however, it is  fair to say that the theory based on 
Equation (4) has done a quite creditable job of describing the 
experiments. 

9. Open  questions  about  open  systems 
There are at least four issues  left open by the derivation and 
discussion of Equation (4) above. These relate to 1)  the 
validity  of Equation (4) in the presence  of a magnetic field; 
2) the feasibility of performing a true “weakly  coupled” 
measurement; 3) the possibility of including a model of the 
“reservoir” or bulk measuring electrode in a rigorous 
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quantum-mechanical calculation; and 4) the neglect  of true 
fluctuations in the local  electric  field in the conductor. 

First we consider the issue of the validity of Equation (4) 
in the presence of a magnetic field. The derivation we  have 
presented depends explicitly on time-reversal symmetry in 
the absence of a magnetic  field.  Buttiker’s derivation is 
claimed to be valid  even in  the presence of a field,  except 
that the elements of the S-matrix appearing in Equation (4) 
have a reduced symmetry. It is quite possible that this claim 
is correct, at least in some approximation; but the conditions 
necessary for its correctness need to be determined. In 
particular, Kane et al.  have  shown that the generalized Kubo 
formula due to Streda [60] can be employed to calculate 
voltage fluctuations in  the limit of  weak  field and weak 
disorder [2], because in this limit the conductivity tensor is 
still approximately divergenceless.  They did not show that 
the formula they use is equivalent to Buttiker’s in this 
approximation. What  is  needed  is to derive, in the presence 
of a field, a relationship between the Green function and the 
S-matrix similar to the one we have  derived, and then insert 
this relationship into the generalized linear response 
expression. We point out that such a generalization will not 
be completely  trivial,  because the formula we have  derived 
for g,, in terms of the transmission matrices, Equation (84), 
if it were  valid in the presence of a field,  would  have the 
property that even  when the symmetry of the transmission 
matrices is  reduced by a magnetic field, B 
[T,,,,(B) = T,,,,,(-B)], we  would still  find g,,,,(B) = g,,,,,(-B). 
The conductance coefficients  proposed  by Buttiker do not 
have this symmetry. However, there is no expectation that 
such a symmetry would  hold in the presence of a field, and 
indeed such a symmetry would invalidate the natural 
explanation for the observed asymmetry in  the 
magnetoresistance. Therefore, such a derivation will not 
consist of simply justifying the one we have  presented above 
in the presence of a field. 

There is  also apparently a more fundamental question 
concerning the validity  of Equation (4) in the presence  of a 
field,  first noted by  Lee.* Equation (4) involves  only Fermi 
surface properties of the electronic system,  whereas the 
Streda [60] generalization of the  Kubo formula mentioned 
above  consists of two  terms: the so-called  classical term 
expressed in terms of Green functions at the Fermi surface, 
treated by Kane et al., and the “nonclassical term” which 
depends on all the states below the Fermi surface. The latter 
is  related to the derivative of the density of states with 
respect to magnetic  field, and can be  assumed small for a 
typical metal. Nonetheless, such a term exists and apparently 
cannot be reproduced by Equation (4), suggesting that 
Equation (4) is never strictly valid in the presence of a field. 
The qualifier “apparently” is important, since it has been 
suggested that edge states at the Fermi level may fill the role 
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of this nonclassical term for a finite system [6 I].  Recently  a 
different multi-channel Landauer formula has been  proposed 
for the case  of  high magnetic field in order to discuss the 
quantum Hall effect  [61].  Although this formula is  really 
based on Equation (3) and not on Equation (4), it does 
express the Hall resistance in terms only of quantities at the 
Fermi level  by appealing to the existence of extended edge 
states. 

Another question clearly  raised by our discussion, but not 
yet  answered,  is  whether it is  possible to perform an ideal 
weakly coupled voltage measurement of the sort envisioned 
by Engquist and Anderson and by Biittiker et al. It has  been 
suggested that one might attempt such  a measurement by 
putting a tunnel barrier between the voltage leads and 
current leads, or by  using a scanning tunneling microscope 
as a  voltage probe [ 191. This will certainly achieve  a weak 
coupling between the probes and  the sample.  But will it 
achieve an ideal measurement in  the sense that the voltage 
measured  is  a property of the sample, independent of the 
nature of the voltage  probes? It seems quite possible that 
such a measurement will  be even more sensitive to the 
properties of the probes, for the same reason that  the 
resistance of a  finite  system in the localized  regime fluctuates 
exponentially  with  changes in its configuration of disorder 
[ 101. This question certainly requires further study; but at 
the moment it appears quite possible that  in the mesoscopic 
regime there is no way to experimentally measure the four- 
probe resistance of a microstructure and obtain a  result 
independent of the microscopic nature of the voltage  probes 
used. 

The third major issue  relates not only to Equation (4) but 
to the Landauer approach generally. There is, of course, no 
reason to expect the resistance of a quantum-mechanical 
system to be independent of the manner in which it is 
measured. That is to say, there is no reason to expect to be 
able to make an arbitrary distinction between the “resistor” 
and  the measuring  “reservoirs,” and then find that the 
measured  resistance depends only on the properties of the 
resistor. This can be  seen  most  explicitly in  our discussion of 
the contact resistance predicted by Equation (2). The true 
contact resistance  associated  with any particular two-probe 
device will depend on the details of the junction between the 
channel and  the bulk electrodes: it is  only equal to (Ne2/h)” 
in some average  sense. This may be  relatively unimportant 
when the channel is much longer than the inelastic scattering 
length, but it may  be quite important  in  the new generation 
of ballistic  devices,  where it really  may  be  necessary to 
impedance-match the channel to the bulk electrodes to 
minimize reflection at the junction. Similarly, the voltage 
induced by an imposed current in a multi-probe 
configuration will depend on the shape of the voltage  probes. 
More  generally, we have the physical picture of the bulk 
electrodes acting as an equilibrating reservoir, and there is no 
reason in principle why a theoretical model for such a 
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reservoir cannot be included in a quantum-mechanical 
calculation. As pointed out by Landauer [54], such a 
calculation would be rather similar in spirit to  the now  well- 
developed techniques for calculating tunneling in the 
presence of dissipation [62].  Such  a model would perhaps be 
conceptually more attractive than simply introducing an 
inelastic  cutoff into the relevant Green functions, as is now 
done. 

Finally, we are back to the question that started Landauer 
along this road many years  ago. What is the true electric 
field distribution in a conductor when  a  steady-state current 
is flowing? The theory based on Equation (4)  does not 
answer this question at all, for we have  seen that it is only 
sensitive to the values  of the potential imposed at the edges 
of the disordered region. This is understandable, since 
throughout our discussions we have treated the carriers as 
noninteracting quasi-particles. In real conductors self- 
consistent screening must be taken into account, and for a 
good metal the total electric field  resulting from an 
externally applied voltage in steady state would  presumably 
fluctuate only on microscopic  length  scales.  Therefore, in 
linear response it is  possible to treat only the electric  field 
corresponding to zero  net  charge  density within the 
conductor. Nonetheless, as Landauer has pointed out [9], the 
true local  fields can be important for such processes as 
electromigration. A complete quantum-mechanical 
description of these  local  field  effects remains an open 
problem. 
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Appendix A 
In this appendix we study the consequences of  flux 
conservation when  dealing  with  a multi-channel problem (as 
opposed to a  single-channel one), and show that the 
requirement of  flux conservation is incompatible with the 
orthogonality of the scattering states {$:)I. 

0 Consequences offlux conservation 
The scattering state +:::) is, by definition, the eigenstate of 
the Hamiltonian, with  a  given  energy,  chosen to have  only 
one incident wave from infinity, coming through channel a 
of lead n. The prescribed asymptotic behavior determines the 
functional form of $:::,(X) in the asymptotic region, and it is 
customary in scattering theory to define  reflection and 
transmission amplitudes by 
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for x in lead I # n. 

is an overall  real normalization factor that does not affect 
the ratios of the amplitudes of the scattered  waves to the 
incoming wave, namely, the P’s and i’s .  For a fixed energy, 
the set {J.::,:)) containing ali possible (n, a) is a linearly 
independent and complete set in the energy  subspace (i.e., a 
basis to that subspace). For a time-reversal invariant 
Hamiltonian, the time-reversal transformed states of {J.::,:)) 
are also a basis to the same  subspace.  Those states are called 
{I):;,:,), and their behavior in  the asymptotic region can be 
obtained by time-reversing  (89). This yields 

where Pnn and i,, are the matrices defined by 

(‘nn)bu E ‘nnnn,bd  (tmn)bo  tmn,ba. (97) 

In the usual scattering problem, the condition of  flux 
conservation requires the matrix 3 to be unitary. We  now 
show that this is not so for a multi-channel problem. 

the elements of the current density operator between any 
eigenstates J., and J.6 of the Hamiltonian, whether or not 
they are orthonormal, are given  by  (26). In our context flux 

In the asymptotic region,  where there are no electric  fields, 

for x in lead I # n. 

The usual procedure for defining the scattering matrix is to conservation is stated by Equation (36). If  we take there J., 
define a matrix s by and Go such that ea = eo, then 

The matrix elements of 3 can be determined by the and an integration of (98)  over the domain A defined in 
following argument. Let  us consider a point x, in lead  Section 4 (in the subsection on cancellation of the 
m # n. After  (90)  is substituted into (91), the only terms in diamagnetic term) gives 
the right-hand  side of (91) that have  outgoing  waves at x, 
are 

NL 

1 Y$ = 0, (99) 

s(m,b)(n,a) nexp ( i k b m ’ x ~ ~  xbrn)(ym)* (92) ‘=’ 
b 

where we have  defined 
On the other hand, looking at (89), we  see that the terms 
with outgoing waves at x, in the left-hand side of Equation 
(91) are 

’(m,b)(n,a) - imn,ba # “ 
- (94) This is the expression for flux conservation. To see  what it 

In a similar fashion,  when we consider a point x, at lead n, 
we obtain 

implies for the P and t coefficients,  we take 01 and p to be 
scattering states. Taking J., = J.:::) and J.o = J.::,:, in (loo), 
we obtain 

‘(n,b)(n,a) - ‘nn,ba’ 
- (95) 

Y z  = ?122i[-6,,kf’ + F ~ n , a , a F n n , u , b k ~ ) ]  (101 
Equations (94) and (95) can  be written compactly as 0’ 

and so, after a little rearrangement, (99)  gives 407 
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transmission amplitudes in the same manner as Fisher and 
Lee [ 121, 

When we take in (100) +a = +:.',h, and +@ = $:L:b) with m # n, tln,a,b E 

we get 

Y!' = n 2 2 i  fn*n,a,atnm,a,b k(") a .  , 

y ( m )  " 
(lo5) longitudinal flux. When  expressed in terms of r and t ,  the 

Y:; = n 2 2 i  tE,a,atlm,afb a , ,  I #  n, m, ( 106) o v e d  normalization constant). 

and (99)  now  gives  matrices, the matrix S has the familiar form 

' These amplitudes can be thought of as the ratios of the 
a' ('04) amplitudes of the scattered waves to the amplitude of an 

incoming plane wave,  when  we normalize  all waves to unit 
4 n 2 2 i  i;n,a,aFmm,a,bkhm), 

a' 
" scattering waves ($:::)] look as shown in (67) (up to an k(1) 

a' In terms of these  redefined  transmission and reflection 

The unitarity of S then implies the simpler relations 

k!! r b n n  + 2 &In = 1 (115) 
+ [E '~,a'ai lm,a'b ]=o. (107) I J@p I a' 

l#n 

1iLn.m and 

rintnm + tLnrmm + C tkt, = 0. (1 16) 

(lo8) Another set  of equations satisfied  by the r's and t's can be 
obtained by noting that as a  consequence of (1 10) and (1 1 l), 

(Io9) det(S) # 0, and so St is the inverse  of S from the right  too: 

We can restate Equations (103) and ( 107) in a  clearer 
matrix notation by defining the diagonal  matrices K and Q: I 

6 6 ,e, 
J p '  

I#n,m 

Kmn.aar = mn M 

1 
Qmn,aa: = 'mn'an, - 

and then write  (103) and (107) in matrix form as SS'= 1; (1 17) 

(KSQ)+KSQ = 1. (1 10) 

Thus we  have shown that in general current conservation 
does not imply that the matrix s defined  by Equation (96) 
satisfies the standard unitarity relation StS= 1, but rather, 
the more complicated formula (1 10). In the special case 
where the outgoing momenta in all the channels are the 
same, it is  easy to see that the condition (1  10)  reduces to the 
unitarity of 3; however,  in our case. it does  not.  Therefore 
Equation (96),  which in the usual  case  defines  a unitary 
scattering  matrix,  does not do so for  a multi-channel 
waveguide-scattering  geometry. It seems  preferable to reserve 
the term S-matrix for  a unitary object;  therefore, it is natural 
to define the generalized S-matrix (unitary for all of the 
geometries  considered) by 

s = KSQ. (1 11) 

then, expanding  (1  17), one gets 

r n n L  + c. tn,t;1 = 1 (118) 
I 

I+n 

and 

I 
l#n,m 

To summarize, we have found that flux conservation  implies 
that S, rather than 3, is unitary. 

0 Nonorthogonality of scattering states 
We can now  proceed to show that the scattering states ($:.',:,] 
are not orthogonal. Let  us  first note that 

It  is  obvious  from (1  10) that S so defined is unitary. This In order to define  sensibly an orthonormal basis for states 
definition is equivalent to defining new  reflection and which are not square-integrable, it is necessary to consider  a 
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continuum of states, so that delta-function normalization 
makes  sense in terms of integrals  over a continuous density 
of states.  Therefore, although in our calculation only the 
states precisely at tF come into the dc limit, we must define 
our states in the larger  space of propagating states with 
variable  energy. Thus we consider  now  two scattering states 
$$A,a) and $~~:,,,,,, , where t and t ' can refer to states of 
different  energy.  If the set ($:I!,a)} were orthonormal, we 
would  have 

(+:::,a) I +:;n,,a*)) = - c ' ~ ( n , a x n * , a , ) ,  (121 

which, as a consequence of Equation ( 120),  would imply 

On the other hand, using  (91), 

Therefore,  if ($:i:,J were orthonormal, we could substitute 
(12l)and(122)into(123)andobtain 

'(e - ' )'(n,a)(n,,a,) 

= S ~ , b ) ( n , a ) ( ~ ) ~ , , b X n " ) ( c ) 8 ( C  - ")7 ( 124) 
(I&) 

which implies 

S'(t)S(€) = 1. (125) 

In short, we have shown that the orthonormality of the set 
{$ti!,a)} implies that the matrix Sdefined  in Equation (96) 
must be unitary. But we  have just shown that current 
conservation implies that Tis not unitary [it is the matrix S 
defined  by ( 1 14) that is unitary.] Therefore {$::!,a)} is not 
orthonormal. Since states with  different  energies are certainly 
orthogonal due to the Hermitian character of the 
Hamiltonian, we conclude that {$K,)J (for a fixed  energy) is 
not an orthogonal set. Langreth and Abrahams [ 161 assumed 
that the matrix defined by Equation (96) was unitary; hence, 
they  incorrectly stated that the scattering states were 
orthogonal. To emphasize this point further, we note that 
there is no choice of normalization which  makes  these states 
orthogonal. Flux conservation implies that states chosen to 
consist of a single incident wave from infinity and outgoing 
waves in all the channels cannot be orthogonal. 

Appendix B 
In  Section 4 we studied the current response of a multi- 
probe  system driven by  voltages applied to its leads, and 
obtained Equation ( 126)  below.  However, there is a whole 
class  of experiments performed under conditions in which 
the currents through the leads are fixed and  the voltages at 
the leads are the measured quantities. In this appendix we 
show a general procedure to obtain the voltage  response 
when the conductance coefficients g,, are known. 
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Definition of the problem 
The conductance coefficients g,, are defined by the relation 

I ,= g,,,,V, m =  1, 2, .  . .  ,N , ,  ( 126) 
NL 

n= 1 

which can be regarded as a representation of the N,- 
dimensional vector equation 

I I ) = g l  V )  

in the standard basis { I e, ) } 

With this notation (en 1 I )  = I,, is the current into lead n. On 
the other hand, following Buttiker [I], we can characterize 
the voltage  response  of the system by defining  resistance 
coefficients R,.,,,,, as the ratios of the voltage  differences 
between  leads m and n to the current flowing from lead rn' 
to lead n ', when  all other leads draw no current: 

It is obvious that the (Rm,n,,mn) should be obtainable from 
the { gmn 1, since the latter contain all the information 
concerning the dissipative  response of the system to applied 
voltages in the leads.  Naively, in order to compute R,,,,,, 
one would  like to set I,,, = -Z,, = Z and all other currents to 
zero,  i.e., 

in (127), invert the equation for I V ) ,  and finally compute 
the expression in ( 129) by taking the difference  between V, 
and V,. Nevertheless, it is not possible to proceed in that 
manner without some further elaboration, since g is not 
invertible. as we  see  below. 

Solution to the problem 
The singularity of the matrix g derives from the constraints 
imposed on it by two  basic features of the currents and 
voltages in any system,  namely the arbitrariness in the 
choice of the zero reference  level  for the voltages and the 
conservation of current (Kirchoff's law). To see  how this 
happens, let us  define I a,  ) to be the unit vector 
proportionalto(1, l , . . . ,  1), 

With this notation, a shift in the zero  voltage  reference  level 
corresponds to replacing I V )  with I V )  - (const.) I a, ). 
Since upon that replacement the current in ( 127) has to 
remain unchanged regardless  of the value we choose  for the 
constant, we must have 
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gIa,)=O; (1 32) 

therefore, I a, ) is an eigenvector of g with  eigenvalue 0. 
Consequently, given  a solution I V ’ )  of  (1  27), there is  a 
whole  family of solutions of (127) that differ from I V’)  by a 
multiple of the vector I a, ). We  will assume that 0 is  a 
nondegenerate eigenvalue of g, so only the  eigenvector I a, ) 
has  eigenvalue 0. Therefore it is  also true that any two 
solutions of  (1  27)  differ  by  a multiple of 1 a, ). In particular, 
we  will search  for the solution I V ’ )  that has no component 
along I a, ) (i.e., I V ’ )  perpendicular to I a, ) or 
(a, I V ’ )  = 0), and then obtain any other solution I V )  by 
adding (const.) I a, ) to the former. The requirement of 
current conservation I ,  = 0 also has a simple 
expression in terms of the notation just defined,  namely 
(a ,  I I )  = 0. In other words, this equation states that all 
physical I I )  ’s (i.e., currents satisfying  Kirchoff’s  law) are 
perpendicular to the vector I a, ). Since 1 I )  in (127) must 
satisfy this requirement regardless of what  voltages I V )  we 
apply to the leads, we conclude from (127) that 

(a ,  Ig=O. (1 33) 

In short, we have found that the freedom of choice for the 
zero  reference  level for the potentials and the requirement of 
current conservation constraint implies that any possible g 
must  have the vector I a, ) as a  right and left  eigenvector 
with  eigenvalue 0. By going  back to Equation (86), we note 
that the conductance coefficients g,, obtained from the 
“microscopic theory” for a  system in the absence  of  a 
magnetic  field do indeed satisfy the above constraints [in 
that context (1 32) and (1  33)  were  seen to be  consequences of 
current conservation and  the symmetric character of g]. 
Furthermore, we have made the observation that for our 
purposes Equation ( 127) can be thought of as holding 
between  vectors I V’ ) and I I )  in the (N, - l)-dimensional 
subspace perpendicular to I a, ) . In this subspace g does not 
have  a  zero  eigenvalue and therefore can be inverted. 

Instead of bringing the matrix gmn into a 1 Cl3 (N, - I )  
block form and then inverting the (N, - 1)-dimensional 
block, it is more convenient to proceed as follows.  We found 
in Section  4 that in the absence of a  magnetic  field the 
conductance matrix g is  real and symmetric, so its nonzero 
eigenvalues { X, have corresponding eigenvectors 
{ 1 a, ) 1 :L2 that can be taken to be orthonormal. By writing g 
in terms of its spectral representation 

NL 

g =  c X,la,>(a,l +Ola,)(a,l, (134) 
n=2 

we  see explicitly that even though g is singular as a 
transformation in the whole NL-dimensional space, it is 
invertible  when  regarded as a transformation from the 
(N, - 1)-dimensional  subspace of vectors perpendicular to 
I a, ) onto itself. The solution to the equation we want to 

410 solve, 
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NL 

11) = c ’,I an>(% I V ’ ) ,  (135) 
n = 2  

is  easily found to be 

NL 1 c - I an>(a,  11) = I V ’ ) ,  (136) 
n-2 ’n 

which  is certainly not changed  if we subtract 0 from the left- 
hand side to obtain 

NL 1 [ < lan)(anl- lu ,>(u,  I ] l Z )  = I V ’ ) .  (137) 
n=2 

But the matrix in square brackets is the inverse of the NL- 
dimensional matrix g defined  by 

NL 

g = c xnlan)(anI - la,>(a,l 
n=2 

‘ g -  la,)(a, I, (1 38) 

and Equation ( 137)  is  what we  would have obtained had we 
started with 

11) = g l  V ’ )  (1 39) 

instead of ( 127).  Roughly  speaking, we have  been  able to 
invert Equation ( 127) in the smaller subspace by resorting to 
the artifice of defining the nonsingular matrix g and 
inverting Equation (1  39) in the whole  space instead. 
Considering the kth component of  (1 37), we  get 

NL 

VL = I: (g- l )MZl k =  1, 2, * * * , N,, ( 140) 
I =  1 

and by  setting I,, = -Im. = I and I, = 0 for 1 # n‘, m’ in  the 
equation above, we obtain the voltages { VL 1 we  were looking 
for 

V L = ( g - ’ ) ~ , , Z - ( g - ’ ) ~ , , Z  k = l ,   2 , * * . , N L .  (141) 

In principle the Vk’s in (129)  may  differ from the VL ’s just 
found by a constant, but of course the physical quantities 
R,,,,n,,mn only depend on the voltage  differences and those are 
insensitive to the value of that constant. By specializing 
(141) to the cases k = m and k = n, using 
VL - Vi  = V, - V, and substituting into the definition 
( 129),  we amve  at the final result 

R,.n.,mn = + ( g - 9 n m *  

- ( g - 9 m m ,  - ( f 2 - L  (142) 

To summarize, in order to find the coefficients R,,,,,,,,,,, 
given Equation (126),  we simply obtain g from g by 
subtraction: 

g=g--  [ . f .  . . .   . . .  .;.I, 
NL 

(143) ... 
and then compute the four elements of g” indicated in 
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(142), which require the evaluation of one NL X NL and four 
(NL - 1) X (N, - 1) determinants. 

Finally, we point out that even though we made use of the 
symmetric character of g in writing ( 134), a property that we 
do not expect to hold in the presence of a  magnetic  field, 
that assumption is not necessary to derive (1 42). The 
essential feature for the validity of (1 42) is that there exists  a 
basis in which g is  represented by a block-diagonal matrix 
with  a  zero in  the position (1, 1) and a nonsingular (N - 1) 
X (N - 1) block.  Since  Kirchoff’s  Law and the freedom to 
define the zero of  voltage imply that I a, > is  always  a  left 
and right  eigenvector of g with  eigenvalue 0, any basis 
consisting of I a, > and a  set  of  basis  vectors to the subspace 
orthogonal to 1 a, > will  lead to the required form for g. We 
can then find the inverse transformation to the (N - 1)- 
dimensional block by inverting the N x N matrix obtained 
from g by replacing the zero in position (1, 1) with  a - 1. In 
basis-independent language, that replacement corresponds to 
subtracting I a, > < a, from g, so the N-dimensional matrix 
to be inverted is  still  exactly g defined in ( 143), and Equation 
( 142) is  valid in all cases. 

Biittiker [ 11 has analyzed the symmetries of four-probe 
resistance measurements by assuming that Equation (4) is 
valid  even in  the presence of a magnetic field B. As noted in 
our conclusions, this is  a substantial assumption, and its 
range  of  validity remains to be determined by a  microscopic 
derivation. Biittiker  shows that the symmetries of the S- 
matrix are insufficient to imply that R,,,,,,,(B) = 

Rmn,,J-B), but they do imply that the quantities 
R,.,,,,,(B) f R,,,,,JB) are symmetric (antisymmetric) 
under field reversal.  Accepting the validity of Equation (4), it 
is  a simple exercise to extend those results to a  general multi- 
probe  system  by  using Equation (142). An outline of the 
proof  goes as follows: As a consequence of (4) and  the 
transformation of the S-matrix under time-reversal, the 
matrix g(B)  goes into its transpose when we  reverse the field, 
and from (143) it is  clear that g also has that property: 
gmn(B) = gJ-B). Since the determinant of a matrix equals 
that of its transpose, and 

A,,[g(-B)I = Am,rgT(QI = ’ 4 , , [ g ( m ,  ( 144) 

where A,,(g) is the determinant of the cofactor matrix of the 
element g,,, one obtains 

[~“(-~)1,, = [ g - ’ ( m , , .  (145) 

This result combined with Equation (142) implies the 
symmetry relations given  above. 
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