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Electronic
transport

in small

strongly localized
structures

by A. B. Fowler
J. J. Wainer
R. A. Webb

We review some recent results on the low-
temperature transport properties (T < 4 K) of
very small silicon metal-oxide field-effect
transistors in the insulating regime of
conduction. Our devices are lithographically
patterned to have widths as small as 0.05 um
and lengths as short as 0.06 um. These small
transistors exhibit new and unexpected sample-
specific fluctuation behavior in the gate voltage,
temperature, and magnetic field dependence of
the conductance. We discuss both resonant
tunneling and Mott variable-range hopping, the
two main transport mechanisms in these
devices at low temperature.

Introduction

Over the past seven years we [1-7] and others [8, 9] have
been studying the conductance of small (mesoscopic)
systems at temperatures below a few degrees Kelvin, where
tunneling of electrons from one site to another is the
dominant transport mechanism. Tunneling is only observed
when the electron wavefunction is confined by the potential
disorder to a small region £, the localization length, in the
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sample. When £ is much smaller than the sample length L,
the system is strongly localized. In this case the electron
wavefunctions are of the form ¢ ~ exp—(x/¢ ), where in the
two-dimensional case [10-14] (width w, L > £), £ is about
20-70 nm [15]. Samples of width w ~ ¢ are defined to be
strictly one-dimensional. At low temperatures, 7' < 0.1 K,
the number of localized electron energy states that
contribute to the total electrical conductivity of small
samples can be quite small, much less than 50 in many
cases. This means that the transport properties are not
determined by some average statistical behavior that
characterizes the localized states, but are dominated by the
individual character of a few localized states. These states in
turn are determined by local microscopic variables such as
impurities, defects, etc. Therefore, the conductance of one
sample may be very different from that of a nominally
identical sample.

Our experiments employ metal-oxide-semiconductor
(MOS) silicon structures in which the electrons are confined
within a 5-nm region of the semiconductor surface by
perpendicular electric fields and are laterally confined by
lithography. By changing the voltage on the metal gate, the
energy of the electronic states in the surface channel relative
to the chemical potential or Fermi energy can be altered
over a wide range. At large gate voltages the transport
becomes metallic in character and the electrons diffuse from
the source to drain contacts. At low gate voltages the
electrons are localized in the band tail of the two-
dimensional conduction band by random charges in the
oxide. The ability to vary the chemical potential or Fermi
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energy (u) relative to the energy of the localized states
permits detailed examination of the various conduction
mechanisms. In devices where both the length and width are
much greater than the localization length, two-dimensional
strong localization effects have been studied for more than
twenty years [10-13]. It is well established that Mott
variable-range hopping (VRH) correctly describes the
conduction mechanism in these samples. For a general
overview of localized transport, see Shklovskii and Efros
[14].

There are only three types of conduction processes that
one might expect to occur in the strongly localized regime at
temperatures below ~1 K. These are shown schematically in
Figure 1. The first is thermally activated tunneling from one
localized site to another, or Mott hopping, and the
conductance from such processes decreases exponentially
with decreasing temperature. The second is direct tunneling
of the electrons from the source contact to the drain contact.
In the samples we studied, the separation between the source
and drain contacts is greater than 500 nm, and this process
does not appear to be important. The third and most
important low-temperature transport process is that of
resonant tunneling, a process whereby an electron directly
tunnels elastically from the source contact to one localized
state in the sample and subsequently tunnels elastically out
of that state to the drain contact. The last two tunneling
processes can occur at zero temperature.

In the case of resonant tunneling, the energy of the
resonant localized state must be equal to the chemical
potential in the Fermi surface of the contacts for maximum
tunneling probability. This probability for electron
transmission decreases very rapidly when the chemical
potential changes by an amount greater than the energy
linewidth of the resonant state. Although it is perhaps not so
obvious, the same is true for hopping. However, if the
number of paths through the sample is sufficiently limited
that the number of available states within &, T of p is small,
only a few hops will dominate the resistance, and this
resistance will be a strong random function of the relative
values of x and the energies of the states. In both resonant
tunneling and hopping, each and every sample has its own
characteristic and different dependence of conductance on g
or on gate voltage. There is no ensemble averaging in this
case.

In the following sections we discuss our experiments on
resonant tunneling and Mott hopping. Others have observed
similar results in similar samples, but in this paper we
discuss primarily our own work, which has previously been
reported. Results rather than experimental techniques or
derivations are emphasized.

Samples where hopping dominates
The appropriate mesoscopic samples for studies of hopping
conductivity are relatively long but narrow Si accumulation
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The three major conduction mechanisms at low temperature are
shown schematically. In hopping the electrons proceed stepwise
down the chain. To tunnel from site to site they must pick up thermal
energy, so that the process is activated. For direct tunneling the
electrons make a transition directly from filled states in the cathode to
empty states in the anode. In resonant tunneling the electrons may be
considered to tunnel from the cathode into the resonant state,
resonate in the state, and then tunnel out to the anode. Fora MOSFET
device, changing the gate voltage moves the band edge and the
localized states relative to the chemical potential of the contacts.

layers. If the most probable hopping length, R, is long
compared to the geometrical width of the sample, the
conduction is quasi-one-dimensional. Hopping lengths for

two dimensions are given by R, ~ [¢/TD(E )]“ * 5o low

temperatures, low density of states D(FE), and long
localization lengths are required for one-dimensional
behavior. In silicon two-dimensional systems, the density of
states in the ground-state subband is D(E) ~ 1.6 x 10"

eV 'cm ™ and is constant for a wide range of Fermi energies
[13]. At very small values of the chemical potential, it is now
well established that the density of states decreases
exponentially with decreasing gate voltage. If £ ~ 30 nm and
T ~0.1K, R, is about 50 nm.
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A schematic view of pinched samples. The upper figure is a section
across the sample. The p+ diffusions create a well parallel to the
surface. The surface potential resulting from the gate field continues
the electrons to the surface. The lower figure is a plan of the structure
showing the location of the n+ contacts, the aluminum gates, and the
p* diffusions.

The pinched sample configuration that we have used [1-6]
is shown schematically in Figure 2. In this type of structure,
the electric field from the p* diffusions confines the electron
accumulation layer into a channel much narrower than the
width between the diffusions. Although the geometrical
spacing between p~ diffusions is 1 um, we estimate the
conduction channel width to be of the order of 20-50 nm at

low gate voltages [1].

Figure 3 shows the main features of the conduction at 7 =
1.56, 0.416, and 0.107 K. The conductance, G, increases
exponentially as either the temperature, T, or the gate
voltage, V,;, is increased (V is roughly proportional to the
chemical potential x). Conductance data over a much
narrower range of gate voltages at 0.05 K are displayed in
Figure 4. What appeared to be noise at low T and low V in
Figure 3 is actually reproducible but random fluctuations in
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the conductance as a function of V. Here the fluctuations,
AG, are dramatic, and AG/G are much larger than those
found in the metallic samples, where they are generally of
the order of 10~°-107* of the conductance. The peaks in the
conductance curves persist to temperatures above 0.5 K at
approximately the same V;, albeit broadened and
overlapped with other peaks. Many of the peaks are
reproducible over a period of weeks or even months as long
as the device is kept below ~10 K and not shocked
electrically so as to change the oxide charge. Other devices,
fabricated from the same Si wafer and nominally identical,
exhibit the same behavior except for differences in the
structural detail of the fluctuations.

The reason that each device is different is obvious if one
considers the number of states in the entire sample within
kg T of the chemical potential, u. If we use the 2D density of
states, 10" cm™'eV ™', and a temperature of 100 mK so that
kyTis 8 X 107° €V, the total number of states within k, T of
u in these devices of area ~5 X 10~° ¢cm ™ is 8. These would
be randomly arranged along the conductance channel in
energy and position. If those within +5k, T take part in
conduction, there are still only of the order of at most 100

HYA -
1.56K
107
416 mK
n 6l
§ 10
g
3
2 107 mK
S w'f
108
107
| | H
3 6 9 12 15

The gate voltage dependence of the conductance is shown at three
temperatures. It can be seen that the conductance increases rapidly as
a function of gate voltage and also as a function of temperature,
especially at low gate voltages. It is also apparent that the
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sites or one on the average of every 100 nm. Thus, it is not
surprising that this would look like a 1D chain and that
conduction should depend strongly on the sample and on .
At the highest temperatures shown, the tails of many peaks
overlap and contribute to the conductance at any fixed V7,
and the conductance begins to take on the character of a
statistical average.

In the case of very large samples in two and three
dimensions, it has been well established that when Mott
variable-range hopping (VRH) is the dominant transport
mechanism, the temperature dependence of the
conductance, G, takes the form In G ~ —(7/T,,) """,
where d is the dimension of the conduction path and T, is a
characteristic temperature that depends upon &, D(E), and
dimensionality [13). Surprisingly, the same temperature
dependence is observed in our small device, provided that
the temperature dependence of the conductance is measured
at a local minimum in the conductance structure. We find
experimentally [1-3] that at temperatures 0.2 K < T<3K
and gate voltages below ~6 V, the conductance can best be
described by InG ~ —(7/T,,)"*, or 1D VRH. At gate
voltages above 6 V, our conductance data are better fit by a
smaller exponent, perhaps InG ~ —(T/Toz)” ® or 2D VRH.
The reason for this transition from 1D to 2D behavior is that
increasing V; increases D(E), hence decreasing the most
probable hopping distance. In addition, increasing the gate
voltage widens the conduction channel. Recent computer
simulations by Xie and Das Sarma [16] indicate that for our
device there will be a continuous transition from one- to
two-dimensional VRH as the channel width increases
relative to the most probable hopping length. Indeed, careful
analysis of the data near V; = 5.9 V indicate that at low T
the best-fit exponent is 1/2 and at higher T it is 1/3,
consistent with a crossover from 1D to 2D behavior as the
most probable hopping distance decreases with increasing 7.
We point out, however, that the temperature range over
which we fit the two-dimensional behavior is only one and a
half decades; thus, the 1D VRH to 2D VRH transition may
simply represent the transition from strongly localized to
weakly localized one-dimensional transport. In fact, at gate
voltages above ~10 V, we clearly observe weakly localized
behavior because the change in the conductance, AG, takes
the form AG = —CT"” for all temperatures above 0.1 K.
This type of power-law temperature dependence for the
conductance is frequently found in 1D weakly localized
systems.

At temperatures above ~3 K and gate voltages below 9 V,
we find that the conductance mechanism can be best
described by thermal activation (simply activated behavior)
or G ~ exp(E,/k,T), where E, is an activation energy that
depends slightly on gate voltage and represents an energy
that is characteristic of the potential disorder in the sample.
As we have already pointed out, below 3 K the low-gate-
voltage strongly localized regime shows the temperature
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. Conductance as a function of gate voltage at 50 mK. Here the peaks
g vary by two orders of magnitude or more.

dependence that a simple Mott-type argument for R, > w
would suggest. However, Kurkijarvi [17] argued that in any
1D hopping sample the conductance should be simply
activated at all T, because one of the hops in the chain will
always be exponentially less likely than others and this single
hop will limit the total conductance of the entire sample.
There have been arguments [18, 19] as to whether such
“blockades” will exist in short samples, but for all our data
taken at a minimum in the conductance structure below

Vi, ~ 6 Vat T <3K, we found what looked like statistically
averaged results with a InG ~ T~ 2.

To explore the transport mechanisms further [5, 6], more
detailed measurements were made on the behavior of the
conductance peaks at temperatures as low as 20 mK. The T
dependence of a few peaks contained in a very limited gate
voltage range is shown in Figure 5. At 36 mK a single peak
at about V; = 4.5175 V lies above the noise level. (Note that
these experiments were made with voltages across the
contacts of order 2 1V, so the noise signal was at about 107"
A.) As the temperature is increased, the amplitude of this
central peak grows, other peaks appear and grow faster, the
widths of all the peaks broaden, and the background
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Conductance as a function of gate voltage for T = 36, 51,
65,103,151, and 221 mK. At 36 mK there is only one peak. The
peaks lost in the noise grow more rapidly than this peak, and all peaks
broaden. As a result, log G is fairly smooth at 221 mK.
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conductance (the minimum of the peaks) increases faster
than the peak conductance. Figure 6 shows the temperature
dependence of the peak conductance for a few peaks that
were well isolated from others at low temperatures. All
appear simply activated [i.e., G ~ exp(—E,/k, T)] for
T < 0.2 K, with the smallest peaks having the greatest
activation energies. Above about 0.2 K the data for all four
peaks fall approximately on a single curve of the form
InG ~ T~ a dependence typical for a statistically averaged
1D variable-range hopping system. At temperatures between
0.05 K and 0.1 K, the peak at 4.5175 V seems to show a
weaker temperature dependence than expected from simple
activation with the slope, dIn G/dV,,, decreasing as the
temperature approaches the activation energy (~0.083 K for
this peak). This decrease is actually due to a change in the
occupation probability, f(E), of electrons in the localized
state, and is given by the well-known Fermi-Dirac
distribution function, f(E) = (™7 + 1)”". A similar
effect should occur for the other peaks, but their activation
energies are higher and the transition is not as evident in
Figure 6.

To understand the origin of the conductance fluctuations
in the 1D strongly localized limit, it is useful to model the
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transport process as being similar to conduction in a 1D
random resistor network [20-22]. In this case, the
conductance is limited by the largest resistor (the critical
hop) in the chain, and the conductance associated with
hopping from localized state i to localized state j is given by

-1 1
G= Gijexp{—injs —m“Ei—ul

+|15j—nl+IEi—J‘5,I]}, 0y

where £ is the localization length, x,, is the spatial separation
of two states, E is a site energy, and u is the local chemical
potential. If this hop is the lowest conductance hop in the
chain, the conductance of the entire sample is also given by
Equation (1). If the chemical potential is adjusted to any
energy at a constant temperature such that E, < pu < E/
(assuming E; < E;), the conductance G is a constant
independent of u (a flat-topped peak). If u > E; or u < E,,
the conductance on the side of the peak decreases
exponentially with changing u and is given by | dInG/du | ~
(7).

This problem of hopping conductivity in a small random
network has been extensively studied using numerical
simulation techniques by P. A. Lee et al. [23] and others
[24-27]. Under the assumption that the localized states have
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Temperature dependence of some of the peaks shown in Figure 5; the
highest peak has the lowest activation energy. Above approximately
200 mK, all peaks follow a “‘T~""2"* law. The inset shows the
dependence of the position of one peak on temperature.
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a random distribution in energy and position, the
conductance as a function of chemical potential was found
to be quite similar to our results displayed in Figure 4. It
turns out that there are only two important types of hopping
conductance peaks. The first is the one described by
Equation (1) and the second is the case when two of the
random resistors in the network limit the conductance. In
this second case, the conductance peaks have a sharp top
and the peak position can move to either higher or lower
chemical potentials with increasing temperature. In the case
of a single resistor limiting the conductance, the peak
position is independent of temperature. If there are two
independent critical hops limiting the conductance such that
i — jand k — /, where E, < E, < E, < E, (one of several
possible localized-state energy distributions), the maximum
conductance of the peak is given by G, ~ exp{—(E, — E,)/
kT) and is observed at an energy u, = (E, + E))/2 + k; T(x,,
- x;)¢”" + (k T/2)In(g;;/8,,)- The peak-position shift can
be to higher or lower gate voltages depending on the relative
values at x,, and x,;. The inset to Figure 6 shows one
example of the temperature dependence of the peak position
observed in our experiments. For all our data on well-
isolated peaks, we find that on average 33 percent of the
peaks shift toward higher u, 33 percent toward lower u, and
33 percent do not change as the temperature is increased.
On either side of the peak the conductance is again described
by | dInG/ldu| ~ (k, T)"'. The numerical simulations find a
mix of sharp- and flat-topped peaks randomly distributed in
u, with each peak increasing exponentially in amplitude and
becoming wider as the temperature increases. This agrees
quite well with our experimental data (see Figure 3), with the
exception that we never have observed flat-topped peaks.
The lack of observation of flat-topped peaks suggests that all
our conductance fluctuations are from hopping processes
that involve more than one critical hop, or that the theory is
not yet well enough developed to accurately describe the
physics in our samples.

It is interesting to note that Equation (1) is not symmetric
with respect to the direction of the applied voltage once the
temperature dependence of the electron occupation
probability is included [23]. This means that the current-
voltage curves associated with a single hop are nonlinear and
will cause rectification of an ac signal. This rectification in
turn should generate large second-harmonic signals in ac
measurements, as is indeed the case. Asymmetric -V curves
together with strong second-harmonic generation have been
observed in these small structures [4, 8].

In principle the density of states appropriate for each peak
can be derived from our measurements of the logarithmic
slopes of the sides of the peaks. Under the assumption that
dInG/du = (k,T)"', the density of states is given by [13]
D(E) = dnfdu = (Cle)k,T) '(dInG/dV,) ', where n is the
2D electron density and C is the gate capacitance of our
device (115 pF/cm®). In practice, we find that our measured
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A collection of data showing the dependence of conductance on gate
voltage for different temperatures, magnetic fields, and direction of
B. Figures on the left are for B perpendicular to the sample surface;
those on the right are for B parallel to the current direction.

slopes vary by a factor of three from peak to peak. The
derived density of states is about 10™"* eV 'cm™. We are
unable to determine whether the factor of three variation in
our computed D(E) represents an actual fluctuation in D(E)
as V is varied or if it is associated with some other
contribution to the physics of the individual peaks.

Recently we have made measurements [6] of the magnetic
field dependence of these conductance fluctuations. Some of
the striking results are shown in Figure 7 for various
magnetic fields, temperatures, and sample orientations
relative to the direction of the applied magnetic field. It may
be seen that for field changes of the order of a few tenths of a
tesla there are strong variations in the peak amplitudes.
Some peaks increase while others decrease in a seemingly
random fashion. Within a few tesla, the structure is totally
different from what is seen at zero field. The qualitative
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Magnetic field dependence of the location in gate voltage of the
maximum in conductance for three separate and well-isolated peaks.

features of the magnetic field dependence of the conductance
fluctuations are independent of the direction of the magnetic
field, although in detail there are some differences. There are
also, although it is not so apparent in Figure 7, shifts in peak
positions with increasing magnetic field. Some peaks shift
toward higher and some to lower values of V;; others do not
move.

One of the main reasons that the magnetic field has such a
large effect on the behavior of the conductance is that it
changes the energy of the localized state via the Zeeman
effect, as has been studied extensively in 3D hopping systems
by Kamimura [28]. The change in energy of an electron in a
localized state is linearly proportional to the magnetic field,
E=E,+ gu HJ2, where E, is the energy of the state before
the application of the field, , is the Bohr magneton, and g is
the g factor of the electron. The energy of the state depends
upon the direction of the electron spin relative to the
direction of H. There are actually two separate spin bands
(called Hubbard bands) and we expect that both of these will
be partially occupied and contribute to our observed effects.
Because of the Pauli exclusion principle, there are only four
different types of single critical hops: 1) from a singly
occupied localized site (either spin up or spin down) to an
unoccupied site; 2) from a doubly occupied site to an
unoccupied site; 3) from a singly occupied site to another
singly occupied site; and 4) from a doubly occupied site to a
singly occupied site. However, for large magnetic fields such
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that gu,H/2 > Sk, T, singly occupied antiparallel spin states
will be suppressed [25, 28], and the hopping rate for
processes 2 and 3 will be reduced. For-transitions from a
singly occupied site to an empty one, we would expect the
energies to decrease in a magnetic field. For a hop from a
doubly occupied site to a singly occupied one, they should
increase. If the two hops giving rise to the peak are of the
first type, the peak should move to lower V; if both are of
the second type, the peak should move higher; if there is one
of each, the peak should not move to first order. These three
processes are shown for different peaks in Figure 8. The peak
represented by the open circles first appears near 2 tesla and
shifts linearly with increasing H toward lower V. Beyond
3.7 tesla the peak position begins to move linearly toward
higher ¥, until it disappears in our noise at H ~ 6 tesla. This
change in direction of the peak-position shift is probably
associated with a change of one of the critical resistors
controlling the hop. Since the energies of the Zeeman shifts
are known, the shift of position with gate voltage should be
consistent with the density of states, as argued above for the
temperature dependence of the peak positions in zero H. In
fact, we find the slopes of the peaks that move with field,
dV(peak)/dH, to be consistent with a density of states one
third of the value calculated from the capacitance and
consistent with our earlier determination of D(E). Zeeman
shifts can also explain why the structure is totally changed
within a few tesla. The Zeeman energies (~58 ueV/tesla)
very quickly become comparable to the spacing between
states (<4 ueV). The energies of doubly and singly occupied
states get mixed in a different way by the field, and the
random network is rearranged, changing the critical path
and thus the structure we measure. Computer simulations by
Kalia et al. [25] demonstrate the same results.

It should be noted that even though the results seem
similar for the field perpendicular to the surface and parallel
to the surface, there are differences. These can only arise
from orbital (magnetic field effects on the phase of the
electron wavefunction) rather than Zeeman effects. However,
even with the mass of data collected in these experiments
and with tedious calculations of various correlation
functions, we are unable to make quantitative statements
about the role that orbital effects play in our results. In other
recent work in the strongly localized regime, Nguyen and
coworkers [29] have observed fluctuations in the
conductance that they argue can only be due to orbital
effects. We believe that much more work needs to be done
before the physics of hopping in small systems in the
presence of a magnetic field can be completely understood.

Resonant tunneling

While the early experiments were being made and before
they were understood, Azbel et al. [30] argued that the
structure in the conductance as a function of gate voltage
was the result of resonant tunneling through the localized
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states near the center of the sample. This possibility had
been proposed earlier by Lifschitz and Kirpichenkov [31].
The intriguing idea introduced by Azbel was that
spectroscopy could be done using the gate to vary the energy
of the localized states relative to the contacts. (This differs
from other experimental approaches, which usually involve
tunneling through a 2D oxide barrier [32] or through a
quantum well structure [33].) However, detailed
measurements of the long samples {3-5] showing simply
activated behavior of the peaked structure made it apparent
that a thermally activated tunneling mechanism was
required. Stone and Lee [34] demonstrated that in fact the
resonant tunneling current could not increase with
temperature.

The fundamental idea of resonant tunneling is often
discussed in elementary quantum-mechanics textbooks. If
one has a double barrier with resonant states in the well
between the barriers, then the transmission through the
barriers is given by 7'° 7" when the energy of the incident
electrons is not at resonance, and by T/ T (f T" < T®) at
resonance. Here T and T are the transmission coefficients
of a wave through the isolated left and right barriers,
respectively. If T = T R, the total transmission, 7, is unity.

For resonant tunneling through a disordered system, the
leak rate of an electron from the localized state to left and
right contacts is of the form I'” = I'yexp—(2x/¢) and T'* =
T,exp[—2(L — x)/£], where L is the distance between
contacts, x is the distance from the left contact to the
localized state, and £ is the localization length. It can be
shown [35, 36] that for spinless electrons in any dimension,

rr-

2
e

G ——
h L R\2’

5E2+<——P +T >

2
2

where 6E = E, — u. G has a maximum of ethforTh=1",

or x = L/2 and 6E = 0. Equation (2) can be written as a
kind of Lorentzian
& I
=7 —
h g +13
At finite temperatures, if the Lorentzian is centered at E,,
the conductance must satisfy a Boltzmann equation, so that

¢ f I dfE .
G(E, - = — 2 dE.
(E, — ») 7 Eayer dE 3)

For k, T « T, the derivative of the Fermi function f(E, u) is
a § function, so that as E, — u is varied (the gate voltage
moves the resonant state relative to the source and drain
Fermi surfaces),

2
G(Ey - ) =& —— @)

o T M= T 5 e
h (Ey=uy +T;

Thus, at low temperatures the measurement of gate voltage
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dependence (proportional to x) of the conductance of such a
peak should be unchanging and represent the natural line
shape of the resonance.

For k, T > T, the Lorentzian looks like a é function, and

df(E, - )
6E, 0~
SE,— L = fE,~ )]
- o7 . ®)

This has a maximum which decreases as (k; 7). Off the
maximum, the slope of the peak dInG/d(E, — p) =

*(ky, T)™". The line decreases and broadens with increasing
temperature. As can be seen from Equation (2), the
maximum conductance in the low-temperature regime is
~4TE T (T + TRV, or

4exp(—2L/¢ )[exp —2(x/£) + exp —Z(L ; x)] . 6)

This has a maximum value of unity for x = L/2. However,
the linewidth is proportional to the denominator and
increases rapidly as x becomes significantly different from
L/2. That is, the conductance maxima are strongest and
narrowest for states near the center of the sample. By the
time they are a localization length away, the magnitude of
the peak is reduced by a factor of

sech’ (% - 2).

The linewidth T', is increased by the same factor. Clearly, the
effect of not being at the center is increased for large L: the
shorter the sample, the better the chance of seeing a large
peak. This had been suggested earlier by Azbel et al. [30],
who found that the temperature at which resonant tunneling
conductance became smaller than hopping conductance was
proportional to L ~°. Clearly, shorter samples than the
previous ones were required for tunneling studies, and a set
of samples of the order of 0.5 um long and 1 um wide were
chosen. These samples had heavily doped (metallic)
polysilicon gates and an oxide thickness of 10 nm. (They
were kindly supplied by M. R. Wordemann of the IBM
Thomas J. Watson Research Center.) Measurement of the
conductance as a function of gate voltage again showed
sharp structure (see Figure 9). However, it was found that
the temperature dependence was that expected from the
arguments above. This is shown in Figure 10, where the
peak values appear as a function of 7' for peaks in two
samples. Both show no T dependence at low temperature
and a strong increase at high temperature. The largest peak,
with a conductance equal to about 0.1 ez/h, shows
conductance that decreases in an intermediate region. The
break occurs at about k, 7" = 4.3 ueV (50 mK), which is an
energy comparable to the width I',. The high-temperature
data, 7> 0.2 K, fit a variable-range hopping law for two
dimensions In(G/G,) = ~(T/T,)""*. What appears to be
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The temperature dependence of the maximum conductance of two
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At low T both are constant. The higher G peak decreases as T

Structure in conductance as a function of V; through short samples. increases between 50 and 100 mK.

The inset shows the largest peak as In G vs. V;. The solid line drawn
along the high-V;; side was used to define d In G/dV;.
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happening to the peak height for the high-conductance
sample is that with increasing temperature the peak
conductance remains constant, then decreases. However, the
hopping increases exponentially and eventually dominates
3L ° the conduction mechanism. The other peak is about a factor
of two smaller. Its width T, is approximately a factor of two
L 0 1.0 pm greater; therefore, it should not have decreased until 7~ 100
® 1.75 pm mK. By then the hopping begins to dominate the
2 ’ temperature dependence so that no minimum is seen.

,’ ® o More can be learned by looking at the slopes dInG/dV
./ % o o for the two samples (see Figure 11), because these data are
L % 8 o more readily separated from the background than the peak

o height. Here, although there is a difference in the low-
temperature values, the expected 1/7 temperature
dependence can be seen at higher temperatures. The slopes
0 L L L L L of both peaks are relatively constant until some temperature

0 10 20 30 40 50 T, is reached, then decreasing roughly as T~'. For the
yr & higher-conductance peak, 7', ~ 55 mK; for the other, it is T
~ 83 mK. The ratio of these two temperatures is 0.66, and,
according to the arguments given above, the peak heights
should differ by the same ratio. The actual ratio of the peak

dinGlav, (167 v
~

The temperature dependence of d In G/dV/ for the same two peaks.  heights is 0.5; thus, there is reasonable internal consistency
Both are constant at low T and decrease roughly as T~' at higher
temperatures.

of our data with the theory.
As in arguments made in the section on hopping, it is
possible to deduce a density of states because d’InG/d V.dT

TR
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is measured, dn/dV, is known from capacitance, and
d*InG/dudT is kg ', 50 D(E) = dn/dyu can be found. It is
roughly 1.8 X 10> eV'cm™, or about 11 percent of the
density of states of the unperturbed 2D silicon band. By
using values of T, derived from the variable-range hopping
regime, localization lengths of 42 nm for the low-
conductance sample and 28 nm for the higher-conductance
sample were found. One can use this density of states to
estimate the width in energy, T',, of the resonant state from
the measured halfwidth of the peaks in gate voltage. For
both peaks, the low-temperature halfwidth is roughly equal
to k, T, the energy at which the curves change to a
temperature-dependent law. Within the errors of the
measurement, we again find good agreement of the data with
the theory.

It is interesting to consider the probability of finding a
state within a bandwidth, T',, of another state and also
within £ of the center of the sample. This probability is given
by 2T, D(E)W§, or about 0.05 for the parameters
appropriate to our samples. Thus it would appear that the
chance of finding two overlapping peaks is certainly less than
20 percent. All peaks, however, show reproducible fine
structure, as shown in Figure 12,
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The gate-voltage dependence of several conductance peaks is shown
plotted both as G and In G vs. V;;. The multiple peak structure is quite
apparent.
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A better understanding of the structure on each peak can
be gained by studying the time dependence of the
conductance. In our normal mode of data acquisition, we
typically spent about two hours sweeping the gate voltage
once over the range of a peak. Thus, all our measurements
represent a time average. If a measurement is made at the
peak maximum as a function of time, as shown in Figure
13, both high- and low-frequency fluctuations are evident
which can be as large as 30 percent of the maximum value.
These two observations may be explained by a phenomenon
related to mechanisms proposed by Rogers and Buhrman
[37]. At any moment there are other localized states in the
sample which may or may not be occupied. The fraction of
time they are occupied depends on the temperature and on
their energies, and on the Coulomb interactions between
them. In samples of the size we studied, there are roughly
four other states within +5k, T of the resonant state at 50
mK. Of the 32 possible configuration of electrons in these
states, only a few are very likely, but each will result in the
resonant state being shifted to slightly different energies by
the Coulomb interactions. The Coulomb interactions [38],

which are screened by the metal gate electrode, are of the 381
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order of the bandwidth of the resonant state if these extra
states are located about 0.2 um from the resonant state.
Thus, in the time-averaged experiments the structure may
simply be a time average over the different configurations.
The time dependence may result from jumps from one
configuration to another. It clearly would be interesting to
study the frequency spectra as a function of temperature. It
should be related to the kinetics of the processes leading to
the change of configurations. If the Coulomb interactions
were increased by greatly increasing the oxide thickness, the
nature of the peak structure should change markedly.

We conclude this section by noting that we have observed
conductance fluctuations which seem to have the
temperature dependence and other properties one would
expect of resonant tunneling in such a system. Constants
derived from the experiments are consistent with theoretical
expectations. Finally, there is evidence of the effects of
Coulomb interactions giving rise to structure in the
tunneling.

Conclusions

We have discussed observations and results that a few years
ago might well have been ignored by experimenters who did
not recognize or understand the nature of the conductance
fluctuations. Fluctuations were observed as early as 1965 in
the transconductance of MOSFET devices, and were either
ignored or attributed incorrectly to a host of causes. Even in
fairly large samples the device-specific effects of the failure to
ensemble average can be seen in the derivative of the
conductance. In small hopping samples, the recognition that
the conductance was sample-specific was unavoidable,

To advance from the present situation of having identified
the relevant mechanisms to that of learning something new
about the kinetic processes has been our most recent aim. In
the case of magnetoresistance in hopping, this has proved
difficult, because the Zeeman effects tend to mask other
effects that seem more interesting to us. At present one has
the feeling that the models that have been used to calculate
the transport properties of large ensembles have been
experimentally justified in small samples, both for tunneling
and hopping. Furthermore, in resonant tunneling
experiments much work remains to be done to understand
the kinetics of the Coulomb interaction results, the I-V
characteristic, and magnetic effects. Work at currents of
107~10"" A and at source—drain voltages of 1 zV and less
at very low temperatures can be time-consuming, so it may
be some time before these subjects are well understood.
However, a new and powerful tunneling spectroscopy has
been demonstrated for the first time. It has not been applied
to direct tunneling nor to the dependence of direct tunneling
on the position of the conduction band relative to the
contact Fermi energies, because significantly shorter samples
would be needed. With the recent advances in fabrication
techniques such samples can now be created.
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