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We  review  some  recent  results  on  the  low- 
temperature  transport  properties (T e 4 K) of 
very  small  silicon  metal-oxide  field-effect 
transistors  in  the  insulating  regime  of 
conduction.  Our devices  are  lithographically 
patterned  to  have  widths  as  small  as 0.05 pm 
and  lengths as short as 0.06 pm.  These  small 
transistors  exhibit  new  and  unexpected  sample- 
specific  fluctuation  behavior  in  the gate  voltage, 
temperature,  and  magnetic  field  dependence  of 
the  conductance.  We  discuss  both  resonant 
tunneling  and  Mott  variable-range  hopping,  the 
two main  transport  mechanisms  in  these 
devices at low  temperature. 

Introduction 
Over the past  seven  years we [ 1-71 and others [8,9] have 
been studying the conductance of small (mesoscopic) 
systems at temperatures below  a  few  degrees Kelvin,  where 
tunneling of electrons from one site to another is the 
dominant transport mechanism. Tunneling is only  observed 
when the electron wavefunction  is  confined by the potential 
disorder to a small region t ,  the localization  length, in  the 
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sample.  When ( is much smaller than the sample  length L, 
the system  is  strongly  localized.  In this case the electron 
wavefunctions are of the form I) - exp -(x/( ), where in the 
two-dimensional case [ 10-141 (width w, L >> t ), is about 
20-70 nm [ 151. Samples of width w - ,$ are defined to be 
strictly one-dimensional. At  low temperatures, T < 0.1 K, 
the number of localized electron energy states that 
contribute to the total electrical conductivity of small 
samples can be quite small, much less than 50 in many 
cases. This means that the transport properties are not 
determined by some average  statistical behavior that 
characterizes the localized  states, but are dominated by the 
individual character of a few localized  states.  These states in 
turn are determined by local  microscopic  variables  such as 
impurities, defects,  etc.  Therefore, the conductance of one 
sample  may  be  very  different from that of a nominally 
identical sample. 

Our experiments employ metal-oxide-semiconductor 
(MOS) silicon structures in which the electrons are confined 
within  a  5-nm  region  of the semiconductor surface by 
perpendicular electric  fields and are laterally  confined by 
lithography. By changing the voltage on the metal  gate, the 
energy  of the electronic states in the surface channel relative 
to the chemical potential or Fermi energy can be altered 
over  a  wide  range.  At  large  gate  voltages the transport 
becomes metallic in character and the electrons diffuse from 
the source to drain contacts. At  low gate  voltages the 
electrons are localized in the band tail of the two- 
dimensional conduction band by random charges in  the 
oxide. The ability to vary the chemical potential or Fermi 
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energy (p) relative to the energy  of the localized states 
permits detailed examination of the various conduction 
mechanisms. In devices  where both the length and width are 
much greater than  the localization  length,  two-dimensional 
strong localization  effects  have  been studied for more than 
twenty  years [ 10- 131. It is well established that Mott 
variable-range hopping (VRH) correctly  describes the 
conduction mechanism in these  samples. For a  general 
overview  of localized transport, see Shklovskii and Efros 
1141. 

There are only three types of conduction processes that 
one might  expect to occur in the strongly  localized  regime at 
temperatures below - 1 K. These are shown  schematically in 
Figure 1. The first  is thermally activated tunneling from one 
localized  site to another, or Mott hopping, and the 
conductance from such processes  decreases exponentially 
with  decreasing temperature. The second  is direct tunneling 
of the electrons from the source contact to the drain contact. 
In the samples we studied, the separation between the source 
and drain contacts is greater than 500 nm,  and this process 
does not appear to be important. The third and most 
important low-temperature transport process  is that of 
resonant tunneling, a  process  whereby an electron directly 
tunnels elastically from the source contact to one localized 
state in the sample and subsequently tunnels elastically out 
of that state to the drain contact. The last  two tunneling 
processes can occur at zero temperature. 

In the case  of resonant tunneling, the energy  of the 
resonant localized state must be equal to the chemical 
potential in the Fermi surface of the contacts for maximum 
tunneling probability. This probability for electron 
transmission decreases  very  rapidly  when the chemical 
potential changes by an amount greater than  the energy 
linewidth of the resonant state. Although it is perhaps not so 
obvious, the same is true for  hopping.  However, if the 
number of paths through the sample  is  sufficiently limited 
that the number of available states within k, T of p is small, 
only  a few hops will dominate the resistance, and this 
resistance will  be a strong random function of the relative 
values of p and the energies of the states.  In both resonant 
tunneling and hopping, each and every sample has its own 
characteristic and different dependence of conductance on p 

or on gate  voltage. There is no ensemble averaging in this 
case. 

In the following  sections we discuss our experiments on 
resonant tunneling and Mott hopping. Others have  observed 
similar results in similar samples, but in this paper we 
discuss primarily our own work,  which has previously  been 
reported. Results rather than experimental techniques or 
derivations are emphasized. 

Samples  where  hopping  dominates 
The appropriate mesoscopic samples for studies of hopping 
conductivity are relatively long but narrow Si accumulation 
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The  three  major  conduction  mechanisms  at low temperature  are 
shown schematically. In hopping the electrons proceed stepwise 
down the chain, To tunnel from site to site they must pick up thermal 

I energy, so that the process is activated.  For  direct  tunneling the a electrons make a transition directly from filled states in the cathode to 
1 empty states in the anode. In  resonant tunneling the electrons may be 

considered  to  tunnel  from  the  cathode  into  the  resonant  state, 
i resonate in the state, and then tunnel out to the anode.  Fora MOSFET 
? device,  changing  the  gate  voltage moves the band edge  and the 
1 localized states relative to the chemical potential of the contacts. 
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layers.  If the most  probable  hopping  length, R,, is  long 
compared to the geometrical  width of the sample, the 
conduction is quasi-one-dimensional. Hopping lengths for 
two dimensions are given  by R, - [[/TD(E)]’”, so low 
temperatures, low density of states D(E) ,  and long 
localization  lengths are required for one-dimensional 
behavior. In silicon  two-dimensional  systems, the density of 
states in the ground-state subband is D ( E )  - 1.6 X I O l 4  

eV-’crn-’ and is constant for a  wide  range  of Fermi energies 
[ 131. At  very small values of the chemical potential, it is  now 
well established that the density of states decreases 
exponentially  with  decreasing  gate  voltage. If [ - 30 nm and 
T - 0.1 K, R, is about 50 nm. 373 
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the conductance as a hnction of V,. Here the fluctuations, 
AG, are dramatic, and AG/G are much larger than those 
found in the metallic  samples,  where  they are generally  of 

conductance curves  persist to temperatures above 0.5 K at 
approximately the same V,, albeit  broadened and 
overlapped  with other peaks. Many  of the peaks are 

A1 gate I, c S i O z  the order of  10-3-10-4  of the conductance. The peaks in the 

I I  
I \  ;)I : :  I 1  reproducible  over  a  period  of weeks or even months as long 

I t  I \  as the device  is  kept  below - 10 K and not shocked ' / I I\ \\ 
/#/ I 1 \\ electrically so as to change the oxide  charge. Other devices, 

I I  I \  
I I  \ I  

,J ! I ! \. fabricated  from the same Si  wafer and nominally  identical, 
exhibit the same  behavior  except  for  differences in the 
structural detail of the fluctuations. 

The reason that each  device  is  different  is  obvious  if one 
considers the number of states in the entire sample  within 
h T of the chemical potential, p. If  we  use the 2D density of 
states, lOI4  cm"eV", and a temperature of  100 mK so that 
k, T is 8 X eV, the total number of states  within k, T of 
p in these  devices  of area -5 X cm-'  is 8. These  would 
be randomly arranged  along the conductance channel in 
energy and position. If those  within +5h T take part in 
conduction, there are still  only  of the order of at most  100 

."........I.... . . ... " . . . ." . 

1 surface. The surface potential resulting from the gate field continues 1 the electrons to the surface. The lower figure is a plan of the structure 
showing the location of the n+ contacts, the aluminum gates,  and the 1 p+ diffusions. 

The pinched sample configuration that we  have used [ 1-61 
is  shown  schematically in Figure 2. In this type  of structure, 
the electric field from the p+  diffusions  confines the electron 
accumulation layer into a channel much narrower than the 
width  between the diffusions.  Although the geometrical 
spacing  between p+ diffusions is 1 pm, we estimate the 
conduction channel width to be  of the order of 20-50 nm at 
low  gate  voltages [ 11. 

1.56,0.416, and 0.107 K. The conductance, G, increases 
exponentially as either the temperature, T, or the gate 
voltage, VG, is increased ( V, is  roughly proportional to the 
chemical potential p). Conductance data over a much 
narrower  range of  gate  voltages at 0.05 K are displayed in 
Figure 4. What appeared to be noise at low T and low V, in 

Figure 3 shows the main features  of the conduction at T = 

374 Figure 3 is actually  reproducible but random fluctuations in 
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i The gate voltage dependence of the conductance is shown at three 
temperatures. It can be seen that the conductance increases rapidly as 

3 a  function of gate voltage and also  as  a function of temperature, 
f especially  at  low  gate  voltages.  It is also  apparent  that  the 1 conductance fluctuations increase rapidly as temperature decreases. 
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sites or one on the average  of  every 100 nm. Thus, it is not 
surprising that this would  look like a 1 D chain and that 
conduction should depend strongly on the sample and on p. 

At the highest temperatures shown, the tails of many peaks 
overlap and contribute to the conductance at any fixed V,, 
and the conductance begins to take on the character of a 
statistical average. 

dimensions, it has been well established that when Mott 
variable-range hopping (VRH) is the dominant transport 
mechanism, the temperature dependence of the 
conductance, G, takes the form In G - -(T/T Od ) ( l ’ ( d + l ) ) ,  

where d is the dimension of the conduction path and Tod is a 
characteristic temperature that depends upon 5 ,  D(E) ,  and 
dimensionality [ 131. Surprisingly, the same temperature 
dependence is  observed in  our small device, provided that 
the temperature dependence of the conductance is  measured 
at a  local minimum in the conductance structure. We find 
experimentally [ 1-31 that  at temperatures 0.2 K < T < 3 K 
and gate voltages  below -6 V, the conductance can best  be 
described by 1nG - -(T/T,ol)l’z, or ID VRH.  At gate 
voltages  above 6 V, our conductance data are better fit  by a 
smaller exponent, perhaps 1nG - -(T/T0z)1/3, or 2D VRH. 
The reason for this transition from ID to 2D behavior is that 
increasing V, increases D(E),  hence decreasing the most 
probable hopping distance. In addition, increasing the gate 
voltage  widens the conduction channel. Recent computer 
simulations by Xie and Das Sarma [ 161 indicate that for our 
device there will be a continuous transition from one- to 
two-dimensional VRH as the channel width  increases 
relative to the most probable hopping length. Indeed, careful 
analysis of the data near V, = 5.9 V indicate that at low T 
the best-fit exponent is 1/2 and at higher Tit is 1/3, 
consistent with  a  crossover from 1D to 2D behavior as the 
most probable hopping distance decreases  with  increasing T. 
We point out, however, that the temperature range  over 
which  we fit the two-dimensional behavior is  only one and a 
half  decades; thus, the 1D VRH to 2D VRH transition may 
simply  represent the transition from strongly  localized to 
weakly  localized  one-dimensional transport. In fact, at gate 
voltages above - 10 V,  we clearly  observe  weakly  localized 
behavior because the change in  the conductance, AG, takes 
the form AG = -CTL/’ for all temperatures above 0.1 K. 
This type of  power-law temperature dependence for the 
conductance is frequently found in 1D weakly  localized 
systems. 

we  find that the conductance mechanism can be best 
described by thermal activation (simply  activated behavior) 
or G - exp(Eo/k, T) ,  where E,, is an activation energy that 
depends slightly on gate voltage and represents an energy 
that is characteristic of the potential disorder in the sample. 
As  we  have already pointed out, below 3 K the low-gate- 
voltage  strongly  localized  regime  shows the temperature 

In the case of  very  large samples in two and three 

At temperatures above -3 K and gate voltages  below  9  V, 

T = 50mK 

I 5.6 5.8 6.0 6.2 6.4  6.6 e 
L 

8 

1 Conductance as a function of gate voltage at 50 mK. Here the peaks 

dependence that a  simple Mott-type argument for R, > w 
would  suggest.  However, Kurkijarvi [ 171 argued that  in any 
1D hopping sample the conductance should be  simply 
activated at all T, because one of the hops in the chain will 
always be exponentially less  likely than others and this single 
hop will limit the total conductance of the entire sample. 
There have  been arguments [ 18, 191 as to whether  such 
“blockades” will  exist in short samples, but for all our data 
taken at a minimum in  the conductance structure below 
V, - 6 V at T < 3 K, we found what  looked  like  statistically 
averaged  results  with  a  In  G - T””. 

To explore the transport mechanisms further [5 ,  61, more 
detailed measurements were made on the behavior of the 
conductance peaks at temperatures as low as 20 mK. The T 
dependence of a few peaks contained in a very limited gate 
voltage  range  is  shown in Figure 5. At 36 mK a  single  peak 
at about V, = 4.5 175  V  lies  above the noise  level. (Note that 
these experiments were made with  voltages  across the 
contacts of order 2 pV, so the noise  signal  was at about 
A.) As the temperature is  increased, the amplitude of this 
central peak  grows, other peaks appear and grow  faster, the 
widths of all the peaks broaden, and the background 
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Conductance  as a  function  of  gate  voltage for T = 3 6 ,  5 1, 
f 65,103,151, and 221 mK. At 36 mK there is only one peak.  The [ peaks lost in the noise grow more rapidly than this peak, and all peaks 1 broaden. As a result, log G is fairly smooth at 221 mK. 

conductance (the minimum of the peaks)  increases  faster 
than the peak conductance. Figure 6 shows the temperature 
dependence of the peak conductance for a few peaks that 
were  well isolated from others at low temperatures. All 
appear simply activated [i.e., G - exp(-E,,/k,T)] for 
T < 0.2 K, with the smallest  peaks  having the greatest 
activation energies.  Above about 0.2 K the data for all four 
peaks  fall approximately on a  single  curve of the form 
In G - T-I”, a dependence typical for a  statistically  averaged 
1D variable-range hopping system.  At temperatures between 
0.05 K and 0.1 K, the peak at 4.5  175 V seems to show  a 
weaker temperature dependence than expected from simple 
activation with the slope, dln G/dV,, decreasing as the 
temperature approaches the activation energy (-0.083 K for 
this peak). This decrease  is actually due to a change in the 
occupation probability, f ( E ) ,  of electrons in the localized 
state, and is  given  by the well-known  Fermi-Dirac 
distribution function,f(E) = (e(E”p)’knT + l)-’. A similar 
effect should occur for the other peaks, but their activation 
energies are higher and the transition is not as evident in 
Figure 6 .  

in the 1 D strongly  localized limit, it is  useful to model the 
To understand the origin of the conductance fluctuations 

transport process as being similar to conduction in a 1 D 
random resistor  network [20-221. In this case, the 
conductance is limited by the largest  resistor (the critical 
hop) in the chain, and the conductance associated  with 
hopping from localized state i to localized statej is  given  by 

where [ is the localization length, xij is the spatial separation 
of two states, E is  a  site  energy, and p is the local chemical 
potential. If this hop is the lowest conductance hop in the 
chain, the conductance of the entire sample is  also  given  by 
Equation (1). If the chemical potential is adjusted to any 
energy at a constant temperature such that E, < p < Ej 
(assuming E, < Ej) ,  the conductance G is  a constant 
independent of p (a  flat-topped  peak).  If p > E, or p < E,, 
the conductance on the side of the peak  decreases 
exponentially  with  changing p and is  given  by I d In G/dp I - 

This problem of hopping conductivity in a  small random 
(k,n-I. 
network has been  extensively studied using numerical 
simulation techniques by P. A.  Lee et al. [23] and others 
[24-271. Under the assumption that the localized states have 
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a random distribution in energy and position, the 
conductance as a function of chemical potential was found 
to be quite similar to our results  displayed in Figure 4. It 
turns  out that there are only two important types of hopping 
conductance peaks. The first  is the one described by 
Equation (1) and  the second  is the case  when  two  of the 
random resistors in the network limit the conductance. In 
this second  case, the conductance peaks  have  a sharp top 
and  the peak position can move to either higher or lower 
chemical potentials with  increasing temperature. In the case 
of a  single  resistor limiting the conductance, the peak 
position is independent of temperature. If there are two 
independent critical hops limiting the conductance such that 
i+jandk+I,whereEi<E,<Ek<E,(oneofseveral 
possible  localized-state  energy distributions), the maximum 
conductance of the peak  is  given by G, - exp[-(E, - Ei)/ 
k, r ]  and is  observed at an energy p, = (E, + E,)/2 + k, T(xkl 
- x,j).$-' + (k,T/2)ln(gij/gk,).  The peak-position  shift can 
be to higher or lower gate voltages depending on the relative 
values at x,, and x,~ .  The inset to Figure 6 shows one 
example of the temperature dependence of the peak  position 
observed in our experiments. For all our  data on well- 
isolated  peaks, we  find that on average  33 percent of the 
peaks  shift toward higher p, 33 percent toward lower p, and 
33 percent do not change as the temperature is  increased. 
On either side of the peak the conductance is  again  described 
by I d In G/dp I - (k, T)-'. The numerical simulations find  a 
mix  of sharp- and flat-topped  peaks randomly distributed in 
p, with  each  peak  increasing exponentially in amplitude and 
becoming  wider as the temperature increases. This agrees 
quite well with our experimental data (see Figure  3),  with the 
exception that we never  have  observed  flat-topped  peaks. 
The lack of observation of flat-topped  peaks  suggests that all 
our conductance fluctuations are from hopping processes 
that involve more than one critical hop, or that the theory is 
not yet  well enough developed to accurately describe the 
physics in  our samples. 

It is interesting to note that Equation (1) is not symmetric 
with  respect to the direction of the applied voltage once the 
temperature dependence of the electron occupation 
probability is included [23]. This means that the current- 
voltage  curves  associated  with  a  single hop are nonlinear and 
will cause  rectification of an ac signal. This rectification in 
turn should generate large second-harmonic signals in ac 
measurements, as is indeed the case.  Asymmetric I- V curves 
together  with strong second-harmonic generation have  been 
observed in these small structures 14, 81. 

In principle the density of states appropriate for  each  peak 
can be derived from our measurements of the logarithmic 
slopes of the sides of the peaks. Under the assumption that 
d In G/dp = (k, I-)-', the density of states is given  by [ 13 J 
D(E)  = dn/dp = (C/e)(k,T)-'(dlnG/d~~)-', where n is the 
2D electron density and C is the gate capacitance of our 
device (1 15 pF/cm*). In practice, we  find that our measured 
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1 0 0  mK 
Transverse field 

100 mK 
Parallel field 

0.5 250mK 
t.4 9 Transverse field 

0.6 ;j 350mK 
0.~12 Parallel field 

i A collection of data showing the dependence of conductance on gate 
s. voltage for different temperatures, magnetic fields, and direction of ' B .  Figures on the left are for B perpendicular to the sample surface; 

those on the right are for B parallel to the current direction. 

slopes  vary by a factor of three from peak to peak. The 
derived  density of states is about eV-'cm-'.  We are 
unable to determine whether the factor of three variation in 
our computed D(E) represents an actual fluctuation in D(E)  
as V, is  varied or if it is  associated  with some other 
contribution to the physics of the individual peaks. 

Recently we have made measurements [6] of the magnetic 
field dependence of these conductance fluctuations. Some of 
the striking  results are shown in Figure 7 for various 
magnetic  fields, temperatures, and sample orientations 
relative to the direction of the applied magnetic field. It may 
be seen that for  field  changes  of the order of a few tenths of a 
tesla there are strong variations in the peak amplitudes. 
Some  peaks  increase  while others decrease in a  seemingly 
random fashion. Within a few tesla, the structure is  totally 
different  from  what is seen at zero  field. The qualitative 
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Magnetic  field  dependence of the location in gate voltage of the 
maximum in condu 

features of the magnetic field dependence of the conductance 
fluctuations are independent of the direction of the magnetic 
field, although in detail there are some differences. There are 
also, although it is not so apparent in Figure 7, shifts in peak 
positions with  increasing magnetic field. Some peaks shift 
toward  higher and some to lower  values  of V,; others do not 
move. 

One of the main reasons that the magnetic field has such  a 
large effect on the behavior of the conductance is that it 
changes the energy of the localized state via the Zeeman 
effect, as has been studied extensively in 3D hopping systems 
by Kamimura [28].  The change in energy of an electron in a 
localized state is linearly proportional to the magnetic  field, 
E = E,, f gpBH/2, where E,, is the energy of the state before 
the application of the field, p, is the Bohr magneton, and g is 
the g factor of the electron. The energy of the state depends 
upon the direction of the electron spin relative to the 
direction of H. There are actually two separate spin bands 
(called Hubbard bands) and we expect that both of  these will 
be partially  occupied and contribute to  our observed effects. 
Because  of the Pauli exclusion principle, there are only four 
different  types of  single critical hops: 1) from a  singly 
occupied  localized  site (either spin up or spin down) to  an 
unoccupied site; 2)  from a doubly occupied site to  an 
unoccupied site; 3) from a  singly  occupied site to another 
singly  occupied  site; and 4) from a doubly occupied  site to a 

378 singly  occupied  site.  However, for large magnetic fields such 
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that gpBH/2 > 5k, T, singly  occupied antiparallel spin states 
will be  suppressed [25, 281, and the hopping rate for 
processes 2 and 3 will  be reduced. Fortransitions from a 
singly  occupied  site to  an empty one, we  would expect the 
energies to decrease in a  magnetic  field. For a hop from a 
doubly occupied  site to a  singly  occupied  one,  they should 
increase. If the two hops giving  rise to the peak are of the 
first  type, the peak should move to lower V,; if both are of 
the second  type, the peak should move  higher; if there is one 
of each, the peak should not move to first order.  These three 
processes are shown for different  peaks in Figure 8. The peak 
represented  by the open circles  first appears near 2 tesla and 
shifts linearly  with  increasing H toward lower V,. Beyond 
3.7 tesla the peak  position  begins to move  linearly toward 
higher V, until it disappears in  our noise at H - 6 tesla. This 
change in direction of the peak-position shift is  probably 
associated  with  a  change  of one of the critical resistors 
controlling the hop. Since the energies of the Zeeman shifts 
are known, the shift of position  with gate voltage should be 
consistent  with the density of states, as argued  above for the 
temperature dependence of the peak positions in zero H. In 
fact, we find the slopes  of the peaks that move  with  field, 
dV,(peak)/dH, to be consistent with  a density of states one 
third of the value  calculated from the capacitance and 
consistent  with our earlier determination of D(E). Zeeman 
shifts can also  explain why the structure is totally  changed 
within  a few tesla. The Zeeman energies (-58 peV/tesla) 
very  quickly  become comparable to the spacing  between 
states (<4 peV). The energies of doubly and singly occupied 
states get  mixed in a  different way  by the field, and the 
random network  is  rearranged,  changing the critical path 
and thus the structure we measure. Computer simulations by 
Kalia et al. [25] demonstrate the same results. 

It should be noted that even though the results  seem 
similar for the field perpendicular to the surface and parallel 
to the surface, there are differences. These can  only arise 
from orbital (magnetic field  effects on the phase of the 
electron  wavefunction) rather than Zeeman effects.  However, 
even  with the mass  of data collected in these experiments 
and with tedious calculations of various correlation 
functions, we are unable to make quantitative statements 
about the role that orbital effects  play in  our results. In other 
recent  work in  the strongly  localized  regime,  Nguyen and 
coworkers [29] have  observed fluctuations in the 
conductance that they  argue can only  be due to orbital 
effects.  We  believe that much more work  needs to be done 
before the physics of hopping in small systems in the 
presence  of  a  magnetic  field can be completely understood. 

Resonant  tunneling 
While the early experiments were  being made and before 
they  were understood, Azbel et al. [30] argued that the 
structure in the conductance as a function of gate  voltage 
was the result of resonant tunneling through the localized 
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states near the center of the sample. This possibility had 
been  proposed earlier by  Lifschitz and Kirpichenkov [3 11. 
The intriguing idea introduced by  Azbel  was that 
spectroscopy could be done using the gate to vary the energy 
of the localized states relative to the contacts. (This differs 
from other experimental approaches,  which  usually  involve 
tunneling through a 2D oxide barrier [ 321 or through a 
quantum well structure [33].) However, detailed 
measurements of the long samples [3-51 showing  simply 
activated behavior of the peaked structure made it apparent 
that a thermally activated tunneling mechanism was 
required. Stone and Lee [34] demonstrated that  in fact the 
resonant tunneling current could not increase with 
temperature. 

The fundamental idea of resonant tunneling is often 
discussed in elementary quantum-mechanics textbooks. If 
one has a double barrier with resonant states in the well 
between the bamers, then the transmission through the 
barriers is  given  by T L   T R  when the energy of the incident 
electrons is not at resonance, and by TL/TR (if T L  < T R )  at 
resonance. Here T L  and T R  are the transmission coefficients 
of a wave through the isolated  left and right  barriers, 
respectively. If T L  = TR, the total transmission, T, is unity. 

For resonant tunneling through a disordered system, the 
leak rate of an electron from the localized state to left and 
right contacts is  of the form r = ro exp -(2x/[ ) and r = 
r,exp [-2(L - x)/[], where L is the distance between 
contacts, x is the distance from the left contact to the 
localized state, and [ is the localization  length. It can be 
shown [35, 361 that for spinless electrons in any dimension, 

2 

where 6E = E, - p. G has a maximum of e2/h for I'L = rR, 
or x = L/2 and 6E = 0. Equation (2) can be written as a 
kind of Lorentzian 

7 - 2  

G = h -  
e' 1'1 

6 ~ ' +  r:' 
At finite temperatures, if the Lorentzian is centered at Eo, 
the conductance must satisfy  a Boltzmann equation, so that 

For k, T << r2, the derivative of the Fermi function f ( E ,  p)  is 
a 6 function, so that as E, - p is  varied (the gate  voltage 
moves the resonant state relative to the source and drain 
Fermi surfaces), 

e2 r : 
h (E, - p y  + r:' G ( E , - p ) = -  

Thus, at low temperatures the measurement of gate  voltage 
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dependence (proportional to p )  of the conductance of such a 
peak should be  unchanging and represent the natural line 
shape of the resonance. 

For k, T > rz the Lorentzian looks like  a 6 function, and 

df(E0 - P) 
G(EO - p )  - dE 

- f@,  - r ) [ l  - f @ o  - r)l 
kB T 

- 

This has a maximum which  decreases as ( h T ) - ' .  Off the 
maximum, the slope of the peak dlnG/d(E, - p )  = 
+(k,T)". The line decreases and broadens with  increasing 
temperature. As can be  seen from Equation (2), the 
maximum conductance in the low-temperature regime  is 
.-4rRrL/(rL + rR)', or 

exp-2(x/[) + exp-2 

This has a maximum value of unity for x = L/2. However, 
the linewidth is proportional to the denominator and 
increases  rapidly as x becomes  significantly  different from 
L/2. That is, the conductance maxima are strongest and 
narrowest for states near the center of the sample. By the 
time they are a  localization  length  away, the magnitude of 
the peak is reduced by a factor of 

The linewidth r2 is  increased by the same factor.  Clearly, the 
effect  of not being at the center is  increased for large L : the 
shorter the sample, the better the chance of  seeing  a  large 
peak. This had been  suggested  earlier  by  Azbel et al. [ 301, 
who found that the temperature at which resonant tunneling 
conductance became  smaller than hopping conductance was 
proportional to L-'. Clearly, shorter samples than the 
previous  ones were required for tunneling studies, and a  set 
of samples of the order of 0.5 pm long and 1 pm wide  were 
chosen.  These  samples had heavily doped (metallic) 
polysilicon  gates and an oxide  thickness of 10 nm. (They 
were  kindly  supplied  by  M.  R. Wordemann of the IBM 
Thomas J. Watson  Research Center.) Measurement of the 
conductance as a function of gate  voltage  again  showed 
sharp structure (see Figure 9). However, it was found that 
the temperature dependence was that expected  from the 
arguments above. This is  shown in Figure 10, where the 
peak values appear as a function of T" for peaks in two 
samples.  Both  show no T dependence at low temperature 
and a strong increase at high temperature. The largest  peak, 
with  a conductance equal to about 0.1 e2/h, shows 
conductance that decreases in an intermediate region. The 
break occurs at  about k, T = 4.3 peV (50 mK), which  is an 
energy comparable to the width P2.  The high-temperature 
data, T > 0.2 K, fit  a  variable-range hopping law for two 
dimensions ln(G/G,) = -(T/T0)-1'3. What appears to be 
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happening to the peak  height for the high-conductance 
sample  is that with  increasing temperature the peak 
conductance remains constant, then decreases.  However, the 
hopping increases  exponentially and eventually dominates 
the conduction mechanism. The other peak is about a factor 
of  two  smaller.  Its  width I'z is approximately a  factor of two 
greater; therefore, it should not have  decreased until T - 100 
mK. By then the hopping begins to dominate the 
temperature dependence so that no minimum is  seen. 

More can be learned by looking at the slopes dlnG/dVG 
for the two  samples (see Figure ll), because  these data are 
more readily  separated from the background than the peak 
height. Here, although there is a  difference in the low- 
temperature values, the expected 1/T temperature 
dependence can be seen at higher temperatures. The slopes 
of both peaks are relatively constant until some temperature 
TI is reached, then decreasing  roughly as T". For the 
higher-conductance  peak, T,  - 5 5  mK; for the other, it is TI - 83 mK. The ratio of these  two temperatures is 0.66, and, 
according to the arguments given  above, the peak  heights 
should differ  by the same ratio. The actual ratio of the peak 
heights  is 0.5; thus, there is  reasonable internal consistency 
of our data with the theory. 

As in arguments made in  the section on hopping, it is 
possible to deduce a density of states because d21nG/dVGdT 
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is measured, dnldVG is known from capacitance, and 
d'1nGldpdT is k;', so D(E)  = dnldp can be found. It is 
roughly 1.8 X l O I 3  eV-'cm-', or about 11 percent of the 
density of states of the unperturbed 2D silicon band. By 
using  values  of To derived from the variable-range hopping 
regime,  localization  lengths  of 42 nm for the low- 
conductance sample and 28 nm for the higher-conductance 
sample were found. One can use this density of states to 
estimate the width in energy, rz, of the resonant state from 
the measured  halfwidth of the peaks in gate voltage. For 
both peaks, the low-temperature halfwidth is roughly equal 
to k, TI, the energy at which the curves change to a 
temperaturedependent law. Within the errors of the 
measurement, we again  find good agreement of the  data with 
the theory. 

state within a bandwidth, rz, of another state and also 
within [ of the center of the sample. This probability is  given 
by 2r,D(E) W[ ,  or about 0.05 for the parameters 
appropriate to  our samples. Thus it would appear that the 
chance of finding two overlapping  peaks  is certainly less than 
20 percent. AU peaks,  however,  show reproducible fine 
structure, as shown in Figure 12. 

It is interesting to consider the probability of finding  a 
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A better understanding of the structure on each  peak can 
be  gained by studying the time dependence of the 
conductance. In our normal mode of data acquisition, we 
typically spent about two hours sweeping the gate  voltage 
once over the range of a  peak. Thus, all our measurements 
represent  a time average.  If a measurement is made at the 
peak maximum as a function of time, as shown in Figure 
13, both high- and low-frequency fluctuations are evident 
which can be as large as 30 percent of the maximum value. 
These  two  observations  may  be  explained by a phenomenon 
related to mechanisms proposed by Rogers and Buhrman 
[37]. At any moment there are other localized states in the 
sample  which  may or may not be  occupied. The fraction of 
time they are occupied depends on the temperature and on 
their energies, and  on the Coulomb interactions between 
them. In samples of the size  we studied, there are roughly 
four other states within +5k, T of the resonant state at 50 
mK. Of the 32 possible  configuration  of electrons in these 
states,  only  a few are very  likely, but each will result in the 
resonant state being  shifted to slightly  different  energies  by 
the Coulomb interactions. The Coulomb interactions [38], 
which are screened by the metal gate  electrode, are of the 



order of the bandwidth of the resonant state if  these extra 
states are located about 0.2 pm from the resonant state. 
Thus, in  the time-averaged experiments the structure may 
simply  be a time average  over the different  configurations. 
The  time dependence may  result from jumps from one 
configuration to another. It clearly  would  be interesting to 
study the frequency spectra as a function of temperature. It 
should be  related to the kinetics of the processes  leading to 
the change of configurations.  If the Coulomb interactions 
were  increased  by  greatly increasing the oxide  thickness, the 
nature of the peak structure should change markedly. 

We conclude this section by noting that we have  observed 
conductance fluctuations which  seem to have the 
temperature dependence and other properties one would 
expect of resonant tunneling in such a  system. Constants 
derived  from the experiments are consistent with theoretical 
expectations. Finally, there is evidence of the effects of 
Coulomb interactions giving  rise to structure in  the 
tunneling. 

Conclusions 
We have  discussed observations and results that a few years 
ago  might  well  have  been  ignored  by experimenters who did 
not recognize or understand the nature of the conductance 
fluctuations. Fluctuations were  observed as early as 1965 in 
the transconductance of MOSFET  devices, and were either 
ignored or attributed incorrectly to a  host of causes.  Even in 
fairly  large  samples the device-specific  effects  of the failure to 
ensemble average can be seen in the derivative of the 
conductance. In small hopping samples, the recognition that 
the conductance was  sample-specific  was  unavoidable. 

To advance from the present situation of  having  identified 
the relevant mechanisms to that of learning something new 
about  the kinetic processes has been our most recent aim. In 
the case  of magnetoresistance in hopping, this has proved 
difficult,  because the Zeeman effects tend to mask other 
effects that Seem more interesting to us. At  present one has 
the feeling that the models that have  been  used to calculate 
the transport properties of large  ensembles  have  been 
experimentally justified in small samples, both for tunneling 
and hopping. Furthermore, in resonant tunneling 
experiments much work remains to be done to understand 
the kinetics of the Coulomb interaction results, the I- V 
characteristic, and magnetic effects. Work at currents of 
10”3-10”5  A and  at source-drain voltages of 1 pV and less 
at very  low temperatures can be time-consuming, so it may 
be some time before  these subjects are well understood. 
However,  a  new and powerful tunneling spectroscopy has 
been demonstrated for the first time. It has not been applied 
to direct tunneling nor to the dependence of direct tunneling 
on the position of the conduction band relative to the 
contact Fermi energies,  because  significantly shorter samples 
would be needed. With the recent advances in fabrication 
techniques such samples can now  be  created. 382 
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