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Persistent currents in small nonsuperconducting
rings threaded by a magnetic flux are a
manifestation of novel quantum effects in
submicron systems. We present theoretical
results for one-channel and multichannel
systems concerning the dependence of the
current amplitude on the number of channels
and geometry, temperature, and degree of
disorder. Inelastic scattering is considered for
one-channel loops only. We also discuss the
observability of the effect.

1. Introduction

With the advances in technology, the fabrication of
submicron devices has become possible. Such “mesoscopic”
systems [1, 2] have opened the door to a rich new field of
theoretical and experimental physics. The physics of small
metallic rings is an excellent testing ground for many ideas
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in the field of mesoscopic physics. The Aharonov-Bohm
oscillations in the magnetoresistance of small two- and four-
terminal structures have been discussed extensively in the
literature [3]. The problem of persistent currents, pertinent
to isolated conducting loops or cylinders threaded by a
magnetic flux, is less well understood theoretically, and such
currents have not yet been observed experimentally. Here we
review some recent theoretical progress on that topic.
Persistent currents in nonsuperconducting rings and
cylinders threaded by a magnetic flux depend crucialty on
the coherence of the electron wavefunction over the whole
ring [4, 5]. In terms of the phase-coherence length of the
electron, L, (i.., the length scale over which the electron can
be considered to be in a pure state), the requirement is that
L, be larger than the circumference of the rings, L . Earlier
works in the 1960s, dealing with flux quantization in
superconducting rings, mention the possibility of circulating
currents in sufficiently small normal-metal rings [6-11].
However, the idea of persistent currents in normal-metal
rings containing elastic scatterers is more recent and is based
on the observation that the electron wavefunction may even
then extend coherently over the whole circumference of the
ring. For one-dimensional loops, the existence of such
currents was proposed by Biittiker, Imry, and Landauer [4]
in 1983, and was extended by Biittiker [5] in 1985. A more
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Thin hollow cylinder of circumference L and height L, threaded by a
magnetic flux ¢.

detailed quantitative analysis has since been given by us [12].
Basic questions concerning the more realistic multichannel
systems remained unresolved: most importantly, the
dependence of the persistent current on the number of
channels, on temperature, and on the amount of elastic
scattering (due to impurities and imperfections).

The purpose of the present paper is to review some of our
findings for the persistent current in one-channel and
multichannel rings. We emphasize the effects of geometry
(i.e., number of channels) and temperature. Predictions for
the amplitude of persistent currents in experiments require
further elucidation of the effects of impurities and will be
published elsewhere. We have organized the material as
follows. In Section 2, we discuss the effects of geometry on
the persistent current in rings at zero temperature and in the
absence of disorder. In Section 3, we evaluate the
temperature dependence of the current amplitude, and in
Section 4 we consider the reduction of the persistent current
due to dephasing by inelastic scattering. In Section 5, we
comment on the effects of disorder on the persistent current.
Section 6 contains a brief summary of our conclusions
concerning the observability of the effect. In the remainder
of this introduction, we define the persistent current problem
in more detail.

We consider the persistent current in multichannel
systems of cylinder geometry (Figure 1). The circumference
and height of the cylinder are denoted by L, and L, or the
dimensionless quantities L and M, to be specified later. M is
referred to as the number of channels. (We neglect the width
of the cylinder, assuming L, smaller or of the order of the
Fermi wavelength of the electron. The generalization to
finite L, is straightforward.) We assume that the magnetic
flux ¢ threads the cylinder axially so that the electrons
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always move in a field-free space. The flux periodicity of the
electron wavefunction, with period ¢, = Ac/e, is then strictly
of the Aharonov-Bohm type. We also assume that the self-
inductance of the rings is small, so that self-inductance
corrections to the flux may be neglected. This is supported
by quantitative estimates based on realistic values for the
size of the system [13]. For the ring geometry, the spatial
degrees of freedom of the electrons are the azimuthal angle ¢
and the height coordinate y. We replace 6 with x = L8/2,
which varies between 0 and L. The vector potential 4 may
be chosen to have the form 4 = 2xrfg/L’, where ¢ is the
flux through the cylinder, r the radial distance, and 6 the
azimuthal unit vector. We apply periodic boundary
conditions in the azimuthal direction and hard-wall ones in
the y-direction. The current I, carried by the nth eigenstate
(of energy E,) may be calculated by using the current
operator. Instead, we work in a gauge for the vector potential
in which the field does not appear explicitly in the
Hamiltonian and the current operators, but enters the
calculation via the flux-modified azimuthal boundary
conditions 6, 111,

2n¢
%

—exp <@) @
dx|, ¢, / dx
where ¢, = hc/e. These equations imply that the eigenstates
and energies and hence all equilibrium physical properties of
the ring are periodic in ¢ with period ¢,,. This is true also in
the presence of disorder. A flux ¢ # ¢, X integer is
mathematically equivalent to a change in the boundary
conditions of the system. This observation is the key to all
our discussions of the sensitivity of the persistent current to
changes in temperature, degree of disorder, and other
parameters.

The total current, I(¢), is the sum over the contributions
I of all states, weighted with the appropriate occupation
probability. It is periodic in ¢/¢,, with period 1, and can be
expressed as a Fourier sum,

I(¢)=Y 4, sin <2["¢>.
s ¢

0

¥(L)= exp( )w(O),
n

@

0

@

To calculate the persistent current we need to know the
eigenstates of the system and the thermal distribution
function. Typical for mesoscopic systems is the fact that the
energy levels form a discrete spectrum. In principle, the
canonical and grand-canonical ensembles give rise to
different single-level probability distributions, because the
systems are not in the thermodynamic limit. For a ring,
which can exchange energy with a reservoir, a description in
terms of a canonical ensemble with fixed number of particles
N, is appropriate. It is more convenient to consider a system
that also couples weakly to a particle reservoir (cf. also
Section 2). Adapting this approach, we characterize the
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system by a Fermi-Dirac distribution with the chemical
potential », and compute the persistent current at finite
temperatures starting from

1
PB4

I¢)=X

n

3

I and E, denote the energy and current of the nth
eigenstate, 8 = 1/k, T.

There is a close connection between the states of an
electron in a loop and the one-dimensional Bloch problem,
as seen by identifying 2x¢/¢, and kKL, [4, 6, 11]. The energy
levels of the ring form microbands as a function of ¢ with
period ¢, analogous to the Bloch electron bands in the
extended k-zone picture (cf. Figure 2). The current carried
bylevel E at T=0is

1= —&, v, = 1 %, @)
" L " h ok,
or, using the above analogy,
oF,
I=—c 3 3)

At finite temperatures, instead of summing the currents I,
over all levels with weight f(E,), one can calculate the total
current from the thermodynamic potential, F, of the system
[6, 11],

oF
I(¢) = —c Ere (6)
Figure 2 shows schematically the energies of the eigenstates
of three small cylinders of different circumference to height
ratios as a function of flux. In the presence of disorder, gaps
open at the points of intersection, in the same way as band
gaps form in the band structure problem. From Equation
(5), the current carried by an eigenstate is proportional to the
slope of the energy-versus-flux curve.

2. Persistent current in perfect rings
First, we consider persistent currents in perfect rings at zero
temperature and vanishing disorder as a function of
geometry. These results provide the background against
which we discuss the effects of temperature and disorder.
Our calculations are for noninteracting systems of electrons.
We concentrate on the generic results as obtained from the
free-electron and tight-binding models.
The free-electron model of the cylinder is defined by
2 2 2
H= —ﬁ—(d— + d—) + Vi(x, y), 7
2m\ gx? dy2
with the boundary conditions (1). For the perfect cylinder,
V = 0, the energy and current of the (n, m)th eigenstate are

_ n o, 2
En,m = 2m[kx(n’ ¢) + ky(m)]y
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(a)

! Energy levels as a function of flux for the tight-binding model (14) of
cylinders of size (a) 10 X 1, (b) 10 X 4, and (c) 10 X 40. Results are
for rings without disorder.

eh
I.,.= —’—n—zkx(n, ?), 8

where k (1, $) = 2x[n + (¢/$,)l/L,, k,(m) = m=x/L, with
n=0,x1,+2,--- and m=1,2,3,---. The system is
characterized by the chemical potential p = h2k§/2m. One
can visualize the effect of nonzero flux as a shift of the

(k,, k,) grid in the k, -direction relative to the fixed Fermi
half-sphere, k> = k7. + k’ with k, > 0; see Figure 3(a). In
units of the Fermi wavelength A, = 2w/k_., the circumference
and height of the cylinder are L= L /A and L, = L /\;.
The number of channels M is defined as the largest integer
.<_2f,y, i.e., the largest channel index inside the Fermi surface.
We denote by A,, the level spacing at the Fermi surface for
zero flux. For the one-channel system,

2rhv,

1 L >

X

®

there are two eigenstates per energy interval A,. A, scales
like A, /M.

The total persistent current may be expressed as the sum
over the currents carried by the M different channels. For
the one-channel problem we had obtained [12]

e 21, . 2[7r¢)
Il(¢)—l=21 - cos(lkFLx)sm< 5 )

(10)
]

with I, = evg/L,. For the M-channel system, the total
current /,,(¢) may be obtained by summing over all
channels k , with their respective kelk) =V kf, - k;,
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Fermi surfaces and eigenstates at zero flux in (k,, k,) space for (a)
free-electron model (7) and (b) tight-binding model (14) of perfect
cylinders of circumference and height L, ,L), andL, = Na, L = Ma,
respectively (a = lattice constant).

Moo= 2,V —[k(m)/k

I@)=3% 3 —
m=1 I=1 1

- coslke L V1 - [k (m)/k)’}sin <217'¢>.

0

Analytical results for I,,(¢) can easily be obtained in the
limits of long cylinders (L, << L ) and short cylinders

(L, > L), respectively. The result of the summation over m
in Equation (11) depends on the strength of the phase
correlations between currents of different channels, as
described by the cosine phase factor. For the long cylinder,
L, < L, that cosine phase factor changes slowly with k..
Replacing the sum with an integral, we obtain

o

Mi, . 2l1r¢)
L(¢)= El L cos(lkFL 4> < o (12)
For the short cylinder, L, > L, the cosine phase factor in
Equation (11) changes rapidly with k,. Consequently, the
actual form of the current depends sensitively on L, L, and
k. To estimate its typical magnitude we assume the cosine
phase factors in Equation (11) to be completely uncorrelated
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for different k. (This assumption agrees well with our
numerical results.) The typical current is then T, (¢) =

V(]i{(‘]g))’ where

211r¢) (13a)

(L(8)) = 2 (4 >sm< p,
Fi 0

with

21,
VAl == \/;A{ (13b)

The formulas (10)-(13) contain important physics, which is
discussed below.

The current-flux characteristics /,(¢) for one-dimensional
loops, cf. Equation (10), are shown in Figure 4 for three
choices of u (or k;) [14]. For k. = N_x/L_, the loop has a
fixed number of electrons N, (even or odd), while for other
k. the number of electrons varies when the flux ¢ is changed
by one fluxoid. Whenever a level crosses the Fermi surface, a
sawtooth change occurs in the current-flux characteristic.
The maximum current amplitude is inversely proportional
to the loop circumference, I, = ev./L,. In one dimension,
the total current has the same sign and order of magnitude
as the current of the highest occupied level.

The current-flux characteristics 1,,(¢) for M-channel
cylinders may be thought of as a superposition of M
sawtooth-shaped currents 7 (¢) corresponding to different
ke(k,), as expressed by Equation (11). In Figure 3, the mth
channel corresponds to all states inside the Fermi surface
with fixed k,(m) < k. For short cylinders, L, > L, there is
apparently no correlation between the separations of the last
occupied level and the Fermi energy from channel to
channel, so that the channel currents add without phase
correlation. Therefore, the total current amplitude scales
with the number of channels like VM, as was obtained in
Equation (13b). We note that in spite of the strong
cancellations, the typical total current increases with the
number of channels. For long cylinders, L, < L, there are
some phase correlations among the currents associated with
different channels (and eigenstates). This is also seen from
the level diagram of Figure 2(c). The analytical result (12)
shows that in this case the total current scales with M like
Mj/VL. Note that in both cases the unit of current is
I, = ev./L,, which also depends on L. In Figures 9 and 10,
the curves labeled T/T* = 0 are representative current-flux
characteristics for a single long and a single short cylinder,
respectively [14]. Figures 9 and 10 are discussed in more
detail in Section 3.

The tight-binding model for a cylinder of circumference
L, = Na and height L, = Ma is defined by

— ¥
= —VE (al,j i+1,j al+11au + a i4;

iJ l,j+l I,J+l u)

+
+X €49 (14)

()
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and the boundary conditions (1). Here af ., and a, ; denote the
creation and annihilation operators at site (i, j), V the
hopping matrix element, ¢, , the on-site energy, and a the

lattice constant. For the perfect cylinder, ¢, ; = 0, the
eigenstates are

A/ 2
\b(x’ y)"" N(M+ 1) e xxSlnkyy’ (15)

where both x and y are discrete, and k, and k, are

ko= n, ) =22 <n+(—f—>,
0,
(16)
kyEky(m):AKrl’

withn=0,1,--- , N—landm=1,2,---, M. The energy
and current of the eigenstate (n, m) are

E,, =—2V(cosk.a + cosk a),
a7
4arcV
I = - 1 .
. Ne, sink.a

For the one-dimensional loop, the level spacing at the Fermi
surface at zero flux is

A= f‘%Ifsinkl,a, (18)
which has the same form as Equation (9). For the two-
dimensional cylinder described by the tight-binding model,
the level spacing A,, scales like 1/M, except at p = 0, where
it scales as 1/M log M. The Fermi surface consists of two
straight lines [see Figure 3(b)]; the states with E, <0 are
located inside the triangle.

For the tight-binding model with M = 1 we had obtained
[12]

£

2]
I(¢)= Y —cos(INk.a)sin <2Zr¢)’ (19

=1 wl [}

which is similar to Equation (10) for the free-electron model.
The I-¢ characteristics are also very similar to those of
Figure 4. As expected, now I, = (2¢V/Nh)sink.a vanishes
for filled bands, where k.a = .

The total persistent current I,,(¢) of the M-channel system
may be expressed as the sum of the currents over the 3/
channels, each with a contribution given by Equation (19),
with kg(k,). Except for the half-filled band limit, u = 0, it
exhibits the same generic features as Equations (12) and (13).
(Compare also the discussion of Figure 7, shown later.) In
the following, we specialize to the half-filled band case to
illuminate the working of the phase correlations described by
the cosine phase factor in Equation (19).

For the two-dimensional tight-binding model in the half-
filled band limit, the total persistent current is
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Persistent current vs. flux (I-¢) characteristics of perfect
one-channel foops over one period of the magnetic flux ¢/dy, cf.
Equation (10) [14]. The chemical potential . is fixed such that the
number of states with energy less than p in the loop is (a) even, (b)
odd, and (c) changes between odd and even as a function of the flux.
The current is in units of J;, = evg/L,. Results for the one-channel
tight-binding model are very similar.
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Flux, ¢/¢,

Effect of interchannel phase correlations of the I-¢ characteristics of
M-channel cylinders described by the tight-binding model in the
half-filled band limit w. = 0 [cf. Equation (20)]. N and M satisfy the
phase-correlation condition (21) forp = 1, 2, and 3, respectively, at
J = 1.The!l =1, 2, and 3 harmonics dominate in the respective
persistent currents, and the maximum possible amplitude, 7, =
2(M + i,/mp, is achieved. The curves are general, though they
were generated for sample sizes 100 X 49, 100 X 99, and 100 X
149.

Current, IM /lmax

-0.5

Sensitivity of the /-¢ characteristics (p = 1) of M-channel cylinders
considered in Figure 5 to the degree to which N and M satisfy the
phase-correlation condition (21). For 8M = 1 and 2 (andj = 1), the
amplitude of the dominant first harmonic is reduced by factors of 1/3
and 1/15, respectively.
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> 2, L{INx
L(¢)= El Tl COS' (——2—)

sin< Ll )
M+1
sin<2hr¢). (20)

%o

The current is largest when strong phase correlations exist
between the currents from channel to channel. Consider
Figure 3(b). Changing the flux ¢ means moving the
underlying (k,, k,) grid in the k -direction relative 1o the
triangular Fermi surface. Suppose Ak, = Ak ;ie., N=

2(M + 1); then the Fermi surface crosses M levels
simultaneously while the flux ¢ is changed by one fluxoid.
There is perfect phase correlation among the channel
currents, and the amplitude of the total current assumes its
greatest possible value, I, = 2(M + 1)I,/=p. The
corresponding I-¢ characteristic is labeled p = 1 in Figure §
[14]. Now suppose Ak, = pAk,;ie., N=2(M + 1)/p. If we
choose M at fixed N (e.g., N = 100) such that the latter
condition is satisfied, then the Fermi surface crosses p times
a group of M levels while the flux ¢ is changed by one
fluxoid. The amplitude of the total current is the same as for
the p = 1 case, but now the current changes sign p times
within one period ¢,. Figure 5 shows the /~¢ characteristics
for p = 1, 2, and 3. The general condition for maximal
interchannel phase correlations is

N=2?j(M+1), 21

where p and j are integers that are relatively prime. When
this geometrical condition relating the circumference and
height of the cylinder is satisfied, then the / = p Fourier
coefficient in Equation (20) assumes a maximum and
dominates the sum.

Unfortunately, the geometrical amplification of the
persistent current described above may not be of much
practical use because (a) ¢ = 0 is very special and (b) the
geometrical condition (21) is very sharp. For instance, if
N=2j(M+ 1+ 6M)/p, so that M differs from the value
that satisfies (21) by M, then the dominant (/ = p) Fourier
coefficient decreases as 1/[1 — (2j5M)’]. Figure 6 shows this
feature. Here, for p = 1, j = 1, changing M by 1 or 2 relative
to the value satisfying (21) reduces the amplitude of the
first harmonic of the current by factors of 1/3 and 1/15,
respectively. The dependence on the chemical potential u of
the persistent current for a cylinder satisfying the geometrical
condition (21) is

/ o Toax A
W= L 20 N oral

1

2npr|p| 7\ . (2npre
. cos(———A + 4>sm<——¢o > (22)
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This formula is valid for | x| = A,. The form of the equation
is similar to that of Equation (12), as one would expect,
since in both cases there are strong phase correlations among
the currents from different channels. Figure 7 shows results
for the I-¢ characteristic, p = 1, j = 1, for four values of u.
For large | 1 |, the Fermi surface approaches a semicircle.
Then these results cross over to the results for the free-
electron model.

3. Persistent current at finite temperatures

We now discuss the effect of temperature on the persistent
current of impurity-free rings. With increasing temperature,
the probability that electrons occupy higher levels, which
may carry larger currents, increases. However, at higher
temperatures, the occupation probabilities of levels close in
energy (which encompass levels having currents of opposite
sign) are not very different. The net result is an almost
complete cancellation of positive and negative contributions
to the current. Significant for the observability of the
persistent current, we find that even for multichannel rings
the sensitivity of the current amplitude to temperature is
governed by the level spacing of the one-channel ring, A,
rather than the much smaller level spacing of the
multichannel ring, A,, & A /M. The reason is that there are
correlations in the slopes of the eigenenergies as functions
of flux.

Finite temperature affects the system in another important
way. At nonzero temperature, thermal excitations, such as
phonons, are present. Such excitations interact with the
electrons inelastically, giving rise to phase randomization of
the electron wavefunction (besides some level shifting). The
effects of dephasing on the persistent current through
inelastic scattering are discussed in the next section. Here
we assume that at the temperatures considered, the phase-
coherence length of the electron is large compared to the
ring circumference, L, >> L.

We compute the persistent current at finite temperatures
starting from Equation (3). We discuss only the case of
metallic electron densities, p > k, T. (The Appendix of [12]
contains some discussion of other cases and calculational
details for one-dimensional rings.) For the one-channel loop
in the metallic limit, the persistent current is given by

e 41, T exp(—IT/T*)
L@O)= L T T exp2iy )
. cos(lkFLx)sin<2hr¢>, 23)
b
where
Al
K T* =2, @4
2r

This result holds both for the free-electron and the tight-
binding model, and replaces Equations (10) and (19),
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sy

Sensitivity of the I-¢ characteristics (p = 1) of M-channel cylinders
considered in Figure 5 to changes in the chemical potential. The set of
chemical potentials w/A, = 0,0.9,2.9,and 5.9 was chosen such that
the respective currents remain dominated by the first harmonic.

T

respectively. The characteristic temperature 7* is set by the
level spacing A, « 1/L_at the Fermi surface [Equations (9)
and (18)]. At 7> T*, the persistent current is proportional
to sin(2w¢/¢,) with an amplitude that decreases
exponentially with temperature. For 7 < T*, higher
harmonics contribute and the amplitude of the total current
depends only weakly on temperature. These effects are seen
in Figure 8. Nonzero temperature has two main effects: All
discontinuities in the I-¢ characteristic become rounded,
and the maximum amplitude of the current decreases
exponentially.

In view of the preceding discussion, one might expect that
for M-channel systems the characteristic temperature
separating high- and low-temperature regimes is set by the
level spacing 4,,, which is smaller than A, by a factor of
1/M. That would be devastating for the observability of
persistent current effects. However, as discussed
subsequently, this is not the case.

Analytical expressions for the persistent current of
M-channel cylinders at finite temperature are obtained by
following the same procedure as described in Section 2.
Starting from Equation (3), we first perform the sum over
the states within a single channel, which yields Equation
(23), now with k. and T* depending on k,, and then
perform the sum over the M single-channel contributions.
For the free-electron model, specialized to the limit of long

cylinders, we obtain for 7> T* 365
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Flux, /¢,

Temperature dependence of the /-¢ characteristics of one-channel
loops from the tight-binding model [cf. Equation (23)]. The results
are for even numbers of electrons in the loop (see Figure 4) and
temperatures T/T*. =0, 0.5, 1.0, 2.0, and 3.0. The characteristic
temperature 7™ is given by the level spacing at the Fermi surface at
zero flux, 7% = Al /27", Results for the one-channel free-electron
model are similar.

&
7
&
]
]
]
i

46) i 2MI1,T < lT>
= exp
M =1 wT*JIL

- cos(lkFLx - 1) sin<21ﬂ>. 25)
4 @

For long cylinders, the cosine phase factor in the current
[cf. Equation (23)] varies slowly from channel to channel, so
that the sum over channels can be replaced by an integral. It
is precisely due to these strong correlations in the phase that
the total current 7, ,(¢) has the characteristic factor of M/ s/f,
as in the 7" = 0 case [cf. Equation (12)]. For short cylinders
the cosine phase factor in Equation (23) varies greatly from
channel to channel. We estimate the typical amplitude of the
/th harmonics v (4?). Assuming that the cosine phase
factors are completely uncorrelated for different k,, we
obtain for 7> T*

- 2 M i IT
A= s/(A12> = 01 <1rl]7:*> exp(——). (26)

For T > T*, the first harmonic represents very well the
amplitude of the total current. Again, as in the T = 0 case
[Equation (13)], the typical total current has the
characteristic factor of v due to the sum over uncorrelated
contributions from different channels.

For both long and short cylinders, we see from Equations
(25) and (26) that the decrease of the persistent current is
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governed by T*, which is in turn proportional to the level
spacing of a one-channel ring of the same circumference,
A,. This is extremely relevant to the observability of the
persistent current, since if the decrease were governed by
A,,, persistent currents would show in experiments only at
hopelessly low temperatures. One other general feature that
we see from Equations (23), (25), and (26) is that the higher
harmonics decrease exponentially more rapidly than the
first harmonic, so that at 7 > T, the total current is well
represented by the first harmonic. Numerical results confirm
this behavior.

Numerical results for /,,(¢) for a long and a short cylinder
are shown in Figures 9 and 10, respectively [14]. In both
cases, they show clearly the total current approaching
sinusoidal behavior with increasing temperature.

For the tight-binding model, we discuss the temperature
behavior only for the persistent current of cylinders that
satisfy the condition of maximal interchannel phase
correlation [Equation (21)]. The calculation is the same as
for the free-electron model, the one-channel result being
given by Equation (23). Summing up the contributions from
all channels, we obtain for 77> T*

: 2Imax npT . (2n npT
L($)= 2 ——= \/%sm( g‘lrd) exp ﬁ* .

1 0

@7

The total current is proportional to the same characteristic
factor I, = 2(M + 1)I/=p, as at T = 0, the reason being
the complete phase correlation between the currents from
different channels. Again, as for the free-electron model, the
decrease of the persistent current is governed by 4, and
higher harmonics decrease exponentially faster than the first
harmonic.

In this section we have discussed the average persistent
current for a ring in thermal equilibrium. By assuming a
Fermi-Dirac distribution function for the electrons, we find
that the decrease of the current is governed by the level
spacing for a one-channel ring, instead of the much smaller
level spacing for an M-channel ring. This allays one fear,
namely, that the temperature required to observe the
persistent current might be vanishingly small. We also find
that in general, the first harmonic decreases most slowly and
dominates the current at high temperatures, 7> T*.

4. Persistent current and phase breaking
Understanding the role of inelastic scattering events that lead
to a dephasing of the electron wavefunction is crucial for
developing a complete theory of persistent currents; cf. also
[4, 5]. Such an understanding is still lacking. To gain some
insight into this aspect of the problem, we have considered a
phenomenological description of a one-dimensional ring,
which follows closely an approach put forward by Biittiker
[5]. Biittiker considered a one-dimensional ring coupled
through a single ideal lead to an external electron reservoir
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in which thermal equilibration takes place; see Figure 11(a).
He cast the coupling to the outside reservoir in the form of a
scattering problem, describing the scattering at the junction
between the ring and the lead in terms of a (3 X 3) S-matrix.
However, in Biittiker’s formulation the scattering of the
electron contains both elastic and inelastic contributions,
and it is difficult to separate the effects that result from these
two very different types of scattering.

We have modified the S-matrix that Biittiker [5, 15] used
so that it describes only the inelastic scattering in the ring.
This matrix relates the outgoing waves «,, 8,, v, to the
incoming waves a, 3, v [see Figure 11(a)] and is written as

—-v1—=2¢ Ve Ve
§= Ve 0 1—¢| (28)
Ve Vvi—¢ 0

According to this scattering matrix, a particle coming from
the reservoir is scattered back with a probability 1 — 2e,
and can enter the ring with equal probability, ¢, for going
clockwise or anticlockwise. A particle in the ring arriving
at the junction can either scatter out of the ring (with
probability ¢) or remain in the ring (with probability 1 — ¢),
its momentum being unchanged. No elastic scattering (i.e.,
backscattering) within the ring is allowed.

The way we have formulated the problem is not absolutely
correct, since the S-matrix in Equation (28) is not unitary,
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which implies nonconservation of current. When there is
only one incoming wave, the current is conserved. It is the
interference terms that cause current nonconservation. It
may seem that this model is too awkward to have a sound
physical meaning. However, remembering that we are
modeling inelastic scattering which causes dephasing of the
electron wavefunction, we should add an uncontrolled,
random phase to the wave after every inelastic scattering
event. This means that five of the elements of the S-matrix,
the —v1 — 2¢ and Ve terms in Equation (28), should carry
extra random phase factors. While these phase factors do not
affect any of our discussions below, averaging over these
phases restores current conservation. It is important that the
two v1 — ¢ elements of the S-matrix not be modified by
random phase factors, since they represent the parts of the
wavefunction that are not scattered.

The persistent current in the ring can be calculated now,
following [5]. With a flux present, the wavefunction satisfies
the boundary condition (1). The current is then given
[10] by

dE

I(¢)=— f e EXI81" = 1V IVB) 5

(29)
where f(E) denotes the Fermi-Dirac distribution function.
We choose the Fermi energy such that there is an odd
number of electrons in the ring, when e =0 and T = 0. We
find for T'= 0 and ¢/¢, (mod 1) in the interval —0.5 < ¢/¢,
<0.5,

20 2 _, | etan(7¢/d,)
I =—] 4==——1ta e — . 30
2 o{% m g [2—6—2‘/—1——_6 (30)

with I, = ev /L . From Equation (30), we see that ¢ can vary
in the range 0 < ¢ < |; there is nothing special about ¢ = 1/2,
as it might have seemed from Equation (28).

The above model assumes that an inelastic event may take
place only at one particular point along the ring. A more
realistic model consists of coupling the ring to external
reservoirs at many points along the ring, as shown in Figure
11(b). We have studied a model of a ring with infinitely
many couplings to identical reservoirs uniformly spaced over
the whole ring. The relevant parameter in this model is the
probability that the electron not be inelastically scattered
while moving through the ring once. We choose this
parameter to be equal to exp(—L/L,), which is a reasonable
way to define the phase-coherence length, L. Assuming
ballistic motion of the electron, one may alternatively set
L, to be vg7,, where 7, is the dephasing time. Quantum-
mechanical coherence is lost on length scales larger than L,.
In our generalized model, the persistent current is given
again by Equation (30), with (1 — ¢) replaced by
exp(—L/L,). In the limit L, > L, the current becomes

2¢ L ¢
=-] |—~—~ —1; 31
1,(¢) Io[¢0 27rL¢tan<¢0>]’ (31
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i.e., the correction to the current is linear in L/L,. In the
limit L, < L, the current amplitude decreases exponentially,

21
1,$)=-=2 exp<——2% )sin(z;r—¢>. (32)
® 0

The generalization of these results to the multichannel case
remains to be worked out.

5. Persistent current and elastic scattering

Any prediction of the magnitude of the persistent current
amplitude for experimental systems requires a careful study
of the effects of impurities. We do not discuss this point here
in any depth. We do discuss briefly the effects of elastic
scattering in randomly disordered systems on the persistent
current at zero temperature, which can provide some useful
guidelines. Our model is the tight-binding model (14) with
random on-site potentials ¢,; given by independent square
distributions of strength — /2 to +W/2. The hopping
matrix element V is set constant so that the disorder
parameter is W/V. We have applied this model extensively
to the persistent current problem in one-dimensional loops
[12] and multichannel cylinders [16].

The question is again that of the scale over which the
current amplitude decays. We briefly consider the weak and
strong disorder limit. We also discuss some numerical results
and point out the general features.

Perturbation theory is adequate when the shifts in energy
due to disorder are small compared to the level spacing.
From this viewpoint, the energy parameter that determines
the sensitivity of the persistent current to disorder is the level
spacing, A,,. Consider the level diagrams of Figure 2. In the
presence of disorder, gaps open at the points of intersection
and the eigenenergies, as a function of the flux ¢, flatten out.
This means that the system is less sensitive to changes in
flux. Hence, the amplitude of the persistent current is
reduced, while its overall flux periodicity is preserved.
Perturbation theory implies, for weak arbitrary impurity
potentials, the following result. The leading correction 1o the
current is second-order in the impurity potential, i.e.,
proportional to (W/ V)z, since the correction to the
wavefunction is first-order in the impurity potential and the
current operator is diagonal in the unperturbed basis.
Certainly for M-channel systems, the perturbation regime is
not accessible experimentally because of the generally small
value of A,,.

Disorder introduces new length scales into the problem. In
one- and two-dimensional disordered systems, all electron
eigenstates are exponentially localized [17]. We denote the
localization length of the system by £. For the ring
geometries, we define the crossover to the strongly
disordered or strongly localized regime by the condition
L = ¢. Tt is clear that in the localized regime the persistent
currént will be exponentially small. The physical reason is
that then the effect of the magnetic flux, which enters in our
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approach via the phase-shifted boundary condition (1), is felt
by the localized electron only as an exponentially small
perturbation. We found from model calculation that in the 10
strongly localized regime the amplitude of the persistent N =
current does decrease exponentially with L /£ [12, 16]. M=
We conclude by presenting some numerical results for 051
persistent currents in disordered rings. The results serve to
give some feeling for the crossover phenomena that occur,
while at the same time demonstrating interesting similarities
between the sensitivity of persistent currents to temperature

Current, IM:l/IO
<
T

and disorder, respectively. o3

First, we consider the case of a one-dimensional loop.
Figure 12 shows numerical results for the typical persistent =10 | , ) A 1
current I,(¢)/1, versus ¢/¢, for four values of the disorder 0 0.2 0.4 0.6 0.8 1.0
parameter W/V, as obtained for a small ring of N = 20 with Flux, ¢/,

10 electrons. [These data were obtained by numerical

diagonalization of the Hamiltonian (14) for one realization
of disorder for each value of W/V.] Even though the e ;
simulation was performed for a very small sample, the result  { Effect of disorder on the I-¢ characteristics of one-channel loops

is generic for a one-dimensional loop. We note that the ! from the tight-binding model. The simulation is for a small loop of N
d f th t litud functi f disorder i ¢ = 20 with ten electrons and four values of the disorder parameter,
ecay of the current amplitude as a funchion of disorder 1n . W/V=0,0.5,1.0,and 1.5. The curves resemble those of Figure 8.

Figure 12 is very similar to the one as a function of | See Section 5 for details.
temperature in Figure 8. Here the persistent current .
approaches sinusoidal behavior for large disorder. The
crossover to the strongly localized regime, £ < L_, occurs at
about W/V = v105/L, [17]. Analytically, we found [12] in
the limit of strong disorder (i.e., £, < L) the average
persistent current

I
T(¢)~ E"sin(%”) exp(—%), 33)

with the higher harmonics decaying with correspondingly
higher powers of the exponential factor. The current 7, in
Equation (33) is defined as the exponential of the average of
log(I,) over impurity configurations. Note that in the limit
of strong disorder, T,(¢) « VG, where G is the conductance —0.5
of the ring.

Second, for the M-channel system Figure 13 exhibits the
typical persistent current I, (¢)/I, versus ¢/¢, for four values
of the disorder parameter W/ V. The results are for a small
cylinder of N = 8, M = 4, and . = 0, and were obtained by Flux, ¢/¢,
the same procedure as in the one-dimensional case. Again,
though the simulation is for a very small sample, it shows
generic features such as the amplitude reduction and
approach to sinusoidal behavior in complete analogy to the
changes occurring as a function of temperature [cf. Figures 8
and 9). For details we refer the reader to a separate
publication [16]. These analogies also suggest that to observe
the persistent current does not require prohibitively small
impurity concentrations.

Current, IM /10

Effect of disorder on the /~¢ characteristics of M-channel cylinders
from the tight-binding model. The simulation is for a small cylinder
of dimensions 8 X 4 and 16 electrons for four values of the disorder
parameter, W/V = 0, 0.77, 1.54, and 2.31. The first harmonic
dominates at large disorder.

6. Conclusion a magnetic flux depend on several important physical
In this paper we have addressed the question of how parameters. These include the number of channels
persistent currents in nonsuperconducting rings threaded by (geometry), temperature, and disorder. We have also
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considered the effect of inelastic scattering in the single-
channel case. The situation is much more favorable than
might have been thought. Although it is too early at this
stage to predict the actual magnitude of the persistent
currents in experimental systems, we believe that our work
has already shown that nonnegligible persistent currents
should occur in isolated rings of mesoscopic dimensions.
The sensitivity of these currents to material parameters
might make them an interesting tool for characterizing such
systems.

We emphasize that the currents are in fact rapidly
fluctuating in time, due to coupling to other degrees of
freedom such as phonons. The term “persistent current”
refers to the nonvanishing dc component of that current. In
the Introduction we stated the assumptions of our
calculations. We stress that we choose to discuss the
persistent-current behavior due to a pure Aharonov-Bohm
effect; we ignored spin-orbit coupling and neglected further
attenuation of the current due to the field penetrating
through the metal. One can estimate that these assumptions
pose no serious problems for appropriate ring geometries.

In Section 2, we found that in spite of massive
cancellations of the currents between individual channels
(and, of course, between energy levels within channels) the
total current increases with the number of channels as VMI,
for short cylinders and as (M/VL ), for long cylinders, where
1, is the typical current of a single-channel ring. For special
geometries one can achieve maximal phase correlation and
much larger currents, I, « MI,. Those latter cases may not
be of great experimental relevance at this stage. They are of
interest to the theorist since they allow the modeling of
samples with specific properties, e.g., persistent currents with
dominating higher harmonics.

In Section 3, we found that even for multichannel rings
the sensitivity of the persistent current to temperature is
governed by the characteristic energy k, T* o« A, rather than
the much smaller A, o« A,/M. That is a somewhat surprising
result in view of the fact that it is the level spacing that
governs the temperature attenuation of the persistent current
in the single-channel case. The explanation is, however,
simple. Whereas in one dimension the ladder of states at any
fixed flux yields contributions to the total current which
alternate in sign, this is not the case for a higher-dimensional
system. Correlations exist among the slopes of the
eigenenergies as function of flux. While for one dimension
the current of the last occupied level (for T = 0) gives the
sign and order of magnitude of the total current, in two
dimensions the total current is well represented in many
cases by the contributions of levels within an energy interval
of width A /2 just below the Fermi energy. We shall quantify
these remarks in a forthcoming publication.

In Section 4, we commented on the role of inelastic, i.e.,
phase-breaking, interactions. For a single-channel loop in the
ballistic regime, the current is attenuated by an exponential
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factor, exp(—L,/L,), that contains the phase-breaking length
(or time). Theoretical questions remain to be worked out,
including the dependence of the phase-breaking time on
elastic scattering and the form of the attenuation of the
current for the multichannel case, especially in the diffusive
regime. The successful magnetoresistance experiments [3]
show that it is possible to fabricate multichannel rings that
possess sufficiently large phase-coherence lengths at
experimentally accessible temperatures.

In Section 5, we discussed the attenuation of the persistent
current due to random disorder in the system. We
considered the randomly disordered tight-binding model.
For realistic M-channel systems, the ballistic regime, let
alone the perturbative regime, is not experimentally
accessible at present. Analogies between the sensitivity of the
persistent-current amplitude to temperature and degree of
disorder seem to suggest that one does not require
prohibitively pure samples to observe the persistent current.
For small disorder in the perturbative regime, the corrections
to the current are quadratic in the degree of disorder,

(w/ V)z. For large disorder in the strongly localized regime,
the persistent current amplitude is attenuated by an
exponential, exp(—L_/£), which contains the localization
length. This is because the wavefunction reaches around the
ring only via exponentially small tails; hence, its sensitivity
to the Aharonov-Bohm flux (boundary conditions) is also
exponentially small. We are currently working out the details
of the behavior of the persistent current amplitude in the
experimentally interesting intermediate regime, the diffusive
regime.
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