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Persistent  currents  in  small  nonsuperconducting 
rings  threaded  by  a  magnetic  flux  are a 
manifestation  of  novel  quantum  effects  in 
submicron  systems.  We present  theoretical 
results for  one-channel  and  multichannel 
systems  concerning  the  dependence  of  the 
current  amplitude  on  the  number  of  channels 
and  geometry,  temperature,  and degree of 
disorder.  Inelastic  scattering is considered  for 
one-channel  loops  only.  We  also  discuss  the 
observability  of  the  effect. 

1. Introduction 
With the advances in technology, the fabrication of 
submicron devices has become  possible. Such “mesoscopic” 
systems [ 1,2] have opened the door to a  rich new  field  of 
theoretical and experimental physics. The physics  of  small 
metallic  rings  is an excellent  testing ground for many ideas 
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in the field of  mesoscopic  physics.  The  Aharonov-Bohm 
oscillations in the magnetoresistance of small  two- and four- 
terminal structures have  been  discussed  extensively in the 
literature [3]. The problem of persistent currents, pertinent 
to isolated conducting loops or cylinders threaded by a 
magnetic  flux,  is  less  well understood theoretically, and such 
currents have not yet  been  observed  experimentally. Here we 
review some recent theoretical progress on that topic. 

Persistent currents in nonsuperconducting rings and 
cylinders threaded by a  magnetic flux depend crucially on 
the coherence of the electron wavefunction  over the whole 
ring [4,5]. In terms of the phase-coherence  length of the 
electron, L, (i.e., the length  scale  over  which the electron can 
be  considered to be in a pure state), the requirement is that 
L, be  larger than the circumference of the rings, L,. Earlier 
works in the 1960s,  dealing  with  flux quantization in 
superconducting rings, mention the possibility of circulating 
currents in sufficiently  small normal-metal rings [6-1 I]. 
However, the idea of persistent currents in normal-metal 
rings containing elastic  scatterers  is more recent and is  based 
on the observation that the electron wavefunction  may  even 
then extend coherently  over the whole  circumference  of the 
ring. For one-dimensional  loops, the existence of such 
currents was proposed by Biittiker, Imry, and Landauer [4] 
in 1983, and was extended by Buttiker [5] in 1985. A more 
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i Thin hollow cylinder of circumference L, and height L, threaded by a 
j magnetic flux 4. 

detailed quantitative analysis has since  been  given  by  us [ 121. 
Basic questions concerning the more realistic multichannel 
systems remained unresolved most importantly, the 
dependence of the persistent current on the number of 
channels, on temperature, and on the amount of elastic 
scattering (due to impurities and imperfections). 

findings for the persistent current in one-channel and 
multichannel rings.  We emphasize the effects  of  geometry 
(i.e., number of channels) and temperature. Predictions for 
the amplitude of persistent currents in experiments require 
further elucidation of the effects  of impurities and will be 
published  elsewhere.  We  have  organized the material as 
follows. In Section  2, we discuss the effects  of  geometry on 
the persistent current in rings at zero temperature and  in the 
absence of disorder. In Section 3,  we evaluate the 
temperature dependence of the current amplitude, and in 
Section 4 we consider the reduction of the persistent current 
due to dephasing by inelastic  scattering. In Section 5 ,  we 
comment on the effects of disorder on the persistent current. 
Section 6 contains a  brief summary of our conclusions 
concerning the observability of the effect. In the remainder 
of this introduction, we define the persistent current problem 
in more detail. 

The purpose of the present paper is to review some of our 

We consider the persistent current in multichannel 
systems of cylinder geometry (Figure 1). The circumference 
and height  of the cylinder are denoted by  L, and L,, or the 
dimensionless quantities L and M, to be specified  later. M is 
referred to as the number of channels. (We  neglect the width 
of the cylinder, assuming L, smaller or of the order of the 
Fermi wavelength  of the electron. The generalization to 
finite L, is  straightforward.) We assume that  the magnetic 
flux 6 threads the cylinder  axially so that the electrons 

always  move in a  field-free  space. The flux  periodicity of the 
electron wavefunction,  with  period q50 = hc/e, is then strictly 
of the Aharonov-Bohm  type. We also assume that the self- 
inductance of the rings is small, so that self-inductance 
corrections to the flux  may be neglected. This is supported 
by quantitative estimates based on realistic  values  for the 
size  of the system [ 131. For the ring  geometry, the spatial 
degrees  of  freedom  of the electrons are the azimuthal angle 0 
and the height coordinate y.  We replace 0 with x = L0/2?r, 
which  varies  between 0 and L. The vector potential k may 
be  chosen to have the form k = 2rr&$/L2,  where 6 is the 
flux through the cylinder,  r the radial distance, and e  ̂the 
azimuthal unit vector. We apply  periodic boundary 
conditions in  the azimuthal direction and hard-wall ones in 
the y-direction. The current Z, carried by the nth eigenstate 
(of energy E,,) may  be  calculated by using the current 
operator. Instead, we work in a  gauge for the vector potential 
in which the field does not appear explicitly in the 
Hamiltonian and the current operators, but enters the 
calculation via the flux-modified azimuthal boundary 
conditions [6, 111, 

where 4o = hc/e. These equations imply that the eigenstates 
and energies and hence  all equilibrium physical properties of 
the ring are periodic in 6 with  period 40. This is true also in 
the presence of disorder. A flux 6 # @o X integer  is 
mathematically equivalent to a  change in the boundary 
conditions of the system. This observation is the key to all 
our discussions of the sensitivity of the persistent current to 
changes in temperature, degree  of  disorder, and other 
parameters. 

The total current, Z(6), is the sum over the contributions 
Z, of all  states,  weighted  with the appropriate occupation 
probability. It is periodic in 6/@o, with  period 1, and can be 
expressed as a Fourier sum, 

To calculate the persistent current we need to know the 
eigenstates of the system and the thermal distribution 
function. Typical  for  mesoscopic  systems  is the fact that the 
energy  levels form a discrete spectrum. In principle, the 
canonical and grand-canonical  ensembles give  rise to 
different  single-level  probability distributions, because the 
systems are not in the thermodynamic limit. For a  ring, 
which can exchange  energy  with  a  reservoir,  a description in 
terms of  a canonical ensemble  with fixed number of particles 
Ne is appropriate. It is more convenient to consider  a  system 
that also  couples weakly to a  particle  reservoir (cf. also 
Section 2). Adapting this approach, we characterize the 
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system  by  a  Fermi-Dirac distribution with the chemical 
potential 1.1, and compute the persistent current at finite 
temperatures starting from 

I,, and E,, denote the energy and current of the nth 
eigenstate, j3 = l / b T .  

electron in a loop and the one-dimensional Bloch problem, 
as seen  by identifying  2~4/1$, and kL, [4,6,1 I]. The energy 
levels  of the ring  form  microbands as a function of 4 with 
period @,, analogous to the Bloch  electron bands in the 
extended  k-zone picture (cf. Figure 2). The current camed 
by  level E, at T = 0 is 

There is  a  close connection between the states of an 

ev 1 'En I =-2 
L, 

, v, ,=- -  h dk"' 

or, using the above  analogy, 

At finite temperatures, instead of summing the currents 1, 
over  all  levels  with  weightf(E,), one can calculate the total 
current from the thermodynamic potential, F, of the system 
[6,  1 11, 

d F  
I ( 4 )  = -c -. 

a4 

Figure  2  shows  schematically the energies  of the eigenstates 
of three small  cylinders of different  circumference to height 
ratios as a function of  flux. In the presence of disorder, gaps 
open at the points of  intersection, in the same way as band 
gaps  form  in the band structure problem. From Equation 
( 3 ,  the current carried by an eigenstate  is proportional to the 
slope of the energy-versus-flux  curve. 

2. Persistent  current  in perfect rings 
First, we consider  persistent currents in perfect  rings at zero 
temperature and vanishing  disorder as a function of 
geometry.  These  results  provide the background  against 
which  we  discuss the effects  of temperature and disorder. 
Our calculations are for noninteracting systems  of electrons. 
We concentrate on the generic  results as obtained from the 
free-electron and tight-binding  models. 

The free-electron  model  of the cylinder  is  defined  by 

H = - - (  2m h2 - h2 d2 + 7 5 )  + w ,  Y ) ,  

with the boundary conditions (1). For the perfect  cylinder, 
V = 0, the energy and current of the (n,  m)th eigenstate are 

- 2  - - A  

cylinders of size (a) 10 X 1, (b) 10 X 4, and (c) 10 X 40. Results are 
*a for rings without disorder. 
I:, 
p 

where  k,(n, 4) = 2r[n + (4/4,)]/LX, k,(m) = mr/L,, with 
n = O , f l , + 2 , - . .  andm=1,2,3,....Thesystemis 
characterized by the chemical  potential 1.1 = h2k:/2m. One 
can visualize the effect  of nonzero flux as a  shift  of the 
(k,,  k,,)  grid in the k,-direction  relative to the fixed Fermi 
half-sphere, k i  = k: + k: with k, > 0; see Figure 3(a). In 
units of the Fermi wavelength X, = 2r&, the circumference 
and height  of the cylinder are L = LJX, and f-, = Ly/XF. 
The number of channels M is  defined as the largest  integer 
52f-,, i.e., the largest channel index  inside the Fermi surface. 
We denote by AM the level  spacing at the Fermi surface  for 
zero  flux.  For the one-channel  system, 

there  are  two  eigenstates  per  energy  interval A , .  A,,, scales 
like A,/M. 

over the currents camed by the M different  channels. For 
the one-channel  problem we had obtained [ 121 

The total persistent current may be expressed as the sum 

with Z, = ev,/L,. For the "channel system, the total 
current Z,,,(4) may be obtained by summing over  all 
channels k,, with their respective  bck,) = w,, 36 1 
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: Fermi surfaces and eigenstates at zero flux in (kx,  kv) space for (a) 
~ free-electron model (7) and (b) tight-binding model'(l4) of perfect 

cylinders of circumference and heightLr, L,, andLx = Na, L, = Mu,  1 respectively (a = lattice constant). 

for different k,. (This assumption agrees  well  with our 
numerical results.) The typical current is then TM(4) = 

JZzI where 

with 

Analytical  results for IM(4)  can easily  be obtained in the 
limits of long cylinders (L, << L,) and short cylinders 
(L, >> L,), respectively. The result  of the summation over m 
in Equation ( I  1) depends on the strength of the phase 
correlations between currents of different channels, as 
described by the cosine  phase factor. For the long  cylinder, 
L, << L,, that cosine phase factor changes slowly with k,. 
Replacing the sum with an integral, we obtain 

For the short cylinder, L, >> L,, the cosine phase factor in 
Equation (1  1) changes  rapidly  with k,. Consequently, the 
actual form of the current depends sensitively on L,, L,, and 
4. To estimate its typical magnitude we assume the cosine 

362 phase factors in Equation (1 1) to be completely uncorrelated 

H = - y  c i j  (a:jai+lj + a;+l,juiJ + u;juij+l + u;j+lui,j) 

+ 1 tijuijuij t 
(14) 

i ,i  

The formulas (lo)-( 13) contain important physics,  which  is 
discussed  below. 

The current-flux characteristics 11(4) for  one-dimensional 
loops, cf. Equation (lo), are shown in Figure 4 for three 
choices of w (or 4)  [ 141. For 4 = N,?r/L,, the loop has a 
fixed number of electrons Ne (even or odd), while for other 
4 the number of electrons vanes when the flux 4 is  changed 
by one fluxoid.  Whenever  a  level  crosses the Fermi surface,  a 
sawtooth  change  occurs in the current-flux  characteristic. 
The maximum current amplitude is  inversely proportional 
to the loop circumference, I, = evF/L,. In one dimension, 
the total current has the same sign and order of magnitude 
as the current of the highest  occupied  level. 

The current-flux characteristics I J 4 )  for "channel 
cylinders  may be thought of as a superposition of M 
sawtooth-shaped currents 1 1 ( ~ )  corresponding to different 
4(k,,), as expressed  by Equation (1 I). In Figure 3, the mth 
channel corresponds to all states inside the Fermi surface 
with  fixed k,,(m) 5 4. For short cylinders, L, >> L,, there is 
apparently no correlation between the separations of the last 
occupied  level and the Fermi energy from channel to 
channel, so that the channel currents add without phase 
correlation. Therefore, the total current amplitude scales 
with the number of channels like &, as was obtained in 
Equation ( 13b).  We note that  in spite of the strong 
cancellations, the typical total current increases  with the 
number of channels. For long cylinders, L, << L,, there are 
some phase correlations among the currents associated  with 
different channels (and eigenstates). This is  also  seen from 
the level diagram of Figure  2(c). The analytical result (1 2) 
shows that in this case the total current scales  with M like 
Mf f i .  Note that in both cases the unit of current is 
I ,  = evF/L,, which also depends on L,. In Figures 9 and 10, 
the curves  labeled TIT* = 0 are representative  current-flux 
characteristics for a  single  long and a  single short cylinder, 
respectively [ 141. Figures 9 and 10 are discussed in more 
detail in Section 3. 

The tight-binding model  for  a  cylinder of circumference 
L, = Nu and height L, = Mu is  defined  by 
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and the boundary conditions (1). Here aiJ and ai,j denote the 
creation and annihilation operators at site (i, j ) ,  V the 
hopping  matrix element, tij the on-site  energy, and a the 
lattice constant. For the perfect  cylinder, t r j  = 0, the 
eigenstates  are 

where both x and y are  discrete, and k, and k, are 

k, = k,(n, 4) = - (n+:), 

k, = k,(m) = - mu 
M +  1' 

with n = 0, 1, . . . , N - 1 and m = 1,2, . . . , M. The energy 
and current of the eigenstate (n, m) are 

E,,, = -2 V(cos k,a + cos kya), 
(17) 

I, , ,  = --sink,a. 
4rcV 
N4n 

For the one-dimensional  loop, the level  spacing at the Fermi 
surface at zero  flux  is 

A, = -sin k,a, 4* v 
N 

which  has the same form as Equation (9). For the two- 
dimensional  cylinder  described by the tight-binding  model, 
the level spacing AM scales  like  1/M,  except at p = 0, where 
it scales as 1 / M  log M. The Fermi surface  consists of  two 
straight  lines [see Figure  3(b)]; the states with En,m < 0 are 
located  inside the triangle. 

For the tight-binding  model  with M = 1 we had obtained 
[I21 

I- I 

which  is  similar to Equation (10)  for the free-electron  model. 
The I-@ characteristics  are  also very similar to those of 
Figure 4. As expected, now I ,  = (2eV/Nh)sinba vanishes 
for  filled bands,  where &a = x .  

may be expressed as the sum  of the currents over the M 
channels,  each  with a contribution given  by Equation ( IS), 
with b(k , ) .  Except  for the half-filled  band limit, p = 0, it 
exhibits the same  generic  features as Equations ( 12) and ( 13). 
(Compare  also the discussion of Figure 7, shown later.) In 
the following,  we  specialize to the half-filled band case to 
illuminate the working of the phase correlations described  by 
the cosine  phase  factor  in Equation ( 19). 

For the two-dimensional  tight-binding  model in the half- 
filled band limit, the total persistent current is 

The total persistent current ZJ6) of the "channel  system 

I I I I I I 

(b) 

1.0 t 

0 0.2 0.4 0.6 0.8 1.0 

IBM 1. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988 HOFAI CHEUNG, W V A L  GEFEN, AND EBERHARD K. RlEDEL 



I,(+) = -cos - 
1-1 OD 2zo 2t) 

I I I I I I 
0 0.2 0.4 0.6 0.8 1 .o 

Flux, #J/#J,, 

4 Effect of interchannel phase correlations of the 1-4 characteristics of 
M-channel cylinders  described by the tight-binding model in the 

$ half-filled band limit p. = 0 [cf. Equation (20)]. Nand M satisfy the 
3 phase-correlation condition (21) forp = 1 , 2 ,  and 3,  respectively, at 
1 j = 1. The 1 = 1, 2, and 3 harmonics dominate in the respective 

persistent currents, and the maximum possible amplitude, I,,,,, = 
I 2(M + l )I , , /vp,  is achieved. The curves are general, though they 

were generated for sample sizes 100 X 49, 100 X 99, and 100 X 
8 

I 

0.5 

a 

-0‘5 - 1.0 t 
1 Sensitivity of the I-+characteristics (p = 1) ofM-channel cylinders 
f considered in Figure 5 to the degree to which N and M satisfy the 
P phase-correlation condition (21). For 6M = 1 and 2 (andj = I) ,  the a amplitude of the dominant first harmonic is reduced by factors of 1/3 

304 

sin - (A41 1) 

“““E) -cos(&) 

The current is  largest  when strong phase correlations exist 
between the currents from channel to channel. Consider 
Figure 3(b). Changing the flux 6 means moving the 
underlying (kx,  k,) grid in the k,-direction  relative to  the 
triangular Fermi surface.  Suppose Ak, = Aky; i.e., N = 
2(M + 1); then the Fermi surface  crosses M levels 
simultaneously  while the flux 4 is  changed by one fluxoid. 
There is  perfect  phase correlation among the channel 
currents, and the amplitude of the total current assumes its 
greatest  possible  value, Zmax = 2(M + l)Zo/rp. The 
corresponding Z-4 characteristic is labeled p = 1 in Figure 5 
[ 141. Now suppose Ak, = pAk,; i.e., N = 2(M + l)/p. If we 
choose M a t  fixed N (e.g., N = 100) such that the latter 
condition is  satisfied, then the Fermi surface  crosses p times 
a group of M levels  while the flux 4 is  changed by one 
fluxoid. The amplitude of the total current is the same as for 
the p = 1 case, but now the current changes  sign p times 
within one period do. Figure 5 shows the Z-4 characteristics 
for p = 1, 2, and 3. The general condition for maximal 
interchannel phase correlations is 

N = -  ( M +  l), 2.i 
P 

(21) 

where p and j are integers that are relatively  prime.  When 
this geometrical condition relating the circumference and 
height of the cylinder  is  satisfied, then the I = p Fourier 
coefficient in Equation (20) assumes  a maximum and 
dominates the sum. 

Unfortunately, the geometrical  amplification of the 
persistent current described above may not be  of much 
practical  use  because  (a) p = 0 is  very  special and (b) the 
geometrical condition (21) is  very sharp. For instance, if 
N = 2 j (M + 1 + SM)/p, so that M differs from the value 
that satisfies (21) by SM, then the dominant (I = p )  Fourier 
coefficient  decreases as 1/[ 1 - (2jSMfI. Figure 6 shows this 
feature. Here, for p = 1, j = 1, changing M by 1 or 2 relative 
to the value  satisfying (21) reduces the amplitude of the 
first harmonic of the current by factors of 1/3 and 1/15, 
respectively. The dependence on the chemical potential 1.1 of 
the persistent current for a  cylinder  satisfying the geometrical 
condition (21) is 
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This formula is  valid for I p I 2 A , .  The form of the equation 
is similar to that of Equation ( 12), as one would  expect, 
since in both cases there are strong phase correlations among 
the currents from different channels. Figure 7 shows  results 
for the Z-$J characteristic, p = 1, j = 1, for four values of p. 

For large I p 1 ,  the Fermi surface approaches a  semicircle. 
Then these  results  cross  over to the results for the free- 
electron model. 

3. Persistent  current at finite  temperatures 
We  now discuss the effect  of temperature on the persistent 
current of impurity-free rings. With increasing temperature, 
the probability that electrons occupy  higher  levels,  which 
may  carry  larger currents, increases.  However, at higher 
temperatures, the occupation probabilities of  levels  close in 
energy  (which encompass levels  having currents of opposite 
sign) are not very  different. The net  result  is an almost 
complete cancellation of positive and negative contributions 
to the current. Significant for the observability of the 
persistent current, we  find that even  for multichannel rings 
the sensitivity of the current amplitude to temperature is 
governed by the level  spacing  of the one-channel ring, A, ,  
rather than the much smaller  level  spacing  of the 
multichannel ring, AM a A,/M. The reason  is that there are 
correlations in the slopes of the eigenenergies as functions 
of  flux. 

Finite temperature affects the system in another important 
way.  At nonzero temperature, thermal excitations, such as 
phonons, are present.  Such excitations interact with the 
electrons inelastically,  giving  rise to phase randomization of 
the electron wavefunction  (besides some level  shifting). The 
effects  of dephasing on the persistent current through 
inelastic  scattering are discussed in  the next  section. Here 
we assume that at the temperatures considered, the phase- 
coherence  length of the electron is large compared to the 
ring circumference, L, >> L,. 

We compute the persistent current at finite temperatures 
starting from Equation (3). We discuss  only the case of 
metallic electron densities, p >> k, T. (The Appendix of [ 121 
contains some discussion  of other cases and calculational 
details  for one-dimensional rings.) For the one-channel loop 
in the metallic limit, the persistent current is  given  by 

I .o 

0.5 

so 

.x 
2" 0 

". 

6 
V 

-0.5 

- 1.0 

where 

respectively. The characteristic temperature T* is  set by the 
level  spacing A, l/Lx at the Fermi surface [Equations (9) 
and (18)]. At T > T*, the persistent current is proportional 
to sin(2?r$J/I#J0)  with an amplitude that decreases 
exponentially  with temperature. For T < T*, higher 
harmonics contribute and the amplitude of the total current 
depends only weakly on temperature. These effects are seen 
in Figure 8. Nonzero temperature has  two main effects:  All 
discontinuities in the Z-I#J characteristic  become rounded, 
and the maximum amplitude of the current decreases 
exponentially. 

for "channel systems the characteristic temperature 
separating high- and low-temperature regimes  is  set  by the 
level  spacing AM, which  is  smaller than A, by a  factor of 
1/M. That would  be  devastating for the observability of 
persistent current effects. However, as discussed 
subsequently, this is not the case. 

Analytical  expressions for the persistent current of 
"channel cylinders at finite temperature are obtained by 
following the same procedure as described in Section 2. 
Starting from Equation (3),  we  first perform the sum over 
the states within a  single channel, which  yields Equation 
(23), now with & and T* depending on k,,, and then 
perform the sum over the M single-channel contributions. 
For the free-electron  model,  specialized to the limit of long 
cylinders, we obtain for T > T* 

In view  of the preceding  discussion, one might  expect that 

A 
&T* = 2. 
This result holds both for the free-electron and  the tight- 
binding model, and replaces Equations ( 10) and ( 1 s), 
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Flux. q4J0 

Temperature dependence of the Z-I$ characteristics of one-channel 
loops from the tight-binding model [cf. Equation (23)]. The results 
are  for  even  numbers of electrons in the loop  (see  Figure 4) and 
temperatures T/T*.  = 0, 0.5, 1.0, 2.0, and 3.0.  The characteristic 
temperature T* is given by the level spacing at the Fermi surface at 
zero flux, T* = A,/2a2. Results for the one-channel free-electron 
model are similar. 

For long  cylinders, the cosine phase  factor in the current 
[cf. Equation (23)] varies slowly from channel to channel, so 
that the sum over channels can be  replaced  by an integral. It 
is  precisely due to these strong correlations in the phase that 
the total current ZM(4) has the characteristic factor of M/&, 
as in the T = 0 case [cf. Equation (1 2)]. For short cylinders 
the cosine  phase factor in Equation (23) varies  greatly from 
channel to channel. We estimate the typical amplitude of the 
lth harmonics m. Assuming that the cosine  phase 
factors are completely uncorrelated for different k,,, we 
obtain for T > T* 

For T > T*, the first harmonic represents very  well the 
amplitude of the total current. Again, as in  the T = 0 case 
[Equation (1 3)], the typical total current has the 
characteristic factor of due to the sum over uncorrelated 
contributions from different  channels. 

For both long and short cylinders, we  see from Equations 
(25) and (26) that the decrease  of the persistent current is 

governed by T*, which  is in turn proportional to the level 
spacing of a one-channel ring of the same circumference, 
A I .  This is  extremely  relevant to the observability of the 
persistent current, since if the decrease  were  governed  by 
AM, persistent currents would  show in experiments only at 
hopelessly  low temperatures. One other general feature that 
we  see from Equations (23), (25), and (26) is that the higher 
harmonics decrease  exponentially more rapidly than the 
first harmonic, so that at T > T*, the total current is well 
represented by the first harmonic. Numerical results  confirm 
this behavior. 

Numerical results for I,(&) for  a  long and a short cylinder 
are shown in Figures 9 and 10, respectively [ 141. In both 
cases, they show  clearly the total current approaching 
sinusoidal behavior  with  increasing temperature. 

behavior  only for the persistent current of cylinders that 
satisfy the condition of maximal interchannel phase 
correlation [Equation (21)]. The calculation is the same as 
for the free-electron  model, the one-channel result  being 
given  by Equation (23). Summing up the contributions from 
all  channels, we obtain for T > T* 

For the tight-binding  model, we discuss the temperature 

The total current is proportional to the same characteristic 
factor I,, = 2(M + l)Z&p, as at T = 0, the reason  being 
the complete phase correlation between the currents from 
different  channels.  Again, as for the free-electron  model, the 
decrease of the persistent current is  governed by A,,  and 
higher harmonics decrease  exponentially  faster than the first 
harmonic. 

In this section we have  discussed the average  persistent 
current for  a  ring in thermal equilibrium. By assuming  a 
Fermi-Dirac distribution function for the electrons, we find 
that the decrease of the current is  governed by the level 
spacing for a one-channel ring, instead of the much smaller 
level spacing for an "channel  ring. This allays one fear, 
namely, that the temperature required to observe the 
persistent current might  be  vanishingly  small. We also  find 
that in general, the first harmonic decreases  most slowly and 
dominates the current at high temperatures, T > T*. 

4. Persistent  current  and  phase  breaking 
Understanding the role of inelastic  scattering events that lead 
to a dephasing of the electron wavefunction is crucial for 
developing  a complete theory of persistent currents; cf. also 
[4, 51. Such an understanding is still  lacking. To gain some 
insight into this aspect of the problem, we  have considered  a 
phenomenological description of a  one-dimensional  ring, 
which  follows  closely an approach put forward by Biittiker 
[5]. Buttiker considered  a  one-dimensional  ring coupled 
through a  single  ideal  lead to an external electron reservoir 
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cylinders from the free-electron model for a long cylinder [ 141, with 
L = 25 and M = 400. Also for  “channel  cylinders,  the 

x: 

f characteristic temperature is T* = A,/2.rr2 (i.e., is determined by the 
8 level  spacing A ,  of  the  single-channel  system of the  same I circumference LJ. 

in which thermal equilibration takes  place;  see Figure ll(a). 
He  cast the coupling to the outside reservoir in the form of a 
scattering  problem,  describing the scattering at the junction 
between the ring and the lead in terms of a (3 x 3) S-matrix. 
However,  in  Buttiker’s formulation the scattering  of the 
electron contains both  elastic and inelastic contributions, 
and it is  difficult to separate the effects that result  from  these 
two  very  different types of scattering. 

We  have modified the S-matrix that Biittiker [5, 15 J used 
so that it describes  only the inelastic  scattering in the ring. 
This matrix  relates the outgoing waves aI , 8, , y, to the 
incoming waves a, 8, y [see Figure 1 l(a)] and is written as 

JT 
0 

JT-C 
G .  “I 0 

According to this scattering  matrix,  a  particle  coming  from 
the reservoir  is scattered back  with  a  probability 1 - 2t, 
and can enter the ring  with equal probability, e, for  going 
clockwise or anticlockwise.  A  particle in the ring  arriving 
at the junction can either scatter out of the ring  (with 
probability t) or remain in the ring  (with  probability 1 - e), 

its momentum being  unchanged. No elastic  scattering (i.e., 
backscattering)  within the ring is allowed. 

correct,  since the S-matrix in Equation (28)  is not unitary, 
The way  we  have formulated the problem  is not absolutely 
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which implies nonconservation of current. When there is 
only one incoming wave, the current is  conserved. It is the 
interference terms that cause current nonconservation. It 
may  seem that this model is too awkward to have  a sound 
physical  meaning.  However, remembering that we are 
modeling  inelastic scattering which causes dephasing of the 
electron wavefunction, we should add an uncontrolled, 
random phase to the wave after every  inelastic scattering 
event. This means that five  of the elements of the S-matrix, 
the -- and & terms in Equation (28),  should carry 
extra random phase  factors.  While  these  phase factors do not 
affect any of our discussions  below,  averaging  over  these 
phases  restores current conservation. It is important that the 
two elements of the S-matrix not be  modified  by 
random phase  factors,  since they represent the parts of the 
wavefunction that are not scattered. 

The persistent current in  the ring can be  calculated  now, 
following  [SI. With  a  flux present, the wavefunction  satisfies 
the boundary condition (1). The current is then given 
[ 101  by 

where f ( E )  denotes the Fermi-Dirac distribution function. 
We choose the Fermi energy such that there is an odd 
number of electrons in the ring,  when = 0 and T = 0. We 
find  for T = 0 and 4/40 (mod 1)  in the interval -0.5 5 4/40 
< 0.5, 

with Io = ev,/L,. From Equation (30), we  see that c can vary 
in the range 0 I t I 1; there is nothing special about t = 1/2, 
as it might  have  seemed from Equation (28).  

The above model assumes that an inelastic  event  may take 
place  only at one particular point along the ring.  A more 
realistic  model  consists of coupling the ring to external 
reservoirs at many points along the ring, as shown in Figure 
1 l(b). We have studied a model of a  ring  with  infinitely 
many couplings to identical reservoirs uniformly spaced  over 
the whole  ring. The relevant parameter in this model is the 
probability that the electron not be  inelastically scattered 
while  moving through the ring  once. We choose this 
parameter to be equal to exp(-L/L,),  which  is  a  reasonable 
way to define the phase-coherence  length, L,. Assuming 
ballistic motion of the electron, one may alternatively set 
L, to be v,T,, where T+ is the dephasing time. Quantum- 
mechanical coherence is  lost on length  scales  larger than L, . 
In our generalized model, the persistent current is  given 
again by Equation (30), with (1 - c) replaced  by 
exp(-L/L,). In the limit L, >> L, the current becomes 

i.e., the correction to the current is linear in L/L,.  In the 
limit L, << L, the current amplitude decreases exponentially, 

7r 

The generalization of these  results to the multichannel case 
remains to be  worked out. 

5. Persistent  current  and  elastic  scattering 
Any prediction of the magnitude of the persistent current 
amplitude for experimental systems requires a  careful study 
of the effects  of impurities. We do not discuss this point here 
in any depth. We do discuss  briefly the effects  of elastic 
scattering in randomly disordered  systems on the persistent 
current at zero temperature, which can provide some useful 
guidelines. Our model is the tight-binding  model (14) with 
random on-site potentials ci j  given  by independent square 
distributions of strength - W/2 to + W/2. The hopping 
matrix element Vis set constant so that the disorder 
parameter is W/V. We have  applied this model  extensively 
to the persistent current problem in one-dimensional loops 
[ 121 and multichannel cylinders [ 161. 

The question is  again that of the scale  over  which the 
current amplitude decays. We  briefly consider the weak and 
strong disorder limit. We also  discuss some numerical results 
and point out the general  features. 

Perturbation theory is adequate when the shifts in energy 
due to disorder are small compared to the level  spacing. 
From this viewpoint, the energy parameter that determines 
the sensitivity of the persistent current to disorder  is the level 
spacing, A,. Consider the level diagrams of Figure 2.  In the 
presence of disorder, gaps open at the points of intersection 
and the eigenenergies, as a function of the flux 6, flatten out. 
This means that the system  is  less  sensitive to changes in 
flux. Hence, the amplitude of the persistent current is 
reduced,  while its overall  flux  periodicity  is  preserved. 
Perturbation theory implies, for weak arbitrary impurity 
potentials, the following  result. The leading correction to the 
current is  second-order in  the impurity potential, i.e., 
proportional to ( W/ V)', since the correction to the 
wavefunction  is  first-order in the impurity potential and the 
current operator is  diagonal in the unperturbed basis. 
Certainly  for "channel  systems, the perturbation regime  is 
not accessible  experimentally  because  of the generally small 
value of AM. 

one- and two-dimensional  disordered  systems,  all electron 
eigenstates are exponentially  localized [ 171.  We denote the 
localization  length of the system  by [. For the ring 
geometries, we define the crossover to the strongly 
disordered or strongly  localized  regime  by the condition 
L, = [. It is  clear that in the localized  regime the persistent 
current will be  exponentially  small. The physical  reason  is 
that then the effect  of the magnetic  flux,  which enters in  our 

Disorder introduces new length  scales into the problem. In 
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approach via the phase-shifted boundary condition (I), is  felt 
by the localized electron only as an exponentially small 
perturbation. We found from model calculation that  in the 
strongly  localized  regime the amplitude of the persistent 
current does decrease exponentially with L,/[ [ 12,161. 

We conclude by presenting some numerical results  for 
persistent currents in disordered rings. The results  serve to 
give some feeling for the crossover phenomena that occur, 
while at the same time demonstrating interesting similarities 
between the sensitivity of persistent currents to temperature 
and disorder, respectively. 

First, we consider the case of a one-dimensional loop. 
Figure 12 shows numerical results for the typical  persistent 
current I, (&)/Io versus @/40 for four values  of the disorder 
parameter W/ V, as obtained for a small ring of N = 20 with 
10 electrons. [These data were obtained by numerical 
diagonalization of the Hamiltonian ( 14) for one realization 
of disorder for each  value of  W/V.]  Even though the 
simulation was performed for a  very small sample, the result 
is  generic for a one-dimensional loop. We note that the 
decay  of the current amplitude as a function of disorder in 
Figure 12 is  very similar to the one as a function of 
temperature in Figure 8. Here the persistent current 
approaches sinusoidal behavior for large  disorder. The 
crossover to the strongly  localized  regime, [ < L,, occurs at 
about W/V = [ 171. Analytically, we found [ 121 in 
the limit of strong disorder (i.e., 5, < L,) the average 
persistent current 

with the higher harmonics decaying  with  correspondingly 
higher  powers of the exponential factor. The current in 
Equation (33) is  defined as the exponential of the average of 
log(I,) over impurity configurations. Note that in the limit 
of strong disorder, T ( @ )  0: a, where G is the conductance 
of the ring. 

Second, for the "channel system Figure 13 exhibits the 
typical  persistent current ZM(4)/Io  versus @/d~~ for four values 
of the disorder parameter W/ V. The results are for a  small 
cylinder of N = 8, M = 4, and = 0, and were obtained by 
the same procedure as in the one-dimensional case.  Again, 
though the simulation is for a very small sample, it shows 
generic features such as the amplitude reduction and 
approach to sinusoidal behavior in complete analogy to the 
changes occumng as a function of temperature [cf.  Figures 8 
and 91. For details we  refer the reader to a separate 
publication [ 161. These analogies  also suggest that to observe 
the persistent current does not require prohibitively  small 
impurity concentrations. 

6. Conclusion 
In this paper we have  addressed the question of  how 
persistent currents in nonsuperconducting rings threaded by 

0 0.2 0.4 0.6 0.8 1.0 

Flux. 4 p 0  

4 Effect of disorder on  the 2-4 characteristics of one-channel loops 5 from the tight-binding model. The simulation is for a small loop of N 1 = 20 with ten electrons and four values of the disorder parameter, 
W/V = 0,0.5, 1 .O, and 1.5. The curves resemble those of Figure 8. 
See Section 5 for details. 
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a  magnetic  flux depend on several important physical 
parameters.  These include the number of channels 
(geometry), temperature, and disorder. We have  also 369 
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considered the effect  of inelastic scattering in  the single- 
channel case. The situation is much more favorable than 
might  have been thought. Although it is too early at this 
stage to predict the actual magnitude of the persistent 
currents in experimental systems, we believe that  our work 
has already shown that nonnegligible persistent currents 
should occur in isolated  rings  of  mesoscopic dimensions. 
The sensitivity of these currents to material parameters 
might make them an interesting tool for characterizing such 
systems. 

We emphasize that the currents are in fact  rapidly 
fluctuating in time, due to coupling to other degrees of 
freedom  such as phonons. The term “persistent current” 
refers to the nonvanishing dc component of that current. In 
the Introduction we stated the assumptions of our 
calculations. We stress that we choose to discuss the 
persistent-current behavior due to a pure Aharonov-Bohm 
effect;  we ignored spin-orbit coupling and neglected further 
attenuation of the current due to the field penetrating 
through the metal. One can estimate that these assumptions 
pose no serious problems for appropriate ring  geometries. 

cancellations of the currents between individual channels 
(and, of course, between  energy  levels within channels) the 
total current increases  with the number of channels as &Zo 
for short cylinders and as ( A 4 / f i ) Z o  for long cylinders,  where 
Io is the typical current of  a  single-channel  ring. For special 
geometries one can achieve maximal phase correlation and 
much larger currents, I,,,, a MI,,. Those latter cases  may not 
be  of  great experimental relevance at this stage.  They are of 
interest to the‘theorist since  they  allow the modeling  of 
samples  with  specific  properties, eg., persistent currents with 
dominating higher harmonics. 

In Section 3, we found that even for multichannel rings 
the sensitivity  of the persistent current to temperature is 
governed by the characteristic energy T* a A I ,  rather than 
the much smaller AM a Al/A4. That is  a  somewhat surprising 
result in view  of the fact that it is the level  spacing that 
governs the temperature attenuation of the persistent current 
in  the single-channel  case. The explanation is,  however, 
simple.  Whereas in one dimension the ladder of states at any 
fixed  flux  yields contributions to the total current which 
alternate in sign, this is not the case for a  higher-dimensional 
system. Correlations exist among the slopes of the 
eigenenergies as function of  flux.  While for one dimension 
the current of the last occupied level (for T = 0) gives the 
sign and order of magnitude of the total current, in two 
dimensions the total current is well represented in many 
cases by the contributions of  levels within an energy interval 
of width A,/2 just below the Fermi energy.  We shall quantify 
these remarks in a forthcoming publication. 

In Section 4, we commented on the role of inelastic, i.e., 
phase-breaking, interactions. For a  single-channel loop in the 
ballistic  regime, the current is attenuated by an exponential 

In Section 2, we found that  in spite of massive 
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factor,  exp(-L,/L,), that contains the phase-breaking  length 
(or time). Theoretical questions remain to be  worked out, 
including the dependence of the phase-breaking time on 
elastic  scattering and the form of the attenuation of the 
current for the multichannel case,  especially in the diffusive 
regime. The successful  magnetoresistance experiments [3] 
show that it is  possible to fabricate multichannel rings that 
possess  sufficiently  large  phase-coherence  lengths at 
experimentally  accessible temperatures. 

current due to random disorder in  the system. We 
considered the randomly disordered tight-binding model. 
For realistic “channel systems, the ballistic  regime,  let 
alone the perturbative regime,  is not experimentally 
accessible at present.  Analogies  between the sensitivity of the 
persistent-current amplitude to temperature and degree  of 
disorder seem to suggest that one does not require 
prohibitively pure samples to observe the persistent current. 
For small disorder in the perturbative regime, the corrections 
to the current are quadratic in the degree  of disorder, 
( W/V)’. For large disorder in the strongly  localized  regime, 
the persistent current amplitude is attenuated by an 
exponential, exp(-L,/[),  which contains the localization 
length. This is  because the wavefunction  reaches around the 
ring only via exponentially small  tails;  hence, its sensitivity 
to the Aharonov-Bohm  flux (boundary conditions) is  also 
exponentially  small. We are currently working out the details 
of the behavior of the persistent current amplitude in the 
experimentally interesting intermediate regime, the diffusive 
regime. 
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