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Semiconductor  devices  have  several  attractive 
properties  which  make  them  useful in the  study 
of  electronic  coherence  phenomena  such  as 
universal  conductance  fluctuations.  The  use  of 
gated  devices  allows  the  Fermi  level,  and  thus 
the  electronic  wavelength, to be adjusted in 
order to study  energy  correlation  effects.  The 
two-dimensional  electron  gas  formed  beneath 
the  gate  can  be tilted with  respect to the 
magnetic field to reveal  that  the  field  correlation 
length  of  the  fluctuations  obeys  a  cosine  law. 
This  strongly  suggests  that  the  fluctuations  are 
caused  by  quantum  interference in the same 
way that  the  Aharonov-Bohm  effect  arises in 
metallic  rings.  The  energy  range  over  which 
electrons  are  correlated in these  materials is 
generally  larger  than in metals.  This  allows  one 
to study  these  conductance  fluctuations  at  much 
higher  temperatures  than  are  feasible in metallic 
conductors. For the  same  reason,  substantially 
larger  source-drain  voltages  can  be  applied  to 
obsewe  asymmetry  and  nonlinear  effects in the 
conductance. 
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1. Introduction 
Electronic transport in very small disordered conductors has 
been the subject of intense study in recent  years. The 
transport properties of both small and large  systems are 
substantially  affected  by electronic scattering from sites  of 
disorder, such as crystal imperfections and impurities. Many 
of the more interesting properties of small conducting 
systems are dependent on the particular impurity 
configuration  of  each  sample [ 1,2]. Such  sample-specific 
behavior  is not readily apparent in transport measurements 
using  large  samples, because the dissimilar contributions of 
an ensemble of small regions are averaged in such 
measurements. 

This paper is concerned with the sample-specific behavior 
of the “metallic”  samples, in which the localization  length 
(the spatial extent of the electronic wave function) is  greater 
than the sample size. The conductance of samples in  the 
metallic limit is  larger than -e2/h, which  is approximately 
(25 kn)” [3]. Electronic interference plays  a major role in 
quantum corrections to the conductance in the metallic 
regime [4, 51. Interference effects can only take place 
between electronic states that are phase-coherent. The length 
scale, L, , over  which  phase  coherence occurs is limited by 
phase-disturbing scattering processes. For a  disordered 
conductor, the phase-coherence  length  is  given  by 
L, = K. L, is thus related to the diffusion constant D 
and the lifetime 7,, which includes all  phase-breaking 
processes such as inelastic and spin-flip  scattering. Note that 
elastic scattering does not disturb the phase [6, 7 1. and 
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semiconducting samples, it is  shown that there are several 
attributes of small semiconducting systems that make them 
especially suited to the study of such electronic coherence 
phenomena. We pay particular attention to results obtained 
using the thin layers of electrons induced by the field  effect 
[26] in Si  MOSFETs. 

2. Aperiodic  conductance  fluctuations 
The study of aperiodic fluctuations arose from the search for 

8% periodic Aharonov-Bohm  oscillations in  the magnetic-field- 

( a )  dependent conductance (or magnetoconductance) of 
mesoscopic conducting rings.  Both  of  these phenomena are 
now known to be due to the same type of quantum 
interference. The salient  issues  may  be  clearly illuminated by 
describing the gedanken (or thought) experiment of 
Aharonov and Bohm [27]. An electron beam propagating in 
vacuo is  split into two separate paths and then rejoined, as 
shown in Figure l(a). The resultant electronic current 
measured at a point downstream from the loop can be 

mechanical phases of the wave functions in the two 
branches, 4, - 42. The result of  a magnetic flux a applied to 

between the two branches of the loop, 64, - 6&2 = (e/h)@ = 

internal  internal shown to be related to the difference of the  quantum- 

842 

(b) the interior of the loop is an additional phase  difference 

therefore only limits L, through its effect on D. In the 
conducting channels of  Si metal-oxide-semiconductor field- 
effect transistors (MOSFETs), and Au  wires at temperatures 
of -1 K, L+ is of the order of 1 pm, but may be an order of 
magnitude larger in GaAs/AlGaAs heterostructures. 

intermediate between the atomic and macroscopic  regimes 
in which  statistical fluctuations are important. We  follow 
Imry [9] in applying this term to systems comparable in size 
to L,. It has been experimentally observed that  the electronic 
conductance of disordered metallic conductors exhibits 
aperiodic fluctuations as either the magnetic field or the 
Fermi level  is  varied [ 10-171. The results are consistent with 
the theory of universal fluctuations [2,9, 18-25],  which 
treats the conductance of  mesoscopic samples quantum- 
mechanically. The theory predicts  a  sample-specific 
conductance that varies  aperiodically  with  changes in 
electronic phase or wavelength. 

conductance of disordered metallic,  semimetallic, and 

The term “mesoscopic” [8] was coined to describe  systems 

Although these aperiodic fluctuations can be found in  the 
348 
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(e/h) 9 A . ds, where A is the magnetic  vector potential and 
s is the path that encloses the flux. This implies that the 
current will  show an oscillatory dependence on the applied 
flux  with  period h/e, where h is Planck‘s constant and e is 
the electronic charge. 

Now let us replace the vacuum paths with  a  disordered 
metallic  ring to which  leads  have  been attached, as shown in 
Figure l(b). It is assumed that electrons suffer  only  elastic 
scattering in the conductor. The leads extend to reservoirs to 
which  all  irreversible  processes  (such as inelastic scattering) 
are confined, as in Landauer’s  pioneering  work on the 
quantum-mechanical resistance of disordered conductors 
[28,29]. The electron energies are not shifted during elastic 
scattering in the ring,  even though momentum relaxation 
occurs. It was argued [6,7] that under these  circumstances, 
electronic  phase  coherence  is  preserved, and h/e oscillations 
should still  be  observable. 

In  a  real  ring  with  circumference comparable to L, , some 
phase-breaking  does  occur.  However, enough phase 
coherence remains to produce periodic fluctuations 
in the magnetoconductance. The first  observation  of 
Aharonov-Bohm  oscillations in single metal loops with  a 
magnetic  flux  period  of h/e was made by Webb et al. 
[30,31]. It provided  a striking validation of the concepts of 
quantum coherence and transport that had been  developing 
since the early  work  of  [28]. 

The observation of periodic  oscillations in thin metallic 
loops was not made without difficulty. (This work is 
discussed in detail in [5] and  in other articles in this issue of 
the IBM Journal of Research  and Development.) One of the 
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more interesting aspects of the early  work on single  rings 
was the unexpected observation by Umbach et al. [ 101 
and Blonder [ 1 11 of  sample-specific aperiodic 
magnetoconductance fluctuations which almost completely 
obscured the periodic structure. 

It is  now  believed that such aperiodic fluctuations have 
long  been  observed in experiments on small structures, but 
remained unexplained. A representative example is the 
observation of fluctuations in  the conductance of narrow Si 
MOSFETs [32] by  A.  Fowler et al. The main focus of the 
experiment was to study the transition from one- to 
two-dimensional conduction in a  variable-width electron 
accumulation layer as the gate  voltage  was  varied.  However, 
their data (see Figure 2) show  significant aperiodic 
fluctuations. At the lower  values  of  gate  voltage, the 
localization (or decay)  length of the electronic wave function 
was found to be much shorter than  the phase-coherence 
length, indicating that the electrons were  strongly  localized. 
The fluctuations in this regime  were  identified  with  changes 
in the variable-range hopping paths as the Fermi level  was 
varied  [33]. The data also show that at the highest  values  of 
gate  voltage, aperiodic conductance fluctuations extended 
into the metallic or weakly  localized  regime,  where the 
localization length is longer than L, . 

magnetoconductance fluctuations in  the weakly  localized 
regime  may  be due to the same type of quantum 
interference that gives  rise to the Aharonov-Bohm effect. 
This can be  explained by noting that the electronic 
trajectories within the conductor actually constitute a  large 
number of Aharonov-Bohm  loops. Two such loops are 
pointed out  in Figure l(b). Since the magnetic  field 
penetrates these  loops, one obtains fluctuations with 
periodicities that reflect their respective  areas. The total 
conductance represents the contribution from all  trajectories, 
and is therefore aperiodic. 

simulations of  a disordered conductor using the 
multichannel Landauer conductance formula [28,34,35]. 
The results of these simulations contained aperiodic 
magnetoconductance fluctuations comparable to the 
experimental observations of [ 101. The density of the 
fluctuations as a function of magnetic field  was found to be 
proportional to the area of the sample. It was concluded that 
this phenomenon is indeed due to the Aharonov-Bohm 
effect. 

Simultaneous independent work  was done by  Al'tshuler 
[2],  who used a  weak-scattering diagrammatic technique to 
predict that sample-to-sample conductance fluctuations may 
arise because of the sample-specific interference conditions. 
In other words,  mesoscopic conductors that are 
macroscopically identical, but have  different impurity 

Y. Imry* suggested that the aperiodic 

Imry's  ideas stimulated Stone [ 181 to  do computer 

* Y. Imry. Department of Nuclear Physics, The Weizmann Institute of Science, 
Rehovot 16 100, Israel; private communication, 1985. 
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configurations,  may  have  different conductances. The 
connection between the approaches taken by Stone and 
Al'tshuler is clear in the work  of  Lee and Stone [ 191, wherein 
the hypothesis  is  proposed that variation of the magnetic 
field  is identical to changing the sample. 

The calculations of [ 191 and subsequent work  [9,20-241 
made use of scattering diagrams similar to that used in [2]. 
These calculations are applicable to weakly  localized samples 
in which there is  sufficient  elastic  scattering in a  sample of 
length L - L, that the elastic mean free path !<< L. 
Fluctuations in  the conductance G at magnetic field B and 
Fermi energy E, were studied by calculating the 
conductance autocorrelation function F( AB, AE) 

universal properties of the conductance fluctuations were 
discovered: 

( G(B + AB, + AE)G(B, E J )  - ( G(B, E ~ )  )'. Several 

1. The root-mean-squared (rms) fluctuation amplitude 6G at 
T = 0 is given  by 6G = m, which  is  of the order of 
e'/h = Go. 

2. The same results obtain whether the sample is a  metal, a 
semiconducting inversion  layer, or an accumulation 
layer. 

3. The fluctuation amplitude is  essentially the same (to 
within a factor of f i  [21]), whether the electron energy 
or the applied magnetic field  is  varied. 349 
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1 (a) The layout of  a narrow Si accumulation layer device used in [ 13, 
14,321 is shown. The two p+ control electrodes define the channel. 1 The width between the controls is approximately 1 km. The length of 

d the narrow region is approximately 10 pm. The two n+ regions are 
the source and  drain. A cross section taken along the dotted line is 
shown in (b). The diffusions are about 0.5 pm deep and the oxide is 
30 nm thick. 

A few comments about these properties are warranted. 
The prediction of  a  universal conductance fluctuation 

amplitude that is  insensitive to the degree of disorder or the 
shape of the sample [2, 18, 191 is  a remarkable statement, 
but it is  now understood to be applicable for samples 
comparable in size to L@ The present formulation of the 
theory recognizes that samples either much larger or much 
smaller than L, may exhibit fluctuations substantially 
different from Go in magnitude. Samples much larger than 
L, sustain a  large quantity of phase-breaking  processes, and 
thus cannot be  expected to exhibit as strong interference 
effects as smaller samples [9,20,21]. The coherence of 
voltage measurements in samples much shorter than L, 

350 leads to length-independent voltage fluctuations, resulting in 

conductance fluctuation amplitudes that increase  with 
decreasing sample length [ 16,23-251. However,  for  a sample 
of  size -L,, the fluctuation amplitude is  expected to be  of 
the order of Go for a  Si accumulation layer,  a semimetallic 
Sb thin film, or a Au  wire,  despite the obvious differences 
between  these  materials. 

One may  observe fluctuations by measuring many 
samples, or by varying the interference conditions in a  single 
sample [ 191. In  a magnetoconductance measurement, the 
electronic  phase  is  varied as in the Aharonov-Bohm  effect. 
The magnetic field autocorrelation function F(B) for a  two- 
dimensional sample larger than L, was predicted to have  a 
width at half maximum of the order of hleL: [ 191. However, 
if such a sample is tilted with  respect to the magnetic  field, 
only the autocorrelation function of the perpendicular field 
component should be constant. 

the Fermi energy. This should result in a fluctuation in  the 
conductance each time another wavelength  is added to 
the path length.  A simple calculation [36] shows that this 
happens when the energy  changes by E, - hD/L:. This is 
approximately the width of the energy autocorrelation 
function F(0, E )  obtained by  Lee and Stone [ 191. 

The temperature scale  over  which the fluctuations may be 
observed  is determined by E,. Electronic states are correlated 
within bands of width E,. Stone [ 181 has argued that when 
the thermal energy k, T is much greater than E,, the 
fluctuation patterns of a  large number of uncorrelated energy 
bands, given  by k, TIE,, are averaged. The fluctuation 
amplitude is therefore reduced by the statistical  factor a. This slow decrease in the fluctuation amplitude 
with temperature allows the fluctuations to be easily 
observed at 3He temperatures (T  > 0.3 IC) for  most 
mesoscopic  samples. 

Another way to vary the interference conditions is to vary 

3. Measurements  of  universal  conductance 
fluctuations 
The experimental testing  of this theoretical framework  was 
undertaken by  several groups that employed Si  MOSFETs 
[ 12- 151. There are a number of differences  between  these 
devices and metallic samples that make them a practical 
choice for the study of mesoscopic effects. The coherence 
energies in MOSFETs are about an order of magnitude 
larger than  in metals such as Au or AuPd. This arises from 
the differences in carrier densities between  these  two  types  of 
systems. (The maximum induced carrier density in a Si 
MOSFET  is of the order of 10'' ~ m - ~ ,  while  a  typical density 
in a metal is of the order of cm".) This leads to 
relatively poorer electronic screening in MOSFETs,  which in 
turn causes the electron-electron scattering rate in these 
devices to be larger than  in metallic systems.  As it turns  out, 
this is the scattering  process that limits 7, at low 
temperatures [37]. Instead of having to work at temperatures 
below 0.1 K, as did Umbach et al., workers  studying  Si 
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MOSFETs  may  work at temperatures greater than -0.5 K. 
Despite the longer  phase-breaking  lifetime, the Fermi 
velocity in Si  MOSFETs  is  correspondingly  smaller,  resulting 
in a  phase-coherence  length L, - I pm at 0.5 K. 

Another more fundamental difference  between  metallic 
lines and gated  MOSFETs was also  exploited. The Fermi 
level can easily be varied by adjusting the gate  voltage VG. 
This technique was  used  by Licini et al. [ 121 to illustrate the 
coherent nature of the fluctuations by measuring the 
magnetoconductance at various  values of V,. The 
fluctuations in  the magnetoconductance were  observed to be 
similar for closely  spaced  values  of gate voltage, but were 
strikingly  different  when the gate  voltage  exceeded the 
coherence energy. This distinguished the underlying 
mechanism for the fluctuations from those that rely on a 
shift of energy  levels to produce aperiodic structure. 
However,  a  definitive exhibition of the orbital nature of the 
important interference effects  was lacking. 

If the magnetoconductance fluctuations are due to the 
Aharonov-Bohm  effect, the fluctuations should depend on 
the amount of magnetic flux threading the sample. In order 
to test this hypothesis, Kaplan and Hartstein [ 13,  141 
exploited the two-dimensional properties of the electron gas 
in Si  MOSFETs operated at low temperatures [38]. The 
electronic trajectories in such  a  system are essentially planar, 
even  when the magnetic field is tilted with  respect to the 
sample.  A two-dimensional accumulation layer was tilted in 
a  magnetic  field to determine whether the perpendicular 
component of magnetic field is the important parameter. 
The samples chosen for this work  were used in [32] for the 
study of one- and two-dimensional transport, as described in 
Section 2. These samples showed fluctuations in the 
conductance not only as the gate voltage  was  varied  (see 
Figure  2), but also as the magnetic  field  was  varied. The 
magnetoconductance of these  devices  was  measured for gate 
voltages of 10 to 12 V. The conductance in this gate- 
voltage  range is of the order of s, which  is in the 
metallic  regime  addressed  by the universal fluctuation theory 
for T - 0.5 K. 

The device layout is  shown in Figure 3(a). As the gate 
voltage  is  increased above the device threshold voltage,  a 
narrow conducting channel is formed in n-type  Si  between 
the depletion region  of  two p+ control electrodes.  (These 
electrodes  were shorted to the substrate during this 
experiment.) A  side view  is shown in Figure 3(b). The 
channel length, L, is approximately 10 pm. The width  of the 
narrow accumulation layer, W, varies  with the gate  voltage 
and  cannot be measured microscopically. W was estimated 
to be  of the order of 100 nm at V, = 1  1 V for the most 
studied sample, as described later in this section. 

The magnetic  field, B, was varied  between 0 and 1.5 T, 
and was oriented perpendicular to the channel. The angle 0 
between the vector normal to the sample surface and the 
magnetic field  was varied by tilting the sample  with  a  gear 

n 

y o  
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set. The magnetoconductance data are shown in Figure 4(a) 
for various tilt angles.  (A  slowly  varying background and 
part of the low-field magnetoconductance have  been 
subtracted.) 

The two-dimensional nature of the accumulation layer is 
evident in the presence of the large  oscillations at the largest 
magnetic fields,  which are found to be periodic in ( B  cos 0)". 
These Shubnikov-de Haas oscillations  arise from the 
quantizing effect  of  a  magnetic  field  [38]. The correct 
quantum-mechanical treatment of  cyclotron motion in a 
magnetic field results in a  set of  energy  levels  separated in 351 
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Inverse square of AG, the deviation of the magnetoconductance of a 
pinched Si  accumulation  layer  from its saturation  value,  plotted 
against the square of the applied magnetic field [ 131. The straight line 9 .  

', IS the best fit to the data. 

energy  by an  amount proportional to the cyclotron 
frequency.  Since the cyclotron  frequency  is linear in the 
magnetic  field, the density  of  these Landau levels on the 
energy  axis  varies as B". The electronic  density of states 
contains peaks at the center of each of the Landau levels. 
The channel conductance is  affected  by the change in the 
number of electrons contributing to the transport as the 
magnetic field causes these  levels to move through the Fermi 
level. The confinement of the electronic  trajectories to two 
dimensions causes the Landau levels to be  spaced 
proportional to the perpendicular component of the applied 
field,  allowing an independent check  of the tilt angle. 

The aperiodic fluctuations in the magnetoconductance 
data are easily  seen in Figure  4(a). The peaks and dips are 
observed to appear at larger  values  of B as the tilt angle 
increases. The data are replotted vs. the perpendicular 
component of the applied field in Figure 4(b). One can see 
that the fluctuations lie at nearly the same  value  along the 
abscissa. This shows that the dominant contribution to the 
fluctuations  is orbital in nature, as is expected  for 
Aharonov-Bohm  interference.  Similar  effects  have 
subsequently  been  observed  using GaAs samples [39,40]. 
The data of [40]  clearly  show the B cos 8 dependence  of the 
fluctuations. 

It was observed in [ 12-14] that the measured fluctuation 
amplitudes were much smaller than Go. At  first, this 
appeared to disagree  with the universal fluctuation theory, 
but the prediction of a  universal fluctuation amplitude is 
predicated on the assumption that phase-breaking  processes 

352 are unimportant. This is  certainly not true when the sample 

size  exceeds  L,.  Each coherent subsection of the sample  has 
conductance fluctuations of the order  of Go. Theoretical 
calculations  show that the fluctuation amplitude for  a  large 
sample  is  equivalent to the contribution of a  classical  series- 
parallel  network of resistors,  each  resistor  representing  a 
subsection of  size -L,  [9,20,2 I]. This results in an rms 
amplitude that may  be  substantially  less than Go. In order to 
reconcile  theory and observation, the sample dimensions 
must  be compared with the phase-coherence  length. The 
experimental determination of L, is  a rather difficult 
business.  We  discuss the method  used in [ 13,  141 to estimate 
L,, and include  some  more  recent  experimental  observations 
to verify the accuracy of that estimate. 

It  is fortuitous that electron  coherence  is important in the 
theory of  weak localization  [4],  because it presents an 
opportunity to estimate L,. The weak localization of 
electrons in disordered  metals  arises  from the coherent 
backscattering of time-reversed  pairs of electrons. This 
backscattering  decreases the conductance by an  amount of 
the order of e2/h. A  perpendicular  magnetic field changes the 
phase of these  electronic  pairs and destroys the phase- 
coherent localization  process. As a  result,  there  is  a  negative 
magnetoresistance  [41].  All coherent trajectories  must be 
taken into account; phase-breaking  processes  are important 
for  trajectories  longer than L,. For samples of  width 
W < L,, the areas of the largest coherent trajectories are also 
limited by FK This turns out to be the appropriate limit for 
the pinched  accumulation-layer  samples. The dephasing  for 
such  a  narrow  sample  occurs on a  magnetic field  scale  such 
that the flux through an area WL, is  of the order of the flux 
quantum h/e. For narrow  samples in which  spin-flip 
scattering  is negligible, the correction to the conductance due 
to weak localization AG = G(B + 03) - G(B = 0)  is  given  by 
[421 

A  typical  set  of data for VG = 1 1 V and 8 = 0" is  shown in 
Figure 5. We plot (2GdAGy versus BZ to compare  directly 
to Equation (1). The presence  of conductance fluctuations 
produces  deviations  from the fit. The best  fit to the 
data results  in  estimates of L, - 0.3 * 0.1  pm and 
W -  0.1 & 0.03  pm. 

the data using Equation (1) in order to find L, and W. To 
check the veracity  of our estimates of Wand L,, low-field 
magnetoconductance  curves were obtained (using  a  different 
sample) by  varying VG from 10 to 12 V in steps of  0.25 V. 
The conductance of the sample  varied  by  only -25 percent 
within this gate-voltage  range.  Each step corresponded to 
changing the Fermi level  by -E,. Each data set  therefore  had 
a  different  fluctuation pattern, and conceptually  represented 
a  different  sample [ 191.  By analyzing  each  individual  curve, 
it was found that W typically  ranged  from  0.08-0.09  pm. 

The presence  of strong  fluctuations  makes it difficult to fit 
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L, varied from 0.46 to 0.60 pm. An average 
magnetoconductance (see Figure 6 )  was calculated by 
averaging the conductance values of all data sets at  the same 
value  of  magnetic  field. The fluctuation amplitude is 
drastically  reduced,  which  graphically  shows the effects  of 
averaging many different  samples. The analysis  shows 
W - 0.08 f 0.01 pm and L+ - 0.5 + 0.1 pm. These data 
were  used in estimating the error bars for L, and W quoted 
for the sample used in the tilted-field experiment. We can 
now use these data to estimate the expected reduction in 
fluctuation amplitude due to size  effects. 

VG = 1 1 V are found to obey the inequality W <  L,  L. 
Therefore, the fluctuation amplitude is  calculated  by 
averaging the contribution of  a  series string of N = L/L, 
resistors,  each of which fluctuates with an amplitude of -Go 
[9,2 11. The resistance  of the string is the sum of the separate 
fluctuating resistances. The rms fluctuation amplitude of the 
total resistance is found by using the central limit theorem 
[43] to be f i  times the fluctuation amplitude of the resistors 
in the string, 6r. This result  may  be rewritten in terms of the 
conductance fluctuation of the string, 6G = 6( l/R), 
and  the conductance fluctuation of one of the resistors, 
Sg = a( llr) = Go. The theoretical calculations for  a  sample in 
the limit W < L, << L predict the rms magnetoconductance 
fluctuation amplitude for the entire sample to be [9,21] 

The length and width of the narrow accumulation layer at 

bG,, - (L,/L)”*G,, 

which  results in a  predicted fluctuation amplitude of 
2.2 f 0.5 X S, in reasonable agreement with the 
measured  value of 2 * 0.5 X S at a temperature 
T = 0.5 K. 

It should be mentioned that many of the measurements of 
fluctuations in [ 121 were taken at temperatures exceeding 
E, lk,. Therefore,  a number equal to k, TIE, energy bands 
of width E, contribute to the fluctuations. As mentioned 
earlier, the fluctuation amplitude is therefore reduced by the 
statistical factor [18, 19,441, in addition to the 
reduction due to size  effects [9,20,21]. 

low-temperature limit where k, T << E, has now  been 
studied in considerable  detail,  using narrow Si inversion 
layers [ 15, 171 as well as metal wires [ 161. The initial 
conclusions of this work [ 151 claimed consistency  (within a 
factor of -2) with Equation (2) for narrow samples. In 
subsequent work,  voltage fluctuations were found to become 
length-independent for probes  spaced  closer than L, 
[ 16,  171, resulting in a fluctuation amplitude which  increases 
as L-’. This effect  is due to the fact that  the interference of 
electrons that diffise into voltage  probes can substantially 
affect  voltage measurements. In other words, the 
measurement of voltage  is inherently nonlocal on a 
mesoscopic  scale. 

The sue dependence of the fluctuation amplitude in the 
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vc = IO to 12 v 

W = 0.08 pm 

A plot of the  low-field  magnetoconductance  of a pinched  Si 
f accumulation layer similar to that of Figure 5, but using a different 

sample.  The inverse square of the average of  many data sets for AG is 
plotted versus B2.  These data are nearly linear, and show a reduced 
fluctuation amplitude. The values of Wand L+ obtained by the best fit 

f to the data are similar to those obtained from each of the separate data 
f sets, which contain significant fluctuations. 

It is now  well established that fluctuations in disordered 
conductors are caused by interference effects. The 
conductance fluctuation theory in its present form describes 
the magnetic field,  energy, and size dependences very  well, in 
the sense that error bars overlap or lie  close to theoretical 
predictions.  Si  MOSFETs  played an important role in 
determining the underlying mechanism, and  in  the study of 
size  effects. However, this discussion  would not be complete 
without mentioning some new developments involving other 
semiconducting devices. 

Several experimental groups are now measuring 
fluctuations in small GaAsIAlGaAs heterostructures. 
Magnetoconductance oscillations attributed to the 
Aharonov-Bohm effect have been  observed in a  coupled 
double-layer heterostructure [45]. Other experiments are 
being  performed on GaAs-based heterostructure samples 
that have probe spacings of the order of the mean free path, 
/, which  may  be as large as 5 or 6 pm [46-481. The width of 
some of these  samples  is of the same order as the electronic 
wavelength. The presence of only  a  small amount of disorder 
in these conductors, and their quasi-onedimensional nature, 
places them outside the realm of the universal fluctuation 
theory. Indeed, it is one that is  theoretically  difficult to treat. 
Aperiodic fluctuations have been  observed in the diagonal 
and off-diagonal (Hall) resistances, corresponding to a 
fluctuation amplitude of up  to 80G0. The fluctuations 
reported in [46] represent  a  large enough fraction of the 
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Distance along current direction- 

sample resistance (5  to I O  percent) that negative dynamic 
resistance was observed.  Aperiodic fluctuations were 
observed at magnetic fields up to 12 T in these  mesoscopic 
rings.  Aharonov-Bohm  oscillations  with amplitude of the 
order of Go have  also  been  seen, but the fluctuation 
amplitude was suppressed  when the cyclotron  radii  reached  a 
magnitude of the order of  half the device  linewidth.  These 
observations are not yet understood. However,  with the use 
of these  samples, the possibility  exists for studying the nature 
of coherence  effects on a length scale of 1. 

It is clear that there is  a  wealth  of  physical phenomena to 
be studied, and that the development of samples  with  long 
coherence lengths and novel  device structures may  open new 
avenues of research. In contrast, the experiment described in 
the next  section was done using  a  device that was designed 
for technological  purposes. It reminds us that interesting 
phenomena are waiting to be  uncovered in the most 
conventional devices. 

4. Asymmetric  conductance  and  nonlinear 
effects 
The random placement of scatterers in a disordered 
conductor presents an opportunity to observe  novel  sample- 
specific  mesoscopic  effects. It has been  predicted that  the 
interference conditions in a conductor vary with the voltage 
imposed  across it, thus producing a nonlinear and 
asymmetric conductance [20]. For example, when  a 
source-drain bias  is applied to a  Si  MOSFET, the disordered 
scattering potential becomes tilted by the bias  energy eV(see 
Figure 7). The excess  energy, E; - V,,, determines the 
electronic wavelength. These energies are randomly 

354 distributed, because of the disordered nature of the potential. 

When the random potential is tilted, the wavelengths, and 
therefore the phase  shifts, are changed  [49]. A significant 
(but random) total phase  change is possible  along  a coherent 
electronic trajectory  when the voltage  across  it  exceeds E, /e.  
The variation of interference conditions with source-drain 
bias  leads to a nonlinear conductance. When the bias  is 
reversed, the interference conditions are substantially 
different than for the original  bias  polarity,  because 
disordered  samples  lack  inversion symmetry with  respect to 
exchange of source and drain. This leads to  an asymmetric 
conductance. 

In order to observe  these  effects, Kaplan has measured the 
dependence of the conductance of  Si MOSFETs  with 
submicron dimensions as a  function of the source-drain 
voltage, V, [50].  These  devices  were fabricated using a 
polysilicon  gate and a  self-aligned  source and drain. The 
conductance of one such  device,  with L - 0.9 pm and 
W - 0.5 pm, was  first studied using V,, = 5 wV. This value 
of source-drain voltage  is much less than either E, or &T, 
thus ensuring that heating and nonlinear effects are 
negligible. The magnetoconductance fluctuations of this 
device  were  measured in order to estimate the important 
parameters L, and E, - hD/L:. The gate-voltage  range  over 
which the magnetoconductance fluctuations are correlated 
corresponded to a  change in the Fermi level  by 0.2 k 0.1 
meV. This should be roughly equal to E,. One can estimate 
L, by comparing the measured fluctuation amplitude 
(6G - 9 X S) to the amplitude expected  for the series- 
parallel combination of (L/L,) by ( W/L,) resistors,  using 
the two-dimensional analogue of Equation (2) [9,20,2 11. 
This  resulted in a  calculated E, of 0.75 meV,  which  is much 
too large. It  turns out that this device  is not much larger 
than L,. Each coherent sample region  of area -L: is subject 
to different boundary conditions. In order to avoid 
difficulties  associated  with boundary effects in such  a  small 
sample [51], the fluctuations in this device  were compared 
with the fluctuations in a  larger  device,  with L = 2.3 pm and 
W = 3. I pm, in order to determine E,. 

The coherence  length L, of the larger  MOSFET  was 
estimated to be -0.3  pm  by  measuring the fluctuation 
amplitude (6G - 3.6 X IOe6 S) and then using the analogue 
of Equation (2) for  a  two-dimensional sample [9, 20,211. 
The fluctuations in the smaller  device  were too large to use 
the two-dimensional analogue of the weak-localization 
formula Equation ( I )  to estimate L,. Alternatively, L, was 
estimated by observing the density  of the 
magnetoconductance fluctuations for the smaller  device (or, 
to be more precise, the width of the magnetic-field 
correlation function), and comparing it to that for the larger 
device. The average change in magnetic field  between 
fluctuation peaks  is  related to the average area of a coherent 
trajectory. That is, the width  of the magnetic-field 
correlation function (at half maximum) for a  two- 
dimensional sample  with L, W > L, in the low-temperature 
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limit is  given  by B, a [2 1,  521. The autocorrelation 
function calculated  for both large and small  devices  had 
widths B, - 0.12  0.2 T, indicating that the samples  had 
identical  phase-coherence  lengths. L, is therefore  estimated 
to be  0.3 & 0.15 pm for the small  device. E, was estimated 
to be -0.17 meV. This is in good  agreement  with the value 
of -0.2  meV  by observing the gate-voltage  range  over  which 
the magnetoconductance fluctuations are correlated. One 
then expects to observe nonlinear effects  when the voltage 
across  a coherent length of sample is of the order of  0.2  mV, 
or when V,, - 0.3 to 0.6 mV. 

conductance was  observed to become nonlinear and 
asymmetric. The shape of the conductance-voltage 
characteristic  varied  aperiodically  with the applied  magnetic 
field,  providing  a  first indication that this is an interference 
effect. The data for the antisymmetric magnetoconductance 
G, = [G( V,,) - G(- K,)] are shown  in Figure 8. The 
magnetoconductance  fluctuation patterns are shown to be 
similar to one another until V,, approaches  -0.3  meV.  Since 
V,, is distributed over  approximately  three  lengths of L,, this 
corresponds to a  coherence  energy  of -0.1 meV,  which 
indicates that the coherence  properties of the asymmetric 
fluctuation patterns are similar to those of the fluctuations 
observed  at  low source-drain voltage. 

magnetoconductance  fluctuations  shown in Figure 8 increase 
with J&. This is as one would expect,  since the asymmetry 
of the dephasing  processes  becomes  more pronounced as the 
potential  becomes more tilted.  For  a conductor with 
maximum  dimension  of the order of L,, the low- 
temperature limit of the antisymmetric fluctuation amplitude 
is predicted by Al'tshuler and Khmel'nitskii to be  [20] 

When the source-drain voltage V,, was increased, the 

The magnitudes  of the antisymmetric 

The fluctuations  in  a  device  larger than L, must  decrease 
due to the averaging  of  the contributions of coherent-device 
subregions  [53], in a way similar to that discussed  for the 
small-voltage  fluctuations. Furthermore, there are some 
other complications in a real experiment when the voltage 
across  a  length L,, eV,,L,/L, approaches E,. Electron 
scattering  results  in a higher  electron temperature. This 
temperature may  be  of the order of 3 or 4 K at some of the 
largest  values  of V,, used in this experiment. L, decreases 
with  increasing temperature, changing the number of 
coherent-sample  subregions and thus decreasing the 
fluctuation amplitude. It is  therefore not possible to vary V,, 
without  causing other changes. The averaging  of  different 
coherent energy bands must  also  become important when 
k, T exceeds E+. An attempt was made to separate  these 
parasitic effects (at least  partially)  from the asymmetric 
behavior  under study by comparing G, to the symmetric 
amplitude G, = [G( 5,) + G(- V,,)], which is also  affected 
by heating effects. 

1.6 X 

V , = 3 V  
, 3L 

T = 0.45 K 
.., \. 

" . \ I  

.-, i ' 

4 x  

Both G, and G, are plotted in Figure 9(a). The decrease in 
the symmetric  fluctuation amplitude with V,, graphically 
shows the effects  of electron  heating. G, increases rather 
linearly  with V, until V,,, - 0.3 mV, then decreases. This 
decrease  is  most  likely due to the same  cause as the decrease 
of G,. The ratio 6GA/6G, is  plotted in Figure 9(b). This gives 
a  rough  idea  of how G, behaves in the absence of electron 
heating.  We  see that there  is  a linear increase up to 
V,, - 0.3  mV,  followed  by a  sublinear  increase. The fact 
that the change in slope occurs  near where 6GA = 6G,, and 
at the same  value  of V,, that causes  a  change  in the 
fluctuation pattern, lends support to the argument that this 
effect  is due to quantum interference, and is the effect 
predicted in [20]. 

The change of the ratio 6GA/6G, in Figure 9(b) to a 
nonlinear slope  occurs  when e&, > E+. This behavior 
is  explained  in  [53]. The number of coherent  energy 
levels  spanned by the source-drain voltage  is  given  by 
N = eV,,/E,. Each of these  levels contributes randomly to 
the conductance, resulting in an f i  dependence of the 
fluctuation amplitude. (This result  is  similar to that obtained 
by adding N incoherent conductors in  parallel.) A more 
detailed  reconciliation  between  theory and experiment  is not 
easily  performed,  because G, also  depends  somewhat on V,, 
[54]. Heating effects can be alleviated  in shorter samples, 
where electrons may traverse the sample  without  scattering 
inelastically.  Such  work is being  carried out. In fact,  careful 
measurements on a  range of channel  lengths  may  reveal 
some of the details of nonequilibrium effects in short 
MOSFETs. 
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(a) Therms amplitudes of the  antisymmetric (SC,) and  the symmetric 
(SC,) components of the conductance  are  plotted vs. VsD [50]. The 
symmetric fluctuation amplitude decreases with source-drain 
voltage.  The  asymmetric  amplitude  increases up to V,, - 0.3 mV, 
then decreases. (b) The  ratio GGA/SGs is  plotted vs. V.,. The  data 
increase  linearly up  to VsD - 0.2 mV.  Beyond  this point, the  increase 
is  sublinear. 

5. Conclusions 
Mesoscopic  effects  have  been studied in several  types of 
samples: metallic and semimetallic rings and lines as well as 
semiconducting devices. The universality  of  mesoscopic 
interference effects  is  exemplified  by its ubiquity in small 
weakly  localized samples without regard to shape or 
material. The fabrication of  gated semiconductor devices 
may  be more complicated than  that of metal lines, but it has 
been  shown  here that there are distinct advantages to their 
use in studying mesoscopic  effects, such as the ability to 
carry out experiments at temperatures above 0.5 K. 

Si  MOSFETs  were used to observe that aperiodic 
magnetostructure in the weakly  localized  regime  is correlated 
over a certain energy  scale. Experiments were performed 

356 with samples tilted with  respect to the magnetic field. The 

results  showed that the fluctuations correlated with the 
perpendicular component of the magnetic field, not with the 
total field strength. Further work  revealed the dependence of 
the fluctuation amplitude on the sample size.  These 
observations,  together  with those made on metallic and 
semimetallic  samples, form a strong empirical framework on 
the theoretical foundation of universal conductance 
fluctuations: Quantum interference in disordered conductors 
leads to sample-specific fluctuations in  the device transport 
properties. 

in mesoscopic samples leads to nonlinear and asymmetric 
conductances, as made manifest by quantum interference. 
Second-harmonic generation and rectification are thus 
possible. In the absence of electron heating,  these  effects 
should increase  with the voltage  across the sample. In real 
devices, electron heating does take place, but heating does 
not totally obscure the asymmetry or the fluctuations. This 
relative  insensitivity to temperature is  a  striking property of 
mesoscopic  coherence  effects. 

experimentalists in the study of mesoscopic phenomena. The 
fabrication of near-ballistic  samples, in which the spacing of 
voltage  probes can be made shorter than the electronic 
mean-free path, is  resulting in a  wealth of novel 
observations.  However, much work remains to be done. 
Another direction which is being taken is  toward more 
strongly  localized  samples. Fluctuations have  been  observed 
below the mobility  edge  of  long [55 ]  and short samples [56].  
There is current interest in the experimental study of 
fluctuation behavior in the transition region  between  weak 
and strong localization [9, 14, 571. Experimental work on 
this subject is in progress. 

experiments, with many unexplored avenues and 
approaches. Semiconductor devices are sure to play an 
important role in the continuing discovery of  novel 
mesoscopic phenomena. 

It has also  been  shown that the lack of inversion symmetry 

There are several  new directions being taken by 

One can see that there has been  a  wide  range  of 
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