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Semiconductor devices have several attractive
properties which make them useful in the study
of electronic coherence phenomena such as
universal conductance fluctuations. The use of
gated devices allows the Fermi level, and thus
the electronic wavelength, to be adjusted in
order to study energy correlation effects. The
two-dimensional electron gas formed beneath
the gate can be tilted with respect to the
magnetic field to reveal that the field correlation
length of the fluctuations obeys a cosine law.
This strongly suggests that the fluctuations are
caused by quantum interference in the same
way that the Aharonov-Bohm effect arises in
metallic rings. The energy range over which
electrons are correlated in these materials is
generally larger than in metals. This allows one
to study these conductance fluctuations at much
higher temperatures than are feasible in metallic
conductors. For the same reason, substantially
larger source-drain voltages can be applied to
observe asymmetry and nonlinear effects in the
conductance.
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1. Introduction

Electronic transport in very small disordered conductors has
been the subject of intense study in recent years. The
transport properties of both small and large systems are
substantially affected by electronic scattering from sites of
disorder, such as crystal imperfections and impurities. Many
of the more interesting properties of small conducting
systems are dependent on the particular impurity
configuration of each sample [1, 2]. Such sample-specific
behavior is not readily apparent in transport measurements
using large samples, because the dissimilar contributions of
an ensemble of small regions are averaged in such
measurements.

This paper is concerned with the sample-specific behavior
of the “metallic” samples, in which the localization length
(the spatial extent of the electronic wave function) is greater
than the sample size. The conductance of samples in the
metallic limit is larger than ~&’/h, which is approximately
(25 kQ)™' [3]. Electronic interference plays a major role in
quantum corrections to the conductance in the metallic
regime [4, S]. Interference effects can only take place
between electronic states that are phase-coherent. The length
scale, L,, over which phase coherence occurs is limited by
phase-disturbing scattering processes. For a disordered
conductor, the phase-coherence length is given by
L, = Dr,. L, is thus related to the diffusion constant D
and the lifetime 7, which includes all phase-breaking
processes such as inelastic and spin-flip scattering. Note that
elastic scattering does not disturb the phase [6, 7}, and
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(a) An Aharonov-Bohm loop, in which an electron beam is split in
two and rejoined. The phase difference 8¢, — 3¢, varies with the
magnetic flux penetrating the loop, resulting in a periodically varying
current. (b) A schematic diagram of a disordered metallic Aharonov—
Bohm loop. The leads are assumed to extend to reservoirs in which all
inelastic processes take place. Two of the possible electronic paths
are shown. Two ring-like pairs of trajectories that lead to aperiodic
structure are identified.

therefore only limits L, through its effect on D. In the
conducting channels of Si metal-oxide-semiconductor field-
effect transistors (MOSFETs), and Au wires at temperatures
of ~1 K, L, is of the order of 1 um, but may be an order of
magnitude larger in GaAs/AlGaAs heterostructures.

The term “mesoscopic” [8] was coined to describe systems
intermediate between the atomic and macroscopic regimes
in which statistical fluctuations are important. We follow
Imry [9] in applying this term to systems comparable in size
to L,. It has been experimentally observed that the electronic
conductance of disordered metallic conductors exhibits
aperiodic fluctuations as either the magnetic field or the
Fermi level is varied [10-17]. The results are consistent with
the theory of universal fluctuations [2, 9, 18-25], which
treats the conductance of mesoscopic samples quantum-
mechanically. The theory predicts a sample-specific
conductance that varies aperiodically with changes in
electronic phase or wavelength.

Although these aperiodic fluctuations can be found in the
conductance of disordered metallic, semimetallic, and
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semiconducting samples, it is shown that there are several
attributes of small semiconducting systems that make them
especially suited to the study of such electronic coherence
phenomena. We pay particular attention to results obtained
using the thin layers of electrons induced by the field effect
[26] in Si MOSFETs.

2. Aperiodic conductance fluctuations

The study of aperiodic fluctuations arose from the search for
periodic Aharonov-Bohm oscillations in the magnetic-field-
dependent conductance (or magnetoconductance) of
mesoscopic conducting rings. Both of these phenomena are
now known to be due to the same type of quantum
interference. The salient issues may be clearly illuminated by
describing the gedanken (or thought) experiment of
Aharonov and Bohm [27]. An electron beam propagating in
vacuo is split into two separate paths and then rejoined, as
shown in Figure 1(a). The resultant electronic current
measured at a point downstream from the loop can be
shown to be related to the difference of the quantum-
mechanical phases of the wave functions in the two
branches, ¢, — ¢,. The result of a magnetic flux ® applied to
the interior of the loop is an additional phase difference
between the two branches of the loop, 6¢, — 8¢, = (e/h)® =
(e/h) § A - ds, where A is the magnetic vector potential and
s is the path that encloses the flux. This implies that the
current will show an oscillatory dependence on the applied
flux with period #/e, where # is Planck’s constant and e is
the electronic charge.

Now let us replace the vacuum paths with a disordered
metallic ring to which leads have been attached, as shown in
Figure 1(b). It is assumed that electrons suffer only elastic
scattering in the conductor. The leads extend to reservoirs to
which all irreversible processes (such as inelastic scattering)
are confined, as in Landauer’s pioneering work on the
quantum-mechanical resistance of disordered conductors
[28, 29]. The electron energies are not shifted during elastic
scattering in the ring, even though momentum relaxation
occurs. It was argued [6, 7] that under these circumstances,
electronic phase coherence is preserved, and //e oscillations
should still be observable.

In a real ring with circumference comparable to L,, some
phase-breaking does occur. However, enough phase
coherence remains to produce periodic fluctuations
in the magnetoconductance. The first observation of
Aharonov-Bohm oscillations in single metal loops with a
magnetic flux period of 4/e was made by Webb et al.

[30, 31]. It provided a striking validation of the concepts of
quantum coherence and transport that had been developing
since the early work of [28].

The observation of periodic oscillations in thin metallic
loops was not made without difficulty. (This work is
discussed in detail in [5] and in other articles in this issue of
the IBM Journal of Research and Development.) One of the
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more interesting aspects of the early work on single rings
was the unexpected observation by Umbach et al. [10]

and Blonder [11] of sample-specific aperiodic
magnetoconductance fluctuations which almost completely
obscured the periodic structure.

It is now believed that such aperiodic fluctuations have
long been observed in experiments on small structures, but
remained unexplained. A representative example is the
observation of fluctuations in the conductance of narrow Si
MOSFETs [32] by A. Fowler et al. The main focus of the
experiment was to study the transition from one- to
two-dimensional conduction in a variable-width electron
accumulation layer as the gate voltage was varied. However,
their data (see Figure 2) show significant aperiodic
fluctuations. At the lower values of gate voltage, the
localization (or decay) length of the electronic wave function
was found to be much shorter than the phase-coherence
length, indicating that the electrons were strongly localized.
The fluctuations in this regime were identified with changes
in the variable-range hopping paths as the Fermi level was
varied [33]. The data also show that at the highest values of
gate voltage, aperiodic conductance fluctuations extended
into the metallic or weakly localized regime, where the
localization length is longer than L.

Y. Imry* suggested that the aperiodic
magnetoconductance fluctuations in the weakly localized
regime may be due to the same type of quantum
interference that gives rise to the Aharonov-Bohm effect.
This can be explained by noting that the electronic
trajectories within the conductor actually constitute a large
number 6f Aharonov-Bohm loops. Two such loops are
pointed out in Figure 1(b). Since the magnetic field
penetrates these loops, one obtains fluctuations with
periodicities that reflect their respective areas. The total
conductance represents the contribution from all trajectories,
and is therefore aperiodic.

Imry’s ideas stimulated Stone [18] to do computer
simulations of a disordered conductor using the
multichannel Landauer conductance formula [28, 34, 35].
The results of these simulations contained aperiodic
magnetoconductance fluctuations comparable to the
experimental observations of [10]. The density of the
fluctuations as a function of magnetic field was found to be
proportional to the area of the sample. It was concluded that
this phenomenon is indeed due to the Aharonov-Bohm
effect.

Simultaneous independent work was done by Al'tshuler
[2], who used a weak-scattering diagrammatic technique to
predict that sample-to-sample conductance fluctuations may
arise because of the sample-specific interference conditions.
In other words, mesoscopic conductors that are
macroscopically identical, but have different impurity

*Y. Imry. Department of Nuclear Physics, The Weizmann Institute of Science,
Rehovot 76 100, Israel; private communication, 1985,
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Conductance (S)

Gate voltage (V)

The conductance of a narrow Si MOSFET accumulation layer. The
data show fluctuations as the gate voltage is varied. These
fluctuations persist into the regime of weak localization [32].

configurations, may have different conductances. The
connection between the approaches taken by Stone and
Al’tshuler is clear in the work of Lee and Stone [19], wherein
the hypothesis is proposed that variation of the magnetic
field is identical to changing the sample.

The calculations of [19] and subsequent work [9, 20-24]
made use of scattering diagrams similar to that used in [2].
These calculations are applicable to weakly localized samples
in which there is sufficient elastic scattering in a sample of
length L ~ L that the elastic mean free path /< L.
Fluctuations in the conductance G at magnetic field B and
Fermi energy E were studied by calculating the
conductance autocorrelation function F(AB, AE) =
(G(B+ AB, E. + AE)G(B, E;)) — (G(B, E.))’. Several
universal properties of the conductance fluctuations were
discovered:

1. The root-mean-squared (rms) fluctuation amplitude G at
T = 0 is given by 4G = VF(0, 0), which is of the order of
élh=G,.

2. The same results obtain whether the sample is a metal, a
semiconducting inversion layer, or an accumulation
layer.

3. The fluctuation amplitude is essentially the same (to
within a factor of v2 [21]), whether the electron energy
or the applied magnetic field is varied.
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(a) The layout of a narrow Si accumulation layer device used in [13,
14, 32] is shown. The two p* control electrodes define the channel.
¢ The width between the controls is approximately 1 um. The length of
? the narrow region is approximately 10 wm. The two n+ regions are
the source and drain. A cross section taken along the dotted line is
i shown in (b). The diffusions are about 0.5 um deep and the oxide is
. 30 nm thick.
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A few comments about these properties are warranted.

The prediction of a universal conductance fluctuation
amplitude that is insensitive to the degree of disorder or the
shape of the sample [2, 18, 19] is a remarkable statement,
but it is now understood to be applicable for samples
comparable in size to L,. The present formulation of the
theory recognizes that samples either much larger or much
smaller than L, may exhibit fluctuations substantially
different from G, in magnitude. Samples much larger than
L, sustain a large quantity of phase-breaking processes, and
thus cannot be expected to exhibit as strong interference
effects as smaller samples [9, 20, 21]. The coherence of
voltage measurements in samples much shorter than L,
leads to length-independent voltage fluctuations, resulting in
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conductance fluctuation amplitudes that increase with
decreasing sample length [16, 23-25]. However, for a sample
of size ~L , the fluctuation amplitude is expected to be of
the order of G, for a Si accumulation layer, a semimetallic
Sb thin film, or a Au wire, despite the obvious differences
between these materials.

One may observe fluctuations by measuring many
samples, or by varying the interference conditions in a single
sample [19]. In a magnetoconductance measurement, the
electronic phase is varied as in the Aharonov-Bohm effect.
The magnetic field autocorrelation function F(B) for a two-
dimensional sample larger than L, was predicted to have a
width at half maximum of the order of h/eLi [19]. However,
if such a sample is tilted with respect to the magnetic field,
only the autocorrelation function of the perpendicular field
component should be constant.

Another way to vary the interference conditions is to vary
the Fermi energy. This should result in a fluctuation in the
conductance each time another wavelength is added to
the path length. A simple calculation [36] shows that this
happens when the energy changes by E, ~ hD/Li. This is
approximately the width of the energy autocorrelation
function F(0, E) obtained by Lee and Stone [19].

The temperature scale over which the fluctuations may be
observed is determined by E,. Electronic states are correlated
within bands of width E,. Stone [18] has argued that when
the thermal energy k,, T is much greater than E, the
fluctuation patterns of a large number of uncorrelated energy
bands, given by k, T/E,, are averaged. The fluctuation
amplitude is therefore reduced by the statistical factor
m . This slow decrease in the fluctuation amplitude
with temperature allows the fluctuations to be easily
observed at *He temperatures (7 > 0.3 K) for most
mesoscopic samples.

3. Measurements of universal conductance
fluctuations

The experimental testing of this theoretical framework was
undertaken by several groups that employed Si MOSFETs
[12-15]). There are a number of differences between these
devices and metallic samples that make them a practical
choice for the study of mesoscopic effects. The coherence
energies in MOSFETS are about an order of magnitude
larger than in metals such as Au or AuPd. This arises from
the differences in carrier densities between these two types of
systems. (The maximum induced carrier density in a Si
MOSFET is of the order of 10" cm™, while a typical density
in a metal is of the order of 10° cm_s.) This leads to
relatively poorer electronic screening in MOSFETS, which in
turn causes the electron—electron scattering rate in these
devices to be larger than in metallic systems. As it turns out,
this is the scattering process that limits 7, at low
temperatures [37]. Instead of having to work at temperatures
below 0.1 K, as did Umbach et al., workers studying Si
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MOSFETSs may work at temperatures greater than ~0.5 K.
Despite the longer phase-breaking lifetime, the Fermi
velocity in Si MOSFETs is correspondingly smaller, resulting
in a phase-coherence length L, — 1 um at 0.5 K.

Another more fundamental difference between metallic
lines and gated MOSFETSs was also exploited. The Fermi
level can easily be varied by adjusting the gate voltage V.
This technique was used by Licini et al. [12] to illustrate the
coherent nature of the fluctuations by measuring the
magnetoconductance at various values of V. The
fluctuations in the magnetoconductance were observed to be
similar for closely spaced values of gate voltage, but were
strikingly different when the gate voltage exceeded the
coherence energy. This distinguished the underlying
mechanism for the fluctuations from those that rely on a
shift of energy levels to produce aperiodic structure.
However, a definitive exhibition of the orbital nature of the
important interference effects was lacking.

If the magnetoconductance fluctuations are due to the
Aharonov-Bohm effect, the fluctuations should depend on
the amount of magnetic flux threading the sample. In order
to test this hypothesis, Kaplan and Hartstein [13, 14]
exploited the two-dimensional properties of the electron gas
in Si MOSFETs operated at low temperatures [38]. The
electronic trajectories in such a system are essentially planar,
even when the magnetic field is tilted with respect to the
sample. A two-dimensional accumulation layer was tilted in
a magnetic field to determine whether the perpendicular
component of magnetic field is the important parameter.
The samples chosen for this work were used in [32] for the
study of one- and two-dimensional transport, as described in
Section 2. These samples showed fluctuations in the
conductance not only as the gate voltage was varied (see
Figure 2), but also as the magnetic field was varied. The
magnetoconductance of these devices was measured for gate
voltages of 10 to 12 V. The conductance in this gate-
voltage range is of the order of 107* S, which is in the
metallic regime addressed by the universal fluctuation theory
for T~ 0.5 K.

The device layout is shown in Figure 3(a). As the gate
voltage is increased above the device threshold voltage, a
narrow conducting channel is formed in n-type Si between
the depletion region of two p* control electrodes. (These
electrodes were shorted to the substrate during this
experiment.) A side view is shown in Figure 3(b). The
channel length, L, is approximately 10 um. The width of the
narrow accumulation layer, W, varies with the gate voltage
and cannot be measured microscopically. W was estimated
to be of the order of 100 nm at ¥ = 11 V for the most
studied sample, as described later in this section.

The magnetic field, B, was varied between 0 and 1.5 T,
and was oriented perpendicular to the channel. The angle ¢
between the vector normal to the sample surface and the
magnetic field was varied by tilting the sample with a gear
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(a) Fractional change in the magnetoconductance of a pinched Si
accumulation layer sample for various values of the angle 8 between
the magnetic field axis and the vector normal to the sample surface
[13]. A slowly varying background has been subtracted. V=11V
and7=0.47K + 0.02K. G~ 2.3 X 10~ *at B = 0. The dotted lines
are used to track several structures from curve to curve as 6 is varied.
(b) The same data plotted vs. the perpendicular component of the
magnetic field.

7.

set. The magnetoconductance data are shown in Figure 4(a)
for various tilt angles. (A slowly varying background and
part of the low-field magnetoconductance have been
subtracted.)

The two-dimensional nature of the accumulation layer is
evident in the presence of the large oscillations at the largest
magnetic fields, which are found to be periodic in (B cos 0)"1.
These Shubnikov-de Haas oscillations arise from the
quantizing effect of a magnetic field [38]. The correct
quantum-mechanical treatment of cyclotron motion in a
magnetic field results in a set of energy levels separated in
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Inverse square of AG, the deviation of the magnetoconductance of a
pinched Si accumulation layer from its saturation value, plotted
against the square of the applied magnetic field {13]. The straight line
is the best fit to the data.

!
%f

energy by an amount proportional to the cyclotron
frequency. Since the cyclotron frequency is linear in the
magnetic field, the density of these Landau levels on the
energy axis varies as B~'. The electronic density of states
contains peaks at the center of each of the Landau levels.
The channel conductance is affected by the change in the
number of electrons contributing to the transport as the
magnetic field causes these levels to move through the Fermi
level. The confinement of the electronic trajectories to two
dimensions causes the Landau levels to be spaced
proportional to the perpendicular component of the applied
field, allowing an independent check of the tilt angle.

The aperiodic fluctuations in the magnetoconductance
data are easily seen in Figure 4(a). The peaks and dips are
observed to appear at larger values of B as the tilt angle
increases. The data are replotted vs. the perpendicular
component of the applied field in Figure 4(b). One can sce
that the fluctuations lie at nearly the same value along the
abscissa. This shows that the dominant contribution to the
fluctuations is orbital in nature, as is expected for
Aharonov-Bohm interference. Similar effects have
subsequently been observed using GaAs samples [39, 40].
The data of [40] clearly show the B cos 8 dependence of the
fluctuations.

It was observed in [12-14] that the measured fluctuation
amplitudes were much smaller than G,. At first, this
appeared to disagree with the universal fluctuation theory,
but the prediction of a universal fluctuation amplitude is
predicated on the assumption that phase-breaking processes
are unimportant. This is certainly not true when the sample
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size exceeds L,. Each coherent subsection of the sample has
conductance fluctuations of the order of G,. Theoretical
calculations show that the fluctuation amplitude for a large
sample is equivalent to the contribution of a classical series-
parallel network of resistors, each resistor representing a
subsection of size ~L, [9, 20, 21]. This results in an rms
amplitude that may be substantially less than G,. In order to
reconcile theory and observation, the sample dimensions
must be compared with the phase-coherence length. The
experimental determination of L, is a rather difficult
business. We discuss the method used in [13, 14] to estimate
L, and include some more recent experimental observations
to verify the accuracy of that estimate.

It is fortuitous that electron coherence is important in the
theory of weak localization [4), because it presents an
opportunity to estimate L. The weak localization of
electrons in disordered metals arises from the coherent
backscattering of time-reversed pairs of electrons. This
backscattering decreases the conductance by an amount of
the order of €°/h. A perpendicular magnetic field changes the
phase of these electronic pairs and destroys the phase-
coherent localization process. As a result, there is a negative
magnetoresistance [41]. All coherent trajectories must be
taken into account; phase-breaking processes are important
for trajectories longer than L. For samples of width
W < L, the areas of the largest coherent trajectories are also
limited by W. This turns out to be the appropriate limit for
the pinched accumulation-layer samples. The dephasing for
such a narrow sample occurs on a magnetic field scale such
that the flux through an area WL, is of the order of the flux
quantum #/e. For narrow samples in which spin-flip
scattering is negligible, the correction to the conductance due
to weak localization AG = G(B — ©) — G(B = 0) is given by
[42]

2G0 2_ 2 -2 [4 2W232
(50) -+ ()57 g

A typical set of data for V; = 11 V and # = 0° is shown in
Figure 5. We plot (ZGO/AG)2 versus B to compare directly
to Equation (1). The presence of conductance fluctuations
produces deviations from the fit. The best fit to the

data results in estimates of L, ~ 0.3 + 0.1 um and

W~ 0.1 £0.03 um.

The presence of strong fluctuations makes it difficult to fit
the data using Equation (1) in order to find L, and W. To
check the veracity of our estimates of W and L, low-field
magnetoconductance curves were obtained (using a different
sample) by varying V,, from 10 to 12 V in steps of 0.25 V.
The conductance of the sample varied by only ~25 percent
within this gate-voltage range. Each step corresponded to
changing the Fermi level by ~E,. Each data set therefore had
a different fluctuation pattern, and conceptually represented
a different sample [19]. By analyzing each individual curve,
it was found that W typically ranged from 0.08-0.09 um.
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L, varied from 0.46 to 0.60 um. An average
magnetoconductance (see Figure 6) was calculated by
averaging the conductance values of all data sets at the same
value of magnetic field. The fluctuation amplitude is
drastically reduced, which graphically shows the effects of
averaging many different samples. The analysis shows

W ~0.08 £ 0.01 pm and L, ~ 0.5 = 0.1 pm. These data
were used in estimating the error bars for L, and W quoted
for the sample used in the tilted-field experiment. We can
now use these data to estimate the expected reduction in
fluctuation amplitude due to size effects.

The length and width of the narrow accumulation layer at
Vs = 11V are found to obey the inequality W< L, <« L.
Therefore, the fluctuation amplitude is calculated by
averaging the contribution of a series string of N = L/L,
resistors, each of which fluctuates with an amplitude of ~G,
[9, 21]. The resistance of the string is the sum of the separate
fluctuating resistances. The rms fluctuation amplitude of the
total resistance is found by using the central limit theorem
[43] to be VN times the fluctuation amplitude of the resistors
in the string, ér. This result may be rewritten in terms of the
conductance fluctuation of the string, 6G = §(1/R),
and the conductance fluctuation of one of the resistors,
8g = 8(1/r) = G,,. The theoretical calculations for a sample in
the limit W < L, < L predict the rms magnetoconductance
fluctuation amplitude for the entire sample to be [9, 21]

8G,,, ~ (L,/LY"G,, @

which results in a predicted fluctuation amplitude of
22+05x1077 S, in reasonable agreement with the
measured value of 2 + 0.5 X 107’ S at a temperature
T=05K.

It should be mentioned that many of the measurements of
fluctuations in [12] were taken at temperatures exceeding
E, /ky. Therefore, a number equal to k; 7/E, energy bands
of width E, contribute to the fluctuations. As mentioned
earlier, the fluctuation amplitude is therefore reduced by the
statistical factor vk, T/E, [18, 19, 44], in addition to the
reduction due to size effects [9, 20, 21].

The size dependence of the fluctuation amplitude in the
low-temperature limit where k, T’ << E, has now been
studied in considerable detail, using narrow Si inversion
layers [15, 17] as well as metal wires [16]. The initial
conclusions of this work [15] claimed consistency (within a
factor of ~2) with Equation (2) for narrow samples. In
subsequent work, voltage fluctuations were found to become
length-independent for probes spaced closer than L,

[16, 17], resulting in a fluctuation amplitude which increases
as L™°, This effect is due to the fact that the interference of
electrons that diffuse into voltage probes can substantially
affect voltage measurements. In other words, the
measurement of voltage is inherently nonlocal on a
mesoscopic scale.
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A plot of the tow-field magnetoconductance of a pinched Si
accumulation layer similar to that of Figure 5, but using a different
sample. The inverse square of the average of many data sets for AG is
plotted versus B?. These data are nearly linear, and show a reduced
fluctuation amplitude. The values of W and L, obtained by the best fit
to the data are similar to those obtained from each of the separate data
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¢ sets, which contain significant fluctuations.

It is now well established that fluctuations in disordered
conductors are caused by interference effects. The
conductance fluctuation theory in its present form describes
the magnetic field, energy, and size dependences very well, in
the sense that error bars overlap or lie close to theoretical
predictions. Si MOSFET: played an important role in
determining the underlying mechanism, and in the study of
size effects. However, this discussion would not be complete
without mentioning some new developments involving other
semiconducting devices.

Several experimental groups are now measuring
fluctuations in small GaAs/AlGaAs heterostructures.
Magnetoconductance oscillations attributed to the
Aharonov-Bohm effect have been observed in a coupled
double-layer heterostructure [45]. Other experiments are
being performed on GaAs-based heterostructure samples
that have probe spacings of the order of the mean free path,
¢, which may be as large as S or 6 um [46-48]. The width of
some of these samples is of the same order as the electronic
wavelength. The presence of only a small amount of disorder
in these conductors, and their quasi-one-dimensional nature,
places them outside the realm of the universal fluctuation
theory. Indeed, it is one that is theoretically difficult to treat.
Aperiodic fluctuations have been observed in the diagonal
and off-diagonal (Hall) resistances, corresponding to a
fluctuation amplitude of up to 80G,,. The fluctuations
reported in [46] represent a large enough fraction of the
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Distance along current direction —————-

A schematic energy diagram for a disordered metallic sample under a

voltage bias V (from [50]). The net current is toward the right.
_ Electrons of energy E scatter from the random potential V_ . If the
. Dbias is large enough, the wavelength of an electron may be
substantially shifted.

i

sample resistance (5 to 10 percent) that negative dynamic
resistance was observed. Aperiodic fluctuations were
observed at magnetic fields up to 12 T in these mesoscopic
rings. Aharonov-Bohm oscillations with amplitude of the
order of G, have also been seen, but the fluctuation
amplitude was suppressed when the cyclotron radii reached a
magnitude of the order of half the device linewidth. These
observations are not yet understood. However, with the use
of these samples, the possibility exists for studying the nature
of coherence effects on a length scale of /.

It is clear that there is a wealth of physical phenomena to
be studied, and that the development of samples with long
coherence lengths and novel device structures may open new
avenues of research. In contrast, the experiment described in
the next section was done using a device that was designed
for technological purposes. It reminds us that interesting
phenomena are waiting to be uncovered in the most
conventional devices.

4. Asymmetric conductance and nonlinear
effects

The random placement of scatterers in a disordered
conductor presents an opportunity to observe novel sample-
specific mesoscopic effects. It has been predicted that the
interference conditions in a conductor vary with the voltage
imposed across it, thus producing a nonlinear and
asymmetric conductance [20]. For example, when a
source-drain bias is applied to a Si MOSFET, the disordered
scattering potential becomes tilted by the bias energy eV (see
Figure 7). The excess energy, E¢ ~ ¥, , determines the
electronic wavelength. These energies are randomly
distributed, because of the disordered nature of the potential.
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When the random potential is tilted, the wavelengths, and
therefore the phase shifts, are changed [49]. A significant
(but random) total phase change is possible along a coherent
electronic trajectory when the voltage across it exceeds E, /e.
The variation of interference conditions with source-drain
bias leads to a nonlinear conductance. When the bias is
reversed, the interference conditions are substantially
different than for the original bias polarity, because
disordered samples lack inversion symmetry with respect to
exchange of source and drain. This leads to an asymmetric
conductance.

In order to observe these effects, Kaplan has measured the
dependence of the conductance of Si MOSFETs with
submicron dimensions as a function of the source-drain
voltage, ¥, [50]. These devices were fabricated using a
polysilicon gate and a self-aligned source and drain. The
conductance of one such device, with L ~ 0.9 um and
W ~ 0.5 pm, was first studied using ¥, = 5 V. This value
of source-drain voltage is much less than either E, or kT,
thus ensuring that heating and nonlinear effects are
negligible. The magnetoconductance fluctuations of this
device were measured in order to estimate the important
parameters L, and E, ~ hD/Lf,. The gate-voltage range over
which the magnetoconductance fluctuations are correlated
corresponded to a change in the Fermi level by 0.2 + 0.1
meV. This should be roughly equal to E,. One can estimate
L, by comparing the measured fluctuation amplitude
(6G ~ 9 x 107° ) to the amplitude expected for the series-
parallel combination of (L/L,) by (W/L,) resistors, using
the two-dimensional analogue of Equation (2) [9, 20, 21].
This resulted in a calculated £, of 0.75 meV, which is much
too large. It turns out that this device is not much larger
than L. Each coherent sample region of area ~Li is subject
to different boundary conditions. In order to avoid
difficulties associated with boundary effects in such a small
sample [51], the fluctuations in this device were compared
with the fluctuations in a larger device, with L = 2.3 um and
W= 3.1 um, in order to determine E,.

The coherence length L, of the larger MOSFET was
estimated to be ~0.3 um by measuring the fluctuation
amplitude (G ~ 3.6 X 107° S) and then using the analogue
of Equation (2) for a two-dimensional sample [9, 20, 21].
The fluctuations in the smaller device were too large to use
the two-dimensional analogue of the weak-localization
formula Equation (1) to estimate L,. Alternatively, L, was
estimated by observing the density of the
magnetoconductance fluctuations for the smaller device (or,
to be more precise, the width of the magnetic-field
correlation function), and comparing it to that for the larger
device. The average change in magnetic field between
fluctuation peaks is related to the average area of a coherent
trajectory. That is, the width of the magnetic-field
correlation function (at half maximum) for a two-
dimensional sample with L, W > L, in the low-temperature
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limit is given by B, « &, /L; [21, 52). The autocorrelation
function calculated for both large and small devices had
widths B, ~ 0.12 £ 0.2 T, indicating that the samples had
identical phase-coherence lengths. L, is therefore estimated
to be 0.3 £ 0.15 um for the small device. E, was estimated
to be ~0.17 meV. This is in good agreement with the value
of ~0.2 meV by observing the gate-voltage range over which
the magnetoconductance fluctuations are correlated. One
then expects to observe nonlinear effects when the voltage
across a coherent length of sample is of the order of 0.2 mV,
or when ¥, ~ 0.3t0 0.6 mV.

When the source-drain voltage V;,, was increased, the
conductance was observed to become nonlinear and
asymmetric. The shape of the conductance-voltage
characteristic varied aperiodically with the applied magnetic
field, providing a first indication that this is an interference
effect. The data for the antisymmetric magnetoconductance
G, = [G(V,,) — G(—V,)] are shown in Figure 8. The
magnetoconductance fluctuation patterns are shown to be
similar to one another until ¥, approaches ~0.3 meV. Since
Vo is distributed over approximately three lengths of L, this
corresponds to a coherence energy of ~0.1 meV, which
indicates that the coherence properties of the asymmetric
fluctuation patterns are similar to those of the fluctuations
observed at low source-drain voltage.

The magnitudes of the antisymmetric
magnetoconductance fluctuations shown in Figure 8 increase
with ¥, This is as one would expect, since the asymmetry
of the dephasing processes becomes more pronounced as the
potential becomes more tilted. For a conductor with
maximum dimension of the order of L, the low-
temperature limit of the antisymmetric fluctuation amplitude
is predicted by Al'tshuler and Khmel’nitskii to be [20]

8G, = ([G(V) = G(=V)I')'" ~ G, X (eVip/E,).  (3)

The fluctuations in a device larger than L, must decrease
due to the averaging of the contributions of coherent-device
subregions [53], in a way similar to that discussed for the
small-voltage fluctuations. Furthermore, there are some
other complications in a real experiment when the voltage
across a length L, eV, L, /L, approaches E,. Electron
scattering results in a higher electron temperature. This
temperature may be of the order of 3 or 4 K at some of the
largest values of ¥, used in this experiment. L, decreases
with increasing temperature, changing the number of
coherent-sample subregions and thus decreasing the
fluctuation amplitude. It is therefore not possible to vary Vg,
without causing other changes. The averaging of different
coherent energy bands must also become important when
kT exceeds E, »~ An attempt was made to separate these
parasitic effects (at least partially) from the asymmetric
behavior under study by comparing G, to the symmetric
amplitude G = [G(V;) + G(—V,;)], which is also affected
by heating effects.
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The fluctuations in the antisymmetric magnetoconductance for
several values of source—drain voltage Vy, [50]. Each curve has been
arbitrarily displaced along the vertical scale. Note that the patterns
change shape when V;;, changes by more than 0.2 mV.

Both G, and G are plotted in Figure 9(a). The decrease in
the symmetric fluctuation amplitude with ¥, graphically
shows the effects of electron heating. G, increases rather
linearly with ¥, until ¥, ~ 0.3 mV, then decreases. This
decrease is most likely due to the same cause as the decrease
of G,. The ratio 8G,/8Gy is plotted in Figure 9(b). This gives
a rough idea of how G, behaves in the absence of electron
heating. We see that there is a linear increase up to
Vip ~ 0.3 mV, followed by a sublinear increase. The fact
that the change in slope occurs near where 8G, = 8G;, and
at the same value of ¥, that causes a change in the
fluctuation pattern, lends support to the argument that this
effect is due to quantum interference, and is the effect
predicted in [20].

The change of the ratio 6G,/6G in Figure 9(b) to a
nonlinear slope occurs when e, > E . This behavior
is explained in [53]. The number of coherent energy
levels spanned by the source-drain voltage is given by
N = eV, /E,. Each of these levels contributes randomly to
the conductance, resulting in an VN dependence of the
fluctuation amplitude. (This result is similar to that obtained
by adding N incoherent conductors in parailel.) A more
detailed reconciliation between theory and experiment is not
easily performed, because G also depends somewhat on V,
[54]. Heating effects can be alleviated in shorter samples,
where electrons may traverse the sample without scattering
inelastically. Such work is being carried out. In fact, careful
measurements on a range of channel lengths may reveal
some of the details of nonequilibrium effects in short
MOSFETSs.
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(a) The rms amplitudes of the antisymmetric (3G, ) and the symmetric
(3G;) components of the conductance are plotted vs. Vg, [50]. The
symmetric fluctuation amplitude decreases with source—drain
voltage. The asymmetric amplitude increases up to Vg ~ 0.3 mV,
then decreases. (b) The ratio 8G,/3G; is plotted vs. Vg;,. The data
increase linearly up to Vg, ~ 0.2 mV. Beyond this point, the increase
is sublinear.
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5. Conclusions

Mesoscopic effects have been studied in several types of
samples: metallic and semimetallic rings and lines as well as
semiconducting devices. The universality of mesoscopic
interference effects is exemplified by its ubiquity in small
weakly localized samples without regard to shape or
material. The fabrication of gated semiconductor devices
may be more complicated than that of metal lines, but it has
been shown here that there are distinct advantages to their
use in studying mesoscopic effects, such as the ability to
carry out experiments at temperatures above 0.5 K.

Si MOSFETsS were used to observe that aperiodic
magnetostructure in the weakly localized regime is correlated
over a certain energy scale. Experiments were performed
with samples tilted with respect to the magnetic field. The
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results showed that the fluctuations correlated with the
perpendicular component of the magnetic field, not with the
total field strength. Further work revealed the dependence of
the fluctuation amplitude on the sample size. These
observations, together with those made on metallic and
semimetallic samples, form a strong empirical framework on
the theoretical foundation of universal conductance
fluctuations: Quantum interference in disordered conductors
leads to sample-specific fluctuations in the device transport
properties.

It has also been shown that the lack of inversion symmetry
in mesoscopic samples leads to nonlinear and asymmetric
conductances, as made manifest by quantum interference.
Second-harmonic generation and rectification are thus
possible. In the absence of electron heating, these effects
should increase with the voltage across the sample. In real
devices, electron heating does take place, but heating does
not totally obscure the asymmetry or the fluctuations. This
relative insensitivity to temperature is a striking property of
mesoscopic coherence effects.

There are several new directions being taken by
experimentalists in the study of mesoscopic phenomena. The
fabrication of near-ballistic sampies, in which the spacing of
voltage probes can be made shorter than the electronic
mean-free path, is resulting in a wealth of novel
observations. However, much work remains to be done.
Another direction which is being taken is toward more
strongly localized samples. Fluctuations have been observed
below the mobility edge of long [55] and short samples [56].
There is current interest in the experimental study of
fluctuation behavior in the transition region between weak
and strong localization [9, 14, 57]. Experimental work on
this subject is in progress.

One can see that there has been a wide range of
experiments, with many unexplored avenues and
approaches. Semiconductor devices are sure to play an
important role in the continuing discovery of novel
mesoscopic phenomena.
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