Fluctuations

in the extrinsic
conductivity
of disordered
metal

by S. Washburn

Random fluctuations of the electrical
conductance are ubiquitous in small (typical
dimension L < 1 um) metallic samples at low
temperatures (typically T < 1 K = 0.09 meV). The
fluctuations result from the quantum-mechanical
interference of the carrier wavefunctions. The
superpositions of the wavefunctions depend
randomly on the placement of impurities, on
magnetic field, and on the current driven through
the sample. At length scale L, (the average
distance over which the carriers retain phase
information), the fluctuations always have
amplitude AG = e" /h, and any observations at
scale larger than the coherence length yield a
decreased amplitude of the fluctuations. Since
the carrier wavefunctions are not classical, local
objects (they extend over regions of size L ),
the conductance contains nonlocal terms. For
instance, the conductance is not zero far from
the classical current paths through the sample
and is not symmetric under the reversal of the
magnetic field. In this article, the physics of the
fluctuations is reviewed, and some of the
experiments which illuminate the physics are
described.
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Introduction
Early this decade, experiments at low temperature
(T ~ 0.1 K), on small, localized samples revealed large
fluctuations in the conductances [1]. The samples were Si-
MOSFETs, and as the gate voltage V, was changed (the
chemical potential u changed), the conductance G(u)
mapped out random fluctuations AG which spanned several
orders of magnitude in AG/G and were reproducible. The
pattern of the fluctuations Ag(u) was particular to a given
device, although fluctuations of similar character were
observed in all devices having the same gross geometry.
Subsequently, it was discovered that, even in metallic
samples, similar sample-specific fluctuations were observed
as a function of magnetic field (3, 4] and chemical potential
[5]. At low temperatures the magnetoresistance of small
wires (lithographically patterned metal films of length
L = 0.7 um, width w, and thickness d = 40 nm) contained
random (or at least aperiodic) fluctuations of rather smaller
amplitude AR/R ~ 0.1 percent, where the average resistance
R~ 100 Q.

It was suggested that these random conductance
fluctuations in the localized regime were the natural result of

' In this context [2], the words “localized” and “metallic” refer to the extent £ of the
wavefunctions of the carriers in the devices. In the localized samples, the carrier states
are short compared with the length L of the sample £ <« L; in contrast, in the metallic
the wavefunctions span the ple £ > L. The corollary is that on the

lized side the cond G is much less than e’/ = 4 X 10™%/%, or equivalently,
that the dimensionless conductance g = G/(¢°/h) is much less than unity, while on the
metallic side, g > 1. Alternatively, one may view the conductance as the ratio of the
dispersion W in the energy of the carrier states to the age ion AE b
them, namely (2}, g = W/AE. The term small indicates that the sample is shorter and
narrower than some scattering length which governs the conductivity.
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(a) Model of conduction through a disordered metal. The carriers
enter on the leftin phase at energy K, and after traversing the disorder
(represented by impurity dots) superpose to give the total transmitted
current. (b) The model which is used in the theoretical calculation of
quantum-mechanical corrections to the Drude formula. The carriers
are assumed to be plane waves which scatter elastically from
impurities (dots) and inelastically (diamonds) from phonons,
magnetic impurities, etc. The mean free path Zis the average
free-flight distance between collisions with impurities; typically
#~10-100 nm in polycrystalline metal. The phase-coherence length
L, is the net diffusion distance between inelastic events. At low
temperature, L o= [ pm>> ¢

large fluctuations in the density of states N(u) [6]. In small
localized samples, N(u) consists of a sparse random set of
sharp peaks, each peak being associated with a spatially
localized state in the sample. The conductance, or
transmission of carriers, which proceeds by hopping between
localized states [7], resonant tunneling [6], etc. is
proportional to N(u), so that it fluctuates violently as the
peaks move past the chemical potential in the sample. [The
fluctuations in the total density of states are not truly
prerequisite, since the transport physics depends only on
states within ~k, T of p. Fluctuations of N(u) within this
small bandwidth are sufficient to cause the large fluctuations
in g.] The states are spatially isolated, so interaction between
carriers in different states is irrelevant. The peaks in the g
signal the presence of a percolating path (sometimes
consisting of only one state) which is “aligned” (to within
~k, T) with u so that the carriers can flow across the sample
on this path. In the absence of such paths, which on average
have spacing ~AE, the sample is a good insulator. The
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details of the physics of the fluctuations in the localized
regime are discussed in this issue by Fowler, Wainer, and
Webb [8].

In the metallic case, however, N(u) is thought to be a
rather smooth function. There is a large overlap between
states, and the coupling between the carriers figures in the
fluctuations. It broadens the states so that N(u) varies on the
scale of Ay ~ W instead of AE,” and, in addition, the
interference among the carrier wavefunctions causes local
fluctuations in the diffusion constant D. In fact, in most
cases the fluctuations in the diffusion constant are the larger
cause of the conductance fluctuations [9]. Numerical models
[10, 11], perturbation theory [9, 12-16], and direct analysis
of the transmission coefficients [17, 18] lead to the
conclusion that the quantum-mechanical coherence of the
carriers manifests itself as fluctuations in conductance. Such
fluctuations are said to be universal [16] on the grounds that
they appear in any phase-coherent metallic sample, are
relatively insensitive to the shape of the sample, and always
have amplitude of order &'/h.

In this paper, a brief discussion of the conduction in
phase-coherent samples is followed by a discussion of
experiments which reveal the random fluctuations in the
conductivity of metal and Aharonov-Bohm effects. Recent
advances in theory and experiment are also mentioned.

Conductivity in large samples

In order to calculate the conductivity of a bit of metal, one
studies the response of the current carriers (electrons and
holes) to an applied potential gradient. The carriers are
described by wavefunctions ¥(x, 1) ~ C(x)e™, where

¢ =—wt+ [ (k+ A) - dx. [C(x) is the amplitude of the
wavefunction, which depends on position x, k is the
wavevector for the carrier, and » = k” is its energy; A is the
vector potential of the magnetic field. For the sake of
simplicity, imagine that the carrier is described by a single
well-defined wavevector [19].] In Figure 1(a), if the chemical
potential on the left exceeds that on the right, u, > uy,
current flows to the right. The carriers tend to follow the
“classical paths” through the disordered material
(schematically illustrated by the dotted and dash-dot lines).
Conductance may be treated semiclassically for most
purposes. The semiclassical approximation for residual
resistance is that in the disordered region, the carriers are
assumed to collide elastically (k” is unchanged) and
infrequently (in several senses) with the impurities, and to fly
more or less freely between such collisions. A pictorial
representation of this model is displayed as Figure 1(b). The
conductance is obtained by studying the expectation values
of the velocity operators for the carriers [19], or,
equivalently, by analysis of the transmission coefficients of
the disordered region [20, 21]. The calculations which

2y. Imry, Department of Nuclear Physics, The Weizmann Institute of Science,
Rehovot 76100, Israel; private communication, 1985. See also [2].
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P = }Bexp(—ifA-dx)

P =P exp (fA - dx)
(b)

(a) Time-reversed paths which contribute to the ‘‘Cooperon’’ terms in the conductivity. The momenta k and — K are indicated by the vectors
scattering elastically from the impurities (dots). Any magnetic flux threading the loop destroys the time-reversal symmetry of the paths. (b) The
same pairs of paths redrawn as a Feynman graph for the two particle propagators P(x, x').
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directly attack the transmission matrix, while excellent
indicators of the symmetries and trends of the conductance
in a magnetic field [22], are not suited to easy extraction of
quantitative predictions for the amplitudes of the various
effects predicted. Frequently, quantitatively accurate
calculations are made by means of perturbation theory for
the carrier Green functions. (In this case, the Green function
measures the probability that the carrier will “move” from
one point x in the sample to some other point x’. Itisa
“wavefunction” for the motion of the carriers.) This
calculation is unmanageable without certain approximations
such as expanding the Green function in powers of 1/g and
the assumption that g = ( g ) (where the brackets denote
ensemble average of the impurity positions), or invocation
of assumptions about the effects of certain averages. The
well-known Drude formula [19] for the conductivity
o = ne’ f/muy, (¢is the mean free path length between
collisions with impurities, » is the density of carriers per unit
volume, m is the effective mass of the carriers, and v, is the
Fermi speed of the carriers) is obtained by assuming that the
carriers emerging on the right retain none of the phase
changes acquired in the collisions with the impurities—that
¢, and ¢, are random, so that interference between the
wavefunctions does not contribute to the exiting current. In
this case, the magnitude of the current is simply the sum
of the squares of the amplitudes of the wavefunctions,
1IC 12+ G2

Under most conditions, the ensemble average employed in
the calculation is an excellent approximation of the physics,
because the phase information is not usually retained
throughout the traversal of the sample. Some inelastic
mechanism such as collision with phonons, other electrons,
or magnetic impurities destroys the phase of the carrier if a
sufficiently long time ¢ > 7, (7, is the average time between
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phase-randomizing collisions) has elapsed between injection
and egress of the carriers. Furthermore, the ensemble average
is a good approximation, because the contribution of a
particular configuration of the impurities is to add a random
component to ¢. If ¢ is subsequently destroyed in an
inelastic collision, the carrier retains just a “mobility” which
depends only on the impurity concentration and cross
section for collision [19].

Certain pairs of paths (called “Cooperons”) can give rise to
large corrections to the Drude conductivity [23]. The
essential feature of these pairs of paths is that they are the
time-reversal of each other: One carrier collides in sequence
with impurities 1, 2, - - -, #, 1; the other follows the opposite
path 1, n, - - -, 2, 1. Such a pair of paths is represented
schematically in Figure 2(a), where the dots represent
impurities and the vectors represent the semiclassical paths
of the carziers around the loop (in both directions—
clockwise and counterclockwise). The resulting interference
of the carrier wavefunctions is a standing wave around the
loop of impurities; the magnitude of the current returning to
the starting point is | C, > + | C,|* + 2CC, =4|C, |’ (' =
matrix adjoint operator), which is enhanced by a factor of
two over the Drude estimate. (Since the two sets of paths are
the time-reversal of each other, | C, | = | C,|.) More current
returning to the starting point means less current through
the sample, which in turn means that the conductance
decreases. The restriction is that the carriers must retain
phase coherence throughout the circuit of the impurity loop.
This is not a very stringent restriction at low temperatures,
where inelastic mechanisms are relatively weak and
infrequent, and, typically, phase coherence is retained by
carriers over distances of the order of microns. The
experimental work in support of this “weak localization”
correction to the Drude formula is overwhelming; i.¢.,
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P = Fexp(—ifAA-dx)
p+ Ap,B + AB

P ="Fexp(fAA-dx)

B,

Illustration of the ‘‘ergodic hypothesis’’ used in the theory of
universal conductance fluctuations (private communication, A. D.
Stone). (inset) A Feynman graph associated with F(An, AB); the
propagators depend only on the potential difference AA

§
H

observations in metals and semiconductors in one, two, and
three dimensions are in excellent agreement with the results
of the theoretical calculation mentioned above [23].

The presence of a magnetic field tends to destroy the
contributions from these time-reversed paths because it
breaks the time-reversal symmetry. This leads to a negative
magnetoresistance; the Drude conductance is restored when
the size of the Landau orbit is comparable to or smaller than
the phase-coherence length L,. This effect has been widely
used to measure the phase-coherence lengths in weakly
localized metals. A more elegant effect of the magnetic field
occurs if the magnetic flux is threaded through the loop of
time-reversed paths, as illustrated in Figure 2(a). The vector
potential circulates around the flux and changes the phase of
the wavefunction by A¢ = (e/2) [ A - dx. Because of this
Aharonov-Bohm effect on the carrier wavefunctions, each of
the carriers accumulates an extra contribution to the
wavefunction phase, given by A¢ = 27 ®/(h/e). The
superposition of the time-reversed paths yields a
contribution to the conductance which oscillates periodically
with the enclosed flux [24], the period of oscillation being
A® = h/2e. This normal-metal Aharonov-Bohm effect was
convincingly demonstrated by Sharvin and Sharvin [25],
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who measured the conductance of a thin-walled Mg cylinder
in an axial magnetic field. Exact agreement with the theory
was obtained in a subsequent experiment on a Li cylinder
[26]. After floundering for a couple of years, western
experimentalists reproduced these results [27-30]. Similar
Aharonov-Bohm oscillations (period A® = h/2¢) occur in
localized samples when £ is comparable to the loop size
[31-33).

The Feynman graph [Figure 2(b)] represents a term in
the conductivity for the process of electrons circling the
impurity loop [in Figure 2(a)] in the presence of the
magnetic field. The Green functions P(x, x’) (solid lines)
include effects of impurity scattering (dashed lines). They
also depend on the magnitude of the magnetic field B
through the vector potential A (B =V X A).

Conductance in small samples

In very small samples there is the additional complication
that the phase coherence may span the entire sample.
Development of the theory for L = L, by Al'tshuler et al.
[9, 13, 14, 34, 35]) and Lee et al. [15, 16, 36-38]
established that when phase coherence is maintained across
the sample, even pairs of paths which are not time-reversed
give rise to corrections to g of order 1. This is to say that a
variety of phase-coherent samples from the same material
and having the same shape will have conductances which
vary by about AG = ¢°/h. The variation in g is universal in
the sense that no matter the sizes of the samples or their
average conductances, the variation is always { Ag) ~ 1. The
precise value of ( Ag) is sensitive to the shape of the
samples. A variation of about 50 percent occurs between
thin wires and cubes, and a similar variation is expected for
other geometries.

These conclusions were reached through the study of the
correlation function F(Au, AB) = (Ag(u, B), Ag(u + Au,
B + AB)), where ( ) denotes an ensemble average over the
impurity configuration. The inset in Figure 3 is a Feynman
graph which contributes to F(Au, AB). Each factor g comes
from one of the solid-line loops, and the two loops “see” the
same impurity potential, but from the vantage point set by
different magnetic fields (and different magnetic potentials
A). The result is that the correlation function depends only
on the difference in magnetic field, not on the absolute field.
Amazingly, the ensemble average, which rearranges all of the
impurities, is excessive in the sense that moving so much as
a single impurity also causes changes in g of order 1 (at least
in one and two dimensions) [34]. The theory actually
calculates fluctuations in conductance among a large
ensemble of samples with the same geometry. Connection
was made to the fluctuations in experiments, which were
observed in particular samples as a function of chemical
potential, 4, or the magnetic field, B, through the “ergodic
hypothesis,” which states that the ensemble average
employed by the theory provides information equivalent to
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that obtained by sweeping B or u [15]. The point of the
hypothesis is that random changes in the carrier phases
resulting from variations in B or u will on average yield the
same Ag as scrambling the impurity positions. Figure 3
illustrates the point—at a given value of B or u, the sample-
to-sample variations (different lines) are of the same
amplitude as those swept through when u or B varies. This
intuitive claim has been given a firm theoretical
underpinning [35). The Au required to cause fluctuations is
E_= W = h/t, where W is the dispersion in the energy of the
carrier and ¢ is the time of traversal for the carriers.” For
diffusive motion (the case appropriate to most metallic
conduction), the mean free path /between collisions with
impurities is much less than the sample length L, and E_ =
hD/Lz, where D is the diffusion coefficient for the carriers.
This “correlation energy” E. was observed directly in
experiments on Si-MOSFETs [5] where Au was enforced by
small changes in gate voltage. A change in B > B, ~ AfeLw
will also cause variations Ag ~ 1. This field scale is
consistent with the magnetoresistance results published to
date [4].

Just as in the case of large samples, magnetic flux threaded
through a cylinder or a ring also contributes to periodic
Aharonov-Bohm oscillations. For instance, in Figure 4, the
carriers passing on either side of the hole in the wire acquire
a non-random component to their relative phase. In addition
to the random terms §, and ,, the carriers on either side of
the flux threading the annulus acquire a net relative phase &
= 2x®/(h/e), which yields the fundamental period of the
Aharonov-Bohm oscillations A® = h/e [22, 39]. The period
A® = h/2e remains, but it is the result of second-order
processes (including Cooperons) which in most cases are
weaker contributors to the interference [17]. An example of
the magnetoresistance of an Sb loop (inside diameter 815
nm and outside diameter 905 nm) is displayed in Figure 5
(inset photograph). The magnetoresistance contains the
random fluctuations which are ubiquitous in small samples,
but it also contains periodic oscillations which are illustrated
by the inset. The fluctuations persist to high magnetic fields,
unlike the effects which result from Cooperons. This
persistence is sensible from the theoretical viewpoint because
F(0, AB) depends only on the field difference. The theory for
F, however, has no validity when B exceeds the limit B,
which marks the limit of strong fields in the classical sense—
the Landau orbit becomes comparable to or smaller than /
(the mean free path length). Measurements in this “strong
field” regime have shown that the periodic oscillations
vanish soon after the limit B = B, is crossed, but that the
aperiodic fluctuations remain even deep in the strong-field
regime (when B > B, ) [41]. The Fourier transform of the
magnetoresistance R(B) comprises “excitations” at 1/AB =0
which are the signature of the random fluctuations and
excitations at 1/AB = 140/tesla, the signature of the &/e
oscillations.
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The same geometry as shown in Figure ! interpreted as a loop
threaded by a magnetic flux .
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(a) The magnetoresistance of the Sb loop (inside diameter 815 nm
and linewidth 45 nm) shown in the inset of the top figure. The inset
illustrates the existence of h/e Aharonov—Bohm oscillations
throughout the magnetic field range. (b) The Fourier transform of the
magnetoresistance which contains structure at 1/AB = 0 from the
aperiodic fluctuations and at 1/AB = 140/tesla from the h/e
Aharonov-Bohm oscillations (from [40], reprinted with
permission).

The conductance of any loop contains nonclassical terms
such as [17, 22, 42]

Ag(B) = éo g,(B)cos {(ZZZD) + an(B)}, (n
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(a) Schematic illustration of the physics of energy-averaging. (b)
Experimental data, aperiodic fluctuations (o) and h/e oscillations
(v), from an 830-nm-diameter loop of Au which agrees with the
energy-averaging model (from [43], reprinted with permission).

where, because of the flux piercing the wires, g, and o, are
random functions of the magnetic field. The term g,
contributes the aperiodic fluctuations in the
magnetoresistance and the peak near 1/AB = 0 in the
Fourier transform. The scale on which this peak decays is
1/AB ~ wL,efh, where w is the width of the wires in the
sample. The term g, contributes the amplitudes of the h/e
periodic oscillations and the peak near 1/AB = 140/tesla in
the Fourier transform, and so on. The random factors in
Equation (1) imply that the magnetoresistance is not strictly
periodic, but rather locally periodic within magnetic field
ranges AB 5 B.. The Aharonov-Bohm oscillations in field
ranges separated by more than B, are uncorrelated—they do
not share the same value of a(B), and the “frequency” (in
inverse magnetic field) of the oscillations is slightly different,
but still within the limits set by the inside and outside
perimeters of the loop. (The constraint on the range of
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Aharonov-Bohm periods arises because the carriers must
follow a path which is somewhere inside the wires forming
the loop, so that the flux enclosed by the carrier paths is
some value bounded by the areas enclosed by the inside and
outside perimeters of the loop.) The Fourier transform of
magnetoresistance contains excitations throughout the
frequency range set by this geometry constraint instead of a
lone delta function, which would result if the period were
constant. Analogously, the density of states is locally
“periodic” (the level spacings are about equal) in energy
ranges AE s E_ [9], but uncorrelated over larger energy
scales.

Decay of the fluctuations from averaging

At finite temperature (7 > 0), the Fermi energy of the
carriers varies by amounts of the order of the thermal energy
ky T. This smearing of the carrier energies causes “energy
averaging” [10] if k, T > E_. Within correlated bands of
width E_, the Ag(B) pattern is the same. If K, T < E_, then,
as illustrated by the solid lines in Figure 6(a), only one band
contributes to the conductivity, and Ag(B) is independent of
the temperature. If, on the other hand, k, T exceeds E_, then
[dashed lines in Figure 6(a)] several uncorrelated patterns are
averaged to give the total Ag. The number of patterns is
simply N = k, T/E_, and the amplitude of the total
conductance fluctuation is « 1/«/]7 This decay resulting
from energy averaging has been confirmed in one-
dimensional samples for both the aperiodic fluctuations and
the periodic oscillations [5, 43]. Samples of data from an
experiment on a loop of gold are displayed in Figure 6(b).
For temperatures less than 0.04 K, the aperiodic fluctuations
(O) and the A/e oscillations (V) are independent of
temperature. When the temperature exceeds E_/k, =~ 0.03
K, both sets of data (O and V) decay as 1/vT. In two and
three dimensions, the physics is more subtle [16].

When the sample length L > L, the measured Ag is the
average of the contributions from the (L/L,) phase-coherent
segments of the sample [44, 45]. This has been confirmed
for the Aharonov-Bohm oscillations from strings (of total
length L) of Ag loops separated by ~L,. In these samples
[see Figure 7(a)] the voltage fluctuation pattern from each
loop is independent of the patterns from the other loops.
These uncorrelated patterns, when added together to
produce the resistance of the string, yield a voltage
fluctuation whose amplitude grows according to the classical
law for addition of random fluctuations, AV « VN =
(L/L 4,)” ?. The naive estimate for the conductance
fluctuations, on the other hand, decays as AG = AV/I{R )2
o« (L/L, 4,)_3’ ? (since R is proportional to L). The results of
the experiment are displayed in Figure 7(b); the voltage
fluctuation (O) increases as (L/L,)"” (upper line), and the
conductance fluctuation (V) decays as (L/L,)™” (lower
line). Upon factoring out the contribution of the segments
joining the loops (which do not contribute to the Aharonov-
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The classical averaging of the fluctuations from uncorrelated segments of a sample—in this case, a string of loops whose separation is

approximately Ly (a). The h/e oscillation amplitude (b) observed at T = 0.3 K from the string plotted as bare voltage fluctuations (o) and as

conductance fluctuations (v) (from [44], reprinted with permission).

Bohm oscillations), one finds that the oscillation amplitude

per loop decays as (L/L, y"'”, and once again the simple

classical averaging for fluctuations, Ag « l/s/ﬁ, where N is
the number of loops being measured [44], is confirmed. The
decay of Ag, is the result of the random phase a,, which
varies from loop to loop. It is also the reason for the
dominance of the period /4/2e in the experiments on
cylinders and two-dimensional arrays of loops. In such large
samples the effective N is 10 to 10°%, and the amplitude of
the //e oscillation is buried in the noise. The oscillations
from the Cooperons always have the same phase (o, = 0,
since the phase accumulated around the impurity loop is the
same in either direction), and consequently they do not
average away. Subsequent experiments on a multitude of
wires formed from Si-MOSFETSs have shown that the
averaging law AG « (L/L ¢)_3/ ? is valid over several orders of
magnitude in L/L.

In the case of Aharonov-Bohm oscillations from a single
loop wherein L, < L (the distance around the loop), the
averaging is more severe. The dominant source of decay in
the oscillations is the loss of phase coherence of the carriers
whose interference generates the Aharonov-Bohm
oscillations [40]. The carriers that do not retain phase
coherence until reaching the terminus of the loop do not
contribute to Aharonov-Bohm oscillations. By the definition
of L,, the number of carriers retaining phase coherence is N,
= exp(—L/L,), so that we expect Ag « N,. This simple
argument is supported by calculations for conductance
fluctuations in a loop [46], and the same exponential factor
appears in the theory for the oscillatory Cooperon terms
discussed above [24, 26). Experimental tests [40] of this
surmise about the decay of the oscillations have essentially
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confirmed it. In two Sb loops, L, was measured by the
conventional method; i.e., it was inferred from the
magnetoresistance associated with the Cooperons [23]. The
aperiodic fluctuations Ag, and the A/e oscillations g, were
also measured for the same samples. For each sample, the
measurements (crosses in Figure 8) yielded a parametric
equation (solid line) for L,(7’) which was used to predict the
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(a) Conductance fluctuations Ag as a function of the current through a
metal wire measured at 7 = 0.01 K. (b) The local autocorrelation
C() = < (Ag)*> as a function of the current through the wire. The
dashed line is the theoretical [47] prediction (from [49], reprinted
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temperature dependence of the aperiodic fluctuations

Ag, [L/Le,(T)]_s/ ? and periodic oscillations Ag, <
exp[—L/L (T)]. After accounting for the energy averaging,
one finds good agreement with the predicted averaging laws
[40], as illustrated by the dashed lines in Figure 8.

Nonlinearity in the conductance fluctuations

The fluctuations in the conductance also appear as the
voltage across the sample (u; — u,) changes [14, 47]. This
leads to a nonlinear function g(7) which varies randomly on
the voltage scale ¥ = E_/e. In contrast to the case of
conductance fluctuations in a magnetic field, where the field
scrambles the phases of the carrier wavefunctions, the
nonlinearity in fluctuations arises because the impurity
potential is tilted by the applied current IR = V' = p, — p,.
The precise dependence of Ag([) on I is an involved
question which depends on the relation between the energy
scales k7, eV, and h/7, (7, is the average time between
inelastic collisions). According to the theory [47], when #/7,
— 0, (Ag(])) is peaked near k, T/eIR, (R, is the resistance
of a wire of length L,) [49] and decays as [ increases.
Because the random impurity potential has no inversion
center, current flowing to the right sees a different potential
from that seen by current flowing to the left, and Ag(J) #
Ag(=I) [14]. These theoretical predictions [14, 47] are
consistent with experiments. The study of a Si-MOSFET
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[48] uncovered a random Ag(I) which was not symmetric as
I — —I. Somewhat more sophisticated studies of metal wires
(Au and Sb) have determined that the prediction for the
current dependence of Ag(J) is substantially correct [47] and
that harmonic signals generated by the nonlinear
conductance have a surprising resilience against decay as the
harmonic number increases [49]. Typical data for a metal
wire (L = 0.6 um and w = 0.1 um) are displayed in Figure 9.
As predicted [14, 47], the fluctuations Ag are of order 1,
and they are not symmetric when 7 — —/. The current
dependence is obtained by studying the autocorrelation
function C(I) = (Ag(I), Ag(I + AI)) in narrow intervals
centered at I. For AT =0, C(I) = ((Ag)2 ). The abscissa in
Figure 9(a) is parsed into intervals, and C(J) is calculated for
each interval. Within the noise in the data, C(J) agrees with
the theoretical prediction (dashed line) given by [47] and
[49]. Since these data were obained when the sample was at
T =0.01K, the peak at k, T = IR is buried near = 0. Data
from higher temperatures [49] do contain a peak in the
correlation function near where IR, = k; T.

Voltage fluctuations

The theory for conductance fluctuations was originally
composed exclusively for two-probe samples, namely the
geometry of Figure 1, responding to a voltage bias u; — p,.
With few exceptions [5, 48, 50], the experimental situations
have been rather different. For historical and technical
reasons (mainly that it is easier and simpler to make
accurate measurements this way), instead of establishing a
potential difference between the source and sink, a constant
current is forced through the sample [usually between leads

1 and 4; see Figure 10(a)], and the potential fluctuations AV
are measured by leads (2 and 3, for instance) attached at
various points on the device; AV is converted to AR or AG
by the usual rules associated with ohmic samples. The
voltage probes are invariably made of the same material and
have the same average conductance as the rest of the sample,
but they are constrained to carry no net current. The two-
probe theory cannot be applied haphazardly to the analysis
of data from “four-probe” measurements.

The experiments by Benoit et al. [51] revealed that the
fluctuation pattern G, ,,(B) (G, ,y = I,/ V) was not a
symmetric function of magnetic field. If in fact the two-
probe theory were valid here, the experiment would appear
to have violated fundamental time-reversal symmetries [52].
It was shown experimentally that the conductance consisted
of an antisymmetric part [G(B) = —G(—B)] and a
symmetric part [G(B) = G(B)], and that the symmetries of
G are the same as for inhomogeneous classical conductors.
That is, G, ,3(B) = G,; ,,(—B), and time-reversal symmetry
(B — —B and x — —X) is, of course, conserved [51].
Theoretical work has demonstrated that this result follows
from a rigorous model of four-probe conductance [53]
because of fluctuations in the Hall voltage [54].

1IBM J. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988




1.0
2 3 v
! ] v
g osf
1 14 £ vYy ¥y v v
&8 Loy ____ . S AR SR AN —-
? = vV \v v A\
- L R a w
0.0 —L
0 U 2
(/)

(@)

b RS s e e

(a) The sample configuration for four-probe measurements of potential fluctuations. The wires have width w, and the voltage probes are separated

by a distance L. (b) The voltage fluctuations AV measured as a function of the ratio L/L, in an Sb wire of width w = 0.1 wm. The symmetric
component AV, (W) scales according to classical averaging when L >2> L, and is a much weaker function of L when L < L,. AV, () is nearly

independent of length. The data were recorded at T = 0.04 K (from [55], reprinted with permission).

It also follows from analogy with classical conductors that
the Hall voltage is independent of the distance L between
the probes. Benoit et al. [55] have proved that the
antisymmetric part of AY must also be independent of L.
[Note: This implies that the averaging law AV « (L/L ¢)'/2,
which leads to AV — 0 as L — 0, cannot hold as L — 0.]
The experiment [S5] determined that, indeed, the
antisymmetric fluctuations AV, [open symbols in Figure
10(b)] were nearly independent of L. Measurements
[55, 56] also showed that the symmetric part A F (solid
symbols) was approximately independent of L when L < L.
Of course, for L > L,, AV followed the usual averaging law
AV« (L/L,)"”, as illustrated by the solid line in Figure
10(b). The data in Figure 10(b) happen to be from a Sb line
which is about 0.1 um wide sitting at a temperature T = 0.04
K. The curves, however, are somewhat more universal in
that data from other samples (Au wires [55], Si-MOSFETs
[56]) having a range of width (0.03 um < w < 0.25 um) and
from other temperatures (0.0]1 K < T < 1 K) exhibit the
same trends.

A much eerier and subtler result was noticed in the four-
probe samples. The measurement of G, ,,(B) yields
fluctuations as large as G, ,,(B) when L (the distance from
lead 2 to lead 3) is much less than L, [55]. From the classical
point of view, this observation is truly astonishing! In the
classical case, the detected voltage at lead 3 is an
exponentially small function of the ratio L/w. In quantum
mechanics the electron “exists” over a large area ~Lf,. Itisin
fact impossible for the electron to get from 1 to 2 without
disturbing the potential at probe 3, and it is these “nonlocal”
fluctuations which are detected in G, ,,(B).
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For L < L, the probes still measure potential fluctuations
from a region of length ~L, so that the “effective” sample
length L g is never smaller than L, [38, 55, 56]. The carrier
wavefunction encloses flux and fluctuates spatially (because
of interaction with impurities) over the entire region where it
retains coherence. The claim that L = L, immediately
yields an heuristic explanation of the near length-
independence of AV when L < L, : Even if the probe
spacing is less than L, AV results from flux enclosed in an
area ~wL, extending into the voltage probes as well as along
the classical current path. Theoretical results [11, 38, 57-
59] are consistent with the experimental results [S5, 56)
mentioned above (Figure 10(b)], but the nonlocal terms
imply [58] that neither AV, nor AV is ever really
independent of length. The length dependence of AV is
weaker than expected from classical averaging of
uncorrelated segments, and AV does not go to zero as
L—0.

It has also been noticed that the asymmetries mentioned
above are related to the nonlocal fluctuations [58]. The
antisymmetric component AV, arises from fluctuations
within L, of the voltage probes and so has no dependence on
the separation of the probes (except for a weak dependence
when L s L,). In contrast, AV is accumulated along all of
the wire between the probes and within regions of length L,
around the nodes where the probes join the classically
allowed current path. Crudely speaking, the effective sample
lengthis L, = L + 4L, where the approximate factor 4
accounts for excursions beyond the voltage probes and into
them. For L > L, the effective sample length is the
separation of the voltage probes, and the ensemble averaging
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The Fourier transform of the voltage fluctuations measured in the
two-loop Sb sample (the larger loop was 0.8 um on a side, and the
linewidth was 80 nm) at 7 = 0.04 K. Nonlocal Aharonov—Bohm
oscillations from the smaller loop (0.4 wm X 0.8 um) were detected
in the experiment, which measured classically forbidden voltage
fluctuations (from [60], reprinted with permission).

mentioned above [44, 45] applies. In contrast, AV depends
weakly on L when L s L, because this averaging is
inoperative; L 4 is dominated by L, which does not depend
on the physical probe separation.

More dramatic demonstrations of the nonlocal
conductance fluctuations can be observed in the fluctuations
measured in the vicinity of a phase-coherent loop [60, 61].
For instance, the sample sketched in the inset in Figure 11
comprises two Sb loops in series. The Fourier transform of
the voltage fluctuations measured between leads 2 and 3
contains the signature of Aharonov-Bohm oscillations from
both of the loops [61]. The assumption that the carrier
wavefunction is a quantity with short extent £, such as £ ~ /,
as might be inferred from semiclassical analysis, implies that
observation of the Aharonov-Bohm oscillations from the
smaller loop is forbidden. The appearance of the oscillations
from the smaller loop is direct and dramatic evidence that
the wavefunctions of the carriers are nonlocal quantities
extending over regions of length £ ~ L.

Conclusion

The theoretical and experimental study of transport of
quantum-mechanically coherent conductors has revealed
unexpected complexity in the physics of electrical
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conduction. The conductance of a particular device is
spectacularly sensitive to the ambient electromagnetic fields,
the temperature, the current through the sample, and the
precise disposition of the impurities in the samples. The
fluctuations in G provide a sensitive handle on the effects of
quantum-mechanical phase coherence in disordered samples.
The amplitudes of the aperiodic conductance fluctuations in
wires are reduced (albeit rather slowly as power laws in
temperature) by energy averaging and inelastic scattering. In
contrast, the amplitude of the periodic oscillations from
loops is reduced exponentially by inelastic scattering.

Owing to the experimental convenience of voltage
measurements, the symmetries of the conductance, which
were obscured in the original two-probe formulation of the
theory for conductance fluctuations, were discovered. The
conductance was found to have the same symmetries as an
inhomogeneous, classical conductor. A categorically
nonclassical, nonlocal character was also discovered in the
conductance; the nonlocal character of the conductance is
the direct signature of the nonlocal character of the carrier
wavefunctions.

Other aspects of conductance fluctuations in metallic
systems, such as the effects of scattering by magnetic
impurities [62), are discussed in reviews of the subject
[16, 24, 63] and elsewhere in this issue.
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