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Random fluctuations  of  the  electrical 
conductance  are  ubiquitous in small  (typical 
dimension L 5 1 lm )  metallic  samples  at  low 
temperatures  (typically T 5 1 K = 0.09 meV).  The 
fluctuations  result  from  the  quantum-mechanical 
interference  of  the  carrier  wavefunctions.  The 
superpositions  of  the  wavefunctions  depend 
randomly  on  the  placement  of  impurities,  on 
magnetic  field,  and  on  the  current  driven  through 
the  sample. At length  scale L, (the  average 
distance  over  which  the  carriers  retain  phase 
information),  the  fiuctuations  always  have 
amplitude AG = e /h, and  any  observations  at 
scale  larger  than  the  coherence  length  yield  a 
decreased  amplitude  of  the  fluctuations.  Since 
the  carrier  wavefunctions  are  not  classical,  local 
objects  (they  extend  over  regions  of  size L ), 
the  conductance  contains  nonlocal  terms.  $or 
instance,  the  conductance is not  zero  far  from 
the  classical  current  paths  through  the  sample 
and is not  symmetric  under  the  reversal  of  the 
magnetic  field. In this  article,  the  physics  of  the 
fluctuations is reviewed,  and  some  of  the 
experiments  which  illuminate  the  physics  are 
described. 

Introduction 
Early this decade, experiments at low temperature 
(T - 0.1 K), on small, localized  samples  revealed  large 
fluctuations in the conductances [ 11. The samples were  Si- 
MOSFETs, and as the gate  voltage V, was changed (the 
chemical potential p changed), the conductance G(p) 
mapped out random fluctuations AG which spanned several 
orders of magnitude in AG/G and were reproducible. The 
pattern of the fluctuations A g ( p )  was particular to a  given 
device, although fluctuations of similar character were 
observed in all  devices  having the same gross geometry. 
Subsequently, it was discovered that, even in metallic 
samples, similar sample-specific fluctuations were  observed 
as a function of magnetic  field [3,4] and chemical potential 
[5].  At  low temperatures the magnetoresistance of small 
wires  (lithographically patterned metal films of length 
L = 0.7 pm, width w, and thickness d = 40 nm) contained 
random (or at least aperiodic) fluctuations of rather smaller 
amplitude AR/R - 0.1 percent, where the average  resistance 
R -  1 0 0 Q .  

It was  suggested that these random conductance 
fluctuations in the localized  regime  were the natural result of 
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’ In this context (21, the  words “localized” and  “metallic”  refer tn the  extent .! of the 
wavefunctions of the carrien in  the  devices.  In  the localized samples,  the  carrier states 
are short  compared  with  the  length L of  the  sample .! 4: L;  in  contrast,  in  the  metallic 
samples,  the  wavefunctions  span  the  sample .! x= L. The  corollary  is  that on the 
localized side  the  conductance G is much less than ez/h 4 X IO4/% or equivalently, 
that  the  dimensionless  Conductance g - G/(e’/h) is much less than  unity,  while on the 

dispersion  Win  the  energy of the  carrier states tn the  average  separation AE between 
metallic  side, g x= 1. Alternatively,  one  may  view  the  conductance as the ratio of the 

them,  namely [2], g I W/AE. The  term small indicates  that  the  sample  is  shorter  and 
narrowex  than some  scattering  length  which  governs  the  conductivity. 
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large fluctuations in the density of states N ( p )  [6]. In small 
localized  samples, N ( p )  consists of a  sparse random set of 
sharp peaks,  each  peak  being  associated  with  a  spatially 
localized state in the sample. The conductance, or 
transmission of  carriers,  which  proceeds by hopping between 
localized states [7], resonant tunneling [6],  etc.  is 
proportional to N ( p ) ,  so that it fluctuates violently as the 
peaks  move  past the chemical potential in the sample. [The 
fluctuations in  the total density of states are not truly 
prerequisite,  since the transport physics depends only on 
states within -k, T of p. Fluctuations of N ( p )  within this 
small bandwidth are sufficient to cause the large fluctuations 
in g.] The states are spatially isolated, so interaction between 
camers  in different states is irrelevant. The peaks in the g 
signal the presence of a percolating path (sometimes 
consisting of only one state) which  is  "aligned" (to within 
-k,T) with p so that  the carriers can flow across the sample 
on this path. In the absence of such paths, which on average 
have  spacing -AE, the sample is  a  good insulator. The 336 
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details of the physics  of the fluctuations in the localized 
regime are discussed in this issue  by Fowler,  Wainer, and 
Webb  [8]. 

In the metallic  case,  however, N ( p )  is thought to be  a 
rather smooth function. There is  a  large overlap between 
states, and the coupling between the carriers figures in the 
fluctuations. It broadens the states so that N ( p )  varies on the 
scale  of A p  - W instead of AE,' and, in addition, the 
interference among the camer wavefunctions  causes  local 
fluctuations in  the diffusion constant D. In fact, in most 
cases the fluctuations in  the diffusion constant are the larger 
cause of the conductance fluctuations [9]. Numerical models 
[ 10, 1 11, perturbation theory [9, 12-16], and direct  analysis 
of the transmission coefficients [ 17,  181 lead to the 
conclusion that the quantum-mechanical coherence of the 
carriers  manifests  itself as fluctuations in conductance. Such 
fluctuations are said to be universal [ 161 on the grounds that 
they appear in any phase-coherent  metallic  sample, are 
relatively  insensitive to the shape of the sample, and always 
have amplitude of order e2/h. 

In this paper,  a  brief  discussion  of the conduction in 
phase-coherent  samples  is  followed by a  discussion of 
experiments which  reveal the random fluctuations in the 
conductivity of metal and Aharonov-Bohm effects. Recent 
advances in theory and experiment are also mentioned. 

Conductivity in large samples 
In order to calculate the conductivity of  a bit of metal, one 
studies the response of the current carriers (electrons and 
holes) to  an applied potential gradient. The carriers are 
described by wavefunctions *(x, t )  - C(x)e", where 
4 = -ut + J (k + A) . dx. [C(x) is the amplitude of the 
wavefunction,  which depends on position x, k is the 
wavevector  for the camer, and w = k Z  is its energy; A is the 
vector potential of the magnetic field. For the sake of 
simplicity,  imagine that the carrier is  described by a  single 
well-defined  wavevector [ 191.1 In Figure l(a), if the chemical 
potential on the left  exceeds that on the right, pL > pR, 

current flows to the right. The carriers tend to follow the 
"classical  paths" through the disordered material 
(schematically illustrated by the dotted and dash-dot lines). 
Conductance may  be treated semiclassically  for  most 
purposes. The semiclassical approximation for residual 
resistance  is that in the disordered  region, the  camers are 
assumed to collide elastically (k2 is unchanged) and 
infrequently (in  several  senses)  with the impurities, and to fly 
more or less  freely  between such collisions.  A pictorial 
representation of this model  is  displayed as Figure l(b). The 
conductance is obtained by studying the expectation values 
of the velocity operators for the  camers [ 191, or, 
equivalently,  by  analysis of the transmission coefficients  of 
the disordered region [20, 211. The calculations which 

Y. Imry,  Department of Nuclear Physics, The  Weizmann  Institute of Science, 
Rehovot 76100, Israel; private communication, 1985. See also [2]. 
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P = %exp(-iJA.dx) 
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P = p0 exp (iJA. dx) 

directly attack the transmission matrix, while  excellent 
indicators of the symmetries and trends of the conductance 
in a magnetic field  [22], are not suited to easy extraction of 
quantitative predictions for the amplitudes of the various 
effects  predicted. Frequently, quantitatively accurate 
calculations are made by means of perturbation theory for 
the carrier Green functions. (In this case, the Green function 
measures the probability that the camer will “move” from 
one point x in the sample to some other point x ’. It is a 
“wavefunction” for the motion of the carriers.) This 
calculation is unmanageable without certain approximations 
such as expanding the Green function in powers  of l/g and 
the assumption that g = ( g ) (where the brackets denote 
ensemble average of the impurity positions), or invocation 
of assumptions about  the effects  of certain averages. The 
well-known Drude formula [ 191 for the conductivity 
u = ne2 [/mu, ( I is the mean free path length  between 
collisions  with impurities, n is the density of carriers per unit 
volume, m is the effective  mass  of the  camers, and vF is the 
Fermi speed of the carriers)  is obtained by assuming that the 
carriers emerging on the right retain none of the phase 
changes acquired in  the collisions  with the impurities-that 
4I and 4z are random, so that interference between the 
wavefunctions does not contribute to the exiting current. In 
this case, the magnitude of the current is  simply the sum 
of the squares of the amplitudes of the wavefunctions, 
ICIl2+ IC2l2, 

Under most conditions, the ensemble average  employed in 
the calculation is an excellent approximation of the physics, 
because the phase information is not usually retained 
throughout the traversal of the sample. Some inelastic 
mechanism such as collision  with phonons, other electrons, 
or magnetic impurities destroys the phase of the carrier if a 
sufficiently long time t >> T# ( T+ is the average time between 

phase-randomizing collisions) has elapsed  between injection 
and egress  of the camers. Furthermore, the ensemble  average 
is a good approximation, because the contribution of a 
particular configuration of the impurities is to add a random 
component to 6. If 4 is  subsequently  destroyed in an 
inelastic  collision, the carrier retains just a “mobility” which 
depends only on the impurity concentration and cross 
section  for  collision [ 191. 

large corrections to the Drude conductivity [23]. The 
essential feature of these  pairs of paths is that they are the 
time-reversal of each  other: One carrier collides in sequence 
with impurities 1, 2,. . . , n, I; the other follows the opposite 
path 1, n, . . . , 2, 1. Such a pair of paths is  represented 
schematically in Figure 2(a), where the dots represent 
impurities and the vectors  represent the semiclassical paths 
of the caders around the loop (in both directions- 
clockwise and counterclockwise). The resulting interference 
of the carrier wavefunctions  is a standing wave around the 
loop of impurities; the magnitude of the current returning to 
thestartingpointisIC112+IC:12+2C:C2=41C,IZ(t= 
matrix adjoint operator), which  is enhanced by a factor of 
two  over the Drude estimate. (Since the two  sets of paths are 
the time-reversal of each other, I C, I = I C2 I .) More current 
returning to the starting point means less current through 
the sample, which in turn means that the conductance 
decreases. The restriction is that  the carriers must retain 
phase  coherence throughout the circuit of the impurity loop. 
This is not a very stringent restriction at low temperatures, 
where  inelastic mechanisms are relatively weak and 
infrequent, and, typically,  phase  coherence  is retained by 
camers over distances of the order of microns. The 
experimental work in support of this “weak localization” 
correction to the Drude formula is  overwhelming;  i.e., 

Certain pairs of paths (called “Cooperons”) can give  rise to 
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1 Illustration of the  “ergodic  hypothesis”  used  in  the  theory of 
universal conductance fluctuations (private communication, A. D. 
Stone). (inset) A Feynman graph associated with F(Ap, AB); the I propagators depend only on the potential difference AA. 

observations in metals and semiconductors in one, two, and 
three dimensions are in excellent agreement with the results 
of the theoretical calculation mentioned above [23]. 

The presence  of a magnetic field tends to destroy the 
contributions from these  time-reversed paths because it 
breaks the time-reversal symmetry. This leads to a  negative 
magnetoresistance; the Drude conductance is  restored  when 
the size  of the Landau orbit is comparable to or smaller than 
the phase-coherence length L, . This effect has been widely 
used to measure the phasecoherence lengths in weakly 
localized  metals.  A more elegant effect of the magnetic field 
occurs if the magnetic flux  is threaded through the loop of 
time-reversed  paths, as illustrated in Figure 2(a). The vector 
potential circulates around the flux and changes the phase  of 
the wavefunction by A$ = (e /h)  $ A dx. Because  of this 
Aharonov-Bohm  effect on the carrier wavefunctions, each of 
the carriers accumulates an extra contribution to the 
wavehnction phase,  given  by A$ = 2r*/(h/e). The 
superposition of the time-reversed paths yields a 
contribution to the conductance which  oscillates  periodically 
with the enclosed  flux [24], the period of oscillation being 
A 0  = h/2e. This normal-metal Aharonov-Bohm effect  was 
convincingly demonstrated by Sharvin and Sharvin [25], 338 
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who  measured the conductance of a  thin-walled Mg cylinder 
in an axial  magnetic  field.  Exact agreement with the theory 
was obtained in a subsequent experiment on a Li cylinder 
[26]. After  floundering for a  couple of  years,  western 
experimentalists reproduced these  results [27-301. Similar 
Aharonov-Bohm  oscillations  (period A* = h/2e) occur in 
localized samples when < is comparable to the loop size 
[31-331. 

The Feynman graph [Figure 2(b)] represents a term in 
the conductivity for the process of electrons circling the 
impurity loop [in Figure 2(a)] in the presence of the 
magnetic  field. The Green functions P(x, x’) (solid  lines) 
include effects  of impurity scattering  (dashed  lines).  They 
also depend on the magnitude of the magnetic field B 
through the vector potential A (B = V X A). 

Conductance  in  small  samples 
In very  small  samples there is the additional complication 
that the phase coherence may span the entire sample. 
Development of the theory for L = L, by  Al‘tshuler et al. 
[9, 13,  14,  34, 351 and k e e t  al. [15, 16, 36-38] 
established that when  phase  coherence is maintained across 
the sample, even  pairs of paths which are not time-reversed 
give  rise to corrections to g of order 1. This is to say that a 
variety of phase-coherent  samples from the same material 
and having the same shape will have conductances which 
vary  by about AG = e2/h. The variation in g is  universal in 
the sense that no matter the sizes  of the samples or their 
average conductances, the variation is  always ( A g  ) - 1. The 
precise  value  of ( A g  ) is  sensitive to the shape of the 
samples.  A variation of about 50 percent occurs between 
thin wires and cubes, and a similar variation is  expected for 
other geometries. 

These conclusions were  reached through the study of the 
correlation function F(Ap,   AB) = ( Ag(h, B),  Ag(p + Ap, 
B + AB)) ,  where ( ) denotes an ensemble  average  over the 
impurity configuration. The inset in Figure 3 is a Feynman 
graph  which contributes to F(Ap,  AB). Each  factor g comes 
from one of the solid-line  loops, and  the two loops “see” the 
same impurity potential, but from the vantage point set by 
different magnetic fields (and different  magnetic potentials 
A). The result is that the correlation function depends only 
on the difference in magnetic  field, not on the absolute field. 
Amazingly, the ensemble average,  which  rearranges  all of the 
impurities, is excessive in  the sense that moving so much as 
a  single impurity also causes changes in g of order 1 (at least 
in one and two dimensions) [34]. The theory actually 
calculates fluctuations in conductance among a  large 
ensemble of samples  with the same  geometry. Connection 
was made to the fluctuations in experiments, which  were 
observed in particular samples as a function of chemical 
potential, p, or the magnetic  field, B, through the “ergodic 
hypothesis,”  which states that  the ensemble  average 
employed by the theory provides information equivalent to 
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that obtained by  sweeping B or p [ 151. The point of the 
hypothesis  is that random changes in the carrier phases 
resulting from variations in B or p will on average yield the 
same Ag as scrambling the impurity positions.  Figure  3 
illustrates the point-at  a  given  value  of B or h, the sample- 
to-sample variations (different  lines) are of the same 
amplitude as those swept through when p or B varies. This 
intuitive claim has been given a fum theoretical 
underpinning [35]. The Ap required to cause fluctuations is 
E, = W = hit, where W is the dispersion in  the energy of the 
carrier and t is the  time of traversal for the carriers.’ For 
diffusive motion (the case appropriate to most metallic 
conduction), the mean free path I between  collisions  with 
impurities is much less than the sample length L, and E, = 
hD/L’, where D is the diffusion  coefficient for the carriers. 
This “correlation energy” E, was  observed  directly in 
experiments on Si-MOSFETs [ 51 where A p  was  enforced  by 
small changes in gate voltage.  A change in B > B, - h/eLw 
will also cause variations Ag - 1. This field  scale  is 
consistent with the magnetoresistance  results  published to 
date [4]. 

through a cylinder or a  ring also contributes to periodic 
Aharonov-Bohm  oscillations. For instance, in Figure 4, the 
carriers passing on either side of the hole in  the wire acquire 
a non-random component to their relative  phase. In addition 
to the random terms 6 ,  and 6,, the carriers on either side of 
the flux threading the  annulus acquire a net relative phase 6 
= 2 ~ @ / ( h / e ) ,  which  yields the fundamental period of the 
Aharonov-Bohm  oscillations A@ = h/e [22, 391. The period 
A@ = h/2e remains, but it is the result of second-order 
processes (including Cooperons) which in most  cases are 
weaker contributors to the interference [ 171. An  example of 
the magnetoresistance of an Sb loop (inside diameter 8 15 
nm and outside diameter 905 nm) is displayed in Figure 5 
(inset photograph). The magnetoresistance contains the 
random fluctuations which are ubiquitous in small samples, 
but it also contains periodic oscillations which are illustrated 
by the inset. The fluctuations persist to high magnetic fields, 
unlike the effects  which  result from Cooperons. This 
persistence  is  sensible  from the theoretical viewpoint  because 
F(0, AB) depends only on the field dzference. The theory for 
F, however, has no validity  when B exceeds the limit BcL, 
which marks the limit of strong fields in the classical  sense- 
the Landau orbit becomes comparable to or smaller than I 
(the mean free path length). Measurements in this “strong 
field”  regime  have shown that  the periodic  oscillations 
vanish soon after the limit B = BcL is  crossed, but that the 
aperiodic fluctuations remain even deep in the strong-field 
regime  (when B >> BcL) [41]. The Fourier transform of the 
magnetoresistance R(B)  comprises “excitations” at l /AB = 0 
which are the signature of the random fluctuations and 
excitations at l/AB = 14O/tesla, the signature of the hie 
oscillations. 

Just as in the case  of  large  samples,  magnetic  flux threaded 
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The  same  geometry  as  shown in Figure 1 interpreted  as  a loop 
threaded by a magnetic flux @. 
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‘t (a)  The magnetoresistance of the Sb loop (inside diameter 815 nm 
? and linewidth 45 nm) shown in the inset of the top figure.  The inset 8 

illustrates  the  existence of hle Aharonov-Bohm  oscillations 
1 throughout the magnetic field range. (b) The Fourier transform of the 1 magnetoresistance which contains structure at l /M = 0 from the 
j aperiodic  fluctuations  and  at l i A E  = 140/tesla  from  the hie 
k Aharonov-Bohm  oscil lations  (from  [40],   reprinted  with 

permission) 

The conductance of any loop contains nonclassical terms 
such as [ 17, 22, 421 

(1) 
339 
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I Conduction band / 1, Carrier population 

i N = k,T/E, 

2 

I 0- 

where,  because of the flux  piercing the wires, g, and an are 
random functions of the magnetic field. The term go 
contributes the aperiodic fluctuations in the 
magnetoresistance and the peak near ] / A B  = 0 in the 
Fourier transform. The scale on which this peak  decays  is 
] / A B  - wL,e/h, where w is the width of the wires in the 
sample. The  term g, contributes the amplitudes of the h/e 
periodic oscillations and the peak near l/AB = 140ltesla in 
the Fourier transform, and so on. The random factors in 
Equation (1) imply that the magnetoresistance is not strictly 
periodic, but rather locally periodic within magnetic field 
ranges AB 5 B,. The Aharonov-Bohm  oscillations in field 
ranges separated by more than B, are uncorrelated-they do 
not share the same value of a@), and the "frequency" (in 
inverse  magnetic  field)  of the oscillations  is  slightly  different, 
but still  within the limits set by the inside and outside 

340 perimeters of the loop. (The constraint on the range  of 
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Aharonov-Bohm  periods arises because the camers must 
follow  a path which  is  somewhere  inside the wires forming 
the loop, so that the flux  enclosed  by the camer paths is 
some value bounded by the areas enclosed by the inside and 
outside perimeters of the loop.) The Fourier transform of 
magnetoresistance contains excitations throughout the 
frequency  range  set  by this geometry constraint instead of a 
lone delta function, which  would  result  if the period  were 
constant. Analogously, the density of states is  locally 
"periodic" (the level  spacings are about equal) in energy 
ranges AE 5 E, [9], but uncorrelated over  larger  energy 
scales. 

Decay of the  fluctuations  from  averaging 
At finite temperature ( T  > 0), the Fermi energy  of the 
carriers  varies  by amounts of the order of the thermal energy 
h T. This smearing of the camer energies  causes  "energy 
averaging" [ IO] if k, T > E,. Within correlated bands of 
width E,, the Ag(B) pattern is the same.  If k T  C E,, then, 
as illustrated by the solid lines in Figure 6(a), only one band 
contributes to the conductivity, and Ag(B) is independent of 
the temperature. If, on the other hand, & T exceeds E,, then 
[dashed lines in Figure  6(a)]  several uncorrelated patterns are 
averaged to give the total Ag. The number of patterns is 
simply N = &TIE,, and the amplitude of the total 
conductance fluctuation is 0: 1 1 f i .  This decay  resulting 
from  energy  averaging has been confirmed in one- 
dimensional samples for both the aperiodic fluctuations and 
the periodic oscillations [ 5, 431. Samples of data from an 
experiment on a loop of  gold are displayed in Figure 6(b). 
For temperatures less than 0.04 K, the aperiodic fluctuations 
(0) and the hle oscillations (V) are independent of 
temperature. When the temperature exceeds E,/& 0.03 
K, both sets of data (0 and V) decay as l/G. In two and 
three dimensions, the physics  is  more subtle [ 161. 

When the sample  length L > L,, the measured Ag is the 
average  of the contributions from the (LIL,) phase-coherent 
segments of the sample [44, 451. This has been  confirmed 
for the Aharonov-Bohm  oscillations from strings (of total 
length L )  of Ag loops separated by -L, . In these  samples 
[see Figure 7(a)] the voltage fluctuation pattern from  each 
loop is independent of the patterns from the other loops. 
These uncorrelated patterns, when added together to 
produce the resistance of the string,  yield  a  voltage 
fluctuation whose amplitude grows according to the classical 
law for addition of random fluctuations, A V Q f i  = 
(L/L,)'/z. The naive estimate for the conductance 
fluctuations, on the other hand, decays as AG A V/Z( R )' 
a (L/L,)-3'2 (since R is proportional to L) .  The results of 
the experiment are displayed in Figure 7(b); the voltage 
fluctuation (0) increases as (LIL,)"' (upper line), and the 
conductance fluctuation (V) decays as (LJL,)-3/z (lower 
line). Upon factoring out the contribution of the segments 
joining the loops (which do not contribute to the Aharonov- 
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5 The  classical  averaging of the fluctuations  from uncorrelated segments of a sample-in this case,  a string of loops whose separation is 
approximately L+ (a). The hie oscillation amplitude (6) observed at T = 0.3 K from the string plotted as bare voltage fluctuations ( 0 )  and as 

j conductance fluctuations (0) (from [44], reprinted with permission). 

Bohm  oscillations), one finds that  the oscillation amplitude 
per loop decays as (L/L,)-1'2, and once again the simple 
classical  averaging for fluctuations, Ag a l / f i ,  where N is 
the number of loops being measured [44], is confirmed. The 
decay  of Ag, is the result of the random phase a, , which 
varies from loop to loop. It is  also the reason  for the 
dominance of the period h/2e in the experiments on 
cylinders and two-dimensional arrays of loops. In such large 
samples the effective N is lo4 to lo6, and  the amplitude of 
the h/e oscillation is buried in  the noise. The oscillations 
from the Cooperons always  have the same phase (a, = 0, 
since the phase accumulated around  the impurity loop is the 
same in either direction), and consequently they do not 
average away. Subsequent experiments on a multitude of 
wires  formed from Si-MOSFETs  have  shown that the 
averaging law A G  a (L/L,)-3'2  is  valid over several orders of 
magnitude in LIL,. 

In the case  of  Aharonov-Bohm  oscillations from a  single 
loop wherein L, c L (the distance around the loop), the 
averaging  is more severe. The  dominant source of decay in 
the oscillations  is the loss  of  phase coherence of the carriers 
whose interference generates the Aharonov-Bohm 
oscillations [40]. The carriers that do not retain phase 
coherence until reaching the terminus of the loop do not 
contribute to Aharonov-Bohm  oscillations. By the definition 
of  L, , the number of camers retaining phase  coherence  is N,  
= exp(-LIL,), so that we expect Ag a N,. This simple 
argument is supported by calculations for conductance 
fluctuations in a loop [46], and  the same exponential factor 
appears in the theory for the oscillatory Cooperon terms 
discussed above [24, 261. Experimental tests [40] of this 
surmise about the decay of the oscillations  have  essentially 
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The temperature dependence of the phase-coherence length L+,( x ), 
the  aperiodic  conductance  fluctuations Ago (o), and the perlodlc 
Aharonov-Bohm oscillations Ag, (v) for an Sb loop. The dashed 
lines are the predicted temperature dependences for Ago and Ag,, 
which  result  from  the  solid  line  interpolating L9(7') (from [40], 
reprinted with permission). 

confirmed it. In two  Sb  loops, L,  was measured by the 
conventional method; i.e., it was inferred from the 
magnetoresistance  associated  with the Cooperons [23]. The 
aperiodic fluctuations Ago and the hle oscillations g, were 
also  measured  for the same samples. For each  sample, the 
measurements (crosses in Figure 8) yielded  a parametric 
equation (solid line) for L,(T) which  was  used to predict the 
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L (a) Conductance fluctuations Ag as a function of the current through a 
metal wire measured at T = 0.01 K. (b) The local autocorrelation 1 C(I) = < (Ag)2> as a function of the current through the wire. The 
dashed line is the theoretical [47] prediction (from [49], reprinted 

temperature dependence of the aperiodic fluctuations 
Ago a [L/L,(T)]-"' and periodic oscillations Ag ,  a 
exp[-L/L,(T)].  After accounting for the energy  averaging, 
one finds  good agreement with the predicted averaging  laws 
[40], as illustrated by the dashed lines in Figure 8. 

Nonlinearity  in the  conductance  fluctuations 
The fluctuations in the conductance also appear as the 
voltage  across the sample (pL - pR) changes [ 14, 471. This 
leads to a nonlinear function g( V) which  varies randomly on 
the voltage  scale Vc = Ec/e. In contrast to the case  of 
conductance fluctuations in a magnetic field,  where the field 
scrambles the phases  of the carrier wavefunctions, the 
nonlinearity in fluctuations arises  because the impurity 
potential is tilted by the applied current ZR = Y = pL - pR. 
The precise dependence of Ag(Z) on Z is an involved 
question which depends on the relation between the energy 
scales k,T, eV, and h / ~ +  (T+ is the average time between 
inelastic  collisions).  According to the theory [47], when h / ~ @  
+ 0, ( Ag(Z)) is  peaked near k,T/eZR, (Rm is the resistance 
of a  wire  of  length Lm) [49] and decays as Z increases. 
Because the random impurity potential has no inversion 
center, current flowing to the right  sees  a  different potential 
from that seen by current flowing to the left, and Ag(Z) # 
Ag(-Z) [ 141. These theoretical predictions [ 14,  471 are 
consistent with  experiments. The study of a  Si-MOSFET 
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[48] uncovered  a random Ag(Z) which  was not symmetric as 
Z + -Z. Somewhat more sophisticated studies of metal wires 
(Au and Sb)  have determined that the prediction for the 
current dependence of Ag(Z) is  substantially correct [47]  and 
that harmonic signals  generated  by the nonlinear 
conductance have  a surprising resilience  against  decay as the 
harmonic number increases  [49].  Typical data for a metal 
wire (L = 0.6 pm and w = 0.1 pm) are displayed in Figure 9. 
As predicted [ 14,  471, the fluctuations A g  are of order 1, 
and they are not symmetric when Z + -Z. The current 
dependence is obtained by studying the autocorrelation 
function C(Z) = ( Ag(Z),  Ag(Z + AZ)) in narrow intervals 
centered at Z. For A I  = 0, C(Z) = (( Ag)' ). The abscissa in 
Figure  9(a)  is  parsed into intervals, and C(Z) is  calculated for 
each  interval. Within the noise in the data, C(Z) agrees  with 
the theoretical prediction (dashed  line)  given  by [47] and 
[49].  Since  these data were obained when the sample was at 
T = 0.0 1 K, the peak at k, T = ZR is buried near Z = 0. Data 
from  higher temperatures [49] do contain a  peak in the 
correlation function near where ZR, = k, T. 

Voltage  fluctuations 
The theory for conductance fluctuations was  originally 
composed  exclusively for two-probe  samples,  namely the 
geometry  of  Figure 1, responding to a  voltage  bias pL - pR. 
With few exceptions [5, 48,  501, the experimental situations 
have  been rather different. For historical and technical 
reasons (mainly that it is easier and simpler to make 
accurate measurements this way), instead of establishing  a 
potential difference  between the source and sink, a constant 
current is forced through the sample [usually  between leads 
1 and 4;  see Figure 10(a)], and  the potential fluctuations A V 
are measured by leads (2 and 3, for instance) attached at 
various points on the device; A Vis converted to A R  or AG 
by the usual  rules  associated  with ohmic samples. The 
voltage  probes are invariably made of the same material and 
have the same average conductance as the rest  of the sample, 
but they are constrained to carry no net current. The two- 
probe theory cannot be applied haphazardly to the analysis 
of data from four-probe" measurements. 

The experiments by Benoit et al.  [5 11 revealed that the 
fluctuation pattern GI4,JB) (Gij,H = Zi-.j/Vpl) was not a 
symmetric function of magnetic field.  If in fact the two- 
probe theory were  valid here, the experiment would appear 
to have  violated fundamental time-reversal  symmetries  [52]. 
It was shown experimentally that the conductance consisted 
of an antisymmetric part [G(B) = -G(-B)] and a 
symmetric part [G(B) = G(B)], and that the symmetries  of 
G are tRe same as for inhomogeneous classical conductors. 
That is,  GI4,'@) = Gz3,,4(-B), and time-reversal symmetry 
(B  + -B and x + -x) is, of course,  conserved  [51]. 
Theoretical work  has demonstrated that this result  follows 
from a  rigorous  model of four-probe conductance [53] 
because of fluctuations in  the Hall voltage  [54]. 
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It also follows from analogy  with  classical conductors that 
the Hall voltage is independent of the distance L between 
the probes.  Benoit et al. [55] have  proved that  the 
antisymmetric part of A V must also be independent of L. 
[Note: This implies that the averaging  law A V a (L /L , f2 ,  
which  leads to A V + 0 as L + 0, cannot hold as L + 0.1 
The experiment [55 ]  determined that, indeed, the 
antisymmetric fluctuations A VA [open symbols in Figure 
10(b)] were  nearly independent of L. Measurements 
[55,  561 also showed that the symmetric part AV, (solid 
symbols) was approximately independent of L when L < L, . 
Of course, for L > L, , A V, followed the usual averaging  law 
AV, a (L/L,)L’2, as illustrated by the solid line in Figure 
lO(b). The data in Figure  10(b) happen to be from a Sb line 
which is about 0.1 pm wide sitting at a temperature T = 0.04 
K. The curves,  however, are somewhat more universal in 
that data from other samples (Au wires [ S I ,  Si-MOSFETs 
[56]) having  a  range  of  width (0.03 pm < w < 0.25 pm)  and 
from other temperatures (0.0 1 K < T < 1 K) exhibit the 
same trends. 

A much eerier and subtler result was noticed in the four- 
probe samples. The measurement of G12,34(B) yields 
fluctuations as large as GI4,JB) when L (the distance from 
lead 2 to lead 3) is much less than L, [55]. From the classical 
point of view, this observation is truly astonishing! In the 
classical  case, the detected voltage at lead 3 is an 
exponentially small function of the ratio L/w. In quantum 
mechanics the electron “exists” over a  large area -L: . It is in 
fact impossible for the electron to get from 1 to 2 without 
disturbing the potential at probe 3, and it is  these “nonlocal” 
fluctuations which are detected in G12,34(B). 
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For L < L, , the probes  still  measure potential fluctuations 
from a  region of length -L, so that the “effective” sample 
length LeB is  never smaller than L, [38, 55 ,  561. The camer 
wavefunction  encloses  flux and fluctuates  spatially  (because 
of interaction with impurities) over the entire region  where it 
retains coherence. The claim that LeB 2 L, immediately 
yields an heuristic explanation of the near length- 
independence of A V, when L < L, : Even  if the probe 
spacing  is  less than L, , A V results  from  flux  enclosed in an 
area -wL, extending into the voltage  probes as well as along 
the classical current path. Theoretical results [ 1 1, 38, 57- 
591 are consistent with the experimental results [55 ,  561 
mentioned above  (Figure  10(b)], but the nonlocal terms 
imply [58] that neither A VA nor A V, is ever  really 
independent of length. The length dependence of A V, is 
weaker than expected from classical  averaging  of 
uncorrelated segments, and A V, does not go to zero as 
L + 0. 

It has also  been  noticed that the asymmetries mentioned 
above are related to the nonlocal fluctuations [58]. The 
antisymmetric component A VA arises from fluctuations 
within L, of the voltage  probes and so has no dependence on 
the separation of the probes (except  for  a  weak dependence 
when L 5 Lo), In contrast, A V, is accumulated along all of 
the wire  between the probes and within regions of length L, 
around the nodes where the probes join the classically 
allowed current path. Crudely  speaking, the effective sample 
length is Lee = L + 4L,, where the approximate factor 4 
accounts for excursions beyond the voltage  probes and  into 
them. For L > L, , the effective  sample  length is the 
separation of the voltage  probes, and the ensemble averaging 
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The  Fourier transform of the voltage fluctuations measured in the 
two-loop Sb sample (the larger loop was 0.8 pm on a  side, and the 
linewidth was 80 nm) at T = 0.04 K. Nonlocal Aharonov-Bohm 
oscillations from the smaller loop (0.4 pm X 0.8 pm) were detected 
in the  experiment, which measured classically forbidden  voltage 
fluctuations (from 1601, reprinted with permission). 

mentioned above [44, 451 applies.  In contrast, A V, depends 
weakly on L when L 5 L4 because this averaging is 
inoperative; Le, is dominated by L, , which  does not depend 
on the physical probe separation. 

conductance fluctuations can be observed in  the fluctuations 
measured in  the vicinity of a phase-coherent loop [60, 611. 
For instance, the sample sketched in the inset in Figure 11 
comprises  two  Sb loops in series. The Fourier transform of 
the voltage fluctuations measured  between  leads 2 and 3 
contains the signature of Aharonov-Bohm  oscillations from 
both of the loops [61]. The assumption that the carrier 
wavefunction  is  a quantity with short extent (, such as [ - j ,  

as might be inferred from semiclassical  analysis, implies that 
observation of the Aharonov-Bohm  oscillations from the 
smaller loop is forbidden. The appearance of the oscillations 
from the smaller loop is direct and dramatic evidence that 
the wavefunctions of the Carriers are nonlocal quantities 
extending over  regions of length ( - L, . 

Conclusion 
The theoretical and experimental study of transport of 
quantum-mechanically coherent conductors has revealed 
unexpected  complexity in  the physics of electrical 

More dramatic demonstrations of the nonlocal 

conduction. The conductance of  a particular device  is 
spectacularly  sensitive to the ambient electromagnetic  fields, 
the temperature, the current through the sample, and  the 
precise disposition of the impurities in the samples. The 
fluctuations in G provide  a  sensitive handle on the effects  of 
quantum-mechanical phase coherence in disordered  samples. 
The amplitudes of the aperiodic conductance fluctuations in 
wires are reduced (albeit rather slowly as power  laws in 
temperature) by  energy averaging and inelastic scattering. In 
contrast, the amplitude of the periodic  oscillations from 
loops is  reduced  exponentially by inelastic  scattering. 

Owing to the experimental convenience of  voltage 
measurements, the symmetries of the conductance, which 
were  obscured in the original  two-probe formulation of the 
theory for conductance fluctuations, were discovered. The 
conductance was found to have the same symmetries as an 
inhomogeneous, classical conductor. A  categorically 
nonclassical,  nonlocal character was also  discovered in the 
conductance; the nonlocal character of the conductance is 
the direct signature of the nonlocal character of the carrier 
wavefunctions. 

Other aspects of conductance fluctuations in metallic 
systems,  such as the effects  of scattering by magnetic 
impurities [62], are discussed in reviews  of the subject 
[ 16, 24, 631 and elsewhere in this issue. 
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