
Symmetry by M. Buttiker 

of electrical 
conduction 

The resistance  of  a  conductor  measured in a 
four-probe  setup is invariant if the  exchange  of 
the  voltage  and  current  sources is accompanied 
by  a  magnetic field reversal. We present  a 
derivation  of this theorem.  The reciprocity of the 
resistances is linked directly to the  microscopic 
reciprocity  of  the  S-matrix,  which  describes 
reflection  at  the  sample  and  transmission 
through  the  sample. We demonstrate  that this 
symmetry  holds  for  a  conductor  with  an  arbitrary 
number  of  leads.  Since leads  act like inelastic 
scatterers,  consideration  of  a  many-probe 
conductor  also  implies  that  the  reciprocity of 
resistances is valid in the  presence  of  inelastic 
scattering.  Various  conductance  formulae  are 
discussed in the light of  the  reciprocity  theorem. 
Finally,  we discuss some implications  of  our 
results  for  the  nature  of  a  voltage  measurement 
and  point to the  difference  between  chemical 
potentials  and  the local electric  potential. 

1. Introduction 
Symmetries are of paramount importance, since  they  force 
certain constraints on the laws  of  physics. Once established, 
symmetries can provide  sample  tests of experimental 
accuracy and greatly  reduce the amount of data which  has to 
be taken. In this paper we are concerned with the reciprocity 
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theorem for electrical conductors. This theorem applies to 
conductors which are connected to several contacts. In a 
four-probe experimental setup, two of these contacts are 
used to supply and draw current from the sample, and the 
potential difference  is  measured  between another pair of 
probes. The reciprocity theorem, in the absence of a 
magnetic  field, states that the resistance  measured in a 
particular configuration of current and voltage  leads  is equal 
to the resistance in the configuration where the current and 
voltage  leads  have  been  exchanged, 

'mn,  kl = 'kl, mn (1) 

Here the first  pair  of  indices  represents the contacts used to 
supply and draw current, and the second pair of indices 
represents the probes  used to measure the potential 
difference.  Reciprocity  of current sources and voltage  sources 
has long  been understood. Searle [ 11, in his  191 1 article, 
presents  a derivation of Equation (1)  which he attributes to 
Heaviside. A more recent discussion  is  given  by  van der 
Pauw  [2].The  reciprocity theorem is  rarely mentioned in 
modern textbooks,  which instead emphasize the Onsager- 
Casimir symmetry relations of the local conductivity tensor 
[3,41, 

gao(H) = gs,(-H). 

Here the indices refer to coordinates and not, as in Equation 
(l),  to the contacts. The extension of Equation (1) to the 
case of a  magnetic  field,  surprisingly, is of more recent 
origin. In the presence of a  magnetic  field the exchange  of 
the current and voltage  leads has to be accompanied by a 
reversal  of the magnetic  field, 

'12,34(H) = '34,12(-H)' 

The reciprocity theorem, Equation (3), is  related to the 
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Onsager-Casimir symmetry relations, Equation (2); Spal [5] 
and Sample et al. [6] give a derivation of Equation (3) which 
rests on the validity of the local symmetry relations, 
Equation (2). Thus, by  using Equation (2) one can arrive at 
Equation (3). On the other hand, verification of Equation (3) 
in a particular four-probe geometry  does not imply the 
validity of Equation (2). In fact, according to Casimir [4], a 
whole  series of four-probe measurements with  differing 
geometrical arrangement of the contacts must yield 
equivalent results for Equation (2) to be valid. It is  clear, 
therefore, that conductors might  exist  which do not obey the 
local  Onsager-Casimir symmetry relations, Equation (2), but 
which  nevertheless  obey the global symmetry, Equation (3). 
Hence,  it is desirable to derive Equation (3) directly without 
invoking Equation (2). A direct derivation of the reciprocity 
theorem, Equation (3), was  given  by the author  in [7] and is 
reviewed and extended in this paper. 

Our interest in these symmetries stems from a concern for 
electron conduction in tiny disordered conductors. We refer 
the reader to some review papers and papers  with a large 
number of citations on this topic [8-161. Interesting effects 
in such small conductors arise  from the quantum- 
mechanical nature of electron transport. If the wave-like 
nature of the camers plays a role, the relation between the 
current and the electric  field cannot be  local. The symmetry 
properties of the magnetoresistance  have  been of interest to 
us for some time. Early experiments [9, 171 in quest of h/e 
oscillations in disordered normal loops [ 18-23] revealed a 
magnetoresistance  which was not symmetric with  regard to 
field  reversal. In view  of the prevailing (and mistaken) 
expectation at that time  that these experiments were 
designed to measure a longitudinal conductance, this was 
noticeable and triggered our attention. A possible 
explanation of this asymmetry was  offered  by the 
observation [24] that a conductance formula due to Azbel 
[2 1,251 is also not symmetric under field  reversal.  However, 
as it turned out, the asymmetry given  by this conductance 
formula is, for metallic conductors in the diffusive  regime, 
too small to account for the experimentally  observed  effect. 
Others argued that the asymmetry was not an intrinsic 
property but could be due to magnetic impurities [26]. It 
was in conjunction with an additional experiment, carried 
out by Benoit et al. [27], specifically  designed to clarify the 
nature of the asymmetry, that we derived a resistance 
formula [7] for quantum coherent electron transport which 
also  obeys the reciprocity symmetry given  by Equation (3). 
The resistances obtained in [7] are related to the 
probabilities  of carriers for transmission through the sample 
and reflection at the sample. The possibility of relating the 
resistance of a sample  directly to transmission and reflection 
probabilities was pointed out by Landauer [28,29]. The 
sample is viewed as a target at which camers are reflected or 
transmitted. In contrast to the Greenwood-Kubo 
formulation, the resistance  is  related to static scattering 318 
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properties of the sample. The point of view advanced in [28] 
and [29] has received  increasing attention since the 
beginning of this decade [21,24,25,30-351. However, 
despite the fact that four-terminal conductors have  been 
studied [32], and other results [2  1,251 have  been interpreted 
as four-terminal resistances [34,35], a resistance formula 
with the symmetry of Equation (3) was lacking. The 
derivation of Equation (3) given in [7] assumed a disordered 
sample  which scatters carriers only  elastically.  Inelastic 
scattering  is  assumed to be  spatially separated [28,29] from 
the conductor, and occurs only in the reservoirs (see Figure 
1,  shown  later). Instead of a uniform magnetic field  which 
penetrates the conductor and reaches the  camers, a field  is 
introduced via an Aharonov-Bohm  flux through a hole in 
the conductor. The reciprocity theorem was derived by  first 
demonstrating the global  Onsager-Casimir  symmetry 
relations for the conductances relating the currents in  the 
leads to the chemical potentials of the reservoirs.  Reference 
[7] relates the reciprocity relations of the resistances  directly 
to the reciprocity of the scattering matrix, the Smatrix, 
describing transmission and reflection  of carriers at the 
sample. A basic feature of the resistance formula derived in 
[7] is the equivalent quantum-mechanical treatment of the 
contacts which are used to carry current to and from the 
sample and those which are used to measure  voltages. 
Previous  works on conductance formulae have made a 
number of either implicit or explicit assumptions on what 
constitutes a voltage measurement. Our work  implies that 
these assumptions have to be  revised, and  in Sections 3 and 
5 we  briefly return to this subject. 
In submicron structures, at very  low temperatures, the 

magnetoresistance  is  sensitive to the specific  configuration  of 
the impurities and inhomogeneities. Thus, the experiment of 
Benoit et al. [27] must  be  regarded as a particularly sensitive 
test of the symmetries predicted by Equation (3). Even in 
larger  samples the symmetries predicted by Equation (3) 
have  been  tested  only  recently. In connection with the von 
Klitzing  effect, the reciprocity relations have  been 
experimentally confirmed by Sample et al. [6]. High-field 
magnetoresistance measurements on single-metal  samples of 
a shape with low symmetry have  been camed out by 
Soethout et al. [36], who  find  generally  good agreement with 
Equation (3) except for small discrepancies  which  they 
attribute to the possibility of structural changes induced by 
Hall currents. In view  of these experiments, it is  clear that 
the reciprocity theorem is a fundamental physical law. 

In this paper we extend the derivation of Equation (3) 
given in [7]. We  show that the validity of Equation (3) is 
independent of the number of  leads attached to the sample. 
Since  leads  leading away from a conductor to a reservoir, in 
which carriers suffer phase-randomizing events, act like 
inelastic scatterers [37-401, this demonstrates that, as 
expected, the symmetries of Equation (3) apply to 
conductors which are large compared to  an inelastic  length. 
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This then also  removes the need to keep the reservoirs (the 
measuring  pads)  close to the sample. Since the reciprocity 
theorem is fundamental, it is  worthwhile  discussing the 
symmetry of other expressions  derived for the conductance. 
We analyze the four-terminal interpretation of the Landauer 
formula [28,29], which  yields  a  resistance proportional to 
R/( 1 - R), and the many-channel generalization of this 
expression [21,25, 341 in the light  of the reciprocity 
theorem. We point to certain interference terms which are 
neglected in these conductance formulae. 

Recent experiments by Benoit et al. [41] and Skocpol et 
al. [42] further demonstrate that  the probes are an integral 
part of the conductor. In these experiments the voltage 
difference  is measured on leads  which are separated by  less 
than a  phase-breaking  length. To understand these 
experiments, it is  essential to take into account that  camers 
can make large  excursions into the voltage probe and 
experience  inelastic  events in such a probe [40]. A 
diagrammatic discussion of these phenomena has been put 
forth by Maekawa et al. [43], Kane et al. [44,45], and 
Hershfield and Ambegaokar [46]. References [44] and [45] 
investigate the connection of the results of [7], expressing 
resistances in terms of transmission probabilities,  with the 
Greenwood-Kubo linear response  formalism. An alternative 
way to calculate transmission probabilities is by direct 
computation [47,48], and for multiport conductors this has 
been  achieved  by  Baranger et al. [49,50]. We do not address 
the statistical  aspects of  voltage fluctuations; instead, we 
focus on the implications of [7] for the definition of 
resistance and voltage measurement. 

Before concluding this section we mention, for 
completeness,  a further generalization of the reciprocity 
theorem. Deviations from Equation (3) can occur if the 
sample admits a  magnetic moment M. In such a  case, as 
pointed out by Strikhman and Thomas [5  I], the 
conductivity tensor obeys uJH, M )  = ua,(-H, -M). 
Correspondingly, the reciprocity theorem for a conductor 
with  a magnetization M can be stated as 

i.e., the exchange of leads must be accompanied by a 
reversal  of the magnetic field H and the magnetization M. 

2. Multiprobe  conductance  formula 
Consider the conductor shown in Figure 1. A  field 
dependence is introduced by studying the response of the 
conductor to an Aharonov-Bohm  flux through the hole 
[18-211. In  a uniform magnetic  field, there are, in addition 
to the resistance  oscillations  with fundamental period [ 18- 
231 a,, = hc/e, also aperiodic resistance variations as a 
function of the magnetic  field [9, 17,481. While we focus on 
the Aharonov-Bohm  oscillations, our conclusions apply 
equally to the aperiodic resistance variations [40-46,48-501. 
In the presence of a uniform magnetic field,  a  two- 
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1 Disordered  normal  conductor  with  four  terminals  connected  via 
perfect leads (unshaded) to four reservoirs at chemical potentials, p,, 

, p2, p3, and p4. An Aharonov-Bohm flux @ is applied through the 1 hole of the sample. From [7] ,  reprinted with permission. 

dimensional disordered conductor can be  considered as a 
network of microscopic loops of  size a with  a  flux @ = Ha2 
-=< a0 = hc/e threading each  loop. The leads in Figure 1 are 
connected to reservoirs  which are at chemical potentials pl , 
p2,  p3,  p4, respectively. The reservoirs  serve both as a  source 
and  as a sink of carriers and of energy and have the 
following  properties:  At  zero temperature they feed the leads 
with carriers up  to the energy pi.  Every carrier coming from 
the lead and reaching the reservoir is absorbed by the 
reservoir  irrespective of the phase and energy of the incident 
carrier.  Technically, it is convenient to introduce a  piece  of 
perfect  wire (unshaded part of the leads in Figure l), free of 
elastic  scattering,  between the disordered terminals and the 
reservoirs. First we assume that these  perfect  leads are strictly 
one-dimensional quantum channels; i.e., there are only  two 
states at the Fermi energy, one with  positive  velocity (taken 
to be the direction away from the reservoir) and one with 
negative  velocity. The multichannel case is  discussed later. 
Scattering in the sample is  elastic;  inelastic events occur only 
in the reservoirs. The elastic scattering properties of the 
sample are described  by an S-matrix, which  relates the 
amplitudes a,!, i = 1,  . . . , 4 ,  of the outgoing currents to the 
amplitudes a, of the incident currents, 

i=4 

a,! = s i j a j .  
i= I 

Since current is  conserved, the S-matrix is unitary, S' = 
S". Here + denotes Hermitian conjugation. Time reversal 
implies S*(-@) = S"(@). Here the star denotes complex 
conjugation. Hence, the Smatrix obeys the reciprocity 
relations s i j (@)  = sji(-@). The transmission amplitude 
si, (a) for a carrier incident in contact j to reach contact i in 
the presence of a  flux @ is the same as that of  a carrier 
incident in contact i to reach contact j if the flux has been 

M. B m I K E R  



reversed.  Below  we  use the reciprocity of the S-matrix to 
derive the reciprocity theorem for the electrical  resistance. 
We only invoke the probabilities T, = I siJ 1 ’, i # j for 
transmission of carriers incident in lead j to reach lead i and 
the probabilities R ,  = I sii I for camers incident in lead i to 
be  reflected into lead i. The reciprocity symmetry of the 
Smatrix implies that 

R, , (@)  = RiL(-@), Ti , (@) = Ti ( -@) .  ( 5 )  

We  now  use these probabilities to determine the currents 
in the leads. Let the difference  between the highest potential 
and  the lowest potential be so small that the energy 
dependence of the transmission and reflection  probabilities 
in this range can be  neglected. It is convenient to introduce a 
fifth  chemical potential po which  is smaller than or equal to 
the lowest  of the four potentials pi .  Below po the states with 
negative and positive  velocity are filled, and zero  net current 
flows in each of the leads. We only  need to consider the 
energy  range Api = pi - po above po. The reservoir i injects a 
current evi(dni/dE)Api into the lead i. Here vi is the velocity 
at  the Fermi energy in lead i, and dn,/dE = 1/2rhvi is the 
density of states for carriers with  negative or with  positive 
velocity at  the Fermi energy. Thus  the current injected by 
reservoir i is (e/h)Api. Consider the current in lead 1. A 
current (e/h)( 1 - R, , )Ap,  is  reflected  back to reservoir 1. 
Carriers which are injected by reservoir 2 into lead 2 reduce 
the current in lead 1 by -(e/h)T12Apz. Similarly, from the 
current fed into leads 3 and 4 we obtain in lead 1 a current 
-(e/h)(T,,Ap3 + TI4Ap4). Collecting  these  results and 
applying similar considerations to determine the currents in 
the other leads  yields 

Zi = (e /h)  (1  - Rii)flz - 2 T , p j  . 

Note that these currents are independent of the reference 
potential po, since the coefficients  multiplying the potentials 
add to zero.  If we write Equation (6) in matrix form, both 
the rows and the columns of this transmission/reflection 
matrix add to zero (current conservation). 

Let  us  generalize  these  results and assume that the perfect 
leads  have many states at  the Fermi energy. In leads  with a 
cross  section we have to consider both the motion of camers 
across the lead and the motion along the lead. Motion in  the 
transverse direction is quantized and characterized by a set 
of discrete  energies, E,,  n = 1,2, . . . . To this energy  we  have 
to add the kinetic energy for motion along the direction of 
the lead, h2k2/2m, such that E, = h2kf/2m + E,. For each 
energy E,, which  is  smaller than E,, we obtain two states at 
the Fermi energy (quantum channel). Each  lead  is thus 
characterized by a number Ni of quantum channels. The 
scattering matrix now contains 

[ J f i  1 (6)  

/ l e 4  l2 

320 P I  NJ 
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elements denoted by s,,,,. Such an element gives the 
transmission amplitude for a carrier incident in channel n in 
lead j to reach channel m in lead i. The reciprocity of the 
S-matrix is  now stated as = s ~ ~ , ~ ~ ( - + ) .  The 
probability  for a carrier incident in channel n in lead i to be 
reflected into  the same lead into channel m is denoted by 
Ricmn = I s ~ ~ , ~ ~  I 2, and  the probability for a carrier incident in 
leadj in channel n to be transmitted into lead i into channel 
m is TiJ,mn = I s,j,mn I *. Following  [21], we assume that the 
reservoir  feeds  all channels equally up  to the chemical 
potential pj. Furthermore, as in [21], we assume that the 
current injected into a channel is incoherent with the current 
in other channels. The current injected into each channel is 
then (e/h)Apj independent of the velocity and the density of 
states of this channel. The current in lead i due to carriers 
injected in lead j is 

zij = -(e/h) c TiJ,mnAPj * 
mn 

Therefore, if we introduce the traces 

Rii = c Rii,mnr T, = c 
mn mn 

which  have the symmetry properties given in Equation (5) ,  
we  find for the currents flowing  from the reservoirs toward 
the conductor, 

( N i -  R i i ) p i -  TiJpj  . 
J f i  1 

Here Ni is the number of channels in lead i. Recently, 
alternative derivations of Equation (7) have  also  been 
obtained [43-451. Equations (6) and  (7) provide the starting 
point for our subsequent discussion,  giving the currents as 
response to the chemical potential differences  between the 
reservoirs.  Since the coefficients in Equation (7) obey 
Equation (5) ,  they  have the symmetry typical for linear 
response problems [4,5]. The transmission probabilities in 
Equation (7) multiplied by e2/h are the conductances which 
would  be measured if the currents and potentials were 
measured simultaneously at all the probes. That, however,  is 
not what is typically done  in  the experiments. 

To derive the experimentally measured quantities, we 
proceed as in [7]. First  let  us connect Equation (7) to the 
(global)  Onsager-Casimir symmetry relations. Casimir [4] 
considers a four-probe conductor (see Figure 1) where a 
current Z ,  is  fed into lead 1 and is taken out in lead  3, and a 
current Zz is  fed into lead 2 and leaves the sample through 
lead  4. Thus, we have to solve Equation (7) with the 
condition that I ,  = -Z3 and I2 = -I4. The result  of  such a 
calculation expresses the two currents as a function of 
differences  of  voltages V, = pi/e, 
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The conductance matrix a,, is expressed in terms of 
transmission probabilities in Appendix A. The diagonal 
elements are symmetric in the flux a,,(@) = a,,(-@), aZ2(@) 

= a2,(-@)), and the offdiagonal elements satisfy a,,(@) = 

%(-@I. 
There are two additional ways of  feeding  two currents into 

the conductor of Figure 1. For each  of  these  possibilities the 
currents and chemical potentials are as in Equations (8) and 
(9), related by a conductance matrix (3, and 7,. . The (3 and y 
conductances have the same symmetry as the a 
conductances, but are generally not equal to these. The a, @, 
and y conductances obey the global Onsager-Casimir 
symmetry relations referred to in the Introduction. These 
global  symmetries for the conductances are more 
fundamental than the symmetry of the local conductivity 
tensor, Equation (2). The global symmetries hold even in 
situations where Equation (2) is not valid. 

Now  we can derive the resistance from Equations (8) 
and (9). In  a four-probe setup only  two of the chemical 
potentials are measured. Suppose the current flows from 
lead 1 to lead 3. The potentials measured are p2 = eV2 and 
F, = eV, under the condition that the current in leads 2 and 
4 is  zero. Taking I2 = 0 in Equation (9) yields V2 - V, = 
(a2,/aZ2)( VI - V,), and by using this in Equation (8) the 
current I ,  can be  expressed as a function of VI - V,. Thus, 
in this configuration the measured  resistance is 

Since a2, is in general not symmetric, the resistance PI,,,, is 
also not symmetric. This result,  however,  is  completely 
compatible with the (global)  Onsager-Casimir symmetry 
relations. The point is that we are measuring an off-diagonal 
Onsager  coefficient and not a  diagonal element. It is V, and 
V, which determine the voltage drop across the sample, and 
not VI and V,. Now we switch the current and the voltage 
leads but keep the flux  fixed. This means that I ,  in Equation 
(7) is  zero. This yields  a  resistance 

‘24,13 = a I Z / ( a l l a 2 2  - a12a21).  (1 1) 

The sum of these  resistances, Su = ( + M2,, ,,)/2, is 
symmetric, due to the Onager-Casimir relation a,, (a) = 

a,,(-@). 
For a  given  flux  we  find in general  six  resistances, 

‘mn, kl = (jle2 )( Tkm - ‘kn ‘(m ) / D 3  (12) 

which  differ in magnitude. D = (h /e2f (a , ,a2 ,  - a,,a,,)/S is 
a subdeterminant of the matrix defined by Equation (7). S is 
defined in Appendix A.  All subdeterminants D of this matrix 
are equal and symmetric in the flux due to current 
observation. D is independent of the indices mn, kl. The 
resistances  given  by Equation (1 2) obey = -Mmn,lk = 
-P,,m,k,, and, more fundamentally, the reciprocity relation 
(3). The six resistances,  which  differ in magnitude, can be 
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grouped into three pairs,  each pair associated  with one of the 
possibilities for feeding  two currents into the four-probe 
conductor as discussed  above. Thus, in addition to Sa we 
also  have the combinations Sa = ( + ,,)/2 and 3, = 
(x?,,,,, + /?43,12)/2, which are symmetric in  the flux. Taking 
into account the symmetries of the transmission 
probabilities, Equation (5),  we can now extend a relation, 
known in  the classical  case in  the absence of a  field [2], to 
our phase-coherence problem in  the presence of a  flux, and 
show that 

sa+s,+sy=o. (13) 

The key result of this paper is Equation ( 12). An 
interesting property of Equation ( 12) is that the resistance 
measured in a four-probe setup is not necessarily  positive. 
Resistances  which  change  sign as the sample is rotated in  the 
external magnetic field have indeed been measured by 
Soethout et al. [36], and were understood to be  a property of 
a four-terminal measurement. Resistances  which  change sign 
as the magnetic field  is increased have  been  observed in 
submicron structures by Timp et al.  [52], but are interpreted 
as a “dynamic” phenomenon. Negative  resistances are 
possible in a four-terminal resistance measurement. The 
resistance measured is not the total resistance of the sample, 
which  is, of course,  positive. Indeed, the total joule heat W 
produced by the conductor is 

To derive Equation (1 3) we have  used Equation (7). Thus W 
is  positive and is determined by the part of the transmission 
coefficients Ti, which  is symmetric with  regard to flux 
reversal. 

3. Special  limits of Equations ( 7 )  and (12) 
In this section we discuss the application of the approach 
outlined above to a number of special  cases. 

Two-terminal conductance 
Current conservation in a  two-port conductor requires 
N ,  = R,, + TI ,  and N ,  = R,, + T2,, where N ,  and N, are the 
numbers of channels to the left and right.  Using  these 
relations, we  see that the symmetry of the reflection 
coefficients implies T I 2 ( @ )  = TI,(-@) and T 2 , ( @ )  = 

T,,(-@). From this and Equation (5), we find that T = T I ,  
= T,, . The transmission coefficient  of  a  two-port conductor 
is thus symmetric, 

T ( 9 )  = T(-9). (15) 

Equation (6) or Equation (7) with i = 1 ,  2 and T = TI, = 
T2, yields a two-terminal conductance, 

G= eUG, - p 2 )  = (e2/h)T. (16) 

Therefore, Equation ( 15) implies that the two-terminal 
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? Model of a long wire: The phase is randomized in the reservoirs 
which are an inelastic length 1, apart. From [38], reprinted with 

:i permission. 

$ 

1*3 

i Three-probe conductor. The extra lead (z segment) connected to a 
! reservoir  can be viewed  as a model of an inelastic  scatterer or, 

B permission. 
g 
bl+& 

1 alternatively,  as a  voltage  probe.  From [40], reprinted  with 

:# 

conductance is  symmetric  with  regard to flux or magnetic 
field  reversal. All experiments known to us which are 
genuine  two-probe experiments obey this symmetry. 

Equation (1 6) was obtained in [30] in the limit of a  large 
number of channels. The connection of Equation ( 16)  with 
the Greenwood-Kubo formulation has  been  explored by 
Fisher and Lee  [33]. This two-terminal formula has  recently 
been  used to discuss conductance fluctuations [48,53-551 
(variations of the conductance from  sample to sample due to 
the microscopic  disorder  configuration in macroscopically 
identical  conductors). On the basis  of Equation ( 16), these 
fluctuations  have  been found to be universal in the (metallic) 
diffusive limit, Le., to be independent of the degree  of 
disorder and only weakly dependent on the geometrical 
shape of the conductor. The “universality”  critically  hinges 
on the simple  relation  between  transmission and 322 
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conductance given  by Equation (16), and breaks  down  if 
more  sophisticated  expressions  for the conductance (or 
resistance)  such as Equation (12)  are  invoked  [40-46, 
49-50]. 

To describe the conductance of a  piece  of  wire much 
longer than the phase-breaking  length I+, with the help of 
Equation ( 16), we imagine the wire divided into segments of 
length I+. Inelastic  scattering cannot be  neglected and is 
concentrated into reservoirs  spaced  a distance 1, apart, as 
shown  in Figure 2. This procedure, of course,  is an 
approximation to reality,  since  inelastic  scattering  occurs 
uniformly in the bulk. R.eference  [38] uses this approach to 
show that the resistance  of  a  one-dimensional conductor as a 
function of increasing  inelastic  scattering passes through a 
minimum. Furthermore, such  a  simple  model  allows an easy 
prediction of the size  of conductance fluctuations or voltage 
fluctuations for  voltage  probes  which are separated by a 
distance that is  large compared to the phase-breaking  length 
[ 12,  151. Figure  2  represents  a  physical picture only if the 
portions of the conductor adjacent to the segment under 
study do act like  reservoirs. This is not obvious. In the 
adjacent segments,  in  narrow wires, the current is,  of  course, 
not zero as it is in a  reservoir.  For  small currents, as long as 
the currents and voltages are related  linearly, that seems 
unimportant. Other features,  such as the amplitude of the 
Aharonov-Bohm  oscillations, depend on the fact that 
inelastic  scattering  occurs continuously throughout the 
conductor [56].  Therefore, there is  a  need  for  a conductance 
formula which  takes into account the fact that most camers 
traversing  a  segment  of  length 1, have  suffered at least one 
phase-randomizing  event  [38]. 

The  three-port  conductor 
A number of important insights can be  gained by 
considering  a conductor with three probes [ 1,381. It is 
considerably  simpler to discuss  such a conductor than the 
four-probe conductor described in [7] and Section 2. 
Consider the conductor shown in Figure 3, and let us focus 
on the situation where probe 3  is  used to measure the 
chemical potential p3. From Equation (6) or Equation (7) 
with i = 1,2, 3,  we find the chemical potential in lead  3 by 
taking Z3 = 0, 

T31pI + T 3 2 p 2  
P3 = (17) 

T31 + T32 . 
Note that for p,  > p2 the chemical potential p3 is  always 
between the two  chemical potentials which  drive the current 
through the conductor, p1 z p3 z p2. Furthermore, p3(+)  is 
neither symmetric nor antisymmetric with  regard to flux 
reversal.  We can now use probe 3 to measure the potential 
differences pI - p3 and p3 - p2 and can calculate the 
resistances 
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with 

D =  '21 '31 + '21 '32 + T31 T23' (20) 

D is  a subdeterminant of the matrix defined by Equation (6) 
or Equation (7), and is invariant under flux  reversal. Thus 
the two  resistances  given by Equations ( 18) and ( 19) are 
determined by the symmetry of T32 and T,, ; i.e., these 
resistances are neither symmetric nor asymmetric under flux 
reversal.  However, the combined resistance (the two- 
terminal resistance) 

is  symmetric. Thus, with  regaid to the two-terminal 
conductance, the fact that we have an additional lead  does 
not change the symmetry. That important feature of our 
formulation of resistances  is taken up again in Section 4. 

The two-terminal conductance in  the presence of an 
additional lead = ( MI,, differs  now  from Equation ( 16); 
it is  given by 

where the elastic transmission probability describing the 
transmission of carriers which emanate from port 1 and end 
up in port 2 without ever entering reservoir  3  is  given  by 

The inelastic transmission probability T,, describes  carriers 
which emanate from port 1,  reach  reservoir  3  (where their 
energy and phase are randomized), and from reservoir  3, in 
an additional step, reach  reservoir  2. Comparing Equation 
(22)  with Equation (21) yields 

'3 I '23 

'31 ' T32' 

Thus, the additional lead connected to  an electron reservoir 
acts  like an inelastic scatterer. Equation (22)  allows  us to 
describe the continuous transition from completely coherent 
transmission through the conductor to completely 
incoherent or sequential transmission. In the limiting case of 
completely coherent transmission, carriers are not allowed to 
enter reservoir  3. Consequently, T I ,  = T,2 = 0, and the two- 
terminal conductance is  given  by Equation (16); i.e., T,, = T 
and Ti, = 0. In the limit of completely incoherent 
transmission, T,, = T,, = 0. In this case Equation (21)  yields 

To obtain the latter result we  have made use  of the fact that 
for TI ,  = 0 we  have T2,(@) = TZ3(-+). Equation (25)  is 
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\ Four-terminal conductor with tunneling barrierjunctions (dark areas) 
'r for two of the probes. 

nothing but the classical addition of series  resistors. 
Equations (15)-(25) extend results  presented in [38-401 for a 
sample without flux to the more general  case  of  a three- 
probe conductor subject to a  flux. 

a  reservoir  gives us a simple way  of introducing inelastic 
scattering into the conduction process. This method was 
used in [37] to study the effect of  phase-randomizing events 
on the persistent current in a  small normal loop and to 
investigate the dissipative  response to a  small  oscillating  flux 
superimposed on a static flux.  Reference [38] investigates the 
transmission as a function of increasing inelastic scattering 
through a  series of  closely  spaced barriers; and the effect  of 
phase-randomizing events on resonant transmission through 
a double bamer is  discussed in [39]. Thus, additional leads 
allow  a double interpretation: They can be thought of as 
voltage  probes, and they can be introduced as inelastic 
scatterers.  Sample-specific fluctuations of  voltage,  resistance, 
and conductance in a three-probe conductor are the subject 
of [40,45, 501. 

Adding  a  lead  away from a conductor and connecting it  to 

Point contacts 
Further progress in lithography will make it possible to 
produce samples with leads made from  different  materials. 
An interesting possibility is the fabrication of barriers which 
separate the conductor and  the leads.* This produces current 
leads [ 14,201 and/or voltage  leads  which are weakly coupled 
[37-391 to the conductor. 

Let  us consider the conductor shown in Figure 4. Current 
is  fed in at probe 1 and taken out  at probe 2. Probes 3 and 4 
serve to measure the voltage and are weakly coupled via 
tunneling barriers to the conductor. The probabilities for 
transmission from a probe into the conductor and  into 
reservoir 1 or 2 are small because of the intervening 

* S. Kaplan and C. Umbach, private communication. 
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tunneling barrier. Suppose the largest of these transmission 
probabilities  is e .  The transmission probabilities of the 
conductor of Figure 4 can be expanded with  respect to the 
small parameter E .  Transmission from port 1 to port 2 can 
proceed via paths which  never  cross the tunneling barrier, 
and thus T I ,  = T E  + . . . to lowest  order. The upper index 
in parentheses indicates the order in E .  But transmission 
from port 1 to port 3, for example, is  only  possible  by 
crossing a barrier, and  thus T I ,  = e TYj + . . . . Transmission 
from probe 3 to probe 4 requires that the barriers be 
traversed at least  twice, and hence T34 = e2T:2,' + . . . . Via 
current conservation, the reflection  coefficients can be 
expressed in terms of the transmission probabilities. 
Evaluation of Equation ( 12) yields a resistance 

T = T:q' = T Z  has the symmetry of the transmission 
probability of a two-terminal conductor given  by Equation 
(1 5) .  The sums T,, + T3, and T4, + T42 are also symmetric 
with  regard to flux  reversal,  since T3, is zero to order e. 
Therefore, Equation (26) has precisely the symmetry 
required by the reciprocity theorem, Equation (3). Using 
Equation ( 12), it is  now  easy to calculate the resistances 
which are measured if current is  fed and removed differently 
and  the remaining "good and bad" contacts are used to 
measure the voltage. For the conductor of Figure 4, this 
yields  six  resistances  which  satisfy the sum rule, Equation 
(13). Equation (26) shows that the resistance,  even  when 
measured  with point contacts, depends on the details of the 
coupling of the contacts to the conductor. The  resistance  is 
not determined by the  properties of the  conductor  alone (zero 
transmission probability through the  contacts), but depends 
explicitly on  how  carriers  can  enter  and  leave the  conductor 
through the probes. 

in the following  way: The voltage at probes 3 and 4 can be 
calculated  by  using Equation (1 7). To the lowest order in E ,  

the existence of one probe does not affect  what  is  measured 
at  the other. We thus find 

Instead of using Equation (7) we can derive Equation (26) 

'3IPI + T32P2 

'31 + '32 
P3 = 

and 

'41P1 + '42P2 

'41 + '42 
P4 = 

Here we  have omitted, for simplicity of notation, the upper 
indices on the transmission probabilities indicating the order 
in E .  The measured potential difference  is 

324 The net current through the conductor from probe 1 to 

probe 2 is to lowest order in E unaffected by these  probes. 
Thus the current is Z = (e/h)T(p, - F,). Using this and 
Equation (29) yields the resistance  given  by Equation (26). 
Let us again emphasize the possibility of measuring negative 
resistances in a four-terminal setup. Both w3 and p4 are 
bounded by F ,  and h2; i.e., p,  2 h3 2 p2 and p ,  5 p4 2 p2,  

but p3 is not necessarily  greater than h4. Thus, the only 
general bound we can give for the measured potential 
difference  is 1 p3 - p4 I I p,  - p2. Hence, the measured 
resistance t?,2,34 for the conductor of Figure 4 has upper and 
lower bounds given  by the two-terminal resistance, 

We return to the subject  of  negative four-terminal resistances 
in Section 5. 

The  Landauer  formula 
A very often quoted formula for the resistance  of a one- 
dimensional conductor is the Landauer formula 
[ 16,28,29,57] 

M =  (h /e2) (R/T) .  (31) 

How does this result relate to the resistance formulae 
discussed  above? A four-terminal interpretation of Equation 
(31) has been put forth by  Engquist and Anderson [32]. To 
arrive at Equation (31) they not only  assume that the voltage 
probes are weakly coupled, as discussed  above, but also 
assume that the probes couple to the conductor in a 
symmetric fashion  with  regard to right- and left-moving 
camers. Furthermore, at the junction of the conductor with 
the probe, they match the currents and not the current 
amplitudes. In contrast, our treatment is  fully quantum- 
mechanical. We also note that the situation envisioned by 
these authors differs from that of Figure 4 in that the voltage 
probes are connected to the perfect leads and the conductor 
is disordered only between the voltage  probes.  Elastic 
scattering is then characterized by a transmission and a 
reflection probability T and R of the disordered region. 
These  simplifications and assumptions give  rise to 
transmission probabilities TI ,  = T,, = T to order E', T3, = 
TI3 = T,, = TZ4 = 1 + R,  T32 = TZ3 = TI4 = T4, = T to order 
E, and T43 = T34 = T to order e'. Using this in Equation (29) 
yields 

P3 - P4 = $[(1 + m 2  - (1 - W21(Pl - P2) 

= R(P1 - P2). (32) 

Since the current is Z = (e/h)T(h, - p2), this gives Equation 
(3 1). Thus, by  using the assumptions of Engquist and 
Anderson, we can deduce the Landauer formula from 
Equation (12) or Equation (26). T has the symmetry of the 
transmission probability of a two-terminal conductor. Since 
R = 1 - T, the Landauer result  is symmetric under flux 
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reversal.  Instead  of Equation (3), the Engquist and Anderson 
discussion  yields P,,,(H) = Mk/,m,,(H) = Mmn,kl(-H); i.e., it is 
not necessary to exchange current and voltage  leads  when 
reversing the magnetic field. For a four-probe conductor, we 
typically  have  six  differing  resistances,  whereas the Engquist 
and Anderson  discussion  yields  only three. In addition to 
P12,,, given  by Equation (31),  using Equation (12) and the 
transmission probabilities as specified  above, we  find M14,23 = 

- (h /e2) [R/u  and = 0. The sum of these three 
resistances, according to Equation (1 3), is  zero. (Note that in 
the latter configuration, the voltage  difference  is not 
measured  along a piece  of the conductor carrying a net 
current. Such  voltage  differences  across  Y-shaped  leads are 
generally not zero and have indeed been measured [41]. For 
another experiment demonstrating such  nonlocal  effects,  see 
[%I.) In principle it could have  been  possible that for  strictly 
one-dimensional conductors a higher symmetry than that 
predicted by Equation (3)  applies.  But Equations ( 12) and 
(26),  which are valid independent of the number of 
channels, tell us otherwise. Note also that the symmetry 
assumed by Engquist and Anderson on the coupling of the 
voltage  probe  with the conductor ensures that the resistance, 
Equation (31),  is  always  positive, in contrast to Equation 
(26).  We return to the discussion of the Landauer formula 
from a different point of  view in Section 5 .  The symmetry of 
the conductance formulae of  Azbel [25]  and Buttiker et al. 
[2 I ]  is  discussed in Appendix B. 

4. Rigidity of the  reciprocity  symmetry 
The situation discussed until now is highly conceptual. We 
have  discussed conductors with four leads  which are 
connected to reservoirs so close to the conductor that it can 
be assumed that scattering within the conductor is  only 
elastic.  Clearly, the spatial separation of elastic and inelastic 
scattering  is more a theorist's invention than an 
experimental reality.  In the experiments, the probes  lead 
away from the section of conductor which is under study. 
The probes are connected to macroscopic pads over 
distances which are large compared to the inelastic  scattering 
length. Thus, inelastic  scattering occurs in a rather uniform 
fashion throughout the conductor and the leads.  Using the 
concepts developed  here, we  would like to understand why 
reciprocity  is  also  observed in the presence  of  inelastic 
scattering. Furthermore, reciprocity  is  also  observed 
regardless  of  how many probes are connected to the 
conductor. We  have already pointed out  that probes act like 
inelastic  scatterers. Thus the validity of the  reciprocity 
relations  both  in  the  presence of inelastic  scattering  and in 
the  presence of an  arbitrary  number of leads attached to the 
conductor is really  the  very same problem. 

can  be  generalized and are valid for transmission 
probabilities  which are the sum of an elastic coherent part 
(el) and an inelastic or incoherent part (in). Thus, in general, 

Below  we  show that the relations of Equations (6) and (7) 

1*2 

I 

i Five-probe conductor,  The addition of a lead does not change the E .  cit s mmetr and ermits us to stud conductors which are 

where the combined transmission probability f i j  has  exactly 
the symmetry  given  by Equation (5 ) .  Similarly, the reflection 
coefficients are in general a sum of both an elastic and an 
inelastic part, and the symmetry of the total reflection 
probability is again  given  by Equation (5). 

have added a fifth probe connected to a potential p5. The 
currents in this conductor are determined by Equation (7), 
where i = 1, . . . , 5 .  Here we want to show that by 
eliminating one of the chemical potentials, say p5,  we once 
again obtain Equation (7), with i = 1, . . . , 4 and TiJ replaced 
by fiJ . This then shows that Equation ( 12)  is  still  valid; the 
only  difference  is that  the Tare replaced by f. If probe 5 is a 
voltage probe or an inelastic scatterer, we must require that 
Z5 = 0. This condition determines p5 as a function of the 
remaining chemical potentials, 

Consider now the conductor shown in Figure 5, where we 

, j = 4  

Using Equation (34) to eliminate p5 in the equations for the 
currents at the other probes  yields 

(35) 
j =  1 

with 

(37 

In Equations (36) and (37), the first term gives the reflection 325 
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$ Normal loop  penetrated  by an Aharonov-Bohm flux supports  a 
f circulating  equilibrium  current  despite  the  coupling  to a 1 phase-breaking  dissipative  reservoir.  From [ 3 7 ] ,  reprinted with 
0 permission. 

(transmission) of carriers which  have not entered reservoir 5 ,  
and  the second term gives the reflection (transmission) of 
carriers which  have entered reservoir 5 .  Since the reservoirs 
act as phase-breakers, the second term in Equations (36) and 
(37) can be  viewed as the inelastic, incoherent part of the 
total reflection (transmission) probability. The first term in 
Equations (36) and (37), on the other hand, describes 
coherent reflection (transmission). Thus Equations (36) and 
(37) appear as simple generalizations of the relations found 
for  a three-probe conductor [38-40]. 

Now it is  easy to see that the symmetry of the new 
transmission and reflection probabilities f and R is the 
same as that of the original  purely  elastic transmission 
probabilities. Furthermore, by using Equation (7) for a five- 
probe conductor and eliminating p5, we obtain 

N i = R i i +  tj (38) 
4 

j =  1 

and 

Ni = R ,  + qi. 4 

j -  I 
(39) 

Equations (38) and (39) are a consequence of current 
conservation in a four-probe conductor. Therefore, the T 
and R satisfy the same symmetry conditions and current- 
conservation relations as the T and R. Hence, all  results 
obtained for the T and R in Sections 2 and 3 of this paper 
are also  valid for the ?and R .  

Obviously, if  we  have a conductor with many leads n > 4, 
we can repeat the steps outlined above n - 4 times, until 
only the chemical potentials of the particular four-probe 
measurement under study occur. Equation (12) is then valid 
for a  set  of  generalized transmission and reflection 

326 probabilities. Thus, these considerations show that the 

M. BirTTIKER 

reciprocity symmetry is  a  very rigid feature of electrical 
conduction. Reciprocity applies regardless  of the number of 
leads attached to the conductor and regardless of whether we 
deal  with  elastic or inelastic transmission. 

5. Self-induced  fields 
Charge transport gives  rise to magnetic and electric  fields. In 
the presence of steady current flow, considered in this paper, 
current density and charge density are related to fields  via 

c V x B = j ,  (40) 

VD=4?re(p-po) .   (41)  

In this section we are chiefly concerned with the induced 
electric  field, or with the associated electrostatic potential U :  

V’ u + (4?re/c,)(p - p,) = 0. (42) 

The key intention is to explore the connection of the 
electrostatic potential U(r), which  is  defined at every point in 
the conductor with the chemical potentials measured at  the 
contacts, as discussed in the previous sections.  Before 
discussing this, it is  worthwhile to consider briefly the 
induced magnetic fields. 

Magnetic field induced by persistent  currents 
Consider the conductor in Figure 1 at equilibrium. All the 
reservoirs are at the same chemical potential, p = pl = p2 = 

p3 = p4. According to Equation (7), this implies that the 
currents at all the contacts are zero, Z, = Z, = Z3 = Z4 = 0. 
However, this does not imply that  the current density j ( r )  is 
zero in the interior of the conductor. Simple model 
calculations suggest that there exists an equilibrium current 
patternj(r) in tiny and open conductors. Figure 6 shows an 
open conductor. A loop is connected to a  reservoir  via  a 
single  lead. The lead  allows an exchange of camers between 
the loop and the reservoir. As shown in [37], such  a loop 
exhibits  a  persistent current which is a periodic function of 
the flux threading the loop. The amplitude of the circular 
equilibrium current is nonzero as long as camers can 
complete a  full revolution before  escaping from the loop into 
the reservoir. This simple model was introduced to  discus 
the effect  of inelastic events on the circular currents found in 
closed loops in [ 181. The simple model of Figure 6 
demonstrates that circular equilibrium currents are not a 
property of closed  systems only. Considering the lead 
connected to a  reservoir as an inelastic scatterer, [37] arrives 
at the same conclusion as [59]: A  modest number of inelastic 
events only reduces the amplitude of the circular currents 
but does not suppress such currents completely. Comparison 
[8, 101 of the inelastic  effects introduced via  a current lead 
coupled to a bath [37] with intrinsic inelastic effects in a 
closed loop [ 591 highlights the effect  of coupling a 
measurement probe to a tiny conductor. For additional work 
on closed loops we  refer to [60]. In the conductor of Figure 
6, an equilibrium current pattern arises  because  elastic 
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scattering leads to a  density of states which is sharply  peaked 
near the eigenstates of the closed  loop.  In  a more general 
geometry, such as the conductor in Figure 1, caniers are not 
confined to move on a circular path. However, it is  known 
that quantum-mechanical interference leads to  an enhanced 
probability for a canier which initially is at point P to return 
to point P (see for example [ 151). A net current arises if the 
probabilities for clockwise and anticlockwise motion along 
such a path are different.  Since the net current through the 
contacts is  zero, no joule heat is produced. Calculation of 
these currents requires knowledge  of the wave functions at 
every point in the conductor. Moreover, since the currents 
are an equilibrium feature,  they are not determined by the 
states at the Fermi energy alone but require knowledge  of 
the wave functions at all energies.  Typically,  however, the 
main contribution to these currents arises from a narrow 
energy interval extending from the Fermi energy to  an 
energy somewhat smaller. On a  length  scale, small compared 
to the phase-breaking  length, we can thus expect to find  a 
nonzero ensemble average ( [ j  ( r)]’ ) . These currents induce 
a  magnetic  field  according to Equation (40). 

If the chemical potentials of the conductor of Figure 1 are 
different and a net current is induced, say from contact 1 to 
contact 2, then, as is well understood, an additional 
magnetic field B(r; p,  - p2)  is produced which is 
proportional to the difference  of the chemical potentials. We 
do not discuss this further, but instead refer the reader to 
[42] and [61], which calculate such fields in the metallic 
diffusive  regime. 

Induced  electric fields 
Induced electric  fields in  the presence of current flow past 
isolated impurities have  been  emphasized  by Landauer 
[27,28,58,62]. Local  fields are of importance for the 
discussion of nonlinear effects [63,64], and they  play  a 
central role in the von Klitzing effect [65]. Here we  wish to 
stress the distinction between the local  field E(r), or the 
potential U(r) ,  and the chemical potentials pi discussed in 
the previous sections of this paper. The chemical potentials 
pi are thermodynamic potentials which characterize a bath. 
The potential U(r), on the other hand, characterizes the 
distribution of  unscreened  charges in the conductor. In a 
macroscopic conductor, where  each volume element also 
contains a  large number of carriers, U(r)  also becomes  a 
thermodynamic quantity, i.e., a  local Fermi energy. In a 
macroscopic conductor, we can couple the volume element 
under consideration to a bath, and if the coupling is 
sufficiently  “weak,” the bath has a chemical potential p ( r )  = 
eU(r), at least  if U(r)  varies  slowly compared to the 
screening  length. In the coherent quantum transport regime 
we must be more cautious. It makes a  difference  whether  a 
small conductor over a  given  length interval is closed, or has 
a junction to  an extra lead,  with  a  reservoir attached. In 
general, as we  show, p(r) # eU(r). 

One-dimensional  two-probe  conductor 
Consider a  one-dimensional conductor consisting of a 
disordered  region  with  perfect  leads attached to each  side. 
The  perfect  leads are in  turn connected to reservoirs at 
chemical potentials p1 > p2. Now  suppose that self-consistent 
screening applies for the equilibrium situation, i.e., for p,  = 
p2. Consider the additional charge  density A p  induced by 
the current flow. The density of states in the perfect  leads, 
corresponding to states with  positive  velocity, is dn/dE = 
1/2?rhv. We denote the wave function which  describes 
camers incident from  reservoir 1 with chemical potential p,  

by +, (x), and the wave function which  describes carriers 
incident from the right by +,(x). The  added charge is [37] 

A n = - ( ~ , - P 2 ) l + , ( x ) 1 2 ~  
dn 
dE (43) 

where +, is normalized such that the incident beam has unit 
amplitude. Both the wave function and the density of states 
are taken at the Fermi energy. In a  region  where An is 
spatially independent, this excess  density  is  screened.  Since 
the total charge density in such a  region  is zero, the 
screening  field raises or lowers the band bottom to achieve 
this [62]. The charge  which  is  gained or lost  by adjusting the 
band bottom is 

dn 
dE Anw = - (eV - PzX I 9, ( x )  I + I +,(x) I ’). (44) 

Note that Anq is the local  excess  density  which builds up if 
the chemical potential of both reservoirs  is  raised by eU - p2 

from p ,  = p,. The net charge  difference A p ,  which remains 
unscreened and enters Equation (41), is thus A p  = 
An - Anw. Inserting this into Equation (41) yields  a 
differential equation for U(x):  

X2V2eU(x) + [PI I 9, I ,+ P, I 9 2  I 

- e ~ ( x ) ( I + l 1 2 + I + 2 1 2 ) 1 = O I  (45) 

where X = (~ , /4?re~)“~(dE/dn)~‘~  is a  screening  length. 
The proper solution eU of Equation (45) has the value p,  in 
the left  reservoir and drops to the chemical potential p2 in 
the reservoir to the right. Below,  we resort, for simplicity, to 
drastic approximations. Suppose that the wave functions 
vary slowly on the scale X, the screening  length. In this case 
the first term in Equation (45), A2Vz U, can be neglected, 
and we obtain 

If the screening length is not short compared to the Fermi 
wavelength, we can still  salvage Equation (46). If  we are only 
interested in the long-range variation of U(x), we can 
average the wave functions in Equation (45) over distances 
of the order of A. Clearly,  if such an averaging procedure is 
used, some information on the phase  sensitivity of U(x) is 
lost. Equation (46) was obtained by Entin-Wohlman et al. 327 
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[35], who  argue that eU(x) is  what  is actually measured at a 
chemical potential probe. 

Applied to the perfect  leads, Equation (46) reproduces, 
with an additional approximation, the Landauer result, 
Equation (31). To see  this, consider a scatterer connected to 
perfect  leads. The scatterer has a transmission probability 
T = I t 1 and a reflection probability R = I r I ’. To the left 
we have I $, 1 = 1 + R, 1 $, 1 ’  = T, and from Equation (46) 
we find 

eu, =:[(I + ~ ) p ,  + ~p,]. (47 1 

TotherightwehaveI$,12=T,I$,IZ=1+R,andfrom 
Equation (46) we find 

eU, = f[ T p ,  + (1 + R ) p ,  1. (48) 

Since the total current driven through the conductor is I = 
(e/h)T(p, - p,), we immediately find t? = (U,  - UJZ = 

(h/eZ#R/T). 
In the derivation of the Landauer formula given  above, we 

have  related I $ 1 to the transmission and reflection 
probabilities.  Since the reflected  wave interferes with  itself, 
the exact density of camers is determined by I $(x) I ’ = 

1 + R + 2Re(re”&). Since the reflection amplitude r is 
proportional to R1” 2 R, it is actually the interference term 
which  is dominant for weak elastic scattering (R e< 1). If the 
exact  expression for the charge  densities  is inserted into 
Equation (49,  the result is a  voltage  which  is  oscillating  even 
in a  perfect  lead. The suppression  of  such interference terms 
is one reason that Landauer’s result is  positive,  whereas 
Equation (26), which  allows  for such interference terms, can 
give a negative  resistance. 

The voltage U(x), as defined by Equation (46), does not 
match the chemical potentials of the reservoirs. (This can 
only  be  achieved  by  allowing the one-dimensional leads to 
spread out to accommodate a  large density of states 
[ 16,58,66].) Imry [ 1 11 has pointed out that the difference 
in potential between  a  reservoir and a  lead gives  rise to a 
contact resistance, PC,,, = (h/ez)( V ,  - U,)/Z, where p,  = eV, . 
Using Equation (47), the contact resistance  is, according to 
this interpretation, universally equal to h/2ez for a one- 
channel conductor. However, due to the oscillatory nature of 
the voltage in  the lead, we can expect such contact 
resistances to fluctuate from sample to sample and to exhibit 
a  sensitivity to the phase of the wave function. If  we consider 
the conductor of Figure 4 and use the results of Section 3, 
we find contact resistances  which can fluctuate in a  wide 
range.  If we define the contact potential as p,  - p 3  and use 
Equation (27), we find  a contact resistance  with  a  lower 
bound of  zero and an upper bound of ( h / e 2 ) T 1 .  

Equation (46) can be  used to determine the voltage U at 
two arbitrary points along the conductor [35]. Denote these 
points by x, and x,. Then, by evaluating t? = ( U ,  - UJfZ 

328 with the help of Equation (46), we find 

m ,  2 x,) 

=” h 1 I $z(xz)121 ! W , ) l 2  - I J.,(X,)lZI rl.,(x2>12 
e’ T[I+l(x,)I’+ I~,(x,)121[1$1(x2)12+ l $ , ~ ~ , ~ l ~ 1 ~  

(49) 
Equation (49) is reminiscent of Equation (26). Like the 
Landauer formula, however, it does not contain any 
perturbations due to the leads. It links the electrical potential 
U(x)  to a  “resistance.” The “resistance” given  by Equation 
(49) typically exhibits no symmetry at all  with  regard to flux 
reversal.  If Equation (47) is  applied to a one-dimensional 
ring [35,67] and  at least one of the points x, or x, lies in the 
disordered part of the conductor, the resistance  given  by 
Equation (49) can be expected to be neither antisymmetric 
nor symmetric with  respect to flux  reversal,  despite the fact 
that the conductor is  only connected to two reservoirs. This 
is demonstrated by a calculation in [67]. [Reference [67] 
makes an additional approximation and replaces the local 
equilibrium density of states with the density of states in the 
leads. This corresponds to setting the combined densities of 
the two wave functions multiplying U in Equation (45) 
equal to 2.1 A similar calculation in [35] finds  a  purely 
antisymmetric resistance, due to the high symmetry of the 
conductor investigated and  the symmetric location of the 
points x,, x, chosen. 

One-dimensional  many-probe conductor 
To better illustrate the difference  between the voltage 
measured at a contact and U given  by Equation (46), we 
consider for simplicity  a one-channel conductor connected to 
three reservoirs, as shown in Figure 3. Let the density of 
states in all the leads be equal.  Proceeding as above gives, for 
a three-probe conductor, a  local  voltage U(r), 

Here the index on the wave function indicates the reservoir 
from which the carriers are injected into the conductor. 
Equation (50) is  valid for every branch of the conductor with 
r = x, r = y, or r = z on the corresponding branch (see 
Figure 3). Connecting a  lead to the conductor thus changes 
the potential throughout the conductor. Equation (48) 
has  been evaluated in the perfect  leads of a three-probe 
conductor in [38]. Let us briefly  consider probe 3, acting as a 
voltage  probe, and show that Equation (17) results. In this 
case, within the perfect lead of probe 3, we  have I $, (x) I ‘ = 
T,,, I $,(x) I = T,,, and I $,(x) I ’ = 1 + R33. Inserting this 
into Equation (48) and using Equation (7) for i = 3 with Z3 
= 0 yields eU, = p,. This is an astonishing result in view  of 
the approximations made to arrive at Equation (50). For a 
voltage  lead  which  does not support a  net current, it might 
be  more adequate to consider just the long-range variation of 
U (and thus to neglect the interference terms in the absolute 
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values of the wave functions). Clearly,  these  results can easily 
be extended to a four-probe conductor with  one-dimensional 
perfect leads. In this case, the voltage U(r) is determined by 
four wave functions and four chemical potentials. Thus, for 
the many-probe conductor with one-dimensional leads, we 
have an (approximate) picture of the connection of the local 
potential with the chemical potentials of the measuring 
baths.  We see that the reciprocity symmetry is connected to 
the fact that at a probe (a point of measurement), three 
(or four) wave functions determine the outcome of the 
measurement. In contrast, only two wave functions are used 
in Equations (46) and (49). 

Potential fluctuations in the  measurement  lead 
Equation (SO) leads to a picture of the local potential U(r) 
along a three-probe conductor, as shown in Figure 7. A net 
current flows from the bath with chemical potential p,  to the 
bath with chemical potential p2. The measurement probe, 
leading to a bath at a chemical potential p3 given  by 
Equation (17), is connected to the conductor at point P. 
Equation (SO) predicts a potential U(r)  which fluctuates 
along the probe depending on all three wave functions +i. 
Fluctuations of U(r)  along the probe occur for several 
reasons.  First, the probe itself is typically a disordered 
conductor. In this case the fluctuations are determined by 
the precise disorder configuration within a phase-breaking 
length.  Even  if the probe is an ideal perfect  wire, a voltage 
variation occurs across the junction of the perfect probe with 
the conductor [38,40]. Thus, in general, the chemical 
potential p, = eV3 is not related in a simple way to the local 
potential Up = U(P). The fact that Up and V3 are not equal is 
important. It means that a contact potential drfference Vc = 
Up - V, exists  between the local potential at P and  the 
measured  voltage.  Typically,  voltage drops arise due to 
current flow past an obstacle.  But in the conductor depicted 
in Figure 7, there is no net current flow in  the measurement 
lead. A situation similar to that shown in Figure 7 also 
follows  from the work of Maekawa et al. [43] and Kane et 
al.  [45].  They  define a local  electric  field  by enforcing current 
conservation on  an expression for the nonlocal current-field 
relation. 

The existence  of such contact potentials means that a 
voltage measurement with a lead does not give us direct 
information on the local potential of the conductor at  the 
point of attachment. Such contact potentials arise not only 
in the metallic diffusive limit. Even  if  voltages  were 
measured by inserting a tunnel junction between the 
conductor and  the lead, or if the tunneling microscope were 
used to measure the potential [68], such contact potentials 
would  also  be present. In the presence of a large barrier, the 
wave functions +i are exponentially attenuated at  the 
junction. The wave functions +, and +* have an 
exponentially small amplitude factor in the measurement 
lead; +3, which  is  large in  the probe,  is  exponentially small in 
the conductor. As shown by Equation (17), the measured 
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1 One-dimensional  conductor with a  voltage  probe.  Current  flows 
5 from  the  bath  at  chemical  potential p, to  the  bath  at  chemical 
1 potential p2. A voltage probe is attached to the conductor at point P. 

The measured chemical potential is p3. The heavy line depicts the 
t” local  potential U along  the x, y.  and z segments.  Typically,  the 

measured chemical potential differs from the electric potential U at 
6 the point P of attachment. Screening causes the band bottom (faint 

8 

voltage  is determined by T,, and T32, i.e.,  by the 
exponentially small wave functions 4 ,  and +z at the location 
of the bath. If the junction cannot be controlled on  an 
atomic scale, the attenuation of +, and +2 at the barrier 
varies exponentially from sample to sample. Hence the ratio 
T3,/T3, exhibits fluctuations that increase as the coupling 
between the lead and the conductor becomes  weaker. 
Invoking tunnel junctions between the leads and the 
conductor can, therefore,  be  expected to increase the 
fluctuations in the contact potential and to lead to voltage 
fluctuations which are even bigger than those measured 
[41,42] in the metallic  diffusive limit [40,46,49,50]. Even 
metallic-diffusive  voltage  probes  give  rise to voltage 
fluctuations which  increase  with the length of the probe 
[40,46]. 

Since the chemical potential of a measurement probe 
is not simply  related to the voltage U at  the point of 
attachment, measurement of  negative  resistance in the 
geometry of Figure 4 does not imply that the voltage U 
increases in the direction of the current flow. The contact 
potential Vc can be positive at probe 3 and negative at probe 
4. If these contact potentials are large enough, we measure a 
negative  resistance  despite the fact that U(r) drops 
monotonically along the conductor. 

Voltages can be measured other than by the exchange 
of camers with a probe; an alternative technique uses 
capacitive  probes [57]. It is  suggested that  in the absence 
of particle exchange  with the measurement probe we can 
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measure the local potential Up. Thus, the appearance of 
contact potentials discussed  previously is avoided. The key 
question which must be  answered  is  this: Can we have 
enough Coulomb coupling between the conductor and a 
capacitor plate to make a measurement without significantly 
affecting the effective potential which the carriers see  while 
moving along the conductor? A recent experiment which 
uses capacitive coupling to shift the phase of the Aharonov- 
Bohm  oscillations [18-211 is  described in [69]. 

Measurement-theoretical  aspects 
Equations ( 15) and ( 17) are also  of interest for the theory 
of measurement [70]. We can look at these equations as 
describing the interaction between the measurement 
apparatus (the measurement probe with  a bath attached at 
its end) and  the system (the conductor). In contrast to the 
discussions of the measurement process,  which treat a 
Hamiltonian for the combined system, the approach 
presented  here  describes the measurement as a scattering 
process and analyzes an S-matrix. The phase of the wave 
functions is broken by the reservoir at the end of the probe. 
This notion avoids a  difficulty  which measurement theory 
tries to explain:  Why  doesn’t the measurement apparatus 
obey the superposition principle  even though the total 
system  is  described  by  a Hamiltonian? 

the local potentials and the currents. The reciprocity 
symmetry is  a consequence of  microscopic  reversibility. 
Current conservation and time-reversal invariance are what 
determine the symmetry of the transmission probabilities in 
Equations (6) and (7). In Equation (45) the time-reversed 
wave functions of $I and do not occur. The time-reversed 
wave function of GI describes carriers incident from both 
reservoirs  which in the disordered region  interfere,  giving  a 
beam of unit amplitude for the outgoing  wave. The time- 
reversed  wave functions are excluded,  since  carriers incident 
from different  reservoirs are incoherent [ 18,621. 

Local potentials in a many-channel  two-probe  conductor 
Consider a disordered region connected to two  perfect  leads. 
Assume, for simplicity, that the perfect leads are strips, 
with x the direction along the lead and y the direction 
perpendicular to the strip. Also assume that the perfect  leads 
to the left and right are identical and support N quantum 
channels with  a density of states (dni/dE) = 1/2~hu,. Here 
vi is the velocity in channel i at the Fermi energy in  the x 
direction. As in [21], we assume that the reservoir  feeds 
channels incoherently with  respect to one another. With 
these  spedifications the many-channel generalization of 
Equation (46)  is 

There is  a fundamental difference in how  we have treated 

i=N 1 E - [I  +I,i(-% Y )  I + I +Z,i(X, Y)l 2/121 

- [ I  + l , i ( 4  Y )  I + I +2*i(x, Y )  I ‘I 

j = ,  uj 
e w ,  Y )  = 

i=N 1 
. (51) 

330 i=, Vi 

Here  is the wave function at the Fermi energy  describing 
carriers incident in channel i from the left-hand  reservoir. 
Similarly, $2,i describes carriers incident in channel i from 
the right-hand  reservoir. As in the one-channel case, the 
amplitude of these wave functions is normalized such that 
the incident wave has amplitude 1. The voltage U(x, y )  
obtained in this manner is a complicated fluctuating 
function of x and y.  Let us  briefly  discuss the voltage U(x, y )  
in one of the perfect  leads. In the perfect  leads we can 
represent the wave functions $ as a superposition of 
eigenstates of the lead Hamiltonian. This Hamiltonian is 
separable and has eigenstates ( y ) .  Here $ ( y ) is the 
“transverse eigenfunction” of channel j and kj is the wave 
vector along the lead. The wave functions in the left  perfect 
conductor are 

j - N  

for carriers incident from the right. Here rll,ji is the 
probability amplitude for reflection into channel j of a 
camer incident in channel i.  t12,ji is the transmission 
probability for carriers incident in the right  perfect 
conductor in channel j to reach channel i to the left. The 
density of carriers I I contains diagonal terms 
A( y)J;* ( y )  proportional to the density of the incident wave 
(in channel i) and the density of the reflected  waves. There 
are off-diagonal termsf;( y)fi* ( y)e”ki-kJ” proportional to the 
reflection amplitudes in channels i and j .  Furthermore, there 
are 2N terms which arise from multiplying the incident wave 
with the reflected  waves.  These latter terms are proportional 
tof;( y)f,* (y)e”? Hence the voltage U in the perfect  leads 
is nonuniform and exhibits long-range  oscillations,  since 
ki - kj can  be  small (of the order of kJN). Therefore,  since 
screening  typically occurs over much shorter distances, the 
voltage U(x, y )  follows  these  long-range  oscillations. 

References  [21],  [25], and [34] do not allude to spatially 
nonuniform voltages in the leads, but attribute a  spatially 
averaged  voltage to each  lead. In these  works the densities 
I $ 1  are averaged  with  respect to x and y.  Thus 
the densities are expressed in terms of transmission and 
reflection  probabilities alone. The potential drop across the 
disordered  region  is obtained by introducing these  averaged 
densities into Equation (51). The result for the conductance 
is  given in Appendix  B [Equation (B7)l. We emphasize that 
using the spatially  averaged  densities in Equation (51) is not 
equivalent to calculating a spatial average  of the exact 

voltage;  i.e., ( e U )  = ( - ) # ~. Thus, the spatial 

average of Equation (53)  is in general not equal to the 
potentials determined in [21,  25, 28, 29, 341. To calculate 
the voltage drop across the disordered region, [21],  [25], and 
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[34], following [28] and [29], treat the carrier  densities 
classically. 

To achieve  a uniform voltage in a  perfect  lead, it is 
necessary to consider  a  lead that supports a number of 
channels which  is  large compared to G/(e2/h). In this case 
the amplitudes of the wave functions [Equation (53)] 
associated  with the transmitted carriers are small. We can 
neglect the terms  in Equation ( 5 1 )  proportional to p2 in the 
left  perfect  lead and can neglect the terms in Equation (51) 
proportional to pl in the right  perfect  lead.  Wide  leads  are 
needed  if we want to construct a  potential  which  smoothly 
joins the chemical potentials of the reservoirs. 

6. Conclusions 
The resistance formulae discussed in Sections 2-5 exhibit  a 
certain  beauty and elegance. Their agreement  with the 
experimentally  observed  symmetries [27,36] and their 
successful application [43-46,49-501 makes one suspect that 
they  will  likely survive  more  realistic treatments of,  for 
instance, the reservoirs.  We  have  first derived  expressions for 
quantum-mechanical coherent transmission. In physically 
relevant situations, we deal  with coherent and incoherent 
transmission. Our expressions are also  applicable in this case, 
and permit us to study the continuous transition from 
completely coherent to completely incoherent transmission 
[38,39]. We  have emphasized that resistances  measured at 
contacts relate  chemical  potentials and currents. 
Furthermore, our discussion  stresses that the measured 
resistance  depends on the properties of the contacts, whether 
we deal with good contacts or with point contacts. 

The discussion  of the local  electric potentials given in 
Section 5 seems much more  susceptible to the detailed 
assumptions which  we  have made.  Realistically,  a  reservoir 
feeds  Carriers into the conductor not in a continuous 
coherent fashion but with  finite  coherence  length and with 
fluctuations in time. That has little effect on the total (time- 
averaged) current, and  it is only currents which determine 
the  resistances  of  Sections 2-5, but it is likely to alter the 
charge accumulated in some  small  spatial  region. The 
detailed distribution of  charge and voltage  is,  however,  of 
interest and provides a physically  appealing  picture. We 
hope,  therefore, that the problems  exposed in Section 5 will 
stimulate further research in this direction. 

Appendix A Transmission  probability 
expressions  for  the  Casimir  conductances 
Reference [7] finds the following  expressions  for the 
conductances in Casimir’s equation [(8), (9)] relating  two 
currents in  a  four-pole conductor to the chemical  potentials: 
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where 

S = T12 + T,,  + T3, + T3, = T21 + T4, + T23 + T43. (A5) 

From Equation (5 )  it follows that the diagonal  coefficients 
are symmetric in the flux, and the off-diagonal elements 
obey aI2(@) = a2,(-@). The B conductances describing 
the situation where  a current I ,  flows from terminal 1 to 
terminal 4 and a current Z2 flows from terminal 3 to terminal 
2 are obtained by the substitution 3 + 4 , 4  + 2 , 2  + 3 in 
Equations (Al)-(AS). The y conductances  describing the 
situation where  a current I ,  flows from terminal 1 to 
terminal 2 and a current I, flows from terminal 4 to terminal 
3 are obtained by the substitution 3 + 2 , 2  + 4 , 4  + 3 in 
Equations (Al)-(A5). 

Appendix B: Four-terminal  interpretation  of  the 
conductance  formulae  of Azbel[25] and  Buttiker 
et al. [21] 
A four-terminal interpretation of the results of [21] and [25] 
is  explicit in the work  of  Sivan and Imry [34]. Below  we 
show that such an interpretation is  compatible  with the 
reciprocity theorem, Equation ( I ) ,  in the absence of a 
magnetic field, but that it contradicts the reciprocity 
theorem, Equation (3), in the presence  of a  magnetic field. 
To this extent we picture, as in Figure 4, two contacts 
separated by a tunnel barrier from  the  perfect  leads. We 
introduce the total transmission and reflection  probabilities 
into channel i for  carriers incident from the left, 

J = N   j = N  

R i  = c R Z , , i j ,  T, = c T21,ij’ 031) 
j =  1 j =  1 

and channel i for  carriers incident from the right, 

R,!= 1 R 1 2 , i j ,  T,! = 1 T 1 2 , i j .  (B2) 

In  these  papers the measured  voltage  is determined by the 
piled-up  densities. The density in channel i on the left  is 
proportional to v i  7. due to transmitted carriers  from 
reservoir 1 .  It is  now assumed that the piled-up  densities 
determine the flow  of current from the conductor to the 
measurement  probe. The current from  all of the N channels 
to reservoir 4 is taken to be proportional to 

T,, = T I ,  = E  1 v- lT , ,  (B3) 

j = N   j = N  

j =  1 j =  I  

- 1  

i = N  

i= I 

with  a  matrix  element E coupling all the channels of  the 
conductor equally to those of the measurement lead. Note 
that in this discussion  coupling of the conductor to the 
measurement  leads  is  described by a  single parameter E .  

Similar  considerations give 

T 3 2 = T 2 3 = e  2 vYIT;,  ( W  
i -N 

i= I 

i = N  

T31 = T13 = E 1 vY’(1 + Ri) ,  035) 
i= I  
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i-N 
T‘, = T,, = E  vL1(1 + R I ) .  

i= I 

Furthermore, T,, = T43 = 0 to order E. To lowest order in E,  

the transmission from reservoirs 1 to 2  is  unaffected by the 
probes, T = T,, = TI,.  T has the symmetry of the two- 
terminal transmission coefficient, Equation (16).  Using  these 
results in Equation (7)  or Equation (8) yields 

Vi 

Equation (B7) is the main result of [21] and [25]. In the 
absence  of  a  magnetic  field, the transmission probabilities 
given above have the required reciprocity symmetry for the 
transmission probabilities associated  with  a four-terminal 
conductor. However, in  the presence of a  flux @, the 
transmission probabilities given above do not obey 
[Equation (5)], T , ( @ )  = qi(-@). From Equation (B3) 
we  find 

i=N 

T,,(Q) - T14(-*) = E 1 v r 1 [ T i ( 3 )  - Ti(-+)],  (B8) 

which  is in general not zero, since q.(@) # Ti(-@). As 
pointed out in Section  5, the results of Azbel [25] and 
Buttiker et al. [21] relate a  spatially  averaged  local electric 
potential difference A U to a  resistance, not a genuine 
chemical potential difference Ap. From th is  viewpoint it is 
not surprising that Equation (B8)  is not symmetric under 
magnetic  field  reversal, as pointed out in [24]. The 
reciprocity symmetry (3) is  a consequence of the relation 
between currents and chemical potentials, but says nothing 
about  the relation of electric potentials and currents. 

We conclude this appendix with an estimate of the 
magnetic  field asymmetry [24] predicted by Equation (B7). 
We consider a  piece  of conductor of length I+ (the phase- 
breaking length) and with an elastic scattering length le. The 
ensemble-averaged  resistance  is ( M+ ) = ( ( h / e 2 ) T 1  ) = 
(h/e2)(l+/Nle), where N is the number of quantum channels. 
Using the argument of Lee [71] that the reflection 
coefficients fluctuate independently yields ( [ M I , , , , ( @ )  - 
M,2,34(-@)]2) E (h/e2)2(le/1+)2. Since 1. << l+,  this is much 
smaller than the experimentally observed asymmetry 
[27,41] which  is of the order of ( h / e * ~ R ~ ,  independent of 
the separation of the voltage probes [41]. Equation (B7) 
predicts  a small asymmetry because it is determined by 
spatially  averaged  voltages and because the physics of the 
contacts is  neglected. 

i= I 
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