Symmetry
of electrical
conduction

by M. Bittiker

The resistance of a conductor measured in a
four-probe setup is invariant if the exchange of
the voltage and current sources is accompanied
by a magnetic field reversal. We present a
derivation of this theorem. The reciprocity of the
resistances is linked directly to the microscopic
reciprocity of the S-matrix, which describes
reflection at the sample and transmission
through the sample. We demonstrate that this
symmetry holds for a conductor with an arbitrary
number of leads. Since leads act like inelastic
scatterers, consideration of a many-probe
conductor also implies that the reciprocity of
resistances is valid in the presence of inelastic
scattering. Various conductance formulae are
discussed in the light of the reciprocity theorem.
Finally, we discuss some implications of our
results for the nature of a voltage measurement
and point to the difference between chemical
potentials and the local electric potential.

1. Introduction

Symmetries are of paramount importance, since they force
certain constraints on the laws of physics. Once established,
symmetries can provide sample tests of experimental
accuracy and greatly reduce the amount of data which has to
be taken. In this paper we are concerned with the reciprocity
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theorem for electrical conductors. This theorem applies to
conductors which are connected to several contacts. In a
four-probe experimental setup, two of these contacts are
used to supply and draw current from the sample, and the
potential difference is measured between another pair of
probes. The reciprocity theorem, in the absence of a
magnetic field, states that the resistance measured in a
particular configuration of current and voltage leads is equal
to the resistance in the configuration where the current and
voltage leads have been exchanged,

(1

Here the first pair of indices represents the contacts used to
supply and draw current, and the second pair of indices
represents the probes used to measure the potential
difference. Reciprocity of current sources and voltage sources
has long been understood. Searle [1], in his 1911 article,
presents a derivation of Equation (1) which he attributes to
Heaviside. A more recent discussion is given by van der
Pauw [2].The reciprocity theorem is rarely mentioned in
modern textbooks, which instead emphasize the Onsager—
Casimir symmetry relations of the /ocal conductivity tensor
[3,4],

0., (H) = 0, (—H). @

B = K,

m Kl mn*

Here the indices refer to coordinates and not, as in Equation
(1), to the contacts. The extension of Equation (1) to the
case of a magnetic field, surprisingly, is of more recent
origin. In the presence of a magnetic field the exchange of
the current and voltage leads has to be accompanied by a
reversal of the magnetic field,

/glz,u(H) = p34,12(_H)- 3

The reciprocity theorem, Equation (3), is related to the 317

M. BUTTIKER




318

Onsager-Casimir symmetry relations, Equation (2); Spal [5]
and Sample et al. [6] give a derivation of Equation (3) which
rests on the validity of the local symmetry relations,
Equation (2). Thus, by using Equation (2) one can arrive at
Equation (3). On the other hand, verification of Equation (3)
in a particular four-probe geometry does not imply the
validity of Equation (2). In fact, according to Casimir [4], a
whole series of four-probe measurements with differing
geometrical arrangement of the contacts must yield
equivalent results for Equation (2) to be valid. It is clear,
therefore, that conductors might exist which do not obey the
local Onsager-Casimir symmetry relations, Equation (2), but
which nevertheless obey the global symmetry, Equation (3).
Hence, it is desirable to derive Equation (3) directly without
invoking Equation (2). A direct derivation of the reciprocity
theorem, Equation (3), was given by the author in (7] and is
reviewed and extended in this paper.

Our interest in these symmetries stems from a concern for
electron conduction in tiny disordered conductors. We refer
the reader to some review papers and papers with a large
number of citations on this topic [8-16]. Interesting effects
in such small conductors arise from the quantum-
mechanical nature of ¢lectron transport. If the wave-like
nature of the carriers plays a role, the relation between the
current and the electric field cannot be local. The symmetry
properties of the magnetoresistance have been of interest to
us for some time. Early experiments [9, 17] in quest of A/e
oscillations in disordered normal loops [18-23] revealed a
magnetoresistance which was not symmetric with regard to
field reversal. In view of the prevailing (and mistaken)
expectation at that time that these experiments were
designed to measure a longitudinal conductance, this was
noticeable and triggered our attention. A possible
explanation of this asymmetry was offered by the
observation [24] that a conductance formula due to Azbel
[21, 25] is also not symmetric under field reversal. However,
as it turned out, the asymmetry given by this conductance
formula is, for metallic conductors in the diffusive regime,
too small to account for the experimentally observed effect.
Others argued that the asymmetry was not an intrinsic
property but could be due to magnetic impurities [26]. It
was in conjunction with an additional experiment, carried
out by Benoit et al. [27], specifically designed to clarify the
nature of the asymmetry, that we derived a resistance
formula [7] for quantum coherent electron transport which
also obeys the reciprocity symmetry given by Equation (3).
The resistances obtained in [7] are related to the
probabilities of carriers for transmission through the sample
and reflection at the sample. The possibility of relating the
resistance of a sample directly to transmission and reflection
probabilities was pointed out by Landauer [28, 29]. The
sample is viewed as a target at which carriers are reflected or
transmitted. In contrast to the Greenwood-Kubo
formulation, the resistance is related to static scattering
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properties of the sample. The point of view advanced in [28]
and [29] has received increasing attention since the
beginning of this decade [21, 24, 25, 30-35]. However,
despite the fact that four-terminal conductors have been
studied [32], and other results [21, 25] have been interpreted
as four-terminal resistances [34, 35], a resistance formula
with the symmetry of Equation (3) was lacking. The
derivation of Equation (3) given in [7] assumed a disordered
sample which scatters carriers only elastically. Inelastic
scattering is assumed to be spatially separated [28, 29] from
the conductor, and occurs only in the reservoirs (see Figure
1, shown later). Instead of a uniform magnetic field which
penetrates the conductor and reaches the carriers, a field is
introduced via an Aharonov-Bohm flux through a hole in
the conductor. The reciprocity theorem was derived by first
demonstrating the global Onsager-Casimir symmetry
relations for the conductances relating the currents in the
leads to the chemical potentials of the reservoirs. Reference
[7] relates the reciprocity relations of the resistances directly
to the reciprocity of the scattering matrix, the S-matrix,
describing transmission and reflection of carriers at the
sample. A basic feature of the resistance formula derived in
[7] is the equivalent quantum-mechanical treatment of the
contacts which are used to carry current to and from the
sample and those which are used to measure voltages.
Previous works on conductance formulae have made a
number of either implicit or explicit assumptions on what
constitutes a voltage measurement. Our work implies that
these assumptions have to be revised, and in Sections 3 and
5 we briefly return to this subject.

In submicron structures, at very low temperatures, the
magnetoresistance is sensitive to the specific configuration of
the impurities and inhomogeneities. Thus, the experiment of
Benoit et al. [27] must be regarded as a particularly sensitive
test of the symmetries predicted by Equation (3). Even in
larger samples the symmetries predicted by Equation (3)
have been tested only recently. In connection with the von
Klitzing effect, the reciprocity relations have been
experimentally confirmed by Sample et al. [6]. High-field
magnetoresistance measurements on single-metal samples of
a shape with low symmetry have been carried out by
Soethout et al. [36], who find generally good agreement with
Equation (3) except for small discrepancies which they
attribute to the possibility of structural changes induced by
Hall currents. In view of these experiments, it is clear that
the reciprocity theorem is a fundamental physical law.

In this paper we extend the derivation of Equation (3)
given in [7]. We show that the validity of Equation (3) is
independent of the number of leads attached to the sample.
Since leads leading away from a conductor to a reservoir, in
which carriers suffer phase-randomizing events, act like
inelastic scatterers [37-40], this demonstrates that, as
expected, the symmetries of Equation (3) apply to
conductors which are large compared to an inelastic length.
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This then also removes the need to keep the reservoirs (the
measuring pads) close to the sample. Since the reciprocity
theorem is fundamental, it is worthwhile discussing the
symmetry of other expressions derived for the conductance.
We analyze the four-terminal interpretation of the Landauer
formula [28, 29], which yields a resistance proportional to
R/(1 — R), and the many-channel generalization of this
expression [21, 25, 34] in the light of the reciprocity
theorem. We point to certain interference terms which are
neglected in these conductance formulae.

Recent experiments by Benoit et al. [41] and Skocpol et
al. [42] further demonstrate that the probes are an integral
part of the conductor. In these experiments the voltage
difference is measured on leads which are separated by less
than a phase-breaking length. To understand these
experiments, it is essential to take into account that carriers
can make large excursions into the voltage probe and
experience inelastic events in such a probe [40]. A
diagrammatic discussion of these phenomena has been put
forth by Maekawa et al. [43], Kane et al. [44, 45], and
Hershfield and Ambegaokar [46]. References [44] and [45]
investigate the connection of the results of [7], expressing
resistances in terms of transmission probabilities, with the
Greenwood-Kubo linear response formalism. An alternative
way to calculate transmission probabilities is by direct
computation [47, 48], and for multiport conductors this has
been achieved by Baranger et al. [49, 50]. We do not address
the statistical aspects of voltage fluctuations; instead, we
focus on the implications of [7] for the definition of
resistance and voltage measurement.

Before concluding this section we mention, for
completeness, a further generalization of the reciprocity
theorem. Deviations from Equation (3) can occur if the
sample admits a magnetic moment M. In such a case, as
pointed out by Strikhman and Thomas [51], the
conductivity tensor obeys o, ,(H, M) = o, (—H, —M).
Correspondingly, the reciprocity theorem for a conductor
with a magnetization M can be stated as

pmn‘k[(H’ M) = p;d,m,,(_Hy _M); (4)

i.e., the exchange of leads must be accompanied by a
reversal of the magnetic field H and the magnetization M.

2. Multiprobe conductance formula

Consider the conductor shown in Figure 1. A field
dependence is introduced by studying the response of the
conductor to an Aharonov-Bohm flux through the hole
[18-21]. In a uniform magnetic field, there are, in addition
to the resistance oscillations with fundamental period [18-
23] ®, = hc/e, also aperiodic resistance variations as a
function of the magnetic field [9, 17, 48]. While we focus on
the Aharonov-Bohm oscillations, our conclusions apply
equally to the aperiodic resistance variations [40-46, 48-50].
In the presence of a uniform magnetic field, a two-
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Disordered normal conductor with four terminals connected via
perfect leads (unshaded) to four reservoirs at chemical potentials, .,
My, My, and .. An Aharonov—Bohm flux @ is applied through the
hole of the sample. From [7], reprinted with permission.

SRR

dimensional disordered conductor can be considered as a
network of microscopic loops of size a with a flux & = Ha’
< &, = hc/e threading each loop. The leads in Figure 1 are
connected to reservoirs which are at chemical potentials g,
Ep» By, By, TEspectively. The reservoirs serve both as a source
and as a sink of carriers and of energy and have the
following properties: At zero temperature they feed the leads
with carriers up to the energy y,. Every carrier coming from
the lead and reaching the reservoir is absorbed by the
reservoir irrespective of the phase and energy of the incident
carrier. Technically, it is convenient to introduce a piece of
perfect wire (unshaded part of the leads in Figure 1), free of
elastic scattering, between the disordered terminals and the
reservoirs. First we assume that these perfect leads are strictly
one-dimensional quantum channels; i.e., there are only two
states at the Fermi energy, one with positive velocity (taken
to be the direction away from the reservoir) and one with
negative velocity. The multichannel case is discussed later.
Scattering in the sample is elastic; inelastic events occur only
in the reservoirs. The elastic scattering properties of the
sample are described by an S-matrix, which relates the
amplitudes « " ,i=1,---,4, of the outgoing currents to the
amplitudes o, of the incident currents,

Since current is conserved, the S-matrix is unitary, $* =
S™'. Here * denotes Hermitian conjugation. Time reversal
implies S *(—®) = S$~'(®). Here the star denotes complex
conjugation. Hence, the S-matrix obeys the reciprocity
relations s,;(®) = s5,,(—®). The transmission amplitude
s,;(®) for a carrier incident in contact j to reach contact i in
the presence of a flux & is the same as that of a carrier
incident in contact i to reach contact j if the flux has been
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reversed. Below we use the reciprocity of the S-matrix to
derive the reciprocity theorem for the electrical resistance.
We only invoke the probabilities T, = | s, |%, i jfor
transmission of carriers incident in lead j to reach lead i/ and
the probabilities R, = | s,,] ? for carriers incident in lead i to
be reflected into lead i. The reciprocity symmetry of the
S-matrix implies that

R,(®)=R,(—®), T;(2)=T,(-%). &)

We now use these probabilities to determine the currents
in the leads. Let the difference between the highest potential
and the lowest potential be so small that the energy
dependence of the transmission and reflection probabilities
in this range can be neglected. It is convenient to introduce a
fifth chemical potential y, which is smaller than or equal to
the lowest of the four potentials x,. Below p, the states with
negative and positive velocity are filled, and zero net current
flows in each of the leads. We only need to consider the
energy range Ap, = u, — u, above y,. The reservoir i injects a
current ev,(dn,/dE)Ay, into the lead i. Here v, is the velocity
at the Fermi energy in lead i, and dn,/dE = 1/2whv, is the
density of states for carriers with negative or with positive
velocity at the Fermi energy. Thus the current injected by
reservoir i is (¢/h)Ap,. Consider the current in lead 1. A
current {e/f)(1 - R,,)Ap, is reflected back to reservoir 1.
Carriers which are injected by reservoir 2 into lead 2 reduce
the current in lead 1 by —(e/h)T,,Ap,. Similarly, from the
current fed into leads 3 and 4 we obtain in lead 1 a current
—(e/h(T;Au, + T, Ap,). Collecting these results and
applying similar considerations to determine the currents in
the other leads yields

L=wm%—&m—2%4. ©)
J#Ei

Note that these currents are independent of the reference
potential g,, since the coefficients multiplying the potentials
add to zero. If we write Equation (6) in matrix form, both
the rows and the columns of this transmission/reflection
matrix add to zero (current conservation).

Let us generalize these results and assume that the perfect
leads have many states at the Fermi energy. In leads with a
cross section we have to consider both the motion of carriers
across the lead and the motion along the lead. Motion in the
transverse direction is quantized and characterized by a set
of discrete energies, E,, n= 1,2, - - -. To this energy we have
to add the kinetic energy for motion along the direction of
the lead, #°k>/2m, such that E. = hzk: /2m + E,. For each
energy E,, which is smaller than E.., we obtain two states at
the Fermi energy (quantum channel). Each lead is thus
characterized by a number N, of quantum channels. The
scattering matrix now contains

i=4 2
(z%)
i=1
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elements denoted by s,; .. Such an element gives the
transmission amplitude for a carrier incident in channel # in
lead j to reach channel m in lead i. The reciprocity of the
S-matrix is now stated as 5, ,,,,(®) = s, ,,,(—®). The
probability for a carrier incident in channel 7 in lead i to be
reflected into the same lead into channel m is denoted by

R and the probability for a carrier incident in
lead j in channel 7 to be transmitted into lead { into channel
mis T o = |5, |>. Following [21], we assume that the
reservoir feeds all channels equally up to the chemical
potential 1. Furthermore, as in [21], we assume that the
current injected into a channel is incoherent with the current
in other channels. The current injected into each channel is
then (e¢/h)Ay, independent of the velocity and the density of
states of this channel. The current in lead / due to carriers

injected in lead j is

,'_,'= _(e/h) 2 ]‘,‘j,mnAﬂj-

2
= Isii,mnl >

Therefore, if we introduce the traces

R,= P ii,mn? Tij =Y Tij,mn’

mn mn
which have the symmetry properties given in Equation (5),
we find for the currents flowing from the reservoirs toward
the conductor,

L#Mﬁm—mm—znd. 7)
Fiatl

Here N, is the number of channels in lead i. Recently,
alternative derivations of Equation (7) have also been
obtained [43-45]. Equations (6) and (7) provide the starting
point for our subsequent discussion, giving the currents as
response to the chemical potential differences between the
reservoirs. Since the coefficients in Equation (7) obey
Equation (5), they have the symmetry typical for linear
response problems [4, 5]. The transmission probabilities in
Equation (7) multiplied by e2/h are the conductances which
would be measured if the currents and potentials were
measured simultaneously at all the probes. That, however, is
not what is typically done in the experiments.

To derive the experimentally measured quantities, we
proceed as in [7]. First let us connect Equation (7) to the
(global) Onsager—Casimir symmetry relations. Casimir [4]
considers a four-probe conductor (see Figure 1) where a
current /, is fed into lead 1 and is taken out in lead 3, and a
current I, is fed into lead 2 and leaves the sample through
lead 4. Thus, we have to solve Equation (7) with the
condition that I, = —I, and I, = ~I,. The result of such a
calculation expresses the two currents as a function of
differences of voltages V, = p,/e,

L=a,(Vi=V)—a,(V,=- V), 8)

L=—a,(V,= V) + ap,(V, = V). ©)
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The conductance matrix e, is expressed in terms of
transmission probabilities in Appendix A, The diagonal
elements are symmetric in the flux a, (®) = a, (=), a,,(®)
= a,,(—®), and the off-diagonal elements satisfy o,,(®) =
a,,(—®).

There are two additional ways of feeding two currents into
the conductor of Figure 1. For each of these possibilities the
currents and chemical potentials are as in Equations (8) and
(9), related by a conductance matrix 3, and v,;. The 8 and v
conductances have the same symmetry as the «
conductances, but are generally not equal to these. The «, 8,
and v conductances obey the global Onsager—Casimir
symmetry relations referred to in the Introduction. These
global symmetries for the conductances are more
fundamental than the symmetry of the local conductivity
tensor, Equation (2). The global symmetries hold even in
situations where Equation (2) is not valid.

Now we can derive the resistance from Equations (8)
and (9). In a four-probe setup only two of the chemical
potentials are measured. Suppose the current flows from
lead 1 to lead 3. The potentials measured are u, = eV, and
u, = eV, under the condition that the current in leads 2 and
4 is zero. Taking I, = 0 in Equation (9) yields V, - V, =
(a,,/a,,)(V, — V,), and by using this in Equation (8) the
current I, can be expressed as a function of V| — V. Thus,
in this configuration the measured resistance is

%

(a0 —ajay)

Ris0=(V,— VoI, = (10
Since a,, is in general not symmetric, the resistance ¥, ; ,, is
also not symmetric. This result, however, is completely
compatible with the (global) Onsager-Casimir symmetry
relations. The point is that we are measuring an off-diagonal
Onsager coefficient and not a diagonal element. It is V, and
V, which determine the voltage drop across the sample, and
not ¥, and ¥,. Now we switch the current and the voltage
leads but keep the flux fixed. This means that /, in Equation
(7) is zero. This yields a resistance

Roarz = eyl (a0, — o). (11

The sum of these resistances, S, = (£,3 24 + £y, 13)/2, is
symmetric, due to the Onsager—Casimir relation a,,(®) =
o, (—®).

For a given flux we find in general six resistances,

Bria= W€ XT,,, T, — T, T, )/D, (12)

which differ in magnitude. D = (h/e*)’(a,, 0y, — @;,a,,)/S is
a subdeterminant of the matrix defined by Equation (7). S is
defined in Appendix A. All subdeterminants D of this matrix
are equal and symmetric in the flux due to current
observation. D is independent of the indices mn, kl. The
resistances given by Equation (12) obey £, ., = —£,,, , =
—R, 1> and, more fundamentally, the reciprocity relation
(3). The six resistances, which differ in magnitude, can be
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grouped into three pairs, each pair associated with one of the
possibilities for feeding two currents into the four-probe
conductor as discussed above. Thus, in addition to S, we
also have the combinations S, = (K, ,, + £, ,,)/2 and S, =
(#5453  Ki3,4,)/2, which are symmetric in the flux. Taking
into account the symmetries of the transmission
probabilities, Equation (5), we can now extend a relation,
known in the classical case in the absence of a field [2], to
our phase-coherence problem in the presence of a flux, and
show that

S, +S,+5, =0. (13)

The key result of this paper is Equation (12). An
interesting property of Equation (12) is that the resistance
measured in a four-probe setup is not necessarily positive.
Resistances which change sign as the sample is rotated in the
external magnetic field have indeed been measured by
Soethout et al. [36], and were understood to be a property of
a four-terminal measurement. Resistances which change sign
as the magnetic field is increased have been observed in
submicron structures by Timp et al. [52], but are interpreted
as a “dynamic” phenomenon. Negative resistances are
possible in a four-terminal resistance measurement. The
resistance measured is not the total resistance of the sample,
which is, of course, positive. Indeed, the total joule heat W
produced by the conductor is

1

57 & T+ T = 1)’ (14

1
==> LAy =
€ i i<j
To derive Equation (13) we have used Equation (7). Thus W
is positive and is determined by the part of the transmission
coefficients T;; which is symmetric with regard to flux

reversal.

3. Special limits of Equations (7) and (12)
In this section we discuss the application of the approach
outlined above to a number of special cases.

o Two-terminal conductance

Current conservation in a two-port conductor requires

N, =R, +T,and N, =R, + T,,, where N, and N, are the
numbers of channels to the left and right. Using these
relations, we see that the symmetry of the reflection
coefficients implies 7',,(®) = T,,(~®) and T,,($) =
T,,(—®). From this and Equation (5), we find that T= T,
= T,,. The transmission coefficient of a two-port conductor
is thus symmetric,

T(®) = T(~®). (15)

Equation (6) or Equation (7) withi=1,2and T=T,, =
T,, yields a two-terminal conductance,

¢=el/(u, ~ u,) = (¢’/M)T. (16)

Therefore, Equation (15) implies that the two-terminal
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Model of a long wire: The phase is randomized in the reservoirs
which are an inelastic length /  apart. From [38], reprinted with
permission.

i Three-probe conductor. The extra lead (z segment) connected to a
| reservoir can be viewed as a model of an inelastic scatterer or,
alternatively, as a voltage probe. From [40], reprinted with
permission.

conductance is symmetric with regard to flux or magnetic
field reversal. All experiments known to us which are
genuine two-probe experiments obey this symmetry.

Equation (16) was obtained in [30] in the limit of a large
number of channels. The connection of Equation (16) with
the Greenwood-Kubo formulation has been explored by
Fisher and Lee {33]. This two-terminal formula has recently
been used to discuss conductance fluctuations [48, 53-55]
(variations of the conductance from sample to sample due to
the microscopic disorder configuration in macroscopically
identical conductors). On the basis of Equation (16), these
fluctuations have been found to be universal in the (metallic)
diffusive limit, i.e., to be independent of the degree of
disorder and only weakly dependent on the geometrical
shape of the conductor. The “universality” critically hinges
on the simple relation between transmission and
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conductance given by Equation (16), and breaks down if
more sophisticated expressions for the conductance (or
resistance) such as Equation (12) are invoked [40-46,
49-50].

To describe the conductance of a piece of wire much
longer than the phase-breaking length /,, with the help of
Equation (16), we imagine the wire divided into segments of
length /,. Inelastic scattering cannot be neglected and is
concentrated into reservoirs spaced a distance /, apart, as
shown in Figure 2. This procedure, of course, is an
approximation to reality, since inelastic scattering occurs
uniformly in the bulk. Reference [38] uses this approach to
show that the resistance of a one-dimensional conductor as a
function of increasing inelastic scattering passes through a
minimum. Furthermore, such a simple model allows an easy
prediction of the size of conductance fluctuations or voltage
fluctuations for voltage probes which are separated by a
distance that is large compared to the phase-breaking length
[12, 15]. Figure 2 represents a physical picture only if the
portions of the conductor adjacent to the segment under
study do act like reservoirs. This is not obvious. In the
adjacent segments, in narrow wires, the current is, of course,
not zero as it is in a reservoir. For small currents, as long as
the currents and voltages are related linearly, that seems
unimportant. Other features, such as the amplitude of the
Aharonov-Bohm oscillations, depend on the fact that
inelastic scattering occurs continuously throughout the
conductor [56]. Therefore, there is a need for a conductance
formula which takes into account the fact that most carriers
traversing a segment of length /, have suffered at least one
phase-randomizing event [38].

o The three-port conductor

A number of important insights can be gained by
considering a conductor with three probes [1, 38]. It is
considerably simpler to discuss such a conductor than the
four-probe conductor described in [7] and Section 2.
Consider the conductor shown in Figure 3, and let us focus
on the situation where probe 3 is used to measure the
chemical potential x,. From Equation (6) or Equation (7)
with i = 1, 2, 3, we find the chemical potential in lead 3 by
taking I, = 0,

Tyu + Ty,

= 17
s T, +T, )

Note that for g, > g, the chemical potential u, is always
between the two chemical potentials which drive the current
through the conductor, u, = g, = u,. Furthermore, u,(®) is
neither symmetric nor antisymmetric with regard to flux
reversal. We can now use probe 3 to measure the potential
differences 1, — i, and p, — p, and can calculate the
resistances

p 32

IAWE
1213 = (1 — my)el = ? D (18)

IBM J. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988




Ry 3= (s = m)/el = (?

with

D=T,T,+T,T,+T,T,,. (20)

D is a subdeterminant of the matrix defined by Equation (6)
or Equation (7), and is invariant under flux reversal. Thus
the two resistances given by Equations (18) and (19) are
determined by the symmetry of T, and T, ; i.e., these
resistances are neither symmetric nor asymmetric under flux
reversal. However, the combined resistance (the two-
terminal resistance)

h> T31+T32 (21)

Ry = _”2)/e1=<? D

is symmetric. Thus, with regard to the two-terminal
conductance, the fact that we have an additional lead does
not change the symmetry. That important feature of our
formulation of resistances is taken up again in Section 4.

The two-terminal conductance in the presence of an
additional lead ¢ = (#,, ,)”" differs now from Equation (16);
it is given by

(22)

e2
g= <7)(Tel + T'in)’

where the elastic transmission probability describing the
transmission of carriers which emanate from port 1 and end
up in port 2 without ever entering reservoir 3 is given by

T,=T,,. (23)

The inelastic transmission probability T}, describes carriers
which emanate from port 1, reach reservoir 3 (where their
energy and phase are randomized), and from reservoir 3, in
an additional step, reach reservoir 2. Comparing Equation
(22) with Equation (21) yields

_ T31 T23

" T31 + T32.
Thus, the additional lead connected to an electron reservoir
acts like an inelastic scatterer. Equation (22) allows us to
describe the continuous transition from completely coherent
transmission through the conductor to completely
incoherent or sequential transmission. In the limiting case of
completely coherent transmission, carriers are not allowed to
enter reservoir 3. Consequently, T, = T,, = 0, and the two-
terminal conductance is given by Equation (16); ie., T,,= T
and T, = 0. In the limit of completely incoherent
transmission, T, = T, = 0. In this case Equation (21) yields

o _ k{1 1
/gnz.lz"glz,nz_e2<T +T )

31 23

24

(25)

To obtain the latter result we have made use of the fact that
for T, = 0 we have T,,(®) = T,,(—®). Equation (25) is
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Four-terminal conductor with tunneling barrier junctions (dark areas)
for two of the probes.

nothing but the classical addition of series resistors.
Equations (15)-(25) extend results presented in [38-40] for a
sample without flux to the more general case of a three-
probe conductor subject to a flux.

Adding a lead away from a conductor and connecting it to
a reservoir gives us a simple way of introducing inelastic
scattering into the conduction process. This method was
used in [37] to study the effect of phase-randomizing events
on the persistent current in a small normal loop and to
investigate the dissipative response to a small oscillating flux
superimposed on a static flux. Reference [38] investigates the
transmission as a function of increasing inelastic scattering
through a series of closely spaced barriers; and the effect of
phase-randomizing events on resonant transmission through
a double barrier is discussed in [39]. Thus, additional leads
allow a double interpretation: They can be thought of as
voltage probes, and they can be introduced as inelastic
scatterers. Sample-specific fluctuations of voltage, resistance,
and conductance in a three-probe conductor are the subject
of [40, 45, 50].

o Point contacts
Further progress in lithography will make it possible to
produce samples with leads made from different materials.
An interesting possibility is the fabrication of barriers which
separate the conductor and the leads.* This produces current
leads [14, 20] and/or voltage leads which are weakly coupled
[37-39] to the conductor.

Let us consider the conductor shown in Figure 4. Current
is fed in at probe 1 and taken out at probe 2. Probes 3 and 4
serve to measure the voltage and are weakly coupled via
tunneling barriers to the conductor. The probabilities for
transmission from a probe into the conductor and into
reservoir 1 or 2 are small because of the intervening

*S. Kaplan and C. Umbach, private communication.
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tunneling barrier. Suppose the largest of these transmission
probabilities is e. The transmission probabilities of the
conductor of Figure 4 can be expanded with respect to the
small parameter ¢. Transmission from port 1 to port 2 can
proceed via paths which never cross the tunneling barrier,
and thus T,, = T%) +- - - to lowest order. The upper index
in parentheses indicates the order in e. But transmission
from port | to port 3, for example, is only possible by
crossing a barrier, and thus 7, = ¢ T\, + - - - . Transmission
from probe 3 to probe 4 requires that the barriers be
traversed at least twice, and hence T,, = eZTf: +-.-.Via
current conservation, the reflection coefficients can be
expressed in terms of the transmission probabilities.
Evaluation of Equation (12) yields a resistance

o= (1)1 DT TR
12,34 ez T (T(l) + Tglz))(Till) + Tilz)) .

31

(26)

T=T3=T  has the symmetry of the transmission
probability of a two-terminal conductor given by Equation
(15). The sums T, + T,, and T,, + T, are also symmetric
with regard to flux reversal, since T, is zero to order e.
Therefore, Equation (26) has precisely the symmetry
required by the reciprocity theorem, Equation (3). Using
Equation (12), it is now easy to calculate the resistances
which are measured if current is fed and removed differently
and the remaining “good and bad” contacts are used to
measure the voltage. For the conductor of Figure 4, this
yields six resistances which satisfy the sum rule, Equation
(13). Equation (26) shows that the resistance, even when
measured with point contacts, depends on the details of the
coupling of the contacts to the conductor. The resistance is
not determined by the properties of the conductor alone (zero
transmission probability through the contacts), but depends
explicitly on how carriers can enter and leave the conductor
through the probes.

Instead of using Equation (7) we can derive Equation (26)
in the following way: The voltage at probes 3 and 4 can be
calculated by using Equation (17). To the lowest order in e,
the existence of one probe does not affect what is measured
at the other. We thus find

— Typ +Typ, @7
s T, +T,
and

_ Topu +Tyu, (28)
e T, +T,

Here we have omitted, for simplicity of notation, the upper
indices on the transmission probabilities indicating the order
in e, The measured potential difference is

T31T42 - 71,7,

32741

BT T T )T, + Ty 1~ F)
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The net current through the conductor from probe 1 to
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probe 2 is to lowest order in ¢ unaffected by these probes.
Thus the current is / = (e/h)T(u, — p,). Using this and
Equation (29) yields the resistance given by Equation (26).
Let us again emphasize the possibility of measuring negative
resistances in a four-terminal setup. Both u, and g, are
bounded by p, and u,;i.e., u, = p, = p,and p, = p, = p,,
but p, is not necessarily greater than u,. Thus, the only
general bound we can give for the measured potential
difference is | #; — 1, | < p, — u,. Hence, the measured
resistance ¥, 5, for the conductor of Figure 4 has upper and
lower bounds given by the two-terminal resistance,

h\1 hy1
el

We return to the subject of negative four-terminal resistances
in Section 5.

o The Landauer formula

A very often quoted formula for the resistance of a one-
dimensional conductor is the Landauer formula

[16, 28,29, 57]

#=(h/e)RIT). (1)

How does this result relate to the resistance formulae
discussed above? A four-terminal interpretation of Equation
(31) has been put forth by Engquist and Anderson [32]. To
arrive at Equation (31) they not only assume that the voltage
probes are weakly coupled, as discussed above, but also
assume that the probes couple to the conductor in a
symmetric fashion with regard to right- and left-moving
carriers. Furthermore, at the junction of the conductor with
the probe, they match the currents and not the current
amplitudes. In contrast, our treatment is fully quantum-
mechanical. We also note that the situation envisioned by
these authors differs from that of Figure 4 in that the voltage
probes are connected to the perfect leads and the conductor
is disordered only between the voltage probes. Elastic
scattering is then characterized by a transmission and a
reflection probability 7" and R of the disordered region.
These simplifications and assumptions give rise to
transmission probabilities T, = T,, = T'to order ¢*, T}, =
1,=7T,=T1,,=1+R,T,,=T,,=T,=T,, = Tto order
e,and T,, = T,, = T to order ¢". Using this in Equation (29)
yields

= =31 + R — (1 = R 1(u, — u,)
= R(s, — ). (32)

Since the current is I = (e/h)T(un, — p,), this gives Equation
(31). Thus, by using the assumptions of Engquist and
Anderson, we can deduce the Landauer formula from
Equation (12) or Equation (26). T has the symmetry of the
transmission probability of a two-terminal conductor. Since
R =1 — T, the Landauer result is symmetric under flux

IBM J. RES. DEVELOP. VOL. 32 NO. 3 MAY 1988




reversal. Instead of Equation (3), the Engquist and Anderson
discussion yields £, ,(H) = £, .(H)= £, (—H);ie, it is
not necessary to exchange current and voltage leads when
reversing the magnetic field. For a four-probe conductor, we
typically have six differing resistances, whereas the Engquist
and Anderson discussion yields only three. In addition to
#,, ;4 given by Equation (31), using Equation (12) and the
transmission probabilities as specified above, we find £, ,, =
—(h/e*)[R/T} and #3.4, = 0. The sum of these three
resistances, according to Equation (13), is zero. (Note that in
the latter configuration, the voltage difference is not
measured along a piece of the conductor carrying a net
current. Such voltage differences across Y-shaped leads are
generally not zero and have indeed been measured [41]. For
another experiment demonstrating such nonlocal effects, see
[58].) In principle it could have been possible that for strictly
one-dimensional conductors a higher symmetry than that
predicted by Equation (3) applies. But Equations (12) and
(26), which are valid independent of the number of
channels, tell us otherwise. Note also that the symmetry
assumed by Engquist and Anderson on the coupling of the
voltage probe with the conductor ensures that the resistance,
Equation (31), is always positive, in contrast to Equation
(26). We return to the discussion of the Landauer formula
from a different point of view in Section 5. The symmetry of
the conductance formulae of Azbel {25} and Biittiker et al.
[21] is discussed in Appendix B.

4. Rigidity of the reciprocity symmetry

The situation discussed until now is highly conceptual. We
have discussed conductors with four leads which are
connected to reservoirs so close to the conductor that it can
be assumed that scattering within the conductor is only
elastic. Clearly, the spatial separation of elastic and inelastic
scattering is more a theorist’s invention than an
experimental reality. In the experiments, the probes lead
away from the section of conductor which is under study.
The probes are connected to macroscopic pads over
distances which are large compared to the inelastic scattering
length. Thus, inelastic scattering occurs in a rather uniform
fashion throughout the conductor and the leads. Using the
concepts developed here, we would like to understand why
reciprocity is also observed in the presence of inelastic
scattering. Furthermore, reciprocity is also observed
regardless of how many probes are connected to the
conductor. We have already pointed out that probes act like
inelastic scatterers. Thus the validity of the reciprocity
relations both in the presence of inelastic scattering and in
the presence of an arbitrary number of leads attached to the
conductor is really the very same problem.

Below we show that the relations of Equations (6) and (7)
can be generalized and are valid for transmission
probabilities which are the sum of an elastic coherent part
(el) and an inelastic or incoherent part (in). Thus, in general,
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4 Five-probe conductor. The addition of a lead does not change the
% reciprocity symretry and permits us to study conductors which are

large compared to the phase-breaking length.

T,(8)=T,,(2)+ T, (2) (33)

where the combined transmission probability T, ; has exactly
the symmetry given by Equation (5). Similarly, the reflection
coefficients are in general a sum of both an elastic and an
inelastic part, and the symmetry of the total reflection
probability is again given by Equation (5).

Consider now the conductor shown in Figure 5, where we
have added a fifth probe connected to a potential x,. The
currents in this conductor are determined by Equation (7),
where i = 1, -- -, 5. Here we want to show that by
eliminating one of the chemical potentials, say u,, we once
again obtain Equation (7), with i =1, - - -, 4 and T}, replaced
by 7. This then shows that Equation (12) is still valid; the
only difference is that the T are replaced by T Ifprobe 5isa
voltage probe or an inelastic scatterer, we must require that
I, = 0. This condition determines n, as a function of the
remaining chemical potentials,

13
Hs = mg T,u,. (34)
Using Equation (34) to eliminate . in the equations for the
currents at the other probes yields

e - S s
I = ;[(N,» -R)- T,,.u,], (33)
j=1
with
R.=R +——T"5T5i (36)
ii ii N5 — RSS,
A T.T..
T =T, +——L (37)

i Tij — :
NS RSS

In Equations (36) and (37), the first term gives the reflection
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Reservoir

Normal loop penetrated by an Aharonov—Bohm flux supports a
circulating equilibrium current despite the coupling to a
phase-breaking dissipative reservoir. From [37], reprinted with
permission.

R A

(transmission) of carriers which have not entered reservoir 5,
and the second term gives the reflection (transmission) of
carriers which have entered reservoir 5. Since the reservoirs
act as phase-breakers, the second term in Equations (36) and
(37) can be viewed as the inelastic, incoherent part of the
total reflection (transmission) probability. The first term in
Equations (36) and (37), on the other hand, describes
coherent reflection (transmission). Thus Equations (36) and
(37) appear as simple generalizations of the relations found
for a three-probe conductor [38-40].

Now it is easy to see that the symmetry of the new
transmission and reflection probabilities 7" and R is the
same as that of the original purely elastic transmission
probabilities. Furthermore, by using Equation (7) for a five-
probe conductor and eliminating u,, we obtain

4
N=R+X T, (38)
j=1
and
4 A
N=R+3X T, (39)

Equations (38) and (39) are a consequence of current
conservation in a four-probe conductor. Therefore, the T
and R satisfy the same symmetry conditions and current-
conservation relations as the 7 and R. Hence, all results
obtained for the 7 and R in Sections 2 and 3 of this paper
are also valid for the 7 and R.

Obviously, if we have a conductor with many leads n > 4,
we can repeat the steps outlined above # — 4 times, until
only the chemical potentials of the particular four-probe
measurement under study occur. Equation (12) is then valid
for a set of generalized transmission and reflection
probabilities. Thus, these considerations show that the
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reciprocity symmetry is a very rigid feature of electrical
conduction. Reciprocity applies regardless of the number of
leads attached to the conductor and regardless of whether we
deal with elastic or inelastic transmission.

5. Self-induced fields

Charge transport gives rise to magnetic and electric fields. In
the presence of steady current flow, considered in this paper,
current density and charge density are related to fields via

¢cVXB=j, (40)
VD =4xe(p — p,)- (41)

In this section we are chiefly concerned with the induced
electric field, or with the associated electrostatic potential U:

V2U + (4wefe, Yp — p,) = 0. (42)

The key intention is to explore the connection of the
electrostatic potential U(r), which is defined at every point in
the conductor with the chemical potentials measured at the
contacts, as discussed in the previous sections. Before
discussing this, it is worthwhile to consider briefly the
induced magnetic fields.

o Magnetic field induced by persistent currents

Consider the conductor in Figure 1 at equilibrium. All the
reservoirs are at the same chemical potential, p = p, = u, =
p, = u,. According to Equation (7), this implies that the
currents at all the contacts are zero, I, = I,=I;=1,=0.
However, this does not imply that the current density j(r) is
zero in the interior of the conductor. Simple model
calculations suggest that there exists an equilibrium current
pattern j(r) in tiny and open conductors. Figure 6 shows an
open conductor. A loop is connected to a reservoir via a
single lead. The lead allows an exchange of carriers between
the loop and the reservoir. As shown in [37], such a loop
exhibits a persistent current which is a periodic function of
the flux ® threading the loop. The amplitude of the circular
equilibrium current is nonzero as long as carriers can
complete a full revolution before escaping from the loop into
the reservoir. This simple model was introduced to discuss
the effect of inelastic events on the circular currents found in
closed loops in [18]. The simple model of Figure 6
demonstrates that circular equilibrium currents are not a
property of closed systems only. Considering the lead
connected to a reservoir as an inelastic scatterer, [37] arrives
at the same conclusion as [59]): A modest number of inelastic
events only reduces the amplitude of the circular currents
but does not suppress such currents completely. Comparison
[8, 10] of the inelastic effects introduced via a current lead
coupled to a bath [37] with intrinsic inelastic effects in a
closed loop [59] highlights the effect of coupling a
measurement probe to a tiny conductor. For additional work
on closed loops we refer to [60). In the conductor of Figure
6, an equilibrium current pattern arises because elastic
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scattering leads to a density of states which is sharply peaked
near the eigenstates of the closed loop. In a more general
geometry, such as the conductor in Figure 1, carriers are not
confined to move on a circular path. However, it is known
that quantum-mechanical interference leads to an enhanced
probability for a carrier which initially is at point P to return
to point P (see for example [15]). A net current arises if the
probabilities for clockwise and anticlockwise motion along
such a path are different. Since the net current through the
contacts is zero, no joule heat is produced. Calculation of
these currents requires knowledge of the wave functions at
every point in the conductor. Moreover, since the currents
are an equilibrium feature, they are not determined by the
states at the Fermi energy alone but require knowledge of
the wave functions at all energies. Typically, however, the
main contribution to these currents arises from a narrow
energy interval extending from the Fermi energy to an
energy somewhat smaller. On a length scale, small compared
to the phase-breaking length, we can thus expect to find a
nonzero ensemble average ([j (r)]Z ). These currents induce
a magnetic field according to Equation (40).

If the chemical potentials of the conductor of Figure 1 are
different and a net current is induced, say from contact 1 to
contact 2, then, as is well understood, an additional
magnetic field B(r; x, — u,) is produced which is
proportional to the difference of the chemical potentials. We
do not discuss this further, but instead refer the reader to
[42] and [61], which calculate such fields in the metallic
diffusive regime.

o Induced electric fields

Induced electric fields in the presence of current flow past
isolated impurities have been emphasized by Landauer

[27, 28, 58, 62]. Local fields are of importance for the
discussion of nonlinear effects [63, 64], and they play a
central role in the von Klitzing effect [65]. Here we wish to
stress the distinction between the local field E(r), or the
potential U(r), and the chemical potentials g, discussed in
the previous sections of this paper. The chemical potentials
u,; are thermodynamic potentials which characterize a bath.
The potential U(r), on the other hand, characterizes the
distribution of unscreened charges in the conductor. In a
macroscopic conductor, where each volume element also
contains a large number of carriers, U(r) also becomes a
thermodynamic quantity, i.e., a local Fermi energy. In a
macroscopic conductor, we can couple the volume element
under consideration to a bath, and if the coupling is
sufficiently “weak,” the bath has a chemical potential u(r) =
eU(r), at least if U(r) varies slowly compared to the
screening length. In the coherent quantum transport regime
we must be more cautious. It makes a difference whether a
small conductor over a given length interval is closed, or has
a junction to an extra lead, with a reservoir attached. In
general, as we show, u(r) # eU(r).
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One-dimensional two-probe conductor

Consider a one-dimensional conductor consisting of a
disordered region with perfect leads attached to each side.
The perfect leads are in turn connected to reservoirs at
chemical potentials x, > u,. Now suppose that self-consistent
screening applies for the equilibrium situation, i.e., for u, =
#,. Consider the additional charge density A p induced by

the current flow. The density of states in the perfect leads,
corresponding to states with positive velocity, is dn/dE =
1/2xhv. We denote the wave function which describes
carriers incident from reservoir 1 with chemical potential g,
by ¢,(x), and the wave function which describes carriers
incident from the right by ,(x). The added charge is [37]
A= — i) 01, @)
where ¢, is normalized such that the incident beam has unit
amplitude. Both the wave function and the density of states
are taken at the Fermi energy. In a region where An is
spatially independent, this excess density is screened. Since
the total charge density in such a region is zero, the

screening field raises or lowers the band bottom to achieve
this [62]. The charge which is gained or lost by adjusting the
band bottom is

any =2 (U )1 9,001 + 19,01, (@4)
Note that An_ is the local excess density which builds up if
the chemical potential of both reservoirs is raised by elU — u,
from u, = u,. The net charge difference Ap, which remains
unscreened and enters Equation (41), is thus Ap =

An — An_. Inserting this into Equation (41) yields a
differential equation for U(x):

NV2eU(x) + [u, | ¥, I°+ uy | ¥,
—eUG)1 ¥, 1>+ 1,11 =0,

where A = (e:L/4-:re2)l/z(dE/dn)”2 is a screening length,

The proper solution eU of Equation (45) has the value g, in
the left reservoir and drops to the chemical potential g, in
the reservoir to the right. Below, we resort, for simplicity, to
drastic approximations. Suppose that the wave functions
vary slowly on the scale A, the screening length. In this case
the first term in Equation (45), AV U, can be neglected,
and we obtain

19,00, + 1 9,(0) s,
[, )%+ [, (x)|

If the screening length is not short compared to the Fermi
wavelength, we can still salvage Equation (46). If we are only
interested in the long-range variation of U(x), we can
average the wave functions in Equation (45) over distances
of the order of . Clearly, if such an averaging procedure is
used, some information on the phase sensitivity of U(x) is
lost. Equation (46) was obtained by Entin-Wohlman et al.

2
|

(45)

eU(x) = (46)
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[35], who argue that eU(x) is what is actually measured at a
chemical potential probe.

Applied to the perfect leads, Equation (46) reproduces,
with an additional approximation, the Landauer result,
Equation (31). To see this, consider a scatterer connected to
perfect leads. The scatterer has a transmission probability
T=|t| ? and a reflection probability R = | r| 2 To the left
we have | ¢, | =1+ R, | ¢, | = T, and from Equation (46)
we find

eU, =5[(1 + R)p, + Tu,]. @7

To the right we have |y, |2 =T, ¢, |2 =1+ R, and from
Equation (46) we find

eU,=3[Tu, + (1 + R)u,]. (48)

Since the total current driven through the conductor is I =
(e/M)T(p, — u,), we immediately find ¥ = (U, — U}/ =
(h/€’YR/T).

In the derivation of the Landauer formula given above, we
have related | ¢ | ? to the transmission and reflection
probabilities. Since the reflected wave interferes with itself,
the exact density of carriers is determined by | ¥(x)| =
1 + R + 2Re(re ™). Since the reflection amplitude 7 is
proportional to R'? = R, it is actually the interference term
which is dominant for weak elastic scattering (R < 1). If the
exact expression for the charge densities is inserted into
Equation (45), the result is a voltage which is oscillating even
in a perfect lead. The suppression of such interference terms
is one reason that Landauer’s result is positive, whereas
Equation (26), which allows for such interference terms, can
give a negative resistance.

The voltage U(x), as defined by Equation (46), does not
match the chemical potentials of the reservoirs. (This can
only be achieved by allowing the one-dimensional leads to
spread out to accommodate a large density of states
[16, 58, 66].) Imry [11] has pointed out that the difference
in potential between a reservoir and a lead gives rise to a
contact resistance, £, = (h/e’ )V, — U,)/I, where p, = V.
Using Equation (47), the contact resistance is, according to
this interpretation, universally equal to 4/2¢’ for a one-
channel conductor. However, due to the oscillatory nature of
the voltage in the lead, we can expect such contact
resistances to fluctuate from sample to sample and to exhibit
a sensitivity to the phase of the wave function. If we consider
the conductor of Figure 4 and use the results of Section 3,
we find contact resistances which can fluctuate in a wide
range. If we define the contact potential as 4, ~ ., and use
Equation (27), we find a contact resistance with a lower
bound of zero and an upper bound of (h/e2)T_l.

Equation (46) can be used to determine the voltage U at
two arbitrary points along the conductor [35]. Denote these
points by x, and x,. Then, by evaluating ¥ = (U, — U,)/I
with the help of Equation (46), we find
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R(x,, x,)
B 1)) = 1001 )1
& T I, 0)1 + 19 I )17 + 1,06)1°1

(49)
Equation (49) is reminiscent of Equation (26). Like the
Landauer formula, however, it does not contain any
perturbations due to the leads. It links the electrical potential
Ul(x) to a “resistance.” The “resistance” given by Equation
(49) typically exhibits no symmetry at all with regard to flux
reversal, If Equation (47) is applied to a one-dimensional
ring [35, 67] and at least one of the points x, or x, lies in the
disordered part of the conductor, the resistance given by
Equation (49) can be expected to be neither antisymmetric
nor symmetric with respect to flux reversal, despite the fact
that the conductor is only connected to two reservoirs. This
is demonstrated by a calculation in [67]. [Reference [67]
makes an additional approximation and replaces the local
equilibrium density of states with the density of states in the
leads. This corresponds to setting the combined densities of
the two wave functions multiplying U in Equation (45)
equal to 2.] A similar calculation in [35] finds a purely
antisymmetric resistance, due to the high symmetry of the
conductor investigated and the symmetric location of the
points x,, x, chosen.

One-dimensional many-probe conductor

To better illustrate the difference between the voltage
measured at a contact and U given by Equation (46), we
consider for simplicity a one-channel conductor connected to
three reservoirs, as shown in Figure 3. Let the density of
states in all the leads be equal. Proceeding as above gives, for
a three-probe conductor, a local voltage U(r),

O iy + 10 Py + 1,000 b,
)P+ 1,01 + 19,017

Here the index on the wave function indicates the reservoir
from which the carriers are injected into the conductor.
Equation (50) is valid for every branch of the conductor with
r=Xx,r=y,orr=zon the corresponding branch (see
Figure 3). Connecting a lead to the conductor thus changes
the potential throughout the conductor. Equation (48)

has been evaluated in the perfect leads of a three-probe
conductor in [38]. Let us briefly consider probe 3, acting as a
voltage probe, and show that Equation (17) results. In this
case, within the perfect lead of probe 3, we have | ¥,(x)| ?=
Ty, 19,(0)1° = T,,, and | ¢,(x)|* = 1 + R,,. Inserting this
into Equation (48) and using Equation (7) for i = 3 with I,
= 0 yields eU, = u,. This is an astonishing result in view of
the approximations made to arrive at Equation (50). For a
voltage lead which does not support a net current, it might
be more adequate to consider just the long-range variation of
U (and thus to neglect the interference terms in the absolute

eU(r)= (50)
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values of the wave functions). Clearly, these results can easily
be extended to a four-probe conductor with one-dimensional
perfect leads. In this case, the voltage U(r) is determined by
four wave functions and four chemical potentials. Thus, for
the many-probe conductor with one-dimensional leads, we
have an (approximate) picture of the connection of the local
potential with the chemical potentials of the measuring
baths. We see that the reciprocity symmetry is connected to
the fact that at a probe (a point of measurement), three

(or four) wave functions determine the outcome of the
measurement. In contrast, only two wave functions are used
in Equations (46) and (49).

Potential fluctuations in the measurement lead

Equation (50) leads to a picture of the local potential U(r)
along a three-probe conductor, as shown in Figure 7. A net
current flows from the bath with chemical potential p, to the
bath with chemical potential x,. The measurement probe,
leading to a bath at a chemical potential u, given by
Equation (17), is connected to the conductor at point P,
Equation (50) predicts a potential U(r) which fluctuates
along the probe depending on all three wave functions ;.
Fluctuations of U(z) along the probe occur for several
reasons. First, the probe itself is typically a disordered
conductor, In this case the fluctuations are determined by
the precise disorder configuration within a phase-breaking
length. Even if the probe is an ideal perfect wire, a voltage
variation occurs across the junction of the perfect probe with
the conductor [38, 40]. Thus, in general, the chemical
potential u, = eV, is not related in a simple way to the local
potential U, = U(P). The fact that U, and V; are not equal is
important. It means that a contact potential difference V. =
U, — V exists between the local potential at P and the
measured voltage. Typically, voltage drops arise due to
current flow past an obstacle. But in the conductor depicted
in Figure 7, there is no net current flow in the measurement
lead. A situation similar to that shown in Figure 7 also
follows from the work of Maekawa et al. [43] and Kane et
al. [45]. They define a local electric field by enforcing current
conservation on an expression for the nonlocal current-field
relation.

The existence of such contact potentials means that a
voltage measurement with a lead does not give us direct
information on the local potential of the conductor at the
point of attachment. Such contact potentials arise not only
in the metallic diffusive limit. Even if voltages were
measured by inserting a tunnel junction between the
conductor and the lead, or if the tunneling microscope were
used to measure the potential [68], such contact potentials
would also be present. In the presence of a large barrier, the
wave functions y, are exponentially attenuated at the
junction. The wave functions ¥, and ¥, have an
exponentially small amplitude factor in the measurement
lead; ¢, which is large in the probe, is exponentially small in
the conductor. As shown by Equation (17), the measured
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One-dimensional conductor with a voltage probe. Current flows
from the bath at chemical potential W, to the bath at-chemical
potential w,. A voltage probe is attached to the conductor at point P.
The measured chemical potential is 1. The heavy line depicts the
local potential U along the x, y, and z segments. Typically, the
measured chemical potential differs from the electric potential U at
the point P of attachment. Screening causes the band bottom (faint
lines below ) to follow U(r).

voltage is determined by T}, and T,,, i.c., by the
exponentially small wave functions ¢, and ¢, at the location
of the bath. If the junction cannot be controlled on an
atomic scale, the attenuation of ¥, and ¥, at the barrier
varies exponentially from sample to sample. Hence the ratio
T,/ T, exhibits fluctuations that increase as the coupling
between the lead and the conductor becomes weaker.
Invoking tunnel junctions between the leads and the
conductor can, therefore, be expected to increase the
fluctuations in the contact potential and to lead to voltage
fluctuations which are even bigger than those measured
[41,42] in the metallic diffusive limit {40, 46, 49, 50]. Even
metallic-diffusive voltage probes give rise to voltage
fluctuations which increase with the length of the probe
[40, 46].

Since the chemical potential of a measurement probe
is not simply related to the voltage U at the point of
attachment, measurement of negative resistance in the
geometry of Figure 4 does not imply that the voltage U
increases in the direction of the current flow. The contact
potential V. can be positive at probe 3 and negative at probe
4. If these contact potentials are large enough, we measure a
negative resistance despite the fact that U(r) drops
monotonically along the conductor.

Voltages can be measured other than by the exchange
of carriers with a probe; an alternative technique uses
capacitive probes [57]. It is suggested that in the absence
of particle exchange with the measurement probe we can
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measure the local potential U,. Thus, the appearance of
contact potentials discussed previously is avoided. The key
question which must be answered is this: Can we have
enough Coulomb coupling between the conductor and a
capacitor plate to make a measurement without significantly
affecting the effective potential which the carriers see while
moving along the conductor? A recent experiment which
uses capacitive coupling to shift the phase of the Aharonov—
Bohm oscillations [18-21] is described in [69].

Measurement-theoretical aspects

Equations (15) and (17) are also of interest for the theory
of measurement [70). We can look at these equations as
describing the interaction between the measurement
apparatus (the measurement probe with a bath attached at
its end) and the system (the conductor). In contrast to the
discussions of the measurement process, which treat a
Hamiltonian for the combined system, the approach
presented here describes the measurement as a scattering
process and analyzes an S-matrix. The phase of the wave
functions is broken by the reservoir at the end of the probe.
This notion avoids a difficulty which measurement theory
tries to explain: Why doesn’t the measurement apparatus
obey the superposition principle even though the total
system is described by a Hamiltonian?

There is a fundamental difference in how we have treated
the local potentials and the currents. The reciprocity
symmetry is a consequence of microscopic reversibility.
Current conservation and time-reversal invariance are what
determine the symmetry of the transmission probabilities in
Equations (6) and (7). In Equation (45) the time-reversed
wave functions of ¢, and ¥, do not occur. The time-reversed
wave function of ¥, describes carriers incident from both
reservoirs which in the disordered region interfere, giving a
beam of unit amplitude for the outgoing wave. The time-
reversed wave functions are excluded, since carriers incident
from different reservoirs are incoherent [18, 62].

Local potentials in a many-channel two-probe conductor
Consider a disordered region connected to two perfect leads.
Assume, for simplicity, that the perfect leads are strips,

with x the direction along the lead and y the direction
perpendicular to the strip. Also assume that the perfect leads
to the left and right are identical and support ¥ quantum
channels with a density of states (dn,/dE) = 1/2xhv,. Here
v, is the velocity in channel i at the Fermi energy in the x
direction. As in [21], we assume that the reservoir feeds
channels incoherently with respect to one another. With
these specifications the many-channel generalization of
Equation (46) is

N

o1
o U0 M)y + 1,05 )1 0,)
1 7
i=N

eU(x, y) = (51)

! :
o L D1+ 14,00 )]

i=1
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Here ¢, , is the wave function at the Fermi energy describing
carriers incident in channel i from the left-hand reservoir.
Similarly, ¥, , describes carriers incident in channel i from
the right-hand reservoir. As in the one-channel case, the
amplitude of these wave functions is normalized such that
the incident wave has amplitude 1. The voltage U(x, y)
obtained in this manner is a complicated fluctuating
function of x and y. Let us briefly discuss the voltage U(x, y)
in one of the perfect leads. In the perfect leads we can
represent the wave functions ¥ as a superposition of
eigenstates of the lead Hamiltonian. This Hamiltonian is
separable and has eigenstates eti"’xj;( ). Here f(y) is the
“transverse eigenfunction” of channel j and k, is the wave
vector along the lead. The wave functions in the left perfect

conductor are
j=N

V= I SDB,;€ + (0,/u) r,, e (52)
j=1

for carriers incident from the left, and
j=N

¥, = 'El NAGY N )l/zt1 z,j‘.e_ik,-x (53)
J=

for carriers incident from the right. Here 7,, , is the
probability amplitude for reflection into channel j of a
carrier incident in channel /. ¢, ,, is the transmission
probability for carriers incident in the right perfect
conductor in channel j to reach channel i to the left. The
density of carriers |, | ? contains diagonal terms
FAGY) fj"’ (») proportional to the density of the incident wave
(in channel i) and the density of the reflected waves. There
are off-diagonal terms f,(») fj* (»)e"“™* proportional to the
reflection amplitudes in channels ; and j. Furthermore, there
are 2N terms which arise from multiplying the incident wave
with the reflected waves. These latter terms are proportional
t0 (S ( y)e~%*. Hence the voltage U in the perfect leads
is nonuniform and exhibits long-range oscillations, since
k; — k; can be small (of the order of k./N). Therefore, since
screening typically occurs over much shorter distances, the
voltage U(x, y) follows these long-range oscillations.
References [21], [25], and [34] do not allude to spatially
nonuniform voltages in the leads, but attribute a spatially
averaged voltage to each lead. In these works the densities
|y |2 are averaged with respect to x and y. Thus
the densities are expressed in terms of transmission and
reflection probabilities alone. The potential drop across the
disordered region is obtained by introducing these averaged
densities into Equation (51). The result for the conductance
is given in Appendix B [Equation (B7)]. We emphasize that
using the spatially averaged densities in Equation (51) is not
equivalent to calculating a spatial average of the exact

voltage; i.e., (eU) = < — > # 2 ; . Thus, the spatial

average of Equation (53) is in general not equal to the
potentials determined in [21, 25, 28, 29, 34]. To calculate
the voltage drop across the disordered region, [21], [25], and
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[34], following [28] and [29], treat the carrier densities
classically.

To achieve a uniform voltage in a perfect lead, it is
necessary to consider a lead that supports a number of
channels which is large compared to G/(e/h). In this case
the amplitudes of the wave functions [Equation (53)]
associated with the transmitted carriers are small. We can
neglect the terms in Equation (51) proportional to g, in the
left perfect lead and can neglect the terms in Equation (51)
proportional to g, in the right perfect lead. Wide leads are
needed if we want to construct a potential which smoothly
joins the chemical potentials of the reservoirs.

6. Conclusions

The resistance formulae discussed in Sections 2-5 exhibit a
certain beauty and elegance. Their agreement with the
experimentally observed symmetries [27, 36] and their
successful application [43-46, 49~50] makes one suspect that
they will likely survive more realistic treatments of, for
instance, the reservoirs. We have first derived expressions for
quantum-mechanical coherent transmission. In physically
relevant situations, we deal with coherent and incoherent
transmission. Qur expressions are also applicable in this case,
and permit us to study the continuous transition from
completely coherent to completely incoherent transmission
[38, 39]. We have emphasized that resistances measured at
contacts relate chemical potentials and currents.
Furthermore, our discussion stresses that the measured
resistance depends on the properties of the contacts, whether
we deal with good contacts or with point contacts.

The discussion of the local electric potentials given in
Section 5 seems much more susceptible to the detailed
assumptions which we have made. Realistically, a reservoir
feeds carriers into the conductor not in a continuous
coherent fashion but with finite coherence length and with
fluctuations in time. That has little effect on the total (time-
averaged) current, and it is only currents which determine
the resistances of Sections 2-5, but it is likely to alter the
charge accumulated in some small spatial region. The
detailed distribution of charge and voltage is, however, of
interest and provides a physically appealing picture. We
hope, therefore, that the problems exposed in Section 5 will
stimulate further research in this direction.

Appendix A: Transmission probability
expressions for the Casimir conductances
Reference [7] finds the following expressions for the
conductances in Casimir’s equation [(8), (9)] relating two
currents in a four-pole conductor to the chemical potentials:

a, = (€"/DI(1 = R )S = (T, + T )T, + T,)S, (A1)
a,, =(e’/h)(T,,T,,— T,,T,)/S, (A2)
ay, = (€’ /)Ty, Tyy — Ty, TS, (A3)
a,, = (€/M[(1 = R,)S — (Ty, + T, XTIy + THI/S,  (Ad)
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where
S=T,+T,+ T,+T,= T, +T,+ T,,+T,. (A5)

From Equation (5) it follows that the diagonal coefficients
are symmetric in the flux, and the off-diagonal elements
obey a,,(®) = a,,(—®). The 8 conductances describing

the situation where a current I, flows from terminal 1 to
terminal 4 and a current I, flows from terminal 3 to terminal
2 are obtained by the substitution 3 - 4,4 —-2,2 — 3in
Equations (A1)-(AS5). The v conductances describing the
situation where a current I, flows from terminal 1 to
terminal 2 and a current I, flows from terminal 4 to terminal
3 are obtained by the substitution 3 - 2,2 4,4 —» 3in
Equations (A1)-(AS).

Appendix B: Four-terminal interpretation of the
conductance formulae of Azbel [25] and Bittiker
et al. [21]

A four-terminal interpretation of the results of [21] and [25]
is explicit in the work of Sivan and Imry [34]. Below we
show that such an interpretation is compatible with the
reciprocity theorem, Equation (1), in the absence of a
magnetic field, but that it contradicts the reciprocity
theorem, Equation (3), in the presence of a magnetic field.
To this extent we picture, as in Figure 4, two contacts
separated by a tunnel barrier from the perfect leads. We
introduce the total transmission and reflection probabilities
into channel i for carriers incident from the left,

j=N j=N

R,= 2 R21,ij’ I,= z T21,ij’ (B1)
j=1 Jj=1

and channel { for carriers incident from the right,
J=N =N

Ri'= ¥ Ry s Ti’ =3 T,,;- (B2)
j=1 j=1

In these papers the measured voltage is determined by the
piled-up densities. The density in channel i on the left is
proportional to vi_l T, due to transmitted carriers from
reservoir 1. It is now assumed that the piled-up densities
determine the flow of current from the conductor to the
measurement probe. The current from all of the N channels
to reservoir 4 is taken to be proportional to

i=N
T,=T,=¢ vi—lTw (B3)

1

with a matrix element e coupling a// the channels of the
conductor equally to those of the measurement lead. Note
that in this discussion coupling of the conductor to the
measurement leads is described by a single parameter e.
Similar considerations give

i=N

T,=Ty=¢ P v;lTil’ (B4)
i=1
i=N

T,,=T,=¢ Y v, (1+R), (BS)

i=1
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i=N
T,=T,,=¢ ¥ v;'(1+R]).

i=1

(B6)

Furthermore, T,, = T,, = 0 to order ¢. To lowest order in e,
the transmission from reservoirs 1 to 2 is unaffected by the
probes, T = T,, = T,,. T has the symmetry of the two-
terminal transmission coefficient, Equation (16). Using these
results in Equation (7) or Equation (8) yields

hy1
'@12,34 - (62) T

Equation (B7) is the main result of [21] and [25]. In the
absence of a magnetic field, the transmission probabilities
given above have the required reciprocity symmetry for the
transmission probabilities associated with a four-terminal
conductor. However, in the presence of a flux ®, the
transmission probabilities given above do not obey
[Equation (5)], T;,(®) = T, (—%). From Equation (B3)

we find

32 (1+R,~T)
2%
Y;

T, (@)= T, (~#)=¢ 3 v'[T(&)~ T,(~2)),

i=1

(B8)

which is in general not zero, since T,(®) # T,(—®). As
pointed out in Section 5, the results of Azbel [25] and
Biittiker et al. [21] relate a spatially averaged local electric
potential difference AU to a resistance, not a genuine
chemical potential difference Au. From this viewpoint it is
not surprising that Equation (B8) is not symmetric under
magpnetic field reversal, as pointed out in [24]. The
reciprocity symmetry (3) is a consequence of the relation
between currents and chemical potentials, but says nothing
about the relation of electric potentials and currents.

We conclude this appendix with an estimate of the
magnetic field asymmetry [24] predicted by Equation (B7).
We consider a piece of conductor of length /, (the phase-
breaking length) and with an elastic scattering length /,. The
ensemble-averaged resistance is ( £, ) = ((h/e’)T"') =
(h/ez)(l /NL,), where N is the number of quantum channels.
Using the argument of Lee [71] that the reflection
coefficients fluctuate independently yields ([ £, ,,(®) —

Ry 1 (—®)°) = (h/€’Y'(,/1,Y. Since I, < ,, this is much
smaller than the experimentally observed asymmetry

[27, 41] which is of the order of (hje’y »@:, independent of
the separation of the voltage probes [41]. Equation (B7)
predicts a small asymmetry because it is determined by
spatially averaged voltages and because the physics of the
contacts is neglected.
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