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Volume 1 of this journal,  thirty-one  years  ago, 
included  a  paper  with  the  above  title.  Studies  of 
small  samples, in recent  years,  as  well  as  earlier 
work  on  disordered  samples,  have  caused  some 
of  the  content  of  the  earlier  work  to  become 
widely  understood.  The  aspects  stressed in  the 
title,  however,  relating to the  spatial  variations 
in  the  vicinity  of  a  localized  scattering  center, 
have  received little attention,  except in 
electromigration  theory  debates.  Here,  we  return 
to these  aspects  of  the  earlier  paper,  and 
emphasize  that  the  transport  field  associated 
with  a  point-defect  scattering  center is a  highly 
localized  dipole  field.  The  nonlinearity  of 
resistance in terms  of  scattering  cross  section is 
discussed. A theory  of  these  effects,  which  does 
justice to the  coherent  multiple-scattering 
effects  present  at  low  temperatures,  does  not 
yet  exist.  Such  a  theory is likely to modify  the 
effects,  but it is unlikely  to  cause  them to 
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disappear. We also  discuss  closed  loops, 
without  leads;  the  persistent  currents  expected 
in these;  and  a  possible  method  of  detecting  the 
persistent  currents. 

1. Introduction,  residual  resistivity  dipoles 
This paper intentionally repeats an earlier title [ 11. Reference 
[ 11 remained obscure for well over two decades, until its 
viewpoint was revisited by Anderson et al. [2]. Much of the 
content of [ 11 is  still unnoticed, and we return to it here.  In 
the meantime, an emphasis on small  samples,  Aharonov- 
Bohm effects, universal fluctuations, and localization has 
brought attention to a number of related  topics. It would 
overwhelm this brief  discussion, and this author’s skills, to 
attempt to make all the possible  cross-connections. That is 
best done by the reader  via other papers in this issue, and 
with the help of earlier  reviews [3-81. 

Reference [ 11 studied the spatial variation of electron 
transport currents, and the associated transport fields, in the 
vicinity of spatially  localized  scatterers, including both point 
defects and reflecting  planes.  Reference [ 11 pointed out that 
there was, in fact, pronounced spatial variation. The 
principal deficiency  of [ 11: It did not allow for the coherence 
between  successive  elastic scattering events which can be 
expected at low temperatures. This oversimplification  is 
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repeated  here to some extent. We  offer two  justifications. 
First  of a& there is  a  regime  of  validity  where,  typically,  only 
a few elastic scattering events occur before  inelastic 
scattering takes place.  More  significantly, much of  what we 
have to say can be expected to reappear in a more 
sophisticated form in treatments which do allow  for 
coherence. This paper's return to earlier themes is not 
intended to repeat the content of [ I]. 

Consider Figure 1. Current is maintained through a 
conductor containing localized scatterers and/or phonon 
scattering. One additional scattering center is introduced. 
Most  likely the resistance  will  increase.  We use the 
qualification "most  likely,"  because in the presence of 
coherent multiple scattering the resistance can decrease. (For 
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t boundaries. An additional point-scattering center, shown in black, 

example, if in a periodic array of scatterers one is  missing, f is introduced 

supplying the missing  scattering center will reduce the 
resistance.)  Additionally, in the presence  of inhomogeneity, 
it is  possible,  even under classical  macroscopic conductive 
behavior, to have  "backwards"  flow in places,  flow opposed 
to the direction of the overall flow.  We ignore this and 
invoke a mean field  view under which the extra scatterer 
introduced in Figure 1 is exposed to  an average incident """ 

carrier flux. -* 
If a fixed current is maintained at the boundaries of the 

sample, and the resistance is increased by the extra scattering 
center, the voltage  across the sample increases.  But the field 
cannot increase  uniformly throughout the sample; the field 
increase must occur near the extra scatterer. How  is the 
spatial variation of  field and current flow disturbed by a 
localized  scatterer? This is a question which we might  expect 
to find  discussed in every  solid-state text, and certainly in 
more specialized  review  articles.  But that is not the case. If \/' 

instead of a point scatterer we had introduced a  macroscopic 
cavity, the answer  would  be  obvious. There would  be  charges 
on the surfaces of the cavity, constituting the sources of a 
dipole field which  causes the current to detour around the 
cavity. As  we shrink the cavity,  where can we expect  a 
transition? The answer  given in [ 11 and elaborated 
subsequently [9-111: In some ways, there is no transition. 
The additional transport field  associated  with the scatterer is i Electrons in excess numbers are incident along A, then are scattered 

a dipole field  whose sources  lie within a  screening  length 1 to  C, then scattered by the background. The number of electrons 

(modified by Friedel  Oscillations) ofthe scattering  Potential. 1 scattered to D, then scattered by the background. The excess and 
i! incident along B is less than the equilibrium number. The deficit is 

The detour current pattern, taking the scattered current 1 

around the scattering center, is more complex than  in the 
case  of the macroscopic inhomogeneity, and is  shown in 
Figure 2, taken from [ 11. The incident carriers, after 
scattering by the defect,  move  ballistically for about one 
mean free path. At greater distances from the scattering the presence of electronic transport, we can expect this 
center, the detour current resembles that  due to a  symmetry to be broken, resulting in the residual  resistivity 
macroscopic  cavity. The localized dipole field  established in dipole we  have been  discussing. 
the presence of current flow can be made plausible in an Spatial variations are not only of conceptual interest. If  we 
alternative way. Consider an interstitial hydrogen in a are interested in electromigration of the defect  shown in 
symmetrical lattice site. The proton will  be screened by a  Figure  1, i.e., the defect motion in the presence of  fields and 
charge  which has the symmetry of the surrounding lattice. In currents, then the exact conditions at  the location of the 

\ 
\ 

\ 
\ 
\ 
1 
\ 
I 
I 

" I 
I 

\ 4 

" - * 
\ 

'\f ,' 
" -* D/dL,#* 

/ 
/ 

/ 
/ 

e.+ _"""""_ / 

A S B 

. .  . o ether and recombine alon the arcs. 

IBM I. RES. DEVELOP. VOL. 32 NO. 3 M A Y  1988 R. LANDAUER 



defect must matter. Electromigration is  a  field  beset  by 
controversy; but all modern participants admit to the 
existence of strong spatial variations at a lattice defect. As  we 
cannot here  describe electromigration theory, we cite two 
recent items to lead to the citation trail [ 121. 

Spatial variations, and the resulting  electric  field 
concentration, are also  likely to be relevant for nonlinear 
effects,  regardless  of the exact microscopic  mechanism 
leading to nonlinearity. This is  suggested  by  inelastic point 
contact spectroscopy,  which  utilizes the high  fields  present at 
a  very  small area contact between two conductors [ 131. 
Spatial variations can generate nonlinearities not only 
because the transport fields are nonuniform and spatially 
concentrated. Spatial variations are also  associated  with 
changes in the local carrier densities;  after  all,  a  spatially 
varying  field must be  generated  by  localized  charges. 
Nonlinearity in bulk samples, or in mesoscopic  samples, has 
not yet  received  very detailed attention; some discussion can 
be found in [ 14-1  81.  We return to the subject of nonlinearity 
in Section 5. 

Spatial variations need not be mentioned or understood 
explicitly.  Sufficiently sophisticated diagrammatic techniques 
can handle their effects without explicit allusion, as shown in 
parts of the electromigration literature. But simpler 
semiclassical techniques make it easier to become  aware of 
spatial variations and their potential effects. 

Spatial variations are not limited to dense degenerate 
Fermi gases. The densely populated systems,  however, 
permit the spatial variations to become more striking 
because 

a. Only in a dense electron gas can we pile up enough carriers 

b. A  dense electron gas  provides enough screening of 
to permit rapid spatial changes of the transport field. 

Coulomb fields so that all point defects give a  highly 
localized scattering potential, if we  neglect the long-range 
elastic distortions they  generate. 

2. R/(1 - R )  
In the one-dimensional case, [ 11 found a  resistance 
proportional to R/( 1 - R),  where R is the reflection 
probability.  At that time, this was  still  a result considered 
applicable to a  single bamer,  and not yet understood to 
apply to a more complex entity, e g ,  a disordered array of 
sequential barriers. Furthermore, the details of the analysis 
in [I] concentrate on a  localized plane barrier in a three- 
dimensional medium. The strictly one-dimensional case  was 
understood, but considered too playful to be worth 
presenting. The R/( 1 - R )  result had two obvious limiting 
forms; in neither case was the result  really  new. For R << 1 
the result  simply repeated the fact  explained in every  text: 
Resistance  is proportional to scattering probability. In the 
opposite case,  where T = (1 - R )  << 1, the result  was  also 
known. This is the case  of the resistance of a tunneling 308 
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barrier which permits little carrier penetration. In  1957  solid- 
state tunneling barriers, as reproducible and quantitatively 
characterizable entities, did not exist.  Nevertheless, their 
theory had been  discussed at least as early as 1933 [ 191. 
Thus, the R/( 1 - R )  result could be considered to be a trivial 
interpolation of known  answers. It was not, however, 
regarded that way [20]. 

that a current is  flowing and is maintained as a barrier is 
introduced. Let us, furthermore, consider  a  diffusive 
problem in which we have noninteracting carriers, and later 
invoke the Einstein relation to make the transition to 
electrical  behavior.  If we have thermal  equilibrium and insert 
the bamer, we generate only  very  localized disturbances at 
the barrier location. In the presence of transport, we can 
think of an excess number of camers, in addition to that 
present in equilibrium, arriving from the left.  Similarly, we 
can assume a  deficit amving from the right.  Consider the 
excess carriers incident on the bamer from the left.  A 
fraction R is  reflected, adding to the concentration on the 
left.  But this serves to diminish the current, and the current 
is  supposedly maintained. Therefore, an identical additional 
incident influx must be brought in from the left, thus 
doubling the concentration change, making it 2R (in our 
somewhat arbitrary units). The extra incident flux, R, is  also 
reflected in part. This adds further to the concentration on 
the left,  first through the reflected stream, then through the 
need to send in extra carriers for the resupply. This gives us 
an additional density contribution R . (2R) = 2R2. But 
some of this resupply  is  also  scattered,  leading to a further 
addition of 2R3. Thus we  see a  net  density  change on the 
left-hand  side of the obstacle, after summing over all orders 
of reflection,  given  by 

Let us, here, make the R/( 1 - R )  result  plausible.  Assume 

2 ( R + R 2 + R 3 +  e . . ) =  2 R l ( 1 - R ) .  (1) 

This is, of course,  clearly  a  result  which  assumes that the 
successive orders of Equation (1)  have no coherent phase 
relationship; it is the probabilities that have  been  added. For 
subsequent use we  give the exact one-dimensional result for 
the resistance,  given in [7, 8, 111: 

The nonlinearity in scattering probability displayed in 
Equation (1)  is  most pronounced in one dimension. In that 
case the reflected incident carriers must be  resupplied and 
must pass through the barrier. In higher dimensions the 
scattered incident carriers can detour around the scatterer in 
question, and the nonlinearity will be less pronounced. 
These nonlinearities were mentioned in [I] and taken up in 
more detail in [9] and [ 1 11. 

scattering  cross  section and in scatterer density,  which  does 
not exist in the one-dimensional case and is rooted in the 

There is  a separate source of nonlinearity in both 
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interaction between scattering centers [IO]. We  have  already 
pointed to the existence of a detour current, taking the 
scattered incident current around the obstacle. Note that the 
existence of the “detour” current does not require a  repulsive 
potential or backscattering. It exists for attractive potentials, 
and for scatterers with a high degree of small  angle- 
scattering.  After all, any scattering action will reduce the 
incident current flow, and if the current is maintained, this 
current, at least in part (and if we are not in one dimension), 
goes elsewhere. Thus, the space  average of the current is not 
changed; the current through the obstacle is replaced, in 
part, by the detour current. If obstacles  were uncorrelated in 
their positions, then one obstacle  would not change the 
average current incident on another obstacle.  Obstacles  are, 
however, not uncorrelated; in most cases, they are 
guaranteed not to overlap. Thus, an obstacle  is  never  exposed 
to the diminution of the current that occurs within the 
volume of another scatterer, but only to the detour current 
of the other obstacle. This situation is  exactly the same as 
the one that leads to 4~P/3, or the Lorentz correction, in 
dielectric  theory. The reason  a  polarizable  molecule  does not 
see the space  average  electric  field, but a  different  effective 
field, is that a  molecule  is guaranteed to be outside the other 
molecules. Unfortunately, this obvious physical explanation 
of the internal field, due to Bragg and Pippard [21], is not 
widely appreciated. A  detailed  discussion of it, and of the 
shortcomings of the ordinary textbook viewpoint, has been 
provided [22]. 

with  a scattering cross  section equal to, or close to, their 
geometrical  cross section. For example, take cubes, and take 
them large compared to the Fermi wavelength, so that the 
scattering is  classical.  If  we  fill space  with such blocks, the 
conductor must become impenetrable. Indeed, we know 
from percolation theory that in the case  of  a random 
placement of cubes on a  lattice, the conductor becomes 
impenetrable at some filling factor less than unity. On the 
other hand, if  we took the resistance to be proportional to 
both obstacle density and scattering cross section, the 
resistance  would not show this required divergence. It is the 
nonlinearity we have  discussed  which permits the resistance 
to become  infinite. 

As an example,  consider the case of impenetrable obstacles 

3. Reservoirs,  interfaces,  two  probes,  four 
probes 
The method we have invoked has been developed into a 
systematic approach to the calculation of resistance,  shown 
in Figure 3. Two reservoirs, maintained at different 
electrochemical potentials, act as sources  of  carriers. The 
reservoirs feed the camers into sections of ideal conductor. 
The sample is characterized by its scattering action, 
describing the pattern of emerging  carriers in terms of the 
incident carriers. The potential difference, or electrochemical 
potential difference, can then be calculated, either between 
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# Standard geometry for calculation of resistance from the scattering 1 matrix of the sample. 

Table 1 Situations  allowing  resistance  calculation  from  sample 
scattering  specification. 

Many-dimensional;  with or without  magnetic  field 
Many-body  interactions  in  sample 
Boltzmann  statistics 
Classical  particle  diffusion 
Boson  transmission  and  diffusion 
Inelastic  scattering  in  sample 
Device  configurations 
Nonlinear  conductance 

the ideal conductors or between points deep inside the 
reservoirs. The method is,  essentially, the method of Figure 
2. We  follow the incident carriers and calculate how they 
emerge. This results in the generation of space  charges.  We 
then let this charge  be  screened  self-consistently, as for any 
other imbedded charge. The additional screening  charge  is 
not associated  with any transport. The effect  of the screening 
charge on the transmission behavior of the sample is  a 
second-order or nonlinear effect. This method has been 
applied to a  wide  variety  of situations, which are listed in 
Table 1. Citations may  be found in [7] and [8]. Admittedly, 
some of the thrusts listed in Table 1 represent rather 
symbolic attempts, or existence theorems, indicating that 
something can be done in the desired direction. 

The use of the ideal conductor, without scattering, as 
shown in Figure 3, is  partly  pedagogical. We can, instead, 
evaluate the potentials just inside the reservoirs, at points 
where the carriers coming from the sample  have not yet 
suffered  scattering within the reservoir. The ideal  conductor 
is also  a  mild  concession to experimental reality; it would  be 
hard to attach measurement probes to a point just inside the 
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reservoir.  Finally, the ideal conductor serves  a purpose 
unrelated to our subsequent discussion in this paper. The 
transmitted carriers emerging from a sample will,  typically, 
not be distributed uniformly across the end of the sample. 
The ideal conductor permits a smoothing of the potential as 
we move  away from the sample interface and toward the 
reservoir. More detailed  discussions  related to this sort of 
question can be found in [23]. 

which potential differences  between ideal conductors are 
measured as four-probe measurements, and the case where 
the potential differences are measured between  reservoirs as 
two-probe measurements. This leaves an impression that this 
simple dichotomy covers all the real  possibilities, and that is 
misleading. First of  all, reservoirs are not exactly  a  typical 
laboratory household item. Real  systems  involve circuits, 
usually including electronics  which is hard to characterize on 
a fundamental basis. In general, it is the exact way that 
current is  fed into a sample that matters, the incident carrier 
distribution in real  space as well as the distribution in 
momentum space. Connection to a  reservoir permits a 
particularly simple evaluation of the incident distribution; it 
is the Fermi distribution from the reservoir in question. 
More  generally,  however, it is the kinetics in  the leads to the 
sample that matters. If the preferred carrier distribution for 
conductivity in the leads (in space or in momentum) differs 
from that  in  the sample, there will be an interface resistance, 
as described in  [7]  and [SI. This interface resistance  is 
distinguished in the recent theoretical literature (aside from a 
few papers cited in this paper) by its complete invisibility; 
the topic is not mentioned in passing. The incident carrier 
distribution will, in general,  have to be found self- 
consistently. It is not determined immediately and directly 
by the kinetics in  the leads.  After all, the carriers incident on 
the sample include those that have  left the sample, have 
been scattered within the leads, and have then returned to 
the sample. This point is  now  well understood in connection 
with quantum-mechanically coherent behavior; the paths in 
a sample, or between  two  probes, can include intervening 
portions outside of the sample [24,25]. It is,  however,  a 
point which  is  also  manifested in relatively incoherent 
systems. The need to consider incident velocity distributions, 
determined in a  self-consistent  way,  was  discussed in Section 
8 of [ 11 in 1957. 

A  brief  discussion about measurement probes  may also be 
in order. We can measure electrochemical potential by 
equilibrating with the electron distribution in the sample, 
through a lead  drawing no net current [25-271. In principle, 
we can envision a  lead  which couples very  loosely to the 
sample’s electrons and does not appreciably disturb the 
motion in  the sample.’ We can also, in principle,  envision  a 

The recent literature has characterized the arrangement in 

‘ Private wmmunication: Y. Imry, Department of Nuclear Physics, The W k u a  
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measurement probe which couples equally to all directions 
of motion in the sample. The loose coupling may  be 
obtainable via  a scanning tunneling microscope  probe. It is 
less obvious how to couple uniformly to the various  possible 
directions of motion; an STM probe heavily  weights 
electrons moving  perpendicularly to the surface; carrier 
energy due to motion transverse to the interface  is  essentially 
wasted in the tunneling process [28,29].  The prevailing 
experimental method, using  leads made by electron-beam 
contamination lithography, does not provide  loose  coupling, 
nor equal weighting  of the velocity  classes. Should one call 
the resulting measurement an electrochemical potential 
related to the original structure without the measurement 
leads? This is  a matter of taste; generally, it is the practice in 
physics to search for minimally perturbative measurement 
methods. In recent years there has been  growing  awareness 
that real measurement leads,  with  a  geometry  defined  by 
electron-beam  resist  exposure, contribute to the overall 
kinetics of the system  being  measured.  A  wire  with  a stub 
attached to it is not the same as the wire without the stub. 
This is apparent from the transmission line analogy. It was 
understood in [30], and is much more explicit in [31].  But 
stubs are not measurement leads; they are only lateral 
extensions of the conductor. A  clearer understanding of the 
phase-breaking  role  of the measurement apparatus at the end 
of the measurement lead came with  Biittiker’s  work in [26]. 
Note that if we are concerned with measurements on  an 
ideal conductor, inserted  between a sample and a  reservoir, 
then we can (in  principle,  probably not in reality) use a 
whole array of  loosely coupled identical probes to achieve  a 
variety of measurements. We can, for example, use the 
equivalent of a phased array to measure the carriers  present 
in a particular “channel,” moving in a specified direction 
(toward  reservoir or toward sample).  Alternatively, we can 
use a random array to eliminate the effect  of interference 
oscillations, and thereby measure an average carrier 
population in the ideal conductor. 

In fact, the very definition of electrochemical potential, 
away from thermal equilibrium, permits some exercise  of 
taste and choice. The definition  which  seems to have 
received some acceptance in this field The electrochemical 
potential, or quasi-Fermi level,  is that which in the 
equilibrium system, without transport, would take us to the 
same average electron occupation. In other words, it 
measures the electron density. This was  invoked  implicitly in 
[32] and much more explicitly by Engquist and Anderson 
[33];  for further details see [34]. 

potential. The voltage, or electrostatic potential, is  also 
measurable. To measure the potential difference  between 
two points on the surface of a conductor we can couple to 
each point capacitively, then drive the capacitive  probes 
piezoelectrically to and from the sample. The resulting 
alternating current between the connected oscillating 

The electrochemical potential is not the only  measurable 
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capacitive probes measures the voltage  difference. For 
simplicity of interpretation, the oscillatory  period should be 
long compared to the RC relaxation time. 

measurement, we cannot expect to get the highly localized 
coupling provided in tunneling experiments. In tunneling, 
the exponential dependence on gap thickness eliminates 
tunneling from all but the portion of the tip closest to the 
sample. Capacitance varies  inversely  with the separation, and 
the portions far from the  tip will swamp the capacitance.  But 
even in the case of tunneling measurements, it will be hard 
to bring two tips near each other. 

with their separation short compared to the inelastic 
scattering length, tie into  the sample’s pattern of coherent 
multiple scattering in very different ways [24,25,35]. Thus, 
two adjacent probes can give  very different  values  of 
electrochemical potential, and can give a potential difference 
which  is counter to that expected from the direction of 
current flow. While the combination of coherent multiple 
scattering and the effect  of the probes on the carrier behavior 
make this a much more likely  effect, uphill  voltages can 
occur even in inhomogeneous classical conductors. We are 
here refemng to voltage measurements and to a conductor 
controlled by i = u(r)E(r), where u has a pronounced spatial 
variation. In that case,  a point near the surface can be 
connected by  a conducting channel, or tube, to a  region at 
some distance from it, and can be relatively decoupled from 
the conductor in its immediate neighborhood. This easily 
permits the appearance of uphill  voltages. Uphill 
electrochemical potentials can, of course,  be made to appear 
by the same pattern of inhomogeneous conductivity. We 
return to the subject of uphill voltages in the next  section. 

We have  already made the point that reservoirs are an 
unlikely laboratory object. There is,  however, one case in 
which the result which  gives the resistance  between  reservoirs 
seems  applicable.  Gimzewski and Moller [36] have 
measured the resistance  between  two metallic surfaces 
bridged  by a  single atom, and Lang [37] has provided  a more 
detailed theory. The situation is illustrated in Figure 4. P and 
Q are points just inside the metal, the potential difference 
between them is  given  by Equation (2), or more specifically 
by its many-dimensional generalization [7,38]. At P, for 
example, the carriers which originated from the other side 
(METAL 2) and were transmitted by the bridging atom have 
not suffered an inelastic collision. The electron population at 
P, therefore, is determined in part by p2. Deep inside 
METAL 1, say, on the dashed circle, it is determined by p,  , 
and is unrelated to the events in METAL 2. Between P and 
the dashed circle on side 1 ,  and between Q and the dashed 
circle on side  2, there is  a spreading resistance. This is the 
Sharvin resistance,  discussed in detail in [3,8, 131 and [39]. 
It is  a  nonclassical form of spreading resistance  because the 
dimensions at the “bridge” are small compared to a mean 

While an STM tip can be  used for capacitance 

It is  now understood that two probes, attached to a  sample 
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4 An  atom  bridging  two  large  metallic  contacts. M and N are  far 
lj enough into the metallic contacts so that the electrochemical potential 
1 of the other contact has little influence on the carrier distribution. The 
$ dashed circles can be presumed to be a mean free path away from the 1 bridging atom, but the exact choice for this radius is not important. 

free path. As explained in [3] and [8], this additional Sharvin 
resistance gives us a potential drop between M and N which 
is characteristic of  reservoirs. The resulting  expressions  for 
conductance exhibit  only  a sum over  suitably  weighted 
transmission  probabilities, without complicating 
denominators. Now  if the bridging atom were attached to 
relatively narrow leads, the equivalent of the dashed  circles 
through M and N  would  be hard to locate. If  we went too far 
into the narrow  leads we  would add additional series 
resistance. The specific  geometry  of  Figure 4, however,  saves 
us from that. The three-dimensional spreading resistance 
from M to m, - p / r  (where r is the radius of the dashed 
hemisphere), is much less than the Sharvin  resistance, 
-pt/a2, where tis the mean free path and a the dimension of 
the bonding atom. Thus, the drop beyond the dashed 
hemispheres  is  negligible. 

4. Spatial  voltage  variation 
In an inhomogeneous medium there are places  where 
transport is  easy, and others where it is hard. That is why 
residual  resistivity  dipoles come into existence. That is why a 
tunneling bamer has a  voltage drop right  across the barrier, 
in the presence of current. If, instead of considering  a 
particular sample, we average over an ensemble of  all 
possible spatial redistributions of scattering centers, the 
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resulting  voltage distribution will  be uniform for a 
rectangular  parallelopiped  with current introduced at 
opposing  faces.  At an early  stage in the development of 
solid-state  physics, the convenience of treating an ensemble 
average was  recognized. All too often, the fact that it was a 
mathematical device, unrelated to the behavior of a  specific 
sample, was forgotten. 

Reference [35] tells us: 

". . . the current density depends only on the voltages at 
the leads, and not on the precise  electric  field 
configuration. We can therefore, without loss  of 
generality,  write the current density in terms of any 
potential which has the correct values at the leads. It is 
convenient to choose the classical potential r l ( r )  such 
that V*V"(r)  = 0 .  . . ." 

We  have intentionally selected  a statement from one of 
the more perceptive and significant recent papers. The 
quotation represents  a  real improvement over the earlier 
common presumption that the voltage actually is r ' ( r ) .  The 
notation may  represent an unwarranted implication that 
the only  reason for spatial field variations comes from 
quantum-mechanical interferences in multiple scattering. 
We still,  however,  find the voltage distribution treated as a 
matter that does not have to be understood; it is not a matter 
of interest in its own  right.  Reference  [35]  is correct within 
its assumptions; the precise  voltage distribution does not 
matter in the case  of noninteracting electrons.  Crudely 
speaking, it is the total driving force including both 
concentration gradients and electric field that matters. We 
introduce the qualifier,  "crudely  speaking,"  because we are 
dealing  with  localized  scatterers and rapid microscopic 
variations. We are far from the regime  where the local 
transport coefficients (i = oE, i = -DVn) can be  invoked.  In 
the case of noninteracting carriers an incorrect field variation 
is compensated by camer concentration gradients, together 
providing the necessary  spatially  varying driving force and 
thus ensuring the continuity of current. If, on the other 
hand, we start from a theory allowing  for the Coulomb 
interaction between  electrons, then the large  space  charges 

associated  with the carrier pileup needed for diffusive 
currents become  impossible.  In that case  a much smaller 
carrier pileup will produce the required inhomogeneous field 
distribution needed to maintain the current continuity. 
Allowing  for Coulomb interaction between  carriers  will 
automatically give us the correct internal field distribution. 

Consider  a  one-dimensional array of obstacles  presumed 
to be  disordered (Figure 5). A voltage  is  applied, and Figure 
5  shows the spatial variation of electronic potential energy 
due to the applied  voltage added to the scattering potential. 
Reference [ 171  discusses the nonlinear effects implicit in 
Figure 5; here we stress its more elementary implications, 
assuming that the separation between  obstacles  is  large 
compared to both the Fermi-level  wavelength and  the 
screening  length.  Let us follow the approach stressed in 
Section 3, and elsewhere in this author's work We assume 
current flow incident on the sample and calculate the 
resulting  diffusive carrier pileup,  assuming noninteracting 
camers. Then we  let  voltages  be established as a  result of the 
self-consistent  screening  caused by the diffusive camer 
concentration. 

Extra  carriers incident on the sample,  say from the left, 
will  give  rise to a  complex pattern of multiply scattered 
waves.  Between  two adjacent barriers,  however, we  will have 
some combination of right-moving  waves and left-moving 
waves. Thus, ignoring  oscillations  related to the Fermi 
wavelength,  we  will have  a fixed density  between  two 
adjacent barriers. As a  result  of  Fabry-Perot  resonances, the 
density  need not vary monotonically as we move  along the 
chain; there can be  "uphill"  density  changes.  Now  consider 
the screening.  Long  wavelengths are screened  most 
effectively; uniform charge  densities extending over distances 
large compared to the screening  length will  be totally 
compensated by the screening  charge. Thus, deviations from 
neutrality will  be confined to the regions near the barriers 
where the fields and potential drops must occur. Note that 
the screening  calculation  is  somewhat  complex. It involves 
the density of states, and this is the density of states in the 
potential which includes the barriers. In the case  of barriers 
which  have  a  small transmission probability we can, at least 
approximately, think in terms of a  local  set of states between 
adjacent barriers. As pointed out by Biittiker [27], the local 
density  of states is very nonuniform and peaks near the 
resonances. This leads to a  complex adjustment, resembling 
contact potentials, which permit alignment of Fermi levels 
between adjacent conductors, even  in  the  absence of 
transport. We  have not carried out this screening calculation; 
it is conceivable that it can leave us with  uphill  voltages. 
Remember that electrochemical potentials and voltages can 
move apart only  over short distances in the regions  where 
charges accumulate. Over  most of the space  between barriers 
they  must be identical. Thus, an uphill  voltage  implies an 
uphill  change in the electrochemical potentials and a 
negative  power  dissipation associated with the barrier in 
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question. That would  be  surprising, but it cannot be  ruled 
out without further calculation. In the case  of correlated 
dissipation caused by adjacent barriers, it is  only the net 
dissipation which  clearly  has to be  positive. Thermoelectric 
effects  which cool a junction between  dissimilar materials are 
well known and, as already stated, our adjacent regions 
resemble  dissimilar  materials.’ Uphill voltages  have  been 
seen experimentally [40], but not in measurements on a  one- 
dimensional sample. 

How does Figure 5 translate into two or three dimensions? 
We do not know;  even though the answer  may, in part, be 
implicit in some of the diagrammatic portions of the 
electromigration literature. Much of what has been  said in 
connection with  Figure 5 may  carry  over. At the simplest 
level,  we might want to argue that carriers amving  at a  given 
scattering site from different directions, i.e., from different 
preceding scatterer locations, have  a  very  different  history 
which  makes them effectively incoherent, and that therefore 
the semiclassical arguments of [ 11 are directly  applicable. 
The universal fluctuation literature, however, has taught us 
to be cautious; multiple scattering leads to subtle 
correlations. Incidentally, the universal fluctuation 
discussions  also  have  a shortcoming which  is not widely 
advertised They assume point-defect  scattering,  whereas  real 
mesoscopic samples are likely to have  significant  resistance 
contributions from grain boundaries, dislocations,  surface 
ridges,  etc.  Even point defects  cause  long-range  elastic 
distortions. These qualifications must be added to others 
[3,5,6,41]. Universal fluctuations are only  manifested 
between points separated by about  one inelastic scattering 
length. The sample’s  resistance cannot be so small as to 
represent ballistic transmission, or so large as to represent 
localization. The conclusion: Universal is  a  somewhat 
exaggerated characterization. That, of course, is not intended 
to diminish the central insight  involved, pointing to the 
importance of coherent multiple scattering effects. 

The three-dimensional case,  of  course, just like the one- 
dimensional case, includes interference effects  between the 
wave incident on  an obstacle and the resulting  scattered 
waves. This effect  does not require coherence  between 
scattering by  successive  obstacles. The effect is well known in 
electromigration theory [42], but the associated  local  fields 
are oscillatory and  do not contribute to the overall  voltage 
[32]. An additional effect,  likely to be present,  consists of 
higher-order multipole fields supplementing the residual 
resistivity  dipole. For example,  if either the incident velocity 
distribution or the dependence of scattering probability on 
angle  is more complex than assumed in [ 11, these can be 
present.  Once again, they do not contribute to the overall 
voltage drop. 
*Thermoelectric  cooling  typically  involves  carriers  which,  at  the  junction,  have to 
absorb  energy to continue on their  path  at  a  higher  energy  in  the  new  material.  An 

we  have  ignored  in  our  discussion.  In  fact,  within  our  treatment,  the  dissipation 
n+-n  semiconductor  junction is a  typical  example.  These are inelastic  effects,  which 

associatedwith  a barrier does  not  occur  at  the  barrier.  The  heat is delivered to the 
reservoirs. 

“ t  
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I One-electron energies of the ring as a function of flux. The dashed 
4 lines are free electrons without elastic scattering. Q0 is the single ’ electron flux quantum. If the horizontal axis measures k ,  instead of 1 flux, the  zone  boundaries  occur  at + n / L ,  where L is the loop I circumference. 

5. Nonlinearity  in  closed loops 
We  have already  stressed the role of nonlinearity in small 
samples. We supplement this, here,  with  a  discussion  of 
nonlinearity in closed loops without leads. First,  a  general 
comment about closed  loops.  Figure 3 shows the typical 
situation envisioned in most of this paper. The size  of the 
resistance  is determined by the scattering properties of the 
sample, but if this is entirely elastic  scattering, then the 
dissipation occurs in the reservoirs. The reservoirs are “black 
bodies,”  which  subject carriers to inelastic  events and ensure 
loss of phase memory before the camers coming from the 
sample can again return to the sample. What happens if  we 
eliminate the reservoirs and tie the ends of the sample 
together to make a  loop? Then we can  only produce a 
current by  a time-dependent flux through the sample.  If the 
scattering in the sample  is  purely  elastic, we  have a 
Hamiltonian system. It can store energy; it cannot dissipate 
it. The system  was  analyzed in [43] and the analysis 
extended in [44-461. 

electrons in the loop and electrons in a  periodic potential, in 
which the variation in one period  is that found in traversing 
the loop. Figure 6, adapted from [43], shows the energy  of 
the electrons in the loop as a  periodic function of the applied 
flux. The lattice momentum, k, in  the equivalent periodic 
potential, is proportional to this flux. In the presence of a 
time-dependent flux, the electrons move through the band 

Reference [43] invoked an equivalence  between the 
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structure according to Bloch’s theorem, dkfdt = -eE/h. If  we 
have  a time-independent nonvanishing flux,  we can expect  a 
current from each occupied “band,” i - dU/dk - dU/d@. 
The simple band structure shown in Figure 6 can only  be 
expected in the onedimensional case. In the case  of  a  field- 
effect-transistor structure, the  onedimensional behavior can 
be  realized  by  choosing the transverse dimensions small 
enough so that only the lowest transverse state is occupied. 
In the metallic case, where we have a cross  section  with 
many atoms, and many transverse states are occupied, we 
can expect more complex three-dimensional “band” 
structures with many internal minima and maxima. In the 
one-dimensional case we can expect alternating signs for the 
contributions from successive bands, with some tendency for 
higher-lying bands to yield  larger currents. 

If the flux is increased from an initially vanishing  value, 
and then kept  fixed at a  value  which  does not correspond to 
a zone boundary or zone center in Figure 6, we can expect  a 
nonvanishing, or persistent, current. As explained in [46], 
even in  the presence of some thermal relaxation, a  reduced 
persistent current can be  expected. The magnitude of this 
persistent current is hard to estimate, particularly in the 
many-dimensional case,  where no detailed understanding of 
the equivalent of Figure 6 exists. The persistent current will, 
in any case,  be  less than  that for a free-electron gas 
accelerated by application of  a  flux fao, where a0 is the 
Aharonov-Bohm  flux quantum. Consider a onedimensional 
loop with  elastic scattering weak enough so that there is an 
appreciable probability for elastic transmission in one 
traversal around the loop. This means that the resistance of 
the loop,  if opened up  and measured as in Figure 3, would, 
according to Equation (2), yield  a  resistance Re, - ?rh/e2. In 
that case, when the applied flux is equal to :ao, we will be 
halfway  between zone center and zone  edge. The persistent 
current will  be near its maximum value, and will be 
depressed  only  modestly  below the free electron value for the 
same number of carriers and the same geometry. 

There have  been  a number of  suggestions3 [47] that the 
gap and bandwidth in Figure 6 vary in a  relatively random 
way as we go up  in energy, from band to band. This is, of 
course, not true for a  very simple scattering potential, e.g., a 
single scattering barrier with  a smooth potential. At the other 
extreme, consider a  large number of scattering centers within 
the loop, but weak enough to be treated as a perturbation on 
the free-electron case. In that case, the energy  gaps depend 
on Fourier elements of the potential [48] 

’ Private communication:  Ping Ao, Department of Physics,  University of Illinois at 
Urbana-Champaign, 110 W. Green St., Urbana, IL 61801. 
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We  see that this sum (resembling the spectral  analysis  of shot 
noise) has a smooth dependence on k through the final  right- 
hand-side  factor. The first  r.h.s. factor can give a  somewhat 
random variation between adjacent band gaps. The relative 
random variation between  gaps,  however,  goes  down as 
I / a ,  where N is the number of scattering centers. 

We are not, here,  trying to answer the disorder question in 
detail, but it can be  seen that even the one-dimensional case 
has a  degree of complexity  which  makes it hard to evaluate 
the persistent current. The current is likely to be small. The 
method of measurement is  likely to reflect  losses into the 
ring, thereby reducing the persistent carrier magnitude. A 
large planar array of loops will  give us loops which are 
unlikely to be  exactly identical. Even the sign  of the current 
will vary from loop to loop. 

for Figure 6 .  Let us apply  a  bias  flux  which puts us about 
halfway  between  zone center and zone edge, then apply an 
additional small sinusoidal oscillatory  flux.  At the zone 
center, before  flux application, the energy  varies 
symmetrically  with  flux, 

In view of  these  difficulties we propose  a more indirect test 

U =  a42 + bd4. 

With an oscillatory  flux, 64, we  find 

(4) 

Consider,  alternatively,  a  bias  flux 4, # 0, and an additional 
oscillatory  flux 64. In that case 

We can see that  in Equation ( 5 )  the lowest harmonic is the 
third harmonic, whereas in Equation (6) there will be  a 
second harmonic. This is  a simple qualitative distinction, 
and, unlike the attempt to measure  persistent currents, can 
utilize  phase-locked detection techniques.  A  large array once 
again will give us contributions with random sign. Thus, the 
use of N loops in an array will only  cause the detected  signal 
to grow as a. Note also that the phase of the second 
harmonic, in the reradiated field, can be  used to distinguish 
between  a nonlinear resistance and a nonlinear reactance. As 
we have  stressed, the loop (at sufficiently  low temperatures) 
acts as a reactance. 

The distinction between Equations ( 5 )  and (6) utilizes  only 
a symmetry argument and does not require the simple one- 
dimensional band structure of Figure 6. Our proposed 
experiment does not require a  field-effect structure; it should 
work in the metallic case. The coil  generating the oscillatory 
flux must, of course, generate no second harmonic. In the 
presence of a  bias  flux, dimensional changes in the coil will 
cause second-harmonic generation. If  needed, the wave form 
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driving the coil can be adjusted to compensate for  this.  For 
an alternative possible experimental approach to persistent 
current detection, see [45], invoking the measurement of 
small signal  power absorption as a function of bias  flux. 

6.  Conclusion 
The ability to fabricate small samples has led to the study of 
a  variety of phenomena exhibiting quantum interference 
between alternative canier paths. This includes the 
Aharonov-Bohm  effect and “universal” fluctuations. These 
studies have  also brought attention to  an approach to 
conductance which  is  based upon the overall scattering 
behavior of the sample. The literature in recent years  has 
appreciated the distinction between an ensemble and a 
specific sample, as well as the perturbative role of additional 
measurement leads. The work in this field,  however, 
continues to minimize questions about the explicit variation 
of currents and fields  within the conductor, and the 
correlation of these variations with the positions of localized 
scatterers.  Physics tends to be channeled by slogans and 
fashions,  providing attention to  an evolving  variety of 
popular questions. Decades  ago,  these included the Kondo 
problem, deviations from Matthiessen’s rule, and Fermi 
surface  studies.  Most  recently, universalfluctuations has 
joined this list. This preoccupation with  a limited range of 
topics draws attention from other commonsense questions, 
which one might expect to see discussed in every  elementary 
text. 
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