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Spatial variation
of currents

and fields

due to localized
scatterers

iIn metallic
conduction

by R. Landauer

Volume 1 of this journal, thirty-one years ago,
included a paper with the above title. Studies of
small samples, in recent years, as well as earlier
work on disordered samples, have caused some
of the content of the earlier work to become
widely understood. The aspects stressed in the
title, however, relating to the spatial variations

in the vicinity of a localized scattering center,
have received little attention, except in
electromigration theory debates. Here, we return
to these aspects of the earlier paper, and
emphasize that the transport field associated
with a point-defect scattering center is a highly
localized dipole field. The nonlinearity of
resistance in terms of scattering cross section is
discussed. A theory of these effects, which does
justice to the coherent multiple-scattering
effects present at low temperatures, does not
yet exist. Such a theory is likely to modify the
effects, but it is unlikely to cause them to
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disappear. We also discuss closed loops,
without leads; the persistent currents expected
in these; and a possible method of detecting the
persistent currents.

1. Introduction, residual resistivity dipoles

This paper intentionally repeats an earlier title [1]. Reference
[1] remained obscure for well over two decades, until its
viewpoint was revisited by Anderson et al. [2]. Much of the
content of [1] is still unnoticed, and we return to it here. In
the meantime, an emphasis on small samples, Aharonov—
Bohm effects, universal fluctuations, and localization has
brought attention to a number of related topics. It would
overwhelm this brief discussion, and this author’s skills, to
attempt to make all the possible cross-connections. That is
best done by the reader via other papers in this issue, and
with the help of earlier reviews [3-8].

Reference [1] studied the spatial variation of electron
transport currents, and the associated transport fields, in the
vicinity of spatially localized scatterers, including both point
defects and reflecting planes. Reference [1] pointed out that
there was, in fact, pronounced spatial variation. The
principal deficiency of [1]: It did not allow for the coherence
between successive elastic scattering events which can be
expected at low temperatures. This oversimplification is
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repeated here to some extent. We offer two justifications.
First of all, there is a regime of validity where, typically, only
a few elastic scattering events occur before inelastic
scattering takes place. More significantly, much of what we
have to say can be expected to reappear in a more
sophisticated form in treatments which do allow for
coherence. This paper’s return to earlier themes is not
intended to repeat the content of [1].

Consider Figure 1. Current is maintained through a
conductor containing localized scatterers and/or phonon
scattering. One additional scattering center is introduced.
Most likely the resistance will increase. We use the
qualification “most likely,” because in the presence of
coherent multiple scattering the resistance can decrease. (For
example, if in a periodic array of scatterers one is missing,
supplying the missing scattering center will reduce the
resistance.) Additionally, in the presence of inhomogeneity,
it is possible, even under classical macroscopic conductive
behavior, to have “backwards” flow in places, flow opposed
to the direction of the overall flow. We ignore this and
invoke a mean field view under which the extra scatterer
introduced in Figure 1 is exposed to an average incident
carrier flux.

If a fixed current is maintained at the boundaries of the
sample, and the resistance is increased by the extra scattering
center, the voltage across the sample increases. But the field
cannot increase uniformly throughout the sample; the field
increase must occur near the extra scatterer. How is the
spatial variation of field and current flow disturbed by a
localized scatterer? This is a question which we might expect
to find discussed in every solid-state text, and certainly in
more specialized review articles. But that is not the case. If
instead of a point scatterer we had introduced a macroscopic
cavity, the answer would be obvious. There would be charges
on the surfaces of the cavity, constituting the sources of a
dipole field which causes the current to detour around the
cavity. As we shrink the cavity, where can we expect a
transition? The answer given in [1] and elaborated
subsequently [9-11]: In some ways, there is no transition.
The additional transport field associated with the scatterer is
a dipole field whose sources lie within a screening length
(modified by Friedel oscillations) of the scattering potential.
The detour current pattern, taking the scattered current
around the scattering center, is more complex than in the
case of the macroscopic inhomogeneity, and is shown in
Figure 2, taken from [1]. The incident carriers, after
scattering by the defect, move ballistically for about one
mean free path. At greater distances from the scattering
center, the detour current resembles that due to a
macroscopic cavity. The localized dipole field established in
the presence of current flow can be made plausible in an
alternative way. Consider an interstitial hydrogen in a
symmetrical lattice site. The proton will be screened by a
charge which has the symmetry of the surrounding lattice. In
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Constant total current flow is maintained across the sample
boundaries. An additional point-scattering center, shown in black,
is introduced.

R ——

‘\
~
.
.
.
\
1
Y
1
]
-_——— I
\\s U
~ ’
4
[ 4 IR
C -~ Db
\//
-
b
-~
~
-
P — — e —
A S B

Electrons in excess numbers are incident along A, then are scattered

to C, then scattered by the background. The number of electrons

incident along B is less than the equilibrium number. The deficit is
i scattered to D, then scattered by the background. The excess and
| deficit diffuse together and recombine along the arcs.

the presence of electronic transport, we can expect this
symmetry to be broken, resulting in the residual resistivity
dipole we have been discussing.

Spatial variations are not only of conceptual interest. If we
are interested in electromigration of the defect shown in
Figure 1, i.e., the defect motion in the presence of fields and
currents, then the exact conditions at the location of the
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defect must matter. Electromigration is a field beset by
controversy; but all modern participants admit to the
existence of strong spatial variations at a lattice defect. As we
cannot here describe electromigration theory, we cite two
recent items to lead to the citation trail [12].

Spatial variations, and the resulting electric field
concentration, are also likely to be relevant for nonlinear
effects, regardless of the exact microscopic mechanism
leading to nonlinearity. This is suggested by inelastic point
contact spectroscopy, which utilizes the high fields present at
a very small area contact between two conductors [13].
Spatial variations can generate nonlinearities not only
because the transport fields are nonuniform and spatially
concentrated. Spatial variations are also associated with
changes in the local carrier densities; after all, a spatially
varying field must be generated by localized charges.
Nonlinearity in bulk samples, or in mesoscopic samples, has
not yet received very detailed attention; some discussion can
be found in [14-18]. We return to the subject of nonlinearity
in Section 5.

Spatial variations need not be mentioned or understood
explicitly. Sufficiently sophisticated diagrammatic techniques
can handle their effects without explicit allusion, as shown in
parts of the electromigration literature. But simpler
semiclassical techniques make it easier to become aware of
spatial variations and their potential effects.

Spatial variations are not limited to dense degenerate
Fermi gases. The densely populated systems, however,
permit the spatial variations to become more striking
because

a. Only in a dense electron gas can we pile up enough carriers
to permit rapid spatial changes of the transport field.

b. A dense electron gas provides enough screening of
Coulomb fields so that all point defects give a highly
localized scattering potential, if we neglect the long-range
elastic distortions they generate.

2. R/(1 -R)

In the one-dimensional case, [1] found a resistance
proportional to R/(1 — R), where R is the reflection
probability. At that time, this was still a result considered
applicable to a single barrier, and not yet understood to
apply to a more complex entity, e.g., a disordered array of
sequential barriers. Furthermore, the details of the analysis
in [1] concentrate on a localized plane barrier in a three-
dimensional medium. The strictly one-dimensional case was
understood, but considered too playful to be worth
presenting. The R/(1 — R) result had two obvious limiting
forms; in neither case was the result really new. For R <« 1
the result simply repeated the fact explained in every text:
Resistance is proportional to scattering probability. In the
opposite case, where 7 = (1 — R) < 1, the result was also
known. This is the case of the resistance of a tunneling
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barrier which permits little carrier penetration. In 1957 solid-
state tunneling barriers, as reproducible and quantitatively
characterizable entities, did not exist. Nevertheless, their
theory had been discussed at least as early as 1933 [19].
Thus, the R/(1 — R) result could be considered to be a trivial
interpolation of known answers. It was not, however,
regarded that way [20].

Let us, here, make the R/(1 — R) result plausible. Assume
that a current is flowing and is maintained as a barrier is
introduced. Let us, furthermore, consider a diffusive
problem in which we have noninteracting carriers, and later
invoke the Einstein relation to make the transition to
electrical behavior. If we have thermal equilibrium and insert
the barrier, we generate only very localized disturbances at
the barrier location. In the presence of transport, we can
think of an excess number of carriers, in addition to that
present in equilibrium, arriving from the left. Similarly, we
can assume a deficit arriving from the right. Consider the
excess carriers incident on the barrier from the left. A
fraction R is reflected, adding to the concentration on the
left. But this serves to diminish the current, and the current
is supposedly maintained. Therefore, an identical additional
incident influx must be brought in from the left, thus
doubling the concentration change, making it 2R (in our
somewhat arbitrary units). The extra incident flux, R, is also
reflected in part. This adds further to the concentration on
the left, first through the reflected stream, then through the
need to send in extra carriers for the resupply. This gives us
an additional density contribution R - (2R) = 2R’. But
some of this resupply is also scattered, leading to a further
addition of 2R>. Thus we see a net density change on the
left-hand side of the obstacle, after summing over all orders
of reflection, given by

2R+R*+R*+...)=2R/(1-R). n

This is, of course, clearly a result which assumes that the
successive orders of Equation (1) have no coherent phase
relationship; it is the probabilities that have been added. For
subsequent use we give the exact one-dimensional result for
the resistance, given in [7, 8, 11]:

R wh R

el:?(l'—R). (2)

The nonlinearity in scattering probability displayed in
Equation (1) is most pronounced in one dimension. In that
case the reflected incident carriers must be resupplied and
must pass through the barrier. In higher dimensions the
scattered incident carriers can detour around the scatterer in
question, and the nonlinearity will be less pronounced.
These nonlinearities were mentioned in [1] and taken up in
more detail in [9] and [11].

There is a separate source of nonlinearity in both
scattering cross section and in scatterer density, which does
not exist in the one-dimensional case and is rooted in the
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interaction between scattering centers [10]. We have already
pointed to the existence of a detour current, taking the
scattered incident current around the obstacle. Note that the
existence of the “detour” current does not require a repulsive
potential or backscattering. It exists for attractive potentials,
and for scatterers with a high degree of small angle-
scattering. After all, any scattering action will reduce the
incident current flow, and if the current is maintained, this
current, at least in part (and if we are not in one dimension),
goes elsewhere. Thus, the space average of the current is not
changed; the current through the obstacle is replaced, in
part, by the detour current. If obstacles were uncorrelated in
their positions, then one obstacle would not change the
average current incident on another obstacle. Obstacles are,
however, not uncorrelated; in most cases, they are
guaranteed not to overlap. Thus, an obstacle is never exposed
to the diminution of the current that occurs within the
volume of another scatterer, but only to the detour current
of the other obstacle. This situation is exactly the same as
the one that leads to 4xP/3, or the Lorentz correction, in
dielectric theory. The reason a polarizabie molecule does not
see the space average electric field, but a different effective
field, is that a molecule is guaranteed to be outside the other
molecules. Unfortunately, this obvious physical explanation
of the internal field, due to Bragg and Pippard [21], is not
widely appreciated. A detailed discussion of it, and of the
shortcomings of the ordinary textbook viewpoint, has been
provided [22].

As an example, consider the case of impenetrable obstacles
with a scattering cross section equal to, or close to, their
geometrical cross section. For example, take cubes, and take
them large compared to the Fermi wavelength, so that the
scattering is classical. If we fill space with such blocks, the
conductor must become impenetrable. Indeed, we know
from percolation theory that in the case of a random
placement of cubes on a lattice, the conductor becomes
impenetrable at some filling factor less than unity. On the
other hand, if we took the resistance to be proportional to
both obstacle density and scattering cross section, the
resistance would not show this required divergence. It is the
nonlinearity we have discussed which permits the resistance
to become infinite.

3. Reservoirs, interfaces, two probes, four
probes

The method we have invoked has been developed into a
systematic approach to the calculation of resistance, shown
in Figure 3. Two reservoirs, maintained at different
electrochemical potentials, act as sources of carriers. The
reservoirs feed the carriers into sections of ideal conductor.
The sample is characterized by its scattering action,
describing the pattern of emerging carriers in terms of the
incident carriers. The potential difference, or electrochemical
potential difference, can then be calculated, either between
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Reservoir / Sample Reservoir

) 2

Ideal conductors

¥ Standard geometry for calculation of resistance from the scattering
: matrix of the sample.

Table 1 situations allowing resistance calculation from sample
scattering specification.

Many-dimensional; with or without magnetic field
Many-body interactions in sample

Boltzmann statistics

Classical particle diffusion

Boson transmission and diffusion

Inelastic scattering in sample

Device configurations

Nonlinear conductance

the ideal conductors or between points deep inside the
reservoirs. The method is, essentially, the method of Figure
2. We follow the incident carriers and calculate how they
emerge. This results in the generation of space charges. We
then let this charge be screened self-consistently, as for any
other imbedded charge. The additional screening charge is
not associated with any transport. The effect of the screening
charge on the transmission behavior of the sample is a
second-order or nonlinear effect. This method has been
applied to a wide variety of situations, which are listed in
Table 1. Citations may be found in [7] and [8]. Admittedly,
some of the thrusts listed in Table 1 represent rather
syrabolic attempts, or existence theorems, indicating that
something can be done in the desired direction.

The use of the ideal conductor, without scattering, as
shown in Figure 3, is partly pedagogical. We can, instead,
evaluate the potentials just inside the reservoirs, at points
where the carriers coming from the sample have not yet
suffered scattering within the reservoir. The ideal conductor
is also a mild concession to experimental reality; it would be
hard to attach measurement probes to a point just inside the
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reservoir. Finally, the ideal conductor serves a purpose
unrelated to our subsequent discussion in this paper. The
transmitted carriers emerging from a sample will, typically,
not be distributed uniformly across the end of the sample.
The ideal conductor permits a smoothing of the potential as
we move away from the sample interface and toward the
reservoir. More detailed discussions related to this sort of
question can be found in [23].

The recent literature has characterized the arrangement in
which potential differences between ideal conductors are
measured as four-probe measurements, and the case where
the potential differences are measured between reservoirs as
two-probe measurements. This leaves an impression that this
simple dichotomy covers all the real possibilities, and that is
misleading. First of all, reservoirs are not exactly a typical
laboratory household item. Real systems involve circuits,
usually including electronics which is hard to characterize on
a fundamental basis. In general, it is the exact way that
current is fed into a sample that matters, the incident carrier
distribution in real space as well as the distribution in
momentum space. Connection to a reservoir permits a
particularly simple evaluation of the incident distribution; it
is the Fermi distribution from the reservoir in question.
More generally, however, it is the kinetics in the leads to the
sample that matters. If the preferred carrier distribution for
conductivity in the leads (in space or in momentum) differs
from that in the sample, there will be an interface resistance,
as described in [7] and [8]. This interface resistance is
distinguished in the recent theoretical literature (aside from a
few papers cited in this paper) by its complete invisibility;
the topic is not mentioned in passing. The incident carrier
distribution will, in general, have to be found self-
consistently. It is not determined immediately and directly
by the kinetics in the leads. After all, the carriers incident on
the sample include those that have left the sample, have
been scattered within the leads, and have then returned to
the sample. This point is now well understood in connection
with quantum-mechanically coherent behavior; the paths in
a sample, or between two probes, can include intervening
portions outside of the sample [24, 25]. It is, however, a
point which is also manifested in relatively incoherent
systems. The need to consider incident velocity distributions,
determined in a self-consistent way, was discussed in Section
8 of [1] in 1957.

A brief discussion about measurement probes may also be
in order. We can measure electrochemical potential by
equilibrating with the electron distribution in the sample,
through a lead drawing no net current [25-27]. In principle,
we can envision a lead which couples very loosely to the
sample’s electrons and does not appreciably disturb the
motion in the sample.' We can also, in principle, envision a

! Private communication: Y. Imry, Department of Nuclear Physics, The Weizmann
Institute of Science, Rehovot 76 100, Israel.
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measurement probe which couples equally to all directions
of motion in the sample. The loose coupling may be
obtainable via a scanning tunneling microscope probe. It is
less obvious how to couple uniformly to the various possible
directions of motion; an STM probe heavily weights
electrons moving perpendicularly to the surface; carrier
energy due to motion transverse to the interface is essentially
wasted in the tunneling process [28, 29]. The prevailing
experimental method, using leads made by electron-beam
contamination lithography, does not provide loose coupling,
nor equal weighting of the velocity classes. Should one call
the resulting measurement an electrochemical potential
related to the original structure without the measurement
leads? This is a matter of taste; generally, it is the practice in
physics to search for minimally perturbative measurement
methods. In recent years there has been growing awareness
that real measurement leads, with a geometry defined by
electron-beam resist exposure, contribute to the overall
kinetics of the system being measured. A wire with a stub
attached to it is not the same as the wire without the stub.
This is apparent from the transmission line analogy. It was
understood in [30], and is much more explicit in [31]. But
stubs are not measurement leads; they are only lateral
extensions of the conductor. A clearer understanding of the
phase-breaking role of the measurement apparatus at the end
of the measurement lead came with Biittiker’s work in {26].
Note that if we are concerned with measurements on an
ideal conductor, inserted between a sample and a reservoir,
then we can (in principle, probably not in reality) use a
whole array of loosely coupled identical probes to achieve a
variety of measurements. We can, for example, use the
equivalent of a phased array to measure the carriers present
in a particular “channel,” moving in a specified direction
(toward reservoir or toward sample). Alternatively, we can
use a random array to eliminate the effect of interference
oscillations, and thereby measure an average carrier
population in the ideal conductor.

In fact, the very definition of electrochemical potential,
away from thermal equilibrium, permits some exercise of
taste and choice. The definition which seems to have
received some acceptance in this field: The electrochemical
potential, or quasi-Fermi level, is that which in the
equilibrium system, without transport, would take us to the
same average electron occupation. In other words, it
measures the electron density. This was invoked implicitly in
[32] and much more explicitly by Engquist and Anderson
[33]; for further details see [34].

The electrochemical potential is not the only measurable
potential. The voltage, or electrostatic potential, is also
measurable. To measure the potential difference between
two points on the surface of a conductor we can couple to
each point capacitively, then drive the capacitive probes
piezoelectrically to and from the sample. The resulting
alternating current between the connected oscillating
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capacitive probes measures the voltage difference. For
simplicity of interpretation, the oscillatory period should be
long compared to the RC relaxation time.

While an STM tip can be used for capacitance
measurement, we cannot expect to get the highly localized
coupling provided in tunneling experiments. In tunneling,
the exponential dependence on gap thickness eliminates
tunneling from all but the portion of the tip closest to the
sample. Capacitance varies inversely with the separation, and
the portions far from the tip will swamp the capacitance. But
even in the case of tunneling measurements, it will be hard
to bring two tips near each other.

It is now understood that two probes, attached to a sample
with their separation short compared to the inelastic
scattering length, tie into the sample’s pattern of coherent
multiple scattering in very different ways [24, 25, 35]. Thus,
two adjacent probes can give very different values of
electrochemical potential, and can give a potential difference
which is counter to that expected from the direction of
current flow. While the combination of coherent multiple
scattering and the effect of the probes on the carrier behavior
make this a much more likely effect, uphill voltages can
occur even in inhomogeneous classical conductors. We are
here referring to voltage measurements and to a conductor
controlled by i = o(r)E(r), where s has a pronounced spatial
variation. In that case, a point near the surface can be
connected by a conducting channel, or tube, to a region at
some distance from it, and can be relatively decoupled from
the conductor in its immediate neighborhood. This easily
permits the appearance of uphill voltages. Uphill
electrochemical potentials can, of course, be made to appear
by the same pattern of inhomogeneous conductivity. We
return to the subject of uphill voltages in the next section.

We have already made the point that reservoirs are an
unlikely laboratory object. There is, however, one case in
which the result which gives the resistance between reservoirs
seems applicable. Gimzewski and Moller [36] have
measured the resistance between two metallic surfaces
bridged by a single atom, and Lang [37] has provided a more
detailed theory. The situation is illustrated in Figure 4. P and
Q are points just inside the metal; the potential difference
between them is given by Equation (2), or more specifically
by its many-dimensional generalization [7, 38]. At P, for
example, the carriers which originated from the other side
(METAL 2) and were transmitted by the bridging atom have
not suffered an inelastic collision. The electron population at
P, therefore, is determined in part by g,. Deep inside
METAL 1, say, on the dashed circle, it is determined by ,,
and is unrelated to the events in METAL 2. Between P and
the dashed circle on side 1, and between Q and the dashed
circle on side 2, there is a spreading resistance. This is the
Sharvin resistance, discussed in detail in [3, 8, 13] and [39].
It is a nonclassical form of spreading resistance because the
dimensions at the “bridge” are small compared to a mean
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\ METAL 1
\

An atom bridging two large metallic contacts. M and N are far
enough into the metallic contacts so that the electrochemical potential
of the other contact has little influence on the carrier distribution. The
dashed circles can be presumed to be a mean free path away from the
bridging atom, but the exact choice for this radius is not important.

g
|

free path. As explained in [3] and [8], this additional Sharvin
resistance gives us a potential drop between M and N which
is characteristic of reservoirs. The resulting expressions for
conductance exhibit only a sum over suitably weighted
transmission probabilities, without complicating
denominators. Now if the bridging atom were attached to
relatively narrow leads, the equivalent of the dashed circles
through M and N would be hard to locate. If we went too far
into the narrow leads we would add additional series
resistance. The specific geometry of Figure 4, however, saves
us from that. The three-dimensional spreading resistance
from M to o, ~p/r (where r is the radius of the dashed
hemisphere), is much less than the Sharvin resistance,
~pl/a2, where /is the mean free path and a the dimension of
the bonding atom. Thus, the drop beyond the dashed
hemispheres is negligible.

4, Spatial voltage variation

In an inhomogeneous medium there are places where
transport is easy, and others where it is hard. That is why
residual resistivity dipoles come into existence. That is why a
tunneling barrier has a voltage drop right across the barrier,
in the presence of current. If, instead of considering a
particular sample, we average over an ensembile of all
possible spatial redistributions of scattering centers, the

R. LANDAUER

311




312

resulting voltage distribution will be uniform for a
rectangular parallelopiped with current introduced at
opposing faces. At an early stage in the development of
solid-state physics, the convenience of treating an ensemble
average was recognized. All too often, the fact that it was a
mathematical device, unrelated to the behavior of a specific
sample, was forgotten.

Reference [35] tells us:

“. .. the current density depends only on the voltages at
the leads, and not on the precise electric field
configuration. We can therefore, without loss of
generality, write the current density in terms of any
potential which has the correct values at the leads. It is
convenient to choose the classical potential Vd(r) such
that V*V(r)=0....”

We have intentionally selected a statement from one of
the more perceptive and significant recent papers. The
quotation represents a real improvement over the earlier
common presumption that the voltage actually is Vd(r). The
notation V' may represent an unwarranted implication that
the only reason for spatial field variations comes from
quantum-mechanical interferences in multiple scattering.
We still, however, find the voltage distribution treated as a
matter that does not have to be understood; it is not a matter
of interest in its own right. Reference [35] is correct within
its assumptions; the precise voltage distribution does not
matter in the case of noninteracting electrons. Crudely
speaking, it is the total driving force including both
concentration gradients and electric field that matters. We
introduce the qualifier, “crudely speaking,” because we are
dealing with localized scatterers and rapid microscopic
variations. We are far from the regime where the local
transport coefficients (i = ¢F, { = —DVn) can be invoked. In
the case of noninteracting carriers an incorrect field variation
is compensated by carrier concentration gradients, together
providing the necessary spatially varying driving force and
thus ensuring the continuity of current. If, on the other
hand, we start from a theory allowing for the Coulomb
interaction between electrons, then the large space charges
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associated with the carrier pileup needed for diffusive
currents become impossible. In that case a much smaller
carrier pileup will produce the required inhomogeneous field
distribution needed to maintain the current continuity.
Allowing for Coulomb interaction between carriers will
automatically give us the correct internal field distribution.

Consider a one-dimensional array of obstacles presumed
to be disordered (Figure 5). A voltage is applied, and Figure
5 shows the spatial variation of electronic potential energy
due to the applied voltage added to the scattering potential.
Reference [17] discusses the nonlinear effects implicit in
Figure 5; here we stress its more elementary implications,
assuming that the separation between obstacles is large
compared to both the Fermi-level wavelength and the
screening length. Let us follow the approach stressed in
Section 3, and elsewhere in this author’s work: We assume
current flow incident on the sample and calculate the
resulting diffusive carrier pileup, assuming noninteracting
carriers. Then we let voltages be established as a result of the
self-consistent screening caused by the diffusive carrier
concentration.

Extra carriers incident on the sample, say from the left,
will give rise to a complex pattern of multiply scattered
waves. Between two adjacent barriers, however, we will have
some combination of right-moving waves and left-moving
waves. Thus, ignoring oscillations related to the Fermi
wavelength, we will have a fixed density between two
adjacent barriers. As a result of Fabry—Perot resonances, the
density need not vary monotonically as we move along the
chain; there can be “uphill” density changes. Now consider
the screening. Long wavelengths are screened most
effectively; uniform charge densities extending over distances
large compared to the screening length will be totally
compensated by the screening charge. Thus, deviations from
neutrality will be confined to the regions near the barriers
where the fields and potential drops must occur. Note that
the screening calculation is somewhat complex. It involves
the density of states, and this is the density of states in the
potential which includes the barriers. In the case of barriers
which have a small transmission probability we can, at least
approximately, think in terms of a local set of states between
adjacent barriers. As pointed out by Biittiker [27], the local
density of states is very nonuniform and peaks near the
resonances. This leads to a complex adjustment, resembling
contact potentials, which permit alignment of Fermi levels
between adjacent conductors, even in the absence of
transport. We have not carried out this screening calculation;
it is conceivable that it can leave us with uphill voltages.
Remember that electrochemical potentials and voltages can
move apart only over short distances in the regions where
charges accumulate. Over most of the space between barriers
they must be identical. Thus, an uphill voltage implies an
uphill change in the electrochemical potentials and a
negative power dissipation associated with the barrier in
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question. That would be surprising, but it cannot be ruled
out without further calculation. In the case of correlated
dissipation caused by adjacent barriers, it is only the net
dissipation which clearly has to be positive. Thermoelectric
effects which cool a junction between dissimilar materials are
well known and, as already stated, our adjacent regions
resemble dissimilar materials.” Uphill voltages have been
seen experimentally [40], but not in measurements on a one-
dimensional sample.

How does Figure 5 translate into two or three dimensions?
We do not know; even though the answer may, in part, be
implicit in some of the diagrammatic portions of the
electromigration literature. Much of what has been said in
connection with Figure 5 may carry over. At the simplest
level, we might want to argue that carriers arriving at a given
scattering site from different directions, i.e., from different
preceding scatterer locations, have a very different history
which makes them effectively incoherent, and that therefore
the semiclassical arguments of [1] are directly applicable.
The universal fluctuation literature, however, has taught us
to be cautious; multiple scattering leads to subtle
correlations. Incidentally, the universal fluctuation
discussions also have a shortcoming which is not widely
advertised: They assume point-defect scattering, whereas real
mesoscopic samples are likely to have significant resistance
contributions from grain boundaries, dislocations, surface
ridges, etc. Even point defects cause long-range elastic
distortions. These qualifications must be added to others
[3, 5, 6, 41]. Universal fluctuations are only manifested
between points separated by about one inelastic scattering
length. The sample’s resistance cannot be so small as to
represent ballistic transmission, or so large as to represent
localization. The conclusion: Universal is a somewhat
exaggerated characterization. That, of course, is not intended
to diminish the central insight involved, pointing to the
importance of coherent multiple scattering effects.

The three-dimensional case, of course, just like the one-
dimensional case, includes interference effects between the
wave incident on an obstacle and the resulting scattered
waves. This effect does not require coherence between
scattering by successive obstacles. The effect is well known in
electromigration theory [42], but the associated local fields
are oscillatory and do not contribute to the overall voltage
[32]. An additional effect, likely to be present, consists of
higher-order multipole fields supplementing the residual
resistivity dipole. For example, if either the incident velocity
distribution or the dependence of scattering probability on
angle is more complex than assumed in [1], these can be
present. Once again, they do not contribute to the overall
voltage drop.

% Thermoelectric cooling typically involves carriers which, at the junction, have to
absorb energy to continue on their path at a higher energy in the new material. An
n*-n semiconductor junction is a typical example. These are inelastic effects, which
we have ignored in our discussion. In fact, within our treatment, the dissipation
associated with a barrier does not occur at the barrier. The heat is delivered to the
reservoirs.
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One-electron energies of the ring as a function of flux. The dashed
lines are free electrons without elastic scattering. &, is the single
electron flux quantum. If the horizontal axis measures k, instead of
flux, the zone boundaries occur at */L, where L is the loop
circumference.
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5. Nonlinearity in closed loops

We have already stressed the role of nonlinearity in smali
samples. We supplement this, here, with a discussion of
nonlinearity in closed loops without leads. First, a general
comment about closed loops. Figure 3 shows the typical
situation envisioned in most of this paper. The size of the
resistance is determined by the scattering properties of the
sample, but if this is entirely elastic scattering, then the
dissipation occurs in the reservoirs, The reservoirs are “black
bodies,” which subject carriers to inelastic events and ensure
loss of phase memory before the carriers coming from the
sample can again return to the sample. What happens if we
eliminate the reservoirs and tie the ends of the sample
together to make a loop? Then we can only produce a
current by a time-dependent flux through the sample. If the
scattering in the sample is purely elastic, we have a
Hamiltonian system. It can store energy; it cannot dissipate
it. The system was analyzed in [43] and the analysis
extended in [44-46].

Reference [43] invoked an equivalence between the
electrons in the loop and electrons in a periodic potential, in
which the variation in one period is that found in traversing
the loop. Figure 6, adapted from [43], shows the energy of
the electrons in the loop as a periodic function of the applied
flux. The lattice momentum, k, in the equivalent periodic
potential, is proportional to this flux. In the presence of a
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structure according to Bloch’s theorem, dk/dt = —eE/h. If we
have a time-independent nonvanishing flux, we can expect a
current from each occupied “band,” i ~ dU/dk ~ dU/d ®.
The simple band structure shown in Figure 6 can only be
expected in the one-dimensional case. In the case of a field-
effect-transistor structure, the one-dimensional behavior can
be realized by choosing the transverse dimensions small
enough so that only the lowest transverse state is occupied.
In the metallic case, where we have a cross section with
many atoms, and many transverse states are occupied, we
can expect more complex three-dimensional “band”
structures with many internal minima and maxima. In the
one-dimensional case we can expect alternating signs for the
contributions from successive bands, with some tendency for
higher-lying bands to yield larger currents.

If the flux is increased from an initially vanishing value,
and then kept fixed at a value which does not correspond to
a zone boundary or zone center in Figure 6, we can expect a
nonvanishing, or persistent, current. As explained in [46],
even in the presence of some thermal relaxation, a reduced
persistent current can be expected. The magnitude of this
persistent current is hard to estimate, particularly in the
many-dimensional case, where no detailed understanding of
the equivalent of Figure 6 exists. The persistent current will,
in any case, be less than that for a free-electron gas
accelerated by application of a flux %Qo, where @, is the
Aharonov-Bohm flux quantum. Consider a one-dimensional
loop with elastic scattering weak enough so that there is an
appreciable probability for elastic transmission in one
traversal around the loop. This means that the resistance of
the loop, if opened up and measured as in Figure 3, would,
according to Equation (2), yield a resistance R, ~ whie’. In
that case, when the applied flux & is equal to %<I>0, we will be
halfway between zone center and zone edge. The persistent
current will be near its maximum value, and will be
depressed only modestly below the free electron value for the
same number of carriers and the same geometry.

There have been a number of suggestions® [47] that the
gap and bandwidth in Figure 6 vary in a relatively random
way as we go up in energy, from band to band. This is, of
course, not true for a very simple scattering potential, e.g., a
single scattering barrier with a smooth potential. At the other
extreme, consider a large number of scattering centers within
the loop, but weak enough to be treated as a perturbation on
the free-electron case. In that case, the energy gaps depend
on Fourier elements of the potential [48]

f (€7 T Vix—x,) dx

= (z_‘, e’z"’“f)[ f Vix)e ™™ dx] 3)

? Private communication: Ping Ao, Department of Physics, University of lllinois at
Urbana-Champaign, 110 W. Green St., Urbana, IL 61801.
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We see that this sum (resembling the spectral analysis of shot
noise) has a smooth dependence on k through the final right-
hand-side factor. The first r.h.s. factor can give a somewhat
random variation between adjacent band gaps. The relative
random variation between gaps, however, goes down as
1/VN, where N is the number of scattering centers.

We are not, here, trying to answer the disorder question in
detail, but it can be seen that even the one-dimensional case
has a degree of complexity which makes it hard to evaluate
the persistent current. The current is likely to be small. The
method of measurement is likely to reflect losses into the
ring, thereby reducing the persistent carrier magnitude. A
large planar array of loops will give us loops which are
unlikely to be exactly identical. Even the sign of the current
will vary from loop to loop.

In view of these difficulties we propose a more indirect test
for Figure 6. Let us apply a bias flux which puts us about
halfway between zone center and zone edge, then apply an
additional small sinusoidal oscillatory flux. At the zone
center, before flux application, the energy varies
symmetrically with flux,

U=a¢’ + be*. 4
With an oscillatory flux, ¢, we find

dv_du_ 2adp + 4b(5¢)’. 5)

6l~'3];~d¢

Consider, alternatively, a bias flux ¢, # 0, and an additional
oscillatory flux 3¢. In that case

. [dU\  [dU
i) (%)
=U"(,)06 +:U"(9,)(66)" + -+ . (6)

We can see that in Equation (5) the lowest harmonic is the
third harmonic, whereas in Equation (6) there will be a
second harmonic. This is a simple qualitative distinction,
and, unlike the attempt to measure persistent currents, can
utilize phase-locked detection techniques. A large array once
again will give us contributions with random sign. Thus, the
use of N loops in an array will only cause the detected signal
to grow as V/N. Note also that the phase of the second
harmonic, in the reradiated field, can be used to distinguish
between a nonlinear resistance and a nonlinear reactance. As
we have stressed, the loop (at sufficiently low temperatures)
acts as a reactance.

The distinction between Equations (5) and (6) utilizes only
a symmetry argument and does not require the simple one-
dimensional band structure of Figure 6. Our proposed
experiment does not require a field-effect structure; it should
work in the metallic case. The coil generating the oscillatory
flux must, of course, generate no second harmonic. In the
presence of a bias flux, dimensional changes in the coil will
cause second-harmonic generation. If needed, the wave form
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driving the coil can be adjusted to compensate for this. For
an alternative possible experimental approach to persistent
current detection, see [45], invoking the measurement of
small signal power absorption as a function of bias flux.

6. Conclusion

The ability to fabricate small samples has led to the study of
a variety of phenomena exhibiting quantum interference
between alternative carrier paths. This includes the
Aharonov-Bohm effect and “universal” fluctuations. These
studies have also brought attention to an approach to
conductance which is based upon the overall scattering
behavior of the sample. The literature in recent years has
appreciated the distinction between an ensemble and a
specific sample, as well as the perturbative role of additional
measurement leads. The work in this field, however,
continues to minimize questions about the explicit variation
of currents and fields within the conductor, and the
correlation of these variations with the positions of localized
scatterers. Physics tends to be channeled by slogans and
fashions, providing attention to an evolving variety of
popular questions. Decades ago, these included the Kondo
problem, deviations from Matthiessen’s rule, and Fermi
surface studies. Most recently, universal fluctuations has
joined this list. This preoccupation with a limited range of
topics draws attention from other commonsense questions,
which one might expect to see discussed in every elementary
text.
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