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Because  of  the  growing  commercial, 
governmental,  and scientific requirements  for 
system  availability,  evaluating this factor  has 
become  increasingly  important.  This  paper 
presents  a unified approach to hardware  and 
software  availability  of  a  system in the 
operational phase.  The  aim is to evaluate  the 
availability in a  given  time  interval, to show  how 
to improve it, and to determine  the  probability 
that  a  specified level is met  over  the  period.  The 
inputs  are  the  failure  and  repair rates of the 
system  elements,  and  the  functional  relationship 
between  them.  Field tracking provides  the 
failure  and  repair data,  and  Markov-chain 
techniques  make it possible to construct, 
reduce,  and  solve  the  model.  Availability is 
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computed  by  the  program  package  System 
Availability  Estimator (SAVE).  The model  has 
been  used  and  validated  with  actual field data 
for  the IBM 3725 Communication  Controller. 

1. Introduction 
This paper is a continuation of previous  work  dedicated to 
the modeling of computer and communication systems and 
the architecture and design of highly  available 
communication systems [ 1-31. The present  purpose is to 
show a real  example  with its quantitative results. The paper 
describes the method used in IBM to evaluate, improve, and 
guarantee the combined hardware and software  availability 
of the IBM 3725 Communication Controller. The 
communication controller is  considered in operation, not 
during testing. The chosen  measure of availability  is the 
expected interval availability,  evaluated  for one-month 
intervals. 

The method used to improve the availability  consists of 
two  steps. The first  phase  is the identification of the 
components-hardware and software-that  most contribute 
to system  unavailability.  These  bottlenecks are not 
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necessarily the less  reliable components. The failure of a  vital 
reliable component may  indeed  cause  a  greater 
unavailability of the system than the failure of a  harmless 
unreliable component. The second  phase  consists in 
undertaking appropriate selective actions, such as replication 
of a  given component or improvement of the error-detection 
and fault-isolation capability of another component. To 
guarantee the computed value of the availability within a 
specified  period, we determine the probability that the 
availability  is  greater than a  given  level  over the period. 

method, the Markovian method, is chosen to solve the 
model. Monte Carlo simulations are not used,  even if they 
are more flexible and even if variance-reduction techniques 
could reduce the run lengths.  Markov  models  have  been 
widely  used to predict hardware  reliability and availability. 
Software  models,  such as reliability  growth  models [4,5], 
usually  deal  with the testing  phase and are typically not 
Markovian, and distinguish  software  from hardware [6] .  The 
dichotomy between hardware and software can be justified 
by emphasizing their different evolution in time:  Hardware 
wears out according to a bathtub-shaped failure-rate  curve, 
whereas  software  fails  because of latent errors, depending on 
the use and management of  system  resources and the 
environment [7]. As an example,  workload  affects  software 
more than hardware, and a nonlinear increase in software 
failures  with the amount of interactive processing  has  been 
observed on the IBM  308 1 [8].  However,  workload  also 
affects  hardware  reliability.  Besides, from the user  viewpoint, 
there is no difference  between hardware and software 
failures: The system  is functioning or it is not. Furthermore, 
since many failures  occur in the hardware-software  interface 
[ 81, a  unified measure is  necessary. Thus, there are several 
combined hardware and software  reliability  analyses and 
models [9, 101. 

distributions are commonly, though not necessarily, 
approximated to exponential distributions involving 
constant failure and repair  rates. Due to the heterogeneity of 
the environment and use, and the Occurrence  of  new 
product releases, the software  failure and repair rates of the 
IBM 3725 Communication Controller may  decrease or 
increase throughout the operational phase.  However, the 
variations are slow. Chi-square and Kolmogorov-Smirnov 
goodness-of-fit  tests justify the assumption of constant 
hardware and software  failure and repair  rates, within 
one-month intervals. Under this assumption, the system 
evolves  within  each one-month interval as a  finite-state 
homogeneous continuous-time Markov chain. Computing 
the expected interval availability  is then possible  over periods 
of one month. The failure and repair data from the end of 
the current month are used to predict the availability of the 
next month. At the end of that month, the availability of the 
month is  reviewed  with the month's data, and the 

Due to the high  availability  of the IBM 3725, an analytical 

During the operational phase,  hardware  failure and repair 
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availability of the third month is  predicted; and so on. This 
procedure  allows the representation of a  complex situation 
actually occumng in the field. 

Estimator (SAVE) [ 1 11 automatically generates the Markov 
chain from the input modeling  language.  However, the IBM 
3725 Communication Controller has  a  large number of 
elements.  Moreover, the size  of the model  increases 
exponentially  with the number of elements and thus rapidly 
becomes intractable. To decrease this size,  we  use 
hierarchical  modeling,  thereby introducing a  slight 
approximation. 

data is  described in Section 2. The model construction, 
reduction, and solution are presented in Section 3. The 
methodology for availability improvement is  detailed in 
Section  4.  Section 5 explains the method used to guarantee 
the value of the availability, and gives quantitative results.  A 
summary of the major points covered in the paper,  a  brief 
discussion of their implications, and an overview  of a further 
study are given as concluding remarks in Section 6. 

The program  package  called the System  Availability 

The study of hardware and software  failure and repair 

2. Study of failure  and  repair  data 
The first step of  a  model is data collection. In particular, it is 
essential to track software data [ 121, since projections of 
software  failures are difficult. The emergence of 
measurement products, such as IBMs System  Availability 
Management-which  detects,  gathers, and manages 
hardware- and software-availability  data-confirms this 
point. 

Several  definitions  have  been  proposed to quantify the 
quality of the service  delivered  by  a  system [ 13, 141, and to 
distinguish the degrees  of  defects. From the viewpoint of the 
end user, the behavior of a  system  is  perceived  as  a  delivered 
service. Thus, when the delivered  service  deviates  from the 
specified  service,  a failure occurs.  A failure is the 
manifestation of one or several errors in the service, and an 
error is the manifestation of one or several faults in the 
system [ 141. The moments of fault occurrence and failure 
occurrence are separated by a time interval, the fault latency, 
which  may vary from a few milliseconds to several months. 
The event  effectively  perceived  by the user  is the occurrence 
of a  failure.  Hence,  only the failure aspect is considered in 
the remainder of this paper. The basic  characteristics  of  a 
failure are its failure rate and its repair  rate.  Hardware  failure 
and repair rates are defined  with  regard to time [ 151. 
Currently, software  failure rates may  be  defined  with  regard 
to the number of lines  of  code  (released, or new and 
modified), the number of functions, or the time. Here, 
software failure and repair rates are defined  with  respect to 
time, to evaluate  hardware and software  availability in 
equivalent terms. 

failures are permanent. A permanent failure  is due to a 
Hardware  failures  may  be permanent or soft; software 
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Table 1 Failure  and  repair data. 

Number of identified  RA on component i 

Total  number of unidentified  RA 

Number of microcode RA on component i 

Number of NCP problems of seventy 1 

Number of NCP problems of seventy 2 

Error detection rate of component i 

Power-on  hours  per month 

DO1 for  an  identified  failure on i 

Total DO1 for  unidentified  failures 

DO1  for the microcode component i 

Seventy 1 DO1  for the software component i 

Seventy 2 DO1  for the software component i 

(per month) 

(per month) 

(per month) 

(for T hours) 

(for T hours) 

(in hours) 

(in hours) 

(in hours) 

(in hours) 

(in hours) 

(in hours) 

Table 2 Calculation of failure  and  repair  rates. 

COMPONENT: i IN HARDWARE 
FAILURE MODE Identified, Unidentified 
FAILURE  RATE: Mli JP, 

Mu . (1 - E , ) M l i / [ Z ,  ( 1  - E ; ) ~ , , T ]  
REPAIR  RATE: lJDOIli, 1 J(DOIu . DOIli/Z, DOI,,) 

COMPONENT: i IN MICROCODE 
FAILURE RATE M , , / P  
REPAIR  RATE: 1 JDOIMj 

COMPONENT: i = NCP 
FAILURE MODES Seventy 1 ,  Severity 2 
FAILURE RATE PJT,  Ps2/T 
REPAIR RATE lJDOIs18, l/DOI,, 

permanent fault. It is continuous and stable. A soft  failure  is 
the result  of either an intermittent fault (due to unstable or 
varying  hardware) or a transient fault (due to temporary 
environmental variations) [ 161. Permanent failures 
correspond to slow transitions, and soft failures to 
time-dependent fast transitions. 

Permanent failures  with  slow transitions are 
approximately exponentially distributed, and can be 
modeled  with a Markov process. Soft failures  with  fast 
transitions are more difficult to characterize. Their rates can 
be  measured experimentally using fault-injection techniques. 
The transitions are not exponentially distributed hence, a 
semi-Markov  process is more realistic than a Markov 
process,  because it does not impose limitations on the time 
the process spends in a given state. In a semi-Markov 
process, the occurrence of a transient failure  is  described as a 
transition between  two  states,  with transition rates defined 
by distribution functions. The representation of an 270 
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intermittent failure  requires in addition the knowledge  of the 
holding-time distribution related to the supplementary state 
in which the fault is not active [ 171. Recovery  procedures in 
the IBM 3725 Communication Controller allow  it to tolerate 
soft failures  with  fast transitions. Therefore,  these  failures are 
not  considered  here.  Such  failures  could be modeled. As an 
example, in the SURE [ 171 reliability  program  package  of 
NASA, each transition related to a soft  failure  is  described  by 
the conditional mean and conditional standard deviation of 
the associated distribution, and the transition probability. 
The HARP package [ 181 allows the same modeling, as 
well  as  seven different ways  of specifying fault- and 
error-handling behavior. 

In the IBM 3725 Communication Controller, there are 
two  classes  of data, namely  hardware data and software data. 
The hardware  class contains physical components, such  as 
memories,  processors,  buses, and power  supplies.  Hardware 
data may  refer to identified or unidentified  failures, due to 
the imperfect fault-isolation capacity of the controller. The 
software  class contains the microcode functions of the 
different  subsystems and the Network Control Program 
(NCP), which controls the whole communication controller. 
NCP data are divided into two  subclasses,  according to the 
severity of the failures. 

The parameters that characterize the numbers of failures 
differ  according to the class. The term “repair action” is  used 
for the hardware  class and the microcode  subclass,  whereas 
the term “problem” applies to NCP. Numbers of repair 
actions (RA), planned and unplanned, are given  per 
machine and per month. Numbers of NCP problems are 
given  per  license and for a given  period T. The repair data 
are expressed as durations of interrupt (DOI), which include, 
when appropriate, the different times such as travel time, 
repair time, part-procurement time, initial program  load 
time, and recovery time. The duration of interrupt is defined 
in equivalent terms for the different  classes. Table 1 shows 
all the data available. The error-detection rate is estimated 
for each hardware component by an IBM  design  tool. All the 
other data are field data, either logged in a database or 
reported by customer engineers. 

evaluation of the availability-the  failure and repair rates- 
must  be  defined  with  respect to the same time units. The 
hour is the most appropriate unit for the duration of 
interrupts. Hence, the repair  rates,  inverse of the duration of 
interrupts, are expressed  per hour. Consequently, the failure 
rates are also  defined  per hour. Table 2 shows  how to 
compute, from the collected data, the failure and repair rates 
of a given component. 

Failure data, which are given  per month, need to be 
normalized. The failure rate of a component in a given 
failure mode is  expressed as the number of failures of this 
component in a given  failure  mode  per time unit, that is, the 
normalized ratio with  respect to time of its number of repair 

The basic parameters of a Markov chain to be  used for the 
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actions or problems. In the case  of the unidentified  failure 
mode of hardware components, the number of repair actions 
per component is unknown. Only the global number of 
unidentified repair actions is  known. The breakdown  per 
component is estimated as  follows: 

The sum is computed for all N, hardware components 
modeled. 

The repair rate of a component in a given mode is the 
inverse of the corresponding duration of interrupt. In the 
unidentified mode, an estimator of the duration of interrupt 
per component is 

DOI,, = DOI, * DOII,/Z  DOI,*. 
1 

Thus, the failure and repair rates can be evaluated for  each 
component in each  failure mode from the available data. 

3. Availability model 
The IBM  3725 Communication Controller is  modeled  as a 
set of interconnected hardware and software components. 
There are a few hundred components to be  modeled. The 
Markovian method involves an exponential growth of the 
state space  with the number of components modeled. As an 
example, 10 different components create 2''  possible states, 
and 50 components create  250  possible  states. Thus, the size 
of the model must be  reduced. So far, there are three main 
approaches to the large-state-space  problem: 

1. A structural decomposition, which  consists in dividing 
the global  system into physical  subsystems,  solving  each 
subsystem  separately, and combining the partial solutions 
to get the overall  system solution. This is the approach 
used  in the SHARPE [ 191 hierarchical  modeling  tool for 
reliability  models. 

2. A behavioral decomposition, which  consists in separating 
the fault-occurrence and fault-handling behavior into 
distinct submodels,  solving  each submodel in the most 
appropriate way-for instance, simulating one submodel 
and solving the other submodel analytically, and 
incorporating the results  of the fault-occurrence  submodel 
into the fault-handling submodel. This approach is 
selected in the CAST  [20],  CARE 111 [21], and HARP 
[ 181 reliability-evaluation  packages. 

aggregation technique), which  consists in decomposing 
the original  problem into smaller and more convenient 
subproblems, analyzing the subproblems separately, and 
solving the global  problem through the iterated solution 
of its subproblems. The main methods are the iterative 
aggregation/disaggregation technique and the 
decomposition technique for nearly  completely 
decomposable systems [22] in the case  of  steady-state 

3.  An approximate solution (using, for example, an 
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analysis. For the transient analysis of  stiff Markov chains, 
a method based on the conversion of a stiff Markov chain 
into a smaller  nonstiff chain has been  proposed  [23]. 

To model the IBM  3725 Communication Controller, we  use 
the structural decomposition at the lowest hierarchical  level, 
that is, at the field-replaceable-unit  level. The field- 
replaceable unit is the lowest  level at which there are 
hardware failure and repair data. Physically,  several  field- 
replaceable units are grouped  together to perform a given 
function, such as line  interface or maintenance. Within  each 
of these  sets of atomic elements, we encapsulate those that 
are independent. Thus, each function is  viewed  as a set  of 
capsules containing independent atomic elements. A capsule 
may contain from one to more than a hundred elements, an 
example of  which  is the power  supply. The advantage of 
encapsulating independent elements is the possibility  of 
using combinatorial models,  such  as  fault  trees and 
reliability  block  diagrams,  which do not involve an 
exponential growth  of the number of events  with the 
number of elements, and which are easier to solve. 

We  have developed a program  package  called  HEAVEN, 
which  provides a block-diagram  model  for  general structures, 
not necessarily  series-parallel. In HEAVEN,  each component 
modeled is labeled  as the cumulative distribution function 
(CDF) for one of its dependability [ 141 measures,  such  as 
instantaneous availability,  reliability,  or time to failure, or 
one of its performance measures. The class  of function 
chosen has the following  form: 

~ ( t )  = ~ , ( t )  . eQl(f), 

where P, ( t )  and Qi ( t )  are polynomials of the positive  real 
variable t (time). It is a generalization of the class  of 
functions taken in SHARPE [ 191 and is  closed under the 
convolution operations performed. 

In this study, we  assign to each  field-replaceable unit 
its instantaneous availability.  Assuming that the field- 
replaceable units are initially operational, the instantaneous 
availability of any of them is [ 151 

i 

Ai(t)  = [ M , / ( F R ,  + M,)I 

+ [FR,/(FR, + mi)I e 
--(FRr+RR,)I 

( 2 )  
where FR, and R R ,  denote respectively the failure and repair 
rate of the field-replaceable unit i. 

function of the  capsule  as a whole,  which  has the form 

,qt) = B + 1 ci . 

The model  gives as output the cumulative distribution 

1 

where B and all Ci and Di are independent oft. 

Considering the dominant terms of A ( t ) ,  as t approaches 
infinity, we obtain 

Let 0, be the minimum of the D, for i = 1 to n. 

B + C, . (4) 
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IBM 3725 Communication  Controller 
A, = [RR,/(FR, + -,)I 

+ V, - [RR,/(FR, + RRJII e- (FRe+RRc)I 

Finally, we determine the equivalent failure and repair rates 
in each  hardware  failure mode by  solving a set of three 
equations with three unknowns FR,, RR,, and P,. We obtain 
for FRe and RR, 

FRe = B i- C,, 

R R e  = B * Dj. 

In the IBM 3725 Communication Controller, there are 
three  software components: the Network Control Program 
(NCP) running in the control subsystem, the microcode of 
the transmission subsystem  (TSSCODE), and the microcode 
of the maintenance and operator subsystem  (MOSSCODE). 
Figure 1 gives an overview  of the structure of the controller. 
The software  failure and repair data are available  for  each of 
the three software components. Each  software component 
has a specific interaction with a hardware  capsule. Thus, 
each  software component constitutes a capsule. 

Consequently, at the end of the first  hierarchical  step, the 
system is modeled as a set  of capsules  with  estimated  failure 
and repair rates  assigned to each  capsule. The definition of 
the capsules  from the field-replaceable units is  given in a 
specific  file in the model  (CONCEN  FILE). The capsules are 
the atomic entities in the SAVE model,  where  they are called 
components. The IBM 3725 Communication Controller is 
modeled  with ten different SAVE components, of  which 
seven are hardware components and three are software 
components, as shown in Table 3. Note that there are eight 
identical components of type LIC. 

The  behavioral decomposition is not used  here. There are 
currently no estimates of the parameters required,  such as 
the transient restoration, permanent coverage,  simple-point 
failure, and near-coincident fault [ 181. 

An approximate solution may  be  used in SAVE to solve 
models  with  more than 10000 states, or simply to accelerate 
the computation time for  smaller  models. The method 
consists in decreasing the number of concurrent failures 
modeled,  based on the observation that it does  not affect the 
precision of the result  significantly. In the IBM 3725 
Communication Controller study, with  one,  two, or three 
concurrent failures  modeled, the numbers of states are 2 1, 
198, and 11 16. The variations of  system availability  involved 
by modeling one instead of  two concurrent failures, and two 
instead of three concurrent failures, are 1.6 1 X 10" and less 
than respectively. This shows that modeling more 
concurrent failures  would not change the availability 
numbers.  Hence, the system  can  be  solved  with  reduced 
state  space. 

failure and repair behavior of each component and define 
the interactions among the components. The refinement of 

Once the model  is  reduced to a tractable size,  we  refine the 

Contml 
subsystem 

Channel 
adapters 

Central 
control 
unit 

Main 
storage 

Transmission 
subsystem 

operator  subsystem 

Processor 
Storage 

Contml  panel 
Diskette  drive 

Table 3 Components remaining  after encapsulation. 

Hardware  components 
CA 
ccu 
LIC(8) 
MOSS 
PS 
RDV 
SCAN 

Software  components 
MOSSCODE 
TSSCODE 
NCP 

Channel  adapter 
Central  control  unit 
8  line-interface  couplers 
Maintenance  and  operator  subsystem 
Power  supply 
Redrive  card 
Scanner 

MOSS microcode 
Transmission  subsystem microcode 
Network control program 

272 

Equation 4 should be used in both failure modes 
(identified and unidentified) to determine the equivalent 
failure rate FRe and the equivalent repair rate RR, in each 
mode. To solve Equation 4, we introduce the probability Pe, 
such that at time t = 0 the system  is operational with 
probability PC. Then, the availability of the equivalent 
element is 
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the failure behavior consists in describing the  dormant mode 
of a component: the state in which  a component is neither 
operational nor down, but is unable to operate because other 
components have  failed [ 1 11. Parameters which characterize 
the effectiveness  of  a  recovery,  such as coverage  factors [ 131 
and other parameters related to the fault-occurrence 
behavior, can be specified  here. The refinement of the repair 
behavior  consists in describing  specific repairman classes 
(such as Field  Engineer, Operator, or Software Retry) and 
specifying  within  each  class  a  specific  strategy  [such as 
random-order service  (ROS) or different priority levels]. 

Along  with the refinement of the  inner behavior of a 
capsule, we must define the interactions between the 
capsules. We model interactions of all three types  between 
capsules, that is,  hardware-hardware,  software-software, and 
hardware-software. There are two  types of interactions, 
operational dependency and repair dependency; both are 
modeled.  They correspond to the fact that a  given 
component may require another component to be 
operational for it to operate (operational dependency) or for 
it to be  repaired (repair dependency). 

operational-failure rate. However,  when it is dormant, it 
does not fail  if it is  a  software component, and it fails  with 
its dormant-failure rate if it is  a hardware component. Here, 
the dormant-failure rate is  supposed to be the same as the 
operational-failure rate. To make sure that a component 
becomes dormant when  it  is not operating, we draw an 
operational-dependency graph, as shown in Figure 2. For 
example, since the central control unit (CCU)  becomes 
dormant when the power  supply  (PS)  fails, there is  a  directed 
edge from CCU to PS in the operationaldependency graph. 

The nodes of the operational-dependency graph are the 
components of the system, and the edges  represent the 
operational dependencies between  these components. If a 
given component i requires a component j to be operational 
for it to operate, we draw an edge from i (slave) t o j  (master). 
The operationaldependency relation is transitive. It is not 
necessary to draw an additional edge, and consequently to 
specify an additional dependency in the SAVE input 
language,  between components such as SCAN (scanner) and 
PS (power  supply). 

The system as a  whole  is  considered operational when  all 
the components are operational. This can be written as a 
Boolean  expression. There is no need to make assertions 
about components which  have incoming edges.  Hence, the 
operational condition may  be  written as follows,  using the 
SAVE  language: 

When  a component is  operating, it fails  with its 

NCP and MOSSCODE and TSSCODE and CA and LIC(8) 

We could also  model the degraded  modes by specifying the 
components that must be operational in each  degraded 
mode,  such as 
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MOSSCODE“------.) MOSS Ncp’l CAI 
TsscoDE7 
LIC(8) “--) SCAN+ RDV.”---, CCU-  PS 

i Operational-dependency graph. 

NCPI 

Repair-dependency graph. 

NCP and MOSSCODE and TSSCODE and CA and LIC(7) 
NCP and MOSSCODE and TSSCODE and CA and LIC(6) 

NCP and MOSSCODE and TSSCODE and CA and LIC( 1 )  

Typically, but not always,  if operation of a component 
depends upon certain other components, then repair also 
depends upon at least the same components. Here, MOSS 
and MOSSCODE  must  be operational for the other 
components, except PS, to be repaired. For instance, 
operation of CCU depends upon PS, and CCU cannot be 
repaired without PS (and in addition MOSS and 
MOSSCODE)  being operational. Therefore,  a  repair 
dependency graph  is  also  necessary. Figure 3 shows the 
repair-dependency  graph  for the present  model. 

The repair-dependency relation is not transitive. The 
repair-dependency  graph  may  be  drawn as described in 
Figure 3, but the related SAVE construct must contain all 
the components needed for the component modeled to be 
repaired. As an example, the repair of  CA depends on RDV, 
CCU,  MOSSCODE,  MOSS, and PS. 

When  a component fails, it may  fail in different  modes 
dependent upon what the repair rate is and who  repairs the 
component. When there are two  failure  modes, the failure 
rates fr 1 and fr2  related to each  mode are indirectly 
described First, the total failure rate fr 1 +fr2 is written 273 
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MODEL: 3125 
METHOD: numerical 
CONSTANTS: cafr I ,  cafr2,  carr I ,  cam2 

COMPONENT: ca 
... 

OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
FAILURE RATE 
DORMANT  FAILURE RATE 
FAILURE  MODE PROBABILITIES 
REPAIR RATE 
REPAIRMAN CLASS USED 

COMPONENT ccu 
OPERATION  DEPENDS  UPON 
REPAIR  DEPENDS  UPON 
... 

COMPONENT: lic (8) 
OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
.. . 

COMPONENT moss 
OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
... 

COMPONENT: ps 

COMPONENT: rdv 
.. . 

OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
... 

COMPONENT: scan 
OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
... 

COMPONENT: mosscode 
OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
... 

COMPONENT: ncp 
OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
.. . 

COMPONENT. tsscode 
OPERATION  DEPENDS  UPON 
REPAIR DEPENDS  UPON 
... 

274 

: rdv 
: rdv,ccu,mosscode,moss,ps 
: cafr 1 +cafr2 
: cafr 1 +cafr2 
: cafr  I/(cafr 1 +cafrZ),cafrZ/(cafr I +cafr2) 
: carrl,carr2 
: fe, op 

: ps 
: mosscode,moss,ps 

: scan 
: scan,rdv,ccu,mosscode,moss,ps 

: ps 
: ps 

: ccu 
: ccu,mosscode,moss,ps 

: rdv 
: rdv,ccu,mosscode,moss,ps 

: moss 
: moss,ps 

: ccu 
: ccu,mosscode,moss,ps 

: scan 
: scan,rdv,ccu,mosscode,moss,ps 

EVALUATION CRITERIA: blockdiagram 

REPAIRMAN CLASS: op( 1) 
REPAIR STRATEGY: ros 

REPAIRMAN CLASS: fe ( I )  

END 

ncp  and mosscode and  tsscode  and ca and  lic (8) 

REPAIR  STRATEGY: ros 
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in the FAILURE  RATE construct, then the percentages 
fr 1 /(fr 1 +fr2) and fr2/(fr I +fr2) are put in  the FAILURE 
MODE  PROBABILITIES constructs related to mode 1 and 
mode 2,  respectively.  Two  classes  of repairmen, Field 
Engineer (fe) and operator (op),  with one repairman per 
class,  allow the repair of components in their respective 
failure  modes. To repair failed components, repairmen first 
follow the repair dependencies, and then, if more than one 
component can be repaired, they randomly select  a 
component for repair. All these characteristics are 
symbolically  represented in a configuration file (CONFIG 
FILE). 

The next step is the creation of the input file (SVINPUT 
FILE)  for SAVE. A  program,  called  CREATE,  picks up the 
collected data (DATA  FILE) from the field or from  a  design 
tool, the definition of the capsules (CONCEN FILE), and 
finally the configuration of the system at the component 
(capsule)  level and the dependencies among the components 
(CONFIG FILE). Figure 4 shows an extract of the input file 
obtained for SAVE. 

Once the model is constructed and reduced, SAVE 
evaluates the interval availability. We select one-month 
intervals, since in the example one month is the maximum 
time during which the component-failure and -repair rates 
are approximately constant. Then, a  graphical  program 
draws the variation of the interval availability  with time, as 
shown in Figure 5, with arbitrary input data. In particular, 
we  see that the availability  becomes almost constant at the 
end of the month. Thus, if the failure and repair rates were 
constant throughout, the permanent mode would appear 
after one month. In practice, we observe  small fluctuations, 
such as availability  increases, after the first month of the 
product's  life, due to the fluctuations of the failure and 
repair rates. Figure 6 summarizes the model. 

4. Availability  improvement 
SAVE  allows the calculation of the sensitivity (normalized 
partial derivative) of the steady-state  (limiting)  availability 
with  respect to input parameters.  The absolute value of the 
sensitivity  is  a metric. Hence, it quantifies the impact of 
parameters, such as failure rates or error-detection  rates, on 
the system  availability. To cope with  a  large absolute value 
of the sensitivity  with  respect to the failure rate of a 
component in the identified-failure  mode, the solution is to 
decrease the dependency of the system on this component; 
whereas to minimize the effect of the failure  of  a component 
in the unidentified-failure mode, we  may maximize its 
error-detection capability. 

In the present study, the sensitivity  analysis  shows that the 
power  supply  (PS)  is the most critical component. The next 
most critical component is the CCU. Duplicating PS reduces 
unavailability  by 89%. Duplicating CCU  reduces 
unavailability by 3%. Duplicating all other components has 
an even  smaller  effect on unavailability. Thus, sensitivity 
analysis is extremely  useful in working out a  cost-availability 
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Time (hours) 

SVINPUTFILE ). 

trade-off.  Since  perfect duplication of any component is not 
possible, the power-supply duplication will have some 
common component, which should be  separately  modeled. 

Improving software  availability  requires  a thorough 
analysis of the system  use and workload at  the time of the 
occurrence of failures. The basic  idea  is to distinguish 
different  failure  types, and to point out those which  involve 
the most  system  failures, and the areas  where  recovery 
procedures are not satisfactory. Once these areas are 
identified  (deadlock, 1/0 or data management, error 
handling,  etc.), appropriate changes can be undertaken. The 
interaction between  hardware and software  is  also studied. In 
particular, the recovery  of  software errors due to hardware 
failures  may be analyzed. 

5. Guaranteed  availability 
It has been  shown that the calculation of the availability  is 
useful  within one-month intervals.  A way to guarantee the 275 
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value of the availability  over  a  given month is to compute 
the probability that a given  level is met over the month; that 
is, 

Success(t, a) = Pr[A(t)  2 a]. 

There are several methods of evaluating Success ( t ,  a) 
[24,25]. SAVE evaluates Success(t, a) with  a uniformization 
method, which converts the original Markov chain into an 
equivalent Markov chain where all transition rates are equal 
[24]. Figures 7-10 show the variations of Success(t, a) with 
respect to the observation period and with  respect to the 

276 specified  level. 

P. 1. PIGNAL 

0.998 

0.994 
i v 

z 
% 0.990 Y 
VI 

0.986 

0.982 I I I I I I I 
200 400 600 800 

Observation period f (hours) 

Specified level a 

The first  finding  is the decrease of  Success ( t ,  a) with 
respect to both t and a. This decrease is perfectly  reasonable: 
It is much greater in the case  of duplicate power  supply than 
in the case  of  single  power  supply. Here, a 0.4% increase of 
the guaranteed level  causes  a 7% and a 1.4% decrease of 
Success([, a) per month with  single and duplicate power 
supply,  respectively. The decrease of Success(t, a) with time 
results from the increase of the probability that the system 
goes into failed states as the length of the observation  period 
increases. The decrease is, of course,  greater in the case  of  a 
single  power  supply. During one month, Success ( t ,  a) 
decreases by 1 1 % and by 2% with  single and duplicate 
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power  supply,  respectively. In particular, the decreases of 
Success( t ,  a) with time throughout the observation  period, 
given that  the guaranteed level  is  less than the steady-state 
availability, accord with the fact that the availability  does not 
tend to steady-state  availability  after one month. This 
strengthens the argument for a  long tracking period. If  we 
focus on the availability improvement provided by the 
duplication of the power  supply, we obtain, after an 
observation of one month with  a guaranteed level  0.998, 

Success(720,  0.998) = 0.889, 

and after duplicating power supply, 

Success(720,0.998) = 0.984. 

Hence, after power supply is duplicated, the value of the 
interval availability can be guaranteed with  a  precision 
greater by 1 1 % than the precision obtained with  a  single 
power  supply. 

6. Conclusion 
This paper has proposed  a  model  for evaluating the 
combined hardware and software interval availability of the 
IBM 3725 Communication Controller in operation. In 
particular, the interactions between  hardware and software 
have  been  considered. Encapsulation of components and 
reduction of the number of concurrent failures  allowed  a 
reduction of the initial model with more than 250 states to a 
tractable size, without affecting the precision of the result. 
Moreover,  sensitivity calculations demonstrated that the 
power  supply  was  by  far the most critical component, and 
that its duplication increased the availability notably. In 
addition, the evaluation of the probability of meeting  a 
specified  availability  level  provided  a means to guarantee the 
result of the availability calculation. 

Classical combinatorial models which do not model 
component dependencies tend to produce extremely low 
unavailability numbers, reducing the belief in the availability 
modeling  process in general.  Modeling component 
dependencies using  Markov methods tends to produce 
realistic  unavailability numbers, as has been the experience 
in IBM  3725  models.  We  have successhlly validated  such 
numbers with actual measurements. 

More details could be included in the availability  model. 
For example, details of error-recovery and spare switch-over 
times could be  modeled.  Such models have  been evaluated 
experimentally.  Error-recovery and spare  switch-over times 
are extremely small compared to failure and repair times. 
However, the probability of  successful  recovery or successful 
switch-over must be  modeled, as it could affect  availability 
significantly. 

product, which is the transition period between  testing and 
operational phases, during which the statistical behavior of 
the system  undergoes  great  modifications. A further study is 
being undertaken to investigate that area. 

The present method did not handle a critical life  stage  of  a 
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