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An analysis

of hardware

and software
availability
exemplified

on the IBM 3725
Communication
Controller

by P. I. Pignal

Because of the growing commercial,
governmental, and scientific requirements for
system availability, evaluating this factor has
become increasingly important. This paper
presents a unified approach to hardware and
software availability of a system in the
operational phase. The aim is to evaluate the
availability in a given time interval, to show how
to improve it, and to determine the probability
that a specified level is met over the period. The
inputs are the failure and repair rates of the
system elements, and the functional relationship
between them. Field tracking provides the
failure and repair data, and Markov-chain
techniques make it possible to construct,
reduce, and solve the model. Availability is
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computed by the program package System
Availability Estimator (SAVE). The model has
been used and validated with actual field data
for the IBM 3725 Communication Controller.

1. Introduction

This paper is a continuation of previous work dedicated to
the modeling of computer and communication systems and
the architecture and design of highly available
communication systems [1-3]. The present purpose is to
show a real example with its quantitative results. The paper
describes the method used in IBM to evaluate, improve, and
guarantee the combined hardware and software availability
of the IBM 3725 Communication Controller. The
communication controller is considered in operation, not
during testing. The chosen measure of availability is the
expected interval availability, evaluated for one-month
intervals.

The method used to improve the availability consists of
two steps. The first phase is the identification of the
components—hardware and software-—that most contribute
to system unavailability. These bottlenecks are not
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necessarily the less reliable components. The failure of a vital
reliable component may indeed cause a greater
unavailability of the system than the failure of a harmiess
unreliable component. The second phase consists in
undertaking appropriate selective actions, such as replication
of a given component or improvement of the error-detection
and fault-isolation capability of another component. To
guarantee the computed value of the availability within a
specified period, we determine the probability that the
availability is greater than a given level over the period.

Due to the high availability of the IBM 3725, an analytical
method, the Markovian method, is chosen to solve the
model. Monte Carlo simulations are not used, even if they
are more flexible and even if variance-reduction techniques
could reduce the run lengths. Markov models have been
widely used to predict hardware reliability and availability.
Software models, such as reliability growth models [4, 5],
usually deal with the testing phase and are typically not
Markovian, and distinguish software from hardware [6]. The
dichotomy between hardware and software can be justified
by emphasizing their different evolution in time: Hardware
wears out according to a bathtub-shaped failure-rate curve,
whereas software fails because of latent errors, depending on
the use and management of system resources and the
environment [7]. As an example, workload affects software
more than hardware, and a nonlinear increase in software
failures with the amount of interactive processing has been
observed on the IBM 3081 [8]. However, workload also
affects hardware reliability. Besides, from the user viewpoint,
there is no difference between hardware and software
failures: The system is functioning or it is not. Furthermore,
since many failures occur in the hardware—software interface
[8], a unified measure is necessary. Thus, there are several
combined hardware and software reliability analyses and
models [9, 10].

During the operational phase, hardware failure and repair
distributions are commonly, though not necessarily,
approximated to exponential distributions involving
constant failure and repair rates. Due to the heterogeneity of
the environment and use, and the occurrence of new
product releases, the software failure and repair rates of the
IBM 3725 Communication Controller may decrease or
increase throughout the operational phase. However, the
variations are slow. Chi-square and Kolmogorov~Smirnov
goodness-of-fit tests justify the assumption of constant
hardware and software failure and repair rates, within
one-month intervals. Under this assumption, the system
evolves within each one-month interval as a finite-state
homogeneous continuous-time Markov chain. Computing
the expected interval availability is then possible over periods
of one month. The failure and repair data from the end of
the current month are used to predict the availability of the
next month. At the end of that month, the availability of the
month is reviewed with the month’s data, and the
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availability of the third month is predicted; and so on. This
procedure allows the representation of a complex situation
actually occurring in the field.

The program package called the System Availability
Estimator (SAVE) [11] automatically generates the Markov
chain from the input modeling language. However, the IBM
3725 Communication Controller has a large number of
elements. Moreover, the size of the model increases
exponentially with the number of elements and thus rapidly
becomes intractable. To decrease this size, we use
hierarchical modeling, thereby introducing a slight
approximation.

The study of hardware and software failure and repair
data is described in Section 2. The model construction,
reduction, and solution are presented in Section 3. The
methodology for availability improvement is detailed in
Section 4. Section 5 explains the method used to guarantee
the value of the availability, and gives quantitative results. A
summary of the major points covered in the paper, a brief
discussion of their implications, and an overview of a further
study are given as concluding remarks in Section 6.

2. Study of failure and repair data

The first step of a model is data collection. In particular, it is
essential to track software data [12], since projections of
software failures are difficult. The emergence of
measurement products, such as IBM’s System Availability
Management—which detects, gathers, and manages
hardware- and software-availability data—confirms this
point.

Several definitions have been proposed to quantify the
quality of the service delivered by a system [13, 14], and to
distinguish the degrees of defects. From the viewpoint of the
end user, the behavior of a system is perceived as a delivered
service. Thus, when the delivered service deviates from the
specified service, a failure occurs. A failure is the
manifestation of one or several errors in the service, and an
error is the manifestation of one or several faults in the
system [14]. The moments of fault occurrence and failure
occurrence are separated by a time interval, the fault latency,
which may vary from a few milliseconds to several months.
The event effectively perceived by the user is the occurrence
of a failure. Hence, only the failure aspect is considered in
the remainder of this paper. The basic characteristics of a
failure are its failure rate and its repair rate. Hardware failure
and repair rates are defined with regard to time [15].
Currently, software failure rates may be defined with regard
to the number of lines of code (released, or new and
modified), the number of functions, or the time. Here,
software failure and repair rates are defined with respect to
time, to evaluate hardware and software availability in
equivalent terms.

Hardware failures may be permanent or soft; software

failures are permanent. A permanent failure is due to a 269
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Table 1 Failure and repair data.

R4y, Number of identified RA on component ; (per month)
RA,;  Total number of unidentified RA (per month)
RA,, Number of microcode RA on component i  (per month)
P, Number of NCP problems of severity 1 (for T hours)
P, Number of NCP problems of severity 2 (for T hours)
E, Error detection rate of component i

P Power-on hours per month (in hours)
DOI, DOI for an identified failure on i (in hours)
DOI; Total DOI for unidentified failures (in hours)
DOI,, DOI for the microcode component (in hours)

DOIsl,. Severity 1 DOI for the software component i  (in hours)

DOISZ’_ Severity 2 DOI for the software component {  (in hours)

Table 2 Calculation of failure and repair rates.

COMPONENT: i IN HARDWARE
FAILURE MODE: Identified, Unidentified
FAILURE RATE: RA[,- /P,

Rdy - (1 = E)RA, /I3, (1 — E)RA, T
REPAIR RATE: /DO, 1/(DOL, - DOI, /5, DOL)

COMPONENT: i IN MICROCODE
FAILURE RATE: RA,, /P
REPAIR RATE: 1/DOL,,

COMPONENT: i = NCP
FAILURE MODES: Severity 1, Severity 2
FAILURE RATE: P, /T, Po)/T
REPAIR RATE:  1/DOI, , 1/DOI,

permanent fault. It is continuous and stable. A soft failure is
the result of either an intermittent fault (due to unstable or
varying hardware) or a transient fault (due to temporary
environmental variations) [16]. Permanent failures
correspond to slow transitions, and soft failures to
time-dependent fast transitions.

Permanent failures with slow transitions are
approximately exponentially distributed, and can be
modeled with a Markov process. Soft failures with fast
transitions are more difficult to characterize. Their rates can
be measured experimentally using fault-injection techniques.
The transitions are not exponentially distributed; hence, a
semi-Markov process is more realistic than a Markov
process, because it does not impose limitations on the time
the process spends in a given state. In a semi-Markov
process, the occurrence of a transient failure is described as a
transition between two states, with transition rates defined
by distribution functions. The representation of an
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intermittent failure requires in addition the knowledge of the
holding-time distribution related to the supplementary state
in which the fault is not active [17]). Recovery procedures in
the IBM 3725 Communication Controller allow it to tolerate
soft failures with fast transitions. Therefore, these failures are
not considered here. Such failures could be modeled. As an
example, in the SURE [17] reliability program package of
NASA, each transition related to a soft failure is described by
the conditional mean and conditional standard deviation of
the associated distribution, and the transition probability.
The HARP package [18] allows the same modeling, as

well as seven different ways of specifying fault- and
error-handling behavior.

In the IBM 3725 Communication Controller, there are
two classes of data, namely hardware data and software data.
The hardware class contains physical components, such as
memories, processors, buses, and power supplies. Hardware
data may refer to identified or unidentified failures, due to
the imperfect fault-isolation capacity of the controller. The
software class contains the microcode functions of the
different subsystems and the Network Control Program
(NCP), which controls the whole communication controller.
NCP data are divided into two subclasses, according to the
severity of the failures.

The parameters that characterize the numbers of failures
differ according to the class. The term “repair action” is used
for the hardware class and the microcode subclass, whereas
the term “problem” applies to NCP. Numbers of repair
actions (RA), planned and unplanned, are given per
machine and per month. Numbers of NCP problems are
given per license and for a given period 7. The repair data
are expressed as durations of interrupt (DOI), which include,
when appropriate, the different times such as travel time,
repair time, part-procurement time, initial program load
time, and recovery time. The duration of interrupt is defined
in equivalent terms for the different classes. Table 1 shows
all the data available. The error-detection rate is estimated
for each hardware component by an IBM design tool. All the
other data are field data, either logged in a database or
reported by customer engineers.

The basic parameters of a Markov chain to be used for the
evaluation of the availability—the failure and repair rates—
must be defined with respect to the same time units. The
hour is the most appropriate unit for the duration of
interrupts. Hence, the repair rates, inverse of the duration of
interrupts, are expressed per hour. Consequently, the failure
rates are also defined per hour. Table 2 shows how to
compute, from the collected data, the failure and repair rates
of a given component.

Failure data, which are given per month, need to be
normalized. The failure rate of a component in a given
failure mode is expressed as the number of failures of this
component in a given failure mode per time unit, that is, the
normalized ratio with respect to time of its number of repair
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actions or problems. In the case of the unidentified failure
mode of hardware components, the number of repair actions
per component is unknown. Only the global number of
unidentified repair actions is known. The breakdown per
component is estimated as follows:

RA,, = RA(1 — E)RA, /S (1 = E)RA,

The sum is computed for all N, hardware components
modeled.

The repair rate of a component in a given mode is the
inverse of the corresponding duration of interrupt. In the
unidentified mode, an estimator of the duration of interrupt
per component is

DOI, = DOI, - DOI, /3. DOI, .

Thus, the failure and repair rates can be evaluated for each
component in each failure mode from the available data.

3. Availability model

The IBM 3725 Communication Controller is modeled as a
set of interconnected hardware and software components.
There are a few hundred components to be modeled. The
Markovian method involves an exponential growth of the
state space with the number of components modeled. As an
example, 10 different components create 2'° possible states,
and 50 components create 2% possible states. Thus, the size
of the model must be reduced. So far, there are three main
approaches to the large-state-space problem:

1. A structural decomposition, which consists in dividing
the global system into physical subsystems, solving each
subsystem separately, and combining the partial solutions
to get the overall system solution. This is the approach
used in the SHARPE [19] hierarchical modeling tool for
reliability models.

2. A behavioral decomposition, which consists in separating
the fault-occurrence and fault-handling behavior into
distinct submodels, solving each submodel in the most
appropriate way—for instance, simulating one submodel
and solving the other submodel analytically, and
incorporating the results of the fault-occurrence submodel
into the fault-handling submodel. This approach is
selected in the CAST [20], CARE III [21], and HARP
[18] reliability-evaluation packages.

3. An approximate solution (using, for example, an
aggregation technique), which consists in decomposing
the original problem into smaller and more convenient
subproblems, analyzing the subproblems separately, and
solving the global problem through the iterated solution
of its subproblems. The main methods are the iterative
aggregation/disaggregation technique and the
decomposition technique for nearly completely
decomposable systems [22] in the case of steady-state
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analysis. For the transient analysis of stiff Markov chains,
a method based on the conversion of a stiff Markov chain
into a smaller nonstiff chain has been proposed [23].

To model the IBM 3725 Communication Controller, we use
the structural decomposition at the lowest hierarchical level,
that is, at the field-replaceable-unit level. The field-
replaceable unit is the lowest level at which there are
hardware failure and repair data. Physically, several field-
replaceable units are grouped together to perform a given
function, such as line interface or maintenance. Within each
of these sets of atomic elements, we encapsulate those that
are independent. Thus, each function is viewed as a set of
capsules containing independent atomic elements. A capsule
may contain from one to more than a hundred elements, an
example of which is the power supply. The advantage of
encapsulating independent elements is the possibility of
using combinatorial models, such as fault trees and
reliability block diagrams, which do not involve an
exponential growth of the number of events with the
number of elements, and which are easier to solve.

We have developed a program package called HEAVEN,
which provides a block-diagram model for general structures,
not necessarily series-parallel. In HEAVEN, each component
modeled is labeled as the cumulative distribution function
(CDF) for one of its dependability [14] measures, such as
instantaneous availability, reliability, or time to failure, or
one of its performance measures. The class of function
chosen has the following form:

Foy=X P() - &7, (M

where P () and Q,(¢) are polynomials of the positive real
variable ¢ (time). It is a generalization of the class of
functions taken in SHARPE [19] and is closed under the
convolution operations performed.

In this study, we assign to each field-replaceable unit
its instantaneous availability. Assuming that the field-
replaceable units are initially operational, the instantaneous
availability of any of them is [15]

4,(t) = [RR,/(FR; + RR)]

+ [FR,/(FR, + RR)] e "FHif )
where FR, and RR, denote respectively the failure and repair
rate of the field-replaceable unit 7,

The model gives as output the cumulative distribution
function of the capsule as a whole, which has the form

AN=B+3C -e™, 3)
where B and all C; and D, are independent of ¢.
Let D, be the minimum of the D, for i = 1 to n.

Considering the dominant terms of A(¢), as ¢ approaches
infinity, we obtain

B+C e @)
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IBM 3725 Communication Controller
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Structure of IBM 3725 Communication Controller.

Table 3 Components remaining after encapsulation.

Hardware components
CA Channel adapter
CCuU Central control unit
LIC(8) 8 line-interface couplers
MOSS Maintenance and operator subsystem
PS Power supply
RDV Redrive card
SCAN Scanner
Software components
MOSSCODE MOSS microcode
TSSCODE Transmission subsystem microcode
NCP Network control program

Equation 4 should be used in both failure modes
(identified and unidentified) to determine the equivalent
failure rate FR, and the equivalent repair rate RR, in each
mode. To solve Equation 4, we introduce the probability P,
such that at time ¢ = 0 the system is operational with
probability P.. Then, the availability of the equivalent
element is
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A, = [RR,/(FR, + RR)]
+ {P, - [R‘Re/(FRe + RRe)]’ e—(FRe"'RRe)"

Finally, we determine the equivalent failure and repair rates
in each hardware failure mode by solving a set of three
equations with three unknowns FR,, RR,, and P,. We obtain

for FR_ and RR,
FR =B+ Cj,
RR =B . D,

In the IBM 3725 Communication Controller, there are
three software components: the Network Control Program
(NCP) running in the control subsystem, the microcode of
the transmission subsystem (TSSCODE), and the microcode
of the maintenance and operator subsystem (MOSSCODE).
Figure 1 gives an overview of the structure of the controller.
The software failure and repair data are available for each of
the three software components. Each software component
has a specific interaction with a hardware capsule. Thus,
each software component constitutes a capsule.

Consequently, at the end of the first hierarchical step, the
system is modeled as a set of capsules with estimated failure
and repair rates assigned to each capsule. The definition of
the capsules from the field-replaceable units is given in a
specific file in the model (CONCEN FILE). The capsules are
the atomic entities in the SAVE model, where they are called
components. The IBM 3725 Communication Controller is
modeled with ten different SAVE components, of which
seven are hardware components and three are software
components, as shown in Table 3. Note that there are eight
identical components of type LIC.

The behavioral decomposition is not used here. There are
currently no estimates of the parameters required, such as
the transient restoration, permanent coverage, simple-point
failure, and near-coincident fault [18].

An approximate solution may be used in SAVE to solve
models with more than 10000 states, or simply to accelerate
the computation time for smaller models. The method
consists in decreasing the number of concurrent failures
modeled, based on the observation that it does not affect the
precision of the result significantly. In the IBM 3725
Communication Controller study, with one, two, or three
concurrent failures modeled, the numbers of states are 21,
198, and 1116. The variations of system availability involved
by modeling one instead of two concurrent failures, and two
instead of three concurrent failures, are 1.61 X 1077 and less
than 10™°, respectively. This shows that modeling more
concurrent failures would not change the availability
numbers. Hence, the system can be solved with reduced
state space.

Once the model is reduced to a tractable size, we refine the
failure and repair behavior of each component and define
the interactions among the components. The refinement of
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the failure behavior consists in describing the dormant mode
of a component: the state in which a component is neither
operational nor down, but is unable to operate because other
components have failed [11]. Parameters which characterize
the effectiveness of a recovery, such as coverage factors [13]
and other parameters related to the fault-occurrence
behavior, can be specified here. The refinement of the repair
behavior consists in describing specific repairman classes
(such as Field Engineer, Operator, or Software Retry) and
specifying within each class a specific strategy [such as
random-order service (ROS) or different priority levels).

Along with the refinement of the inner behavior of a
capsule, we must define the interactions between the
capsules. We model interactions of all three types between
capsules, that is, hardware-hardware, software-software, and
hardware-software. There are two types of interactions,
operational dependency and repair dependency; both are
modeled. They correspond to the fact that a given
component may require another component to be
operational for it to operate (operational dependency) or for
it to be repaired (repair dependency).

When a component is operating, it fails with its
operational-failure rate. However, when it is dormant, it
does not fail if it is a software component, and it fails with
its dormant-failure rate if it is a hardware component. Here,
the dormant-failure rate is supposed to be the same as the
operational-failure rate. To make sure that a component
becomes dormant when it is not operating, we draw an
operational-dependency graph, as shown in Figure 2. For
example, since the central control unit (CCU) becomes
dormant when the power supply (PS) fails, there is a directed
edge from CCU to PS in the operational-dependency graph.

The nodes of the operational-dependency graph are the
components of the system, and the edges represent the
operational dependencies between these components. If a
given component i requires a component j to be operational
for it to operate, we draw an edge from i (slave) to j (master).
The operational-dependency relation is transitive. It is not
necessary to draw an additional edge, and consequently to
specify an additional dependency in the SAVE input
language, between components such as SCAN (scanner) and
PS (power supply).

The system as a whole is considered operational when all
the components are operational. This can be written as a
Boolean expression. There is no need to make assertions
about components which have incoming edges. Hence, the
operational condition may be written as follows, using the
SAVE language:

NCP and MOSSCODE and TSSCODE and CA and LIC(8)

We could also model the degraded modes by specifying the
components that must be operational in each degraded
mode, such as
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MOSSCODE » MOSS

NCP

CA
TSSCODE ———* l

LIC(8) =t SCAN = RDV - CCUJ s> P§

Operational-dependency graph.

NCP

CA

TSSCODE

LIC(8) =#» SCAN =p»-RDV == CCUm=p- MOSSCODE ==~ MOSS=# PS

Repair-dependency graph.

NCP and MOSSCODE and TSSCODE and CA and LIC(7)
NCP and MOSSCODE and TSSCODE and CA and LIC(6)

NCP and MOSSCODE and TSSCODE and CA and LIC(1)

Typically, but not always, if operation of a component
depends upon certain other components, then repair also
depends upon at least the same components. Here, MOSS
and MOSSCODE must be operational for the other
components, except PS, to be repaired. For instance,
operation of CCU depends upon PS, and CCU cannot be
repaired without PS (and in addition MOSS and
MOSSCODE) being operational. Therefore, a repair
dependency graph is also necessary. Figure 3 shows the
repair-dependency graph for the present model.

The repair-dependency relation is not transitive. The
repair-dependency graph may be drawn as described in
Figure 3, but the related SAVE construct must contain all
the components needed for the component modeled to be
repaired. As an example, the repair of CA depends on RDV,
CCU, MOSSCODE, MOSS, and PS.

When a component fails, it may fail in different modes
dependent upon what the repair rate is and who repairs the
component, When there are two failure modes, the failure
rates fr1 and fr2 related to each mode are indirectly
described: First, the total failure rate fr1+fr2 is written
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MODEL: 3725
METHOD: numerical
CONSTANTS: cafrl, cafr2, carrl, carr2

COMPONENT: ca
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON
FAILURE RATE
DORMANT FAILURE RATE
FAILURE MODE PROBABILITIES
REPAIR RATE
REPAIRMAN CLASS USED
COMPONENT: ccu
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: lic(8)
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: moss
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: ps

COMPONENT: rdv
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: scan
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: mosscode
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: ncp
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

COMPONENT: tsscode
OPERATION DEPENDS UPON
REPAIR DEPENDS UPON

EVALUATION CRITERIA: blockdiagram
nep and mosscode and tsscode and ca and lic(8)
REPAIRMAN CLASS: op(1)
REPAIR STRATEGY: ros
REPAIRMAN CLASS: fe(1)
REPAIR STRATEGY: ros
END

Extract of the SVINPUT file using the numerical method.

s . 0 5
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rdv

rdv,ccu,mosscode, moss,ps

cafrl+cafr2

cafrl+cafr2
cafrl/(cafrl+cafr2),cafr2/(cafr+cafr2)
carri,carr2

fe, op

ps

mosscode, moss,ps

scan
scan,rdv,ccu, mosscode, moss,ps

ps
ps

ccu

ccu,mosscode, moss,ps

rdv
rdv,ccu,mosscode, moss,ps

moss
moss,ps

ccu
ccu,mosscode, moss,ps

scan
scan,rdv,ccu,mosscode,moss;ps
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in the FAILURE RATE construct, then the percentages
fr1/(fr1+fr2) and fr2/(fr1+fr2) are put in the FAILURE
MODE PROBABILITIES constructs related to mode 1 and
mode 2, respectively. Two classes of repairmen, Field
Engineer (fe) and operator (op), with one repairman per
class, allow the repair of components in their respective
failure modes. To repair failed components, repairmen first
follow the repair dependencies, and then, if more than one
component can be repaired, they randomly select a
component for repair. All these characteristics are
symbolically represented in a configuration file (CONFIG
FILE).

The next step is the creation of the input file (SVINPUT
FILE) for SAVE. A program, called CREATE, picks up the
collected data (DATA FILE) from the field or from a design
tool, the definition of the capsules (CONCEN FILE), and
finally the configuration of the system at the component
(capsule) level and the dependencies among the components
(CONFIG FILE). Figure 4 shows an extract of the input file
obtained for SAVE.

Once the model is constructed and reduced, SAVE
evaluates the interval availability. We select one-month
intervals, since in the example one month is the maximum
time during which the component-failure and -repair rates
are approximately constant. Then, a graphical program
draws the variation of the interval availability with time, as
shown in Figure 5, with arbitrary input data. In particular,
we see that the availability becomes almost constant at the
end of the month. Thus, if the failure and repair rates were
constant throughout, the permanent mode would appear
after one month. In practice, we observe small fluctuations,
such as availability increases, after the first month of the
product’s life, due to the fluctuations of the failure and
repair rates. Figure 6 summarizes the model.

4. Availability improvement

SAVE allows the calculation of the sensitivity (normalized
partial derivative) of the steady-state (limiting) availability
with respect to input parameters. The absolute value of the
sensitivity is a metric. Hence, it quantifies the impact of
parameters, such as failure rates or error-detection rates, on
the system availability. To cope with a large absolute value
of the sensitivity with respect to the failure rate of a
component in the identified-failure mode, the solution is to
decrease the dependency of the system on this component;
whereas to minimize the effect of the failure of a component
in the unidentified-failure mode, we may maximize its
error-detection capability.

In the present study, the sensitivity analysis shows that the
power supply (PS) is the most critical component. The next
most critical component is the CCU. Duplicating PS reduces
unavailability by 89%. Duplicating CCU reduces
unavailability by 3%. Duplicating all other components has
an even smaller effect on unavailability. Thus, sensitivity
analysis is extremely useful in working out a cost—availability
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Summary of the model.

trade-off. Since perfect duplication of any component is not
possible, the power-supply duplication will have some
common component, which should be separately modeled.

Improving software availability requires a thorough
analysis of the system use and workload at the time of the
occurrence of failures. The basic idea is to distinguish
different failure types, and to point out those which involve
the most system failures, and the areas where recovery
procedures are not satisfactory. Once these areas are
identified (deadlock, I/O or data management, error
handling, etc.), appropriate changes can be undertaken. The
interaction between hardware and software is also studied. In
particular, the recovery of software errors due to hardware
failures may be analyzed.

5. Guaranteed availability

It has been shown that the calculation of the availability is
useful within one-month intervals. A way to guarantee the
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value of the availability over a given month is to compute
the probability that a given level is met over the month; that
is,

Success(t, a) = Pr{A(t) = a].

There are several methods of evaluating Success (z, a)

[24, 25]. SAVE evaluates Success(t, @) with a uniformization
method, which converts the original Markov chain into an
equivalent Markov chain where all transition rates are equal
[24]. Figures 7-10 show the variations of Success(¢, a) with
respect to the observation period and with respect to the
specified level.
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The first finding is the decrease of Success(z, a) with
respect to both ¢ and . This decrease is perfectly reasonable:
It is much greater in the case of duplicate power supply than
in the case of single power supply. Here, a 0.4% increase of
the guaranteed level causes a 7% and a 1.4% decrease of
Success (¢, a) per month with single and duplicate power
supply, respectively. The decrease of Success (2, @) with time
results from the increase of the probability that the system
goes into failed states as the length of the observation period
increases. The decrease is, of course, greater in the case of a
single power supply. During one month, Success(¢, a)
decreases by 11% and by 2% with single and duplicate
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power supply, respectively. In particular, the decreases of
Success(t, a) with time throughout the observation period,
given that the guaranteed level is less than the steady-state
availability, accord with the fact that the availability does not
tend to steady-state availability after one month. This
strengthens the argument for a long tracking period. If we
focus on the availability improvement provided by the
duplication of the power supply, we obtain, after an
observation of one month with a guaranteed level 0.998,

Success (720, 0.998) = 0.889,
and after duplicating power supply,
Success (720, 0.998) = 0.984.

Hence, after power supply is duplicated, the value of the
interval availability can be guaranteed with a precision
greater by 11% than the precision obtained with a single
power supply.

6. Conclusion

This paper has proposed a model for evaluating the
combined hardware and software interval availability of the
IBM 3725 Communication Controller in operation. In
particular, the interactions between hardware and software
have been considered. Encapsulation of components and
reduction of the number of concurrent failures allowed a
reduction of the initial model with more than 2 states to a
tractable size, without affecting the precision of the result.
Moreover, sensitivity calculations demonstrated that the
power supply was by far the most critical component, and
that its duplication increased the availability notably. In
addition, the evaluation of the probability of meeting a
specified availability level provided a means to guarantee the
result of the availability calculation.

Classical combinatorial models which do not model
component dependencies tend to produce extremely low
unavailability numbers, reducing the belief in the availability
modeling process in general. Modeling component
dependencies using Markov methods tends to produce
realistic unavailability numbers, as has been the experience
in IBM 3725 models. We have successfully validated such
numbers with actual measurements.

More details could be included in the availability model.
For example, details of error-recovery and spare switch-over
times could be modeled. Such models have been evaluated
experimentally. Error-recovery and spare switch-over times
are extremely small compared to failure and repair times.
However, the probability of successful recovery or successful
switch-over must be modeled, as it could affect availability
significantly.

The present method did not handle a critical life stage of a
product, which is the transition period between testing and
operational phases, during which the statistical behavior of
the system undergoes great modifications. A further study is
being undertaken to investigate that area.
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