238

A Japanese
sentence
analyzer

by N. Maruyama
M. Morohashi
S. Umeda
E. Sumita

This paper presents the design of a broad-
coverage Japanese sentence analyzer which
can be part of various Japanese processing
systems. The sentence analyzer comprises two
components: the lexical analyzer and the
syntactic analyzer. Lexical analysis, i.e.,
segmenting a sentence into words, is a
formidable problem for a language like
Japanese, because it has no explicit delimiters
(blanks) between written words. In practical
applications, this task is made more difficult by
the occurrence of words not listed in a
dictionary. We have developed a five-layered
knowledge source and used it successfully in
the lexical analyzer, resulting in very accurate
segmentation, even in cases where there are
unknown words. The syntactic analyzer has two
modules: One consists of an augmented
context-free grammar and the PLNLP parser; the
other is the dependency structure constructor,
which converts the phrase structures to
dependency structures. The dependency
structures represent various key linguistic
relations in a more direct way. The dependency
structures have semantically important
information such as tense, aspect, and modality,
as well as preference scores reflecting relative
ranking of parse acceptability.

©Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

N. MARUYAMA ET AL.

1. Introduction

Sentence analysis (i.e., lexical and syntactic analysis) is a key
technology in various natural-language processing systems
such as machine translation, question answering, and
information retrieval, since it is the first process an input
sentence undergoes, and overall system performance
depends heavily on its quality.

Although a number of Japanese sentence analyzers have
been developed for various systems [1, 2], they were designed
specifically for their applications. It is noteworthy that a
significant amount of knowledge embedded in such systems
depends solely on knowledge about the Japanese language
itself, not on a specific application; hence, there has been
much duplication of effort. Considering the large number of
emerging natural-language applications, it is important to
have a wide-coverage Japanese sentence analyzer which is
independent of its application.

The main difficulties in analyzing a written Japanese
sentence, compared with those of other languages such as
English, are the following: First, Japanese has multiple
character sets (three basic types: Kanji, Hiragana, and
Katakana, as well as the Roman alphabet for borrowed
words); thus, a single word can be expressed in different
ways. Second, in Japanese no explicit delimiters (blanks) are
supplied between words. These two characteristics of
Japanese make lexical analysis more difficult and yet even
more important than for other languages, especially when an
input sentence contains unknown words. The third
characteristic which makes analysis of Japanese difficult is
the fact that Japanese is a so-called nonconfigurational
language, i.e., has relatively few restrictions on word order.
Thus purely syntactic analysis is inadequate for Japanese,
because it produces excessively ambiguous results. To
remedy this, we introduce semantic features which are
domain-independent.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Input sentence VAT LSRR B (a)
(‘A system analyzes a sentence’)
Morphological -s— Knowledge about morphemes
analysis
Segmented sentence VATA A X B OBt T3 (b)
NOUN POSTP NOUN POSTP VERB
(‘'system’) (‘sentence’) (‘analyze’)
Syntactic -¢— Grammatical rules
analysis
(Dependency structure tree) ()]
T 5
Output structure

VAT L(+HY)

X(+%)

Sentence analyzer and example sentence.

In this paper, we present the design and current status of a
Japanese sentence analyzer which we are developing. The
objective of this project is to establish a Japanese sentence-
analysis technology which is robust enough to cover almost
every Japanese sentence, including those containing
unknown words, while at the same time retaining
application-independence. No natural-language application
system can be successful without a good sentence analyzer,
since natural-language sentences are diverse, and enormous
linguistic knowledge is needed to handle the diversity. One
of the keys to the success of the English-to-Japanese machine
translation system SHALT [3] was that a very-broad-
coverage English syntactic analyzer known as PEG [4, 5] was
already available, and developers could fully utilize its
output. Our sentence analyzer will serve as a good starting
point for further research and development.

The major characteristics of our system are as follows:

¢ Hypothesis of words not listed in a dictionary.

o Systematic application of five types of lexical knowledge.

e Mizutani’s grammar [6] as the base grammar.

e Preference attachment using valency theory.

o Special handling of auxiliary verbs to extract modal
information.

e Dependency structures as output.

An overview of the components is given in Section 2,

followed by a description of each component: lexical analysis
in Section 3, syntactic analysis in Section 4. The current

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

status of this project, which we started in 1985 and have
since been enhancing, is briefly summarized in Section 5.
We offer our conclusions in Section 6.

2. System overview
As shown in Figure 1, the overall system consists of two
components: a lexical analyzer and a syntactic analyzer.

A Japanese sentence, comprising Kanji, Hiragana,
Katakana, and other special characters without delimiting
blanks, is first fed into the lexical-analysis component. An
example of a Japanese sentence is shown in Figure 1(a).

The lexical analyzer segments the input sentence into
words by consulting the system dictionary and by applying a
set of segmenting rules. It also attaches part-of-speech
information to each word identified during the process. The
output of the lexical-analysis component is a sequence of
segmented words, as shown in Figure 1(b).

The syntactic analyzer produces the dependency structures
{Figure 1(c)], which represent various key linguistic relations.
They contain semantically important information such as
tense, aspect, and modality, as well as preference scores
reflecting relative ranking of parse acceptability.

3. Lexical analysis

It is well known that Japanese text can be described, from
the lexical point of view, as a sequence of phrases, each of
which consists of a content word and zero or more
succeeding function words. A content word is a word that

N: MARUYAMA ET AL.

239

240

Table 1 Character types and action names.

Character types

Alphabetic

Numeral (Kanji or Arabic numeral)

Katakana character (phonogram mainly used to represent
foreign words)

Hiragana character (phonogram mainly used to represent
function words)

Kanji character

Independent character, such as “(”, which makes a word
by itself

Special character, such as
a word

Dependent character (the segmentation depends on the
context)

Blank character

: End-of-line virtual character

blank: Initial-nil/end-of-data virtual character

L rzx

Ll

« 9

@

, a sequence of which makes

L~

=

Action names

: Throw away the current character

Put word boundaries before and after the current
character

Insert a word boundary and throw away the current
character

Put a word boundary before the current character

No action

Invoke the action “Z”, if the current character = the
previous character; otherwise invoke “X”

Invoke the action “X”, if the type sequence = “TTU”
(where T, U mean any types and T 3 U); otherwise
invoke “Z”

3: Invoke the action “Z”, if the type sequence = “TUT”

(where T, U mean any types and T # U); otherwise
invoke “U”

=

ENX £ <

&

has some meaning by itself, such as a noun, verb, or
adjective. A function word, on the other hand, is a word that
adds some features such as tense or aspect to the preceding
content word: an auxiliary verb, for example, or a word that
relates two content words, such as a case particle. Although
the order of phrases in a sentence is very flexible, the order
of words within a phrase is highly restricted and hence
recognizable by means of simple “phrase-internal”
connection rules, which characterize consecutive
word combinations as well as word-stem and
inflectional/derivational morpheme combinations [7].
Japanese lexical-analysis algorithms have two goals: to
divide a sentence into words and to assign a part of speech to
every word. Typically, the analysis is carried out in two
steps: First, the input string is segmented into phrases, using
information derived from shifts in the character sets; then
the resulting segments are analyzed into words by means of
phrase-internal connection rules [7-9]. This approach has
been taken because phrase boundaries are typically
accompanied by a shift from a Hiragana character to a Kanji
character. This regularity comes from Japanese writing
conventions, in which content words are customarily written
in Kanji characters and function words in Hiragana
characters.

N. MARUYAMA ET AL.

These algorithms can recover missing proper phrase
boundaries by repeatedly applying some sort of phrase
analysis routine. However, they have no effective way to
prevent “overcutting,” i.e., cutting the string at a point where
there is, in actuality, no phrase boundary. To overcome this
problem, we

1. Introduce a more sophisticated combination of
techniques for checking character types (names of
character sets such as Kanji, Hiragana, etc.) than the shift
from a Kanji character to a Hiragana character.

2. Use a “loose” definition of phrase in the phrase-analysis
algorithm in order to accept spurious segments (possible
phrases) resulting from overcutting.

Another problem for other lexical analyzers is that
because they rely completely on dictionary entries, they fail
when a word is encountered that is not listed in a dictionary.
To overcome this important limitation, we use rules that
characterize the combinations of character types that can
make words.

The lexical analyzer consists of five stages, each using a
distinct kind of knowledge that is stored in the form of a rule
or a table. The first and second stages of analysis segment the
input string into phrases according to allowable character-
type combinations and permissible character sequences,
respectively. The key point here is that these initial
segmentations never segment the text in the middle of a
word. The third and fourth stages are phrase-analysis
algorithms, both of which use a dictionary and
morphological rules based on the loose definition of phrase,
but segment the text in different ways. The fourth stage has
additional rules which hypothesize a word not listed in the
dictionary; it is invoked only when the third stage fails. The
last stage is different from the preceding four in that it
bridges the segmentations based on our phrase definition
with the phrase as normally defined. For example, the first
four stages may wrongly cut a compound into phrases. This
stage combines those components into a compound.
Through the five stages, the analyzer selects the correct part
of speech from the alternatives provided by the dictionary.

To summarize, the stages, described in detail below, are as
follows:

1. Segmentation by character type.

2. Segmentation by character sequence.

3. Segmentation by a longest matching algorithm based on a
“loose” definition of phrase.

4. If Stage 3 fails, segmentation by a bottom-up parallel
algorithm based on the same definition with “word
presumption” rules.

5. Compound-word composition.

The analyzer provides no ambiguous segmentation, but may

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

assign ambiguous parts of speech if the local context does
not give enough information. This kind of ambiguity may be
resolved by syntactic analysis.

& Segmentation by character type

A sequence of character types sometimes gives definite
information on segmentation. To take a simple example
from English, the sequence NDN (N = numeral, D = “.”)
implies that “.” is used as a decimal point (not a period), so
that no word boundaries should be inserted before and after
the “.”.

Knowledge for segmenting by character types can be
effectively represented by a set of character-type definitions
(character “a” — alphabetic), and rules having type patterns
and their corresponding action names (type “AJ” — action
“X”). The types and action names used to describe this
knowledge are shown in Table 1.

The pattern of a rule with length two causes the analyzer
to check only the character types between two consecutive
characters, and decides whether a word boundary is to be
inserted or not. But the register in the analyzer stores the
preceding character types to allow actions based on longer
character sequences. Experimentally, three is sufficient for
the maximum pattern length to be stored in the register.

Figure 2 depicts how the knowledge in this stage is used to
segment text.

& Segmentation by character sequence

The knowledge used in this stage is a list of character
sequences, each of which provides a definite segmentation
boundary immediately after the last character of the
sequence. Figure 3 shows an example of the segmentation
resulting from this stage.

In Japanese, most sequences useful for this stage are those
of one or more function words. The most powerful character
to give a definite boundary is “%”, which is the case particle
for objects, and which consists of a unique character not
appearing in any other words (in fact, “ %" is totally reliable).

& Segmentation by a longest matching algorithm

Stage 3 performs segmentation within a phrase determined
by Stages 1 and 2. A longest matching algorithm from left to
right, with a morphological check between each consecutive
two-word candidate, is cheap yet very effective (and
commonly used in existing analyzers); it is applied to a
phrase, according to rules based on a loose definition of
phrase (Figure 4). The input phrase may contain more than
one phrase based on the loose definition, so the algorithm
applies the rules iteratively until the input-phrase string is
exhausted. As stated previously, we define <phrase> to
accept phrases resulting from overcutting by the previous
stages. Rule 2 is different from the “precise” definition (the
ordinary definition in Japanese grammars) in that it permits

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Segmentation
knowledge
in Stage 1

patten—»acion] _ pkciz 72 YA LRV . — (text)

ez JJHH KKKK HJH | (types)

HK—= X ==
KH— X

| —V

“x" in the pattern means any type.

Segmentation in Stage 1.

Segmentation
knowledge Text
in Stage 2

—#WiE T dhoT BmWIC—

: 44—

Segmentation in Stage 2.

1. <text> :: = <phrase>...<phrase>
2. <phrase>:: = <content word> <function words> |

<content word> |

<function words>
3. <contentword> :: = <aword in the dictionary> |

<a word by char type rules>
4. <function words> :: = <extended func>...<extended func>
5. <extended func> :: = <function word> |
<inflection>

“‘Loose’’ definition of phrase in Stage 3.

N. MARUYAMA ET AL.

241

242

<function words> to be a <phrase>. This is necessary
because some kinds of boundaries between a content word
and a function word are very similar to the boundaries
between phrases, and sometimes an inserted clause with
parentheses appears at such a boundary.

In Rule 3, a content word is supplied either by the
dictionary or by the rules of character types (“NN ... N” as
a numeral word). This rule is also looser than the precise
definition, thereby permitting a compound to be segmented
into several phrases. But this looseness is necessary because
Stage 1 provides good word-boundary information (as a
phrase boundary) within a compound. The discrepancies
between the phrases determined by our algorithm at this
stage and the desired phrases are resolved in the last stage.

A function word, <extended func>, is supplied by the
function-word table, which is stored separately from the
dictionary—although the number of function words is small,
they occur frequently.

Morphological checks occur only at the first term of Rules
2 and 4. A 96-bit part of speech based on Okocht’s categories
[10] is used. The morphological check is performed by
Boolean operations among the parts of speech and
connectivity vectors for word combinations, eliminating
illegal segmentations from the list of alternatives, as well as
illegal part-of-speech assignments from the alternatives for a
word.

o Segmentation by a bottom-up parallel algorithm
The previous stage can fail because it encounters a word not
listed in the dictionary or because it cannot find an analysis
in which all word connections are legal. When this occurs,
the phrase resulting from Stages 1 and 2 is segmented again
by a bottom-up parallel algorithm (at high cost) based on the
same phrase definition used in the previous stage (see Figure
4) and so-called word-presumption rules. Word-presumption
rules are used to guess that some unidentified substring is a
word on the basis of character-type sequence, More
specifically, they are used to expand Rule 3 of Figure 4, by
adding new alternatives for <content word>. The bottom-up
parallel segmentation generates many possible alternative
segmentations, so the stage selects the highest-scoring
alternative by using an evaluation function.

Informally, the word-presumption rules look for

o Two consecutive Kanji characters (a well-known heuristic
rule).

& One Kanji character and preceding or succeeding
Hiragana characters of two moras' (a variation of the
preceding rule).

o Three consecutive Kanji characters, which is a special
pattern for some kinds of proper nouns.

'Amoraisa linguistic unit used to characterize | (such as J) in
which vowel or syllable lengths are linguistically significant. In Japanese, a short vowel
is one mora in length; a long vowel, two.

N. MARUYAMA ET AL.

& A string of Hiragana characters of any length.

o Voicing of the first consonant of a word in a compound
word except the first one (known as rendaku in Japanese).
(This should be found in the dictionary.)

The above rules also guess the part of speech of the word
from one of three candidates, taigen (noun), sahen (stem of
a certain class of verbs), and keiyoudoushi (stem of a certain
class of adjectives).

Applying these rules to every substring of the segment
(result from Stages 1 and 2) yields content-word alternatives
and finds segmentations according to our phrase definition.
A segmentation evaluation function is then applied to each
alternative segmentation, evaluating it according to the score
determined by the following expression:

Score = (MaxPhraseCnt — PhraseCnt)
X (CharCnt — PresumedCharCnt),

where

MaxPhraseCnt = maximum number of phrases in
possible alternative segmentation.
(Actually, the number of characters in
text is used for convenience in the
calculation.)

PhraseCnt = number of phrases in alternative
segmentation.

CharCnt = number of characters in text.

PresumedCharCnt = sum of characters of every presumed
word.

Note that, even though the first and second stages segment
the input string into “phrases,” some “phrases” may include
more than one actual phrase because of missed phrase
boundaries.

The expression implies a strategy in which the fewer the
phrases and presumed words, the more reliable the
segmentation. Selection from among the alternatives with
the highest scores is done by the same strategy as the longest
matching algorithm: The alternative that has the longest
word in leftmost position should be selected, which is the
same strategy used in the third stage.

o Compound-word composition

This is the stage used to resolve discrepancies that come
from the loose definition of phrase. The typical discrepancy
is that “/§#HF” (‘information-retrieval’) may be recognized
as a compound if it is stored in the dictionary as a
compound. But if it is not, the analyzer recognizes this as a
sequence of two independent words, “M## ” (‘information’)
and “#% > (‘retrieval’). The result depends completely on
the content of the dictionary, which implies the continuous
refinement of the dictionary over many years. To
circumvent this, the rule “NN — N” (“noun noun”
combination generates a “noun” compound) is employed.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Knowledge concerning part-of-speech patterns is used in
this stage. This knowledge describes not only noun
compounds like the above example, but also compounds of
other part-of-speech combinations and word—-morpheme
combinations (morphological checks treat morphemes as
words).

4. Syntactic analysis

The syntactic-analysis component receives a segmented
sentence (a sequence of words) from the previous step and
produces its structural description. This section describes
some of the major decisions made in developing the
syntactic component.

e Developing a large grammar

At the outset of a project such as ours—one with both
research and development goals—there is a formidable
obstacle: how best to develop a large grammar that is
suitable for computer applications. Given the difficulty of
developing large grammars, the idea of starting from scratch
was unattractive. A review of existing grammars, however,
revealed a variety of problems.

There are, of course, large traditional grammars of
Japanese which contain a wealth of information relevant to
our task [11-14], but these contain highly informal
descriptions and so were judged a poor starting point. On the
other hand, there are also a number of formal grammars of
Japanese. All of these except one were originally developed
primarily to explore various issues in theoretical linguistics
[15, 16]. There are several reasons why we judged these to be
inappropriate for our purposes. One major problem was that
the published grammars are too restricted in coverage, at
least given our requirements. We might have chosen to
extend one or another of these formalized grammars, but
formalization does not guarantee practical extensibility nor
suitability for computer applications. For example, the use of
a Generalized Phrase Structure Grammar (GPSG) [17]
entails the adoption of a parsing algorithm suitable for this
class of grammars. However, there are a number of
controversial issues [18] in the parsing of GPSG grammars
that we preferred to avoid. Similar comments hold for
transformational grammars. In fact, our general view of
current linguistic theories is that, however interesting, they
are only partially formalized and highly speculative and are
constantly undergoing changes in response to current
theoretical concerns. Since our project has long-range
practical goals, we wish to avoid this instability and keep our
purely theoretical commitments to an absolute minimum,

This left us with the one exception, Mizutani’s grammar
[6], which was relatively robust, had been developed for
computer applications, and, since it is an unaugmented
context-free grammar, afforded us a choice of efficient and
well-understood parsing algorithms.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

(5700) NP POSTP
--> PP(¢NPCASE = CASE(POSTF),
TOPIC=TOPIC(POSTP),KOOU = KOOU(POSTP),
PSMODS = PSMODS...POSTP)
(5840) VERB > VP(¢VERB,HINSISE! ="YOU')
(5851) PP(+DAI,~NO,SF.CASE)
VP(-NO,CASES0,CASE(PP).ISIN.CASESD,
CASE(PP).NOTIN.CASES,
<@CASE(PP).EQ.DIV'|
@CASE(PP).ISIN.SF(PP)>)
-> VP(-NAI,CASES =LISTIFY<CASE(PP)>...CASES,
PRMODS =PP..PRMODS,N=N(PP) +N+4,
<TOPIC(PP), + DAI>)

Example grammar rule.

Table 2 Feature types.

Feature types Number of
features
Features for syntactic CLASSIFY 27
checking
Features for meaning FILLSIN, CF, SF, 17

extraction MODAL

The major difficulties with the grammar were syntactic
ambiguity, overgeneration, and insufficient coverage.

o Feature system
Mizutani’s grammar was designed to cover as many
phenomena as possible, although at the expense of accepting
ungrammatical sentences and producing too many
alternative (and mostly nonsense) parses for grammatical
sentences. However, it is well known that the size of a
context-free grammar (CFG) increases sharply when a
grammar writer tries to incorporate fine control (number
agreement in English, for example) as a means for rejecting
ungrammatical or meaningless parses. A common solution
to this problem is to introduce a feature system [19]. We
decided to introduce a feature system into our grammar
rules for another reason as well: to improve the coverage and
maintainability. In addition, an excellent parsing system was
available: PLNLP (Programming Language for Natural
Language Processing [4, 20, 21]) supports interactive
grammar development and provides a convenient rule-
writing language that includes feature handling. An example
grammar rule is shown in Figure 5 (a discussion is given in
the later subsection entitled Dependency structure).

We defined five types of features, which are summarized
in Table 2. The cLassIFy features are for classifying

N. MARUYAMA ET AL.

243

244

ACTion ANimal == HUMan
ABStract E TIiMe CONcrete —E LOCation
NUMber MATerial

Semantic feature system.

nomu (‘drink’)

nomu

HUM | ga

CON | wo

Example of case frame.

nonterminal symbols. For example, we have four kinds of
ku. They are represented by four nonterminals in the
original grammar: Mudaijuttai-ku, Arujuttai-ku,
Shunukijuttai-ku, and Noshujutsu-ku. In our grammar these
are replaced by a single nonterminal k# augmented with a
set of features of a type called cLassiFy, thus reducing
complexity and redundancy. There are four other types of
features: FILLSIN, CF, SF, and mopaL. They are not used to
reject illegal parses, but rather to carry information useful for
various applications. The FiLLSIN feature indicates that the
node with this feature may fill in a trace (or gap) within its
premodifier. For example, the head noun ofoko (‘the man’)
in the phrase

watashi ga aisuru otoko
r) (‘love’) (‘'man’)

(the man whom 1 love)

receives the FiLLSIN="WO’ (case particle for direct object)
feature.

The cF (case frame), sF (semantic feature), and MODAL
features represent information which is sometimes
categorized as “semantic.” We treat them as both domain-
independent and useful for any application. Qur intention is

N. MARUYAMA ET AL.

to keep our analyzer as general as possible. For example, sF
as indicated in Figure 6 is quite simple. Use of the features is
explained in the succeeding sections.

Our feature system is implemented by adding attributes to
each nonterminal symbol in the original base-grammar, and
by coding tests on these attributes for the rules. In parsing,
these attributes are passed only from bottom to top.

o Artaching preference scores

Ambiguity is always a serious problem for natural-language
processing systems. In particular, domain-independent
parsers like ours tend to produce numerous alternative
parses because they cannot reject meaningless interpretations
in a certain domain. Various purely syntactic principles of
preference such as right attachment [22], minimal
attachment [23], and lexical preference [24] have been
suggested for English, but no such principles have been
posited for Japanese.

Like the prepositional-phrase-attachment problem in
English, argument-predicate attachment is one of the main
sources of ambiguity in Japanese. If we know what kinds of
modifiers usually modify what kinds of predicates, we can
attach preference scores to alternative parses. Since this
information depends on individual predicates, we decided to
encode it in the entries in the lexicon. However, adoption of
preference semantics [25] or case grammar [26] is
inadequate for our purpose, since these methods require
deep semantic coding which inevitably has to be hand-
crafted and is subjective. The number of predicates in our
lexicon is estimated to reach over 20000 at the final stage.
Keeping such information consistent requires an enormous
effort.

Our solution to this problem is to use valency grammar
[27] instead of case grammar. Valency grammar is based on
modifier-modifiee patterns with surface case particles (case
grammar uses deep semantic roles such as AGENT and
RECIPIENT). An example of a valency pattern is given in
Figure 7. The verb nomu (‘drink’) takes two modifiers, i.e., a
Hum(an)-type noun phrase with the case particle ga and a
coN(crete)-type noun phrase with the case particle wo.
[There are several varieties of valency theories. Some of
them do not designate “distribution” (i.e., the semantic class
of modifier noun phrases) in valency patterns. In Japanese
linguistics, valencies are usually discussed along with their
distribution.] Hum and coN are sF-type features. Although the
patterns (or case frames)2 still have to be coded by hand, this
is much easier and the result more reliable than in the case
of using deep semantic roles, because these patterns can be
found in existing text and thus are not subjective. In
addition, there is a possibility of future automation of this
process.

2 We use the term case frame to represent the fact that there are a fixed number
of named slots. This is to be distinguished, however, from the usage in [26], since our
case labels are superficial.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

The preference calculation is performed as follows: A
nonnegative integer, called a preference score, is given to
every node in a parse tree. Initially, every node has the
value 0. The score propagates from bottom to top by adding
all children’s scores to that of their parent. When a
modifier-predicate modification is encountered in the
process, a test to determine whether the modifier fits the
expected slot of the predicate is made. If it does fit, a
“reward,” in accordance with the values shown in Table 3, is
added to the predicate node. The table reads that when both
semantic features for modifiers and predicates and their case
particles are equal, the score is +4, and so on. The feature sF
was designed for this purpose (see Figure 6). If the modifier
does not fit any slot of the predicate, no score is added. The
score appearing in the root node of the tree indicates the
plausibility of the tree itself.

An example of scoring is shown in Figure 8. The reader
may have noticed that the first tree (the correct
interpretation in a neutral situation) gets a higher score. Of
course, low-rated trees which violate the case frames cannot
be discarded. Metaphors and negative sentences such as

My car drinks gas.
and

Personal computers never drink beer.

are some examples which violate the case-frame patterns.

There is also a possibility of using valency theory for
rejecting incorrect parses by means of encoding not only
valency patterns which are likely to occur but also ones
which never occur. For example, the case particle wo always
indicates the object case and therefore is never used in
combination with an intransitive verb or an adjective. Most
other case particles, however, may be used to indicate
optional modifiers such as time and location, so the
modifiability depends on the semantic class of the modifier
noun. Since we cannot completely rely on the semantic
features of nouns [e.g., ji (‘0’clock’) is coded as TIME but
may be used as a direction in certain very specific domains],
it is too dangerous to discard parses based on this
information. Hence, we decided not to employ this approach
generally. Impossible modifications such as the wo case just
described are handled individually by the feature checks in
the grammar rules,

Although the figures in the scoring table are intended only
to indicate relative strength of modification and although
further improvement is being planned, the current setting is
producing notable results. We tested our analyzer using 225
sentences of which 97 were ambiguous with respect to our
grammar. The effectiveness of the preference scoring is
shown in Table 4. In our body of test data, admittedly small,
the correct parses always received the highest score.
Although more than one parse usually received the highest

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Kare ni heya wo deru youni me de aizushi ta
(‘he’) (‘room’) ('leave’) (‘eye’) (‘make a sign’)
(‘1 made a sign to him with my eyes to leave the room’)

score = 8

‘kareni heyawo deruyouni mede aizushita.’

deru |

HUM| ga aizusuru
+4
LOCfwo HUMTga
HUM| ni
+4
score = 4

kareni heyawo deruyouni mede aizushita.

deru
HUM| ga aizusuru
+4
LOC | wo Hum] ga
HUMI i

i

i Example of scoring.

Table 3 Scoring calculation.

Sm=Sp Sm——=Sp Sm = Unknown or
Sp = Unknown’
Cm = Cp +4 +1 +2
Cm = Unknown' +2 +0 +1
Otherwise +0 +0 +0

Sm: Semantic feature of modifier

Sp: Semantic feature of predicate

Cm: Case particle of modifier

_Cp: Case particle of predicate
Information not found in the lexicon
Case article missing

score, no incorrect parse was ranked higher than any correct
parse. That is, our algorithm made no errors.

N. MARUYAMA ET AL.

245

246

Table 4 Effectiveness of preference attachment.

No. of predicates A. No. of B. No. of C. Hit ratio D. No. of E. No. of F. Reduction
per sentence ambiguous differentiated (100 B/A) all parses per differentiated ratio
sentences sentences sentence parses per (100 E/D)
sentence

1 17 3 17.6 2.00 1.00 50.0

2 60 23 38.3 343 1.61 46.8

3 17 11 64.7 4.18 1.91 45.7

4 3 3 100.0 8.00 4.67 58.3

Total 97 40 412 3.88 1.88 484

S are from “J; English S Equivalents,” Asahi Publishing Co.

In Table 4, columns B, D, E, and F correspond to the
cases where our method could differentiate parses and
reduce ambiguity. The hit ratio indicates that our method
was effective in about 50% of cases where a sentence has two
or three predicates, which is quite typical and thus
important. In the remainder of the data, all parses get the
same score. The reduction ratio shows the percentage of the
average number of parses with the same highest score. It can
be seen that this ranking algorithm is effective in that it
reduces ambiguous trees by about half. In other words, our
algorithm produces only one or two parses for these typical
sentences.

Our method deals with argument-predicate attachment.
There are various other kinds of causes of ambiguity, such as
NP-NP modification and words with multiple parts of
speech. The sentences which were not differentiated had only
ambiguities of types other than argument-predicate
attachment. The differentiated sentences had other
ambiguities; however, our scoring method was able to handle
them. On the basis of these experimental results, we believe
that we can deal with the remaining ambiguities in accord
with this method.

e Extracting modal information
Although the main purpose for introducing valency theory
and the semantic features is to provide preferences for
ambiguous parses, the instantiated case-frame information is
also useful for application systems. Modal information—
aspect and mood, for instance—is another example which is
both useful for the application and domain-independent.
Therefore it is the responsibility of our parser to extract this
kind of information from a sentence structure.

The following rule is assumed by many to represent the
highest level of Japanese sentence structure [13, 26]:

S—>P+M,
where S = sentence, P = proposition, and M = modality.
P consists of main verb, case elements (usually NP + case

particle), and adverbial expressions; valency case frames
account for quasi-semantic information for P in our parser.

N. MARUYAMA ET AL.

As in English, M is expressed by auxiliary verbs.

Although many Japanese auxiliary verbs have more than
one meaning, it is known that certain meanings are not used
with certain types of modified verbs. We studied such
combinations in detail and developed a set of rules to
exclude impossible readings by analyzing the features
attached to modifying auxiliary verbs and modified verbs. At
the same time, the rules try to give all information which
can be inferred concerning tense, aspect, and mood.

Each auxiliary verb is associated with a rule that
represents its meaning. Using the mopaL features described
above, it is coded as a mapping from the meaning of the
sequence of words already processed, to a new meaning. For
example, the meaning of the auxiliary verb teiru is written as
shown in Figure 9. This rule says that the word teiru follows
the grammatical category V, produces category V, and that
when the input V has the feature +cH(ange), the aspect
information of the resultant V is either STATE,
RETRO(spective), or ITERA(tive); STATE is preferred to the
other two; and so on.

For example, the Japanese expression aruiteiru [‘walking’
= gruku (‘walk’) + teiru] is analyzed as follows:

'aruku'; V(+ACT,+CONT,+PROG) + 'teiru'
--> 'aruiteiru’: V(aspect=PROGR>RETRO,ITERA)

The framework is also useful for some types of the modality-
scoping problem. If there are two Vs, say V, and V,,
preceding an auxiliary verb, the scope of the auxiliary verb
becomes a problem. Then, if the rule corresponding to the
auxiliary verb does not allow its modification of V,, the
scope is uniquely determined as V,,.

Muraki [28] tried to formalize auxiliary-verb meanings as
rules in a way similar to ours. However, this was not
intended to produce any useful information for applications.
Moreover, his method assumed numerous interactions
between P and M in the sentence scheme described above,
and consequently was complex and redundant. The clear
separation of P and M in our parser made it more powerful
as well as more concise.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

‘teiru': V>V
+CH --> aspect=STATE>RETRO, ITERA
+ACT, + CONT, + PROG --> aspect=PROGR>RETRO,ITERA
+ACT,—CONT --> aspect=RETRO>ITERA

+ CH, + ACT..: semantic information of verbs
STATE: state after V,
PROGR: progressive, RETRO: retrospective, ITERA: iterative

“>" and “,” represent strength. A>B means A is stronger than B.

Example of auxiliary-verb rule.

o Dependency structure
We have adopted dependency structures (DS) for the
structural description of Japanese sentences, rather than
phrase structures (PS), which are more commonly used.

Dependency theory was proposed by Hays [29, 30} in
order to represent the structure of sentences. It corresponds
to the operator-operand formalism of Harris [31]. ADS isa
tree with only words as nodes and their dependencies as
links. In contrast, a PS is a tree with nonterminal symbols
for phrases which bind its constituents. Figure 10 gives two
possible word orders for a Japanese sentence meaning
‘Mario eats an orange.” Figures 11 and 12 give PS and DS
representations, respectively, of the sentence shown in Figure
10(a). In DS, mario is directly linked to taberu; in PS, mario
and taberu are bound through many nonterminals
(NPs and VPs). We have, however, introduced VPs for
important practical reasons. (It should be noted that there is
disagreement over whether Japanese in fact has a VP node
[15, 32, 33].)

As shown in Figure 12, in our implementation of DS,
content words (noun: mario, orenji; verb: taberu;
adjective. . .) are represented as node labels, while function
words (particle: ha, wo; auxiliary verb. . .) are represented as
features which are prefixed with a + sign.

We have two major reasons for adopting DS:

1. An ordinary PS is by nature the trace of rule application,
s0 it is not adequate in some cases for structural
description. There should be computed structure—i.e.,
structural description—different from rule structure. DS
gives a useful computed structure because it is well suited
for nonconfigurational (i.e., permitting relatively free
word order) languages like Japanese. There are, in
Japanese, many case elements before a verb, and they
can be interchanged freely. For example, the two
sentences in Figure 10 have the same meaning except for
noun-phrase focus. There are two ways to describe

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

taberu
(‘eat’)

(a) mario ga orenji wo
(‘Mario’) (‘orange’)

(‘Mario eats an orange’)
(b) orenjiwo mario ga taberu

Example of free word order.

SENT
NP VP
NP NP VP
NP
NOUN POSTP NOUN POSTP VERB
(mario) (ha) (orenj) (wo) (taberu)

Phrase structure tree for Figure 10(a).

VERB (taberu)

NOQUN (mario, + ha)

NOUN (orenji, +wo)

Dependency structure for Figure 10(a).

nonconfigurationality in context-free-grammar terms:
One is to set up rules for all possible combinations of
word order; the other is to use a binary rule whose shape
is AB — C and to apply it recursively. The former is not

N. MARUYAMA ET AL.

248

(a) kyou no atusa ha kakubetu da
(‘today’) (‘heat’) (‘'extreme’)
noun postp noun postp adj aux

(b) ‘Heat of today is extreme’
(€) It is extremely hot today.
pronbe adv adj adv

(a) ADJ (kakubetu, +be)
NOUN (atusa, +subj)

NOUN (kyou, +of)

(c) ADJ (hot, +be)
PRON) ADV ADV
(It, + subj) (extremely) (today)

§ Dependency structures for (a) and (c) of Figure 13.

practical because the number of combinations is large.
The latter is practical, but the structure generated is
unnatural because the extra VP nodes resulting from
binary rules are ultimately unnecessary linguistically and
for some purposes actually cause problems. Therefore, we
convert PS to DS, which treats every case-element
impartially (see Figure 12) and for that reason is suitable
for the representation of nonconfigurational languages.

In order to convert PS to DS, the context-free-grammar
rules have been augmented with three features: PRMODS
(premodifier list), HEAD, and PSMODS (postmodifier list).
These three features, in effect, encode the dependency
relations. The HEAD feature values correspond to governer
and the others to dependents; thus, conversion is
straightforward.

N. MARUYAMA ET AL.

2. DS is suitable for a variety of applications such as
machine translation, question answering, and information
retrieval [1, 34, 35]. DS is less hierarchical, so it is easy to
find a specified substructure and to modify it. DS also
requires a smaller amount of memory and time for such
processes as pattern matching.

In Figure 13, an example of machine translation from
Japanese to English is provided. State-of-the-art machine-
translation systems have usually adopted the so-called
transfer approach, which has three complicated phases:
analysis, transfer, and generation [1, 36, 37]. Because
Japanese is quite different in various aspects from English, in
order to make the transfer phase tractable it is important to
get a more language-neutral representation of the
information in a Japanese sentence. We have therefore
adopted DS as the input to transfer (i.e., the output of
analysis).

Figure 13 exemplifies the fact that if we translate a
Japanese sentence (a) preserving lexical and syntactic
properties as much as possible, we will not produce a normal
English sentence (b). In order to get a correct, idiomatic
translation (c), we must change both lexical and syntactic
structures substantially. In other words, we have to change
the part of speech of the three words kyou, ‘today’

(NOUN — ADV); atusa, ‘hot’ (NOUN — ADJ); and
kakubetu, ‘extremely’ (ADJ — ADYV). These lexical changes
naturally induce various sorts of syntactic changes as well.

But, since DSs have no nonterminals (Figure 14), these
differences, relative to PS, are minimized.

5. Status

The parsing portion of the syntactic-analysis component is
written entirely in Kanjified PLNLP, The remainder of the
syntactic-analysis component is written in Kanjified
Lisp/VM. We started writing the grammar rules in May
1985, and are continuously enhancing the grammar.
Currently, there are 291 grammar rules with restrictions. The
lexicon, which comprises about 100000 words, was initially
transferred from a Kana-to-Kanji conversion dictionary [38],
and necessary information, such as case frames and semantic
features, has been added.

The sentence analyzer is now being used for prototype
development in both the Japanese-to-English machine-
translation project and the natural-language front-end
project [34] in our laboratory.

6. Concluding remarks
We have presented the design and the current status of a
robust Japanese sentence analyzer, which comprises a lexical
analyzer and a syntactic analyzer. We have concentrated on
achieving both robustness and domain-independence.

There are a number of applications where our sentence
analyzer can play a key role. The most obvious ones are
machine translation and natural-language interfaces. Less

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

frequently considered, but still a significant application,

is proofreading of Japanese text (cf. [39]), since even
spell-checking is impossible for Japanese unless exact word
boundaries are identified.

Much work remains to be done. We are continuously
enhancing the grammar rules on a trial-and-error basis using
a large amount of training text. It will take some time, but
we believe this to be the only way to create a practical
grammar.

Acknowledgments

The authors would like to thank George Heidorn,

Norman Haas, and Martin Mikelsons for Kanjification; and
Karen Jensen, Chie Yamanouchi, Hiroshi Kitamura, and
Hiroshi Maruyama for their valuable discussions and
suggestions. The authors also would like to thank

David Johnson and the three anonymous referees. They
have kindly taken the time to make detailed comments.

References

1. M. Nagao, J. Tsujii, and J. Nakamura, “The Japanese
Government Project for Machine Translation,” Amer. J.
Computat. Linguist. 11, No. 2-3, 91-110 (1985).

2. H. Nomura, S. Naito, Y. Katagiri, and A. Shimazu,
“Translation by Understanding: A Machine Translation System
LUTE,” Proc. COLING ’86 (Proceedings of the 11th
International Conference on Computational Linguistics), Bonn,
West Germany, August 25-29, 1986, pp. 621-626.

3. T. Tsutsumi, “A Prototype English-Japanese Machine
Translation System for Translating IBM Computer Manuals,”
Proc. COLING '86, Bonn, West Germany, 1986, pp. 646-651.

4. K. Jensen, “PEG 1986: A Broad-Coverage Computational
Syntax of English,” unpublished ms; available from the author,
IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, NY 10598.

5. K. Jensen, G. E. Heidorn, S. D. Richardson, and N. Haas,
“PLNLP, PEG, and CRITIQUE: Three Contributions to
Computing in the Humanities,” Proceedings of the Conference
on Computing in the Humanities, University of Toronto,
Ontario, April 15-18, 1986, pp. 183-193.

6. S. Mizutani, “Kokubunpou Sobyou (Sketch of Japanese
Grammar)” (in Japanese), Bunpou to Imi I (Syntax and
Semantics 1), S. Mizutani, Ed.; published by Asakura-shoten,
Tokyo, 1983, pp. 1-80.

7. S. Yoshida, “Morphology Analysis,” Japanese Information
Processing (in Japanese), M. Nagao, Ed., The Institute of
Electronics, Information and Communication Engineers, Tokyo,
1984, pp. 86-113.

8. M. Nagao, J. Tsujii, A. Yamagami, and S. Tatebe,
“Data-Structure of a Large Japanese Dictionary and
Morphological Analysis by Using It” (in Japanese), Trans. Info.
Proc. Soc. Jpn. 19, No. 6, 514-521 (1978).

9. N. Nomura and K. Mori, “A Kanji-Kana Translation System”
(in Japanese), Trans. Inst. Electron. Info. & Commun. Engineers
J66-D, No. 7, 789-795 (1983).

10. M. Okochi, “Backtracking-Free Grammatical Analysis for
Phrase-Based Kana-to-Kanji Conversion” (in Japanese), Trans.
Info. Proc. Soc. Jpn. 24, No. 4, 389-396 (1983).

11. Y. Yamada, Nihonbunpougaku Gairon (Introduction to Japanese
Grammar) (in Japanese); published by Houbunkan-shuppan,
Tokyo, 1936.

12. D. Matsushita, Kaisen Hyoujun Nihonbunpou (Revised Standard
Japanese Grammar) (in Japanese); published by Bensei-sha,
Tokyo, 1974.

13. M. Tokieda, Nihonbunpou Kougo-hen (Contemporary Japanese
Grammar) (in Japanese); published by Iwanami-shoten, Tokyo,
1950.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

14,

15.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S. Hashimoto, Kokubunpou Taikeiron (Systematic Japanese
Grammar) (in Japanese); published by Iwanami-shoten, Tokyo,
1959.

K. Inoue, Henkeibunpou to Nihongo (Transformational
Grammar and Japanese) (in Japanese); published by
Taishu-kan, Tokyo, 1976.

. T. Gunji, Japanese Phrase Structure Grammar, D. Reidel,

Dordrecht, the Netherlands, 1987.

. G. Gazdar and G. Pullum, Generalized Phrase Structure

Grammar: A Theoretical Synopsis, Indiana University
Linguistics Club, Bloomington, 1982.

. G. Barton, R. Berwick, and E. Ristad, Computational

Complexity and Natural Language, MIT Press, Cambridge, MA,
1987.

. T. Winograd, Language as a Cognitive Process, Addison-Wesley

Publishing Co., Reading, MA, 1983.

G. E. Heidorn, “Natural Language Inputs to a Simulation
Programming System,” Ph.D. Dissertation, Yale University,
New Haven, CT, 1972.

D. T. Langendoen and M. Barnett, “A Linguist’s Introduction
to PLNLP,” unpublished ms; available from D. T. Langendoen,
Program in Linguistics, Graduate Center, City University of
New York, 33 W. 42nd St., New York, NY 10036.

J. Kimball, “Seven Principles of Surface Structure Parsing in
Natural Language,” Cognition 2, 15-47 (1973).

L. Frazier and J. Fodor, “The Sausage Machine: A New
Two-Stage Parsing Model,” Cognrition 6, 291-325 (1979).

M. Ford, J. Bresnan, and R. Kaplan, “A Competence-Based
Theory of Syntactic Closure,” The Mental Representation of
Grammatical Relations, J. Bresnan, Ed., MIT Press, Cambridge,
MA, 1981.

Y. Wilks, “An Intelligent Analyzer and Understander of
English,” Commun. ACM 18, No. 5, 264-274 (1975).

C.). Fillmore, “The Case for Case,” Universals in Linguistic
Theory, E. Bach and R. T. Harms, Eds., Holt, Rinehart &
Winston, New York, 1968, pp. 1-88.

T. Ishiwata, “Ketsugoukakara Mita Nihonbunpou (Japanese
Grammar and Valency Theory)” (in Japanese), Bunpou to Imi I
(Syntax and Semantics I), S. Mizutani, Ed.; published by
Asakura-shoten, Tokyo, 1983, pp. 81-134,

M. Muraki, “Description Using GPSG” (in Japanese),
Proceedings of 1987 University Science Symposium, Tokyo,
1987, pp. 11-22.

D. G. Hays, “Dependency Theory: A Formalism and Some
Observations,” Language 40, 511-524 (1964).

D. G. Hays, Readings in Automatic Language Processing,
American Elsevier, New York, 1966.

Z. Harris, A Grammar of English on Mathematical Principles,
John Wiley & Sons, Inc., New York, 1982.

J. Hinds, On the Status of the VP Node in Japanese,
unpublished manuscript circulated by Indiana University
Linguistics Club, Bloomington, 1974; available from M.
Morohashi.

M. Saito and H. Hoji, “Weak Crossover and Move « in
Japanese,” Nat. Lang. & Linguist. Theor. 1, No. 2, 245-259
(1983).

H. Maruyama and H. Watanabe, “A Discourse Analysis
Technique for a Natural Language Interface System,”
Proceedings of COMPSAC (The Eleventh Annual International
Computer Software and Applications Conference, IEEE
Computer Society), Tokyo, 1987, pp. 578-585.

L. Hirschman, R. Grishman, and N. Sager, “Grammatically-
Based Automatic Word Class Formation,” Info. Proc. &
Management 11, 39-57 (1975).

R. Johnson, M. King, and L. des Tombe, “EUROTRA: A
Muitilingual System Under Development,” Computat. Linguist.
11, No. 2-3, 155~169 (1985).

W. Bennett and J. Slocum, “The LRC Machine Translation
System,” Computat. Linguist. 11, No. 2-3, 111-121 (1985).

T. Fujisaki, M. Okochi, and M. Morohashi, “Kana to Kanji
Conversion Text Input of KOTODAMA Document System” (in

Japanese), Trans. Info. Proc. Soc. Jpn. 23, No. 1, 1-8 (1982). 249

N. MARUYAMA ET AL.

39. Koichi Takeda, Emiko Suzuki, Tetsuro Nishino, and
Tetsunosuke Fujisaki, “CRITAC-—An Experimental System for
Japanese Text Proofreading,” IBM J. Res. Develop. 32, No. 2,
201-216 (1988, this issue).

Received March 16, 1987, accepted for publication November
24, 1987

N. MARUYAMA ET AL.

Naoko Maruyama Tokyo Woman’s Christian University,
Department of Japanese Literature, 2-6-1 Zenpukuji, Suginami-ku,
Tokyo 167, Japan. Ms. Maruyama received her B.A. and M.A. in
Japanese linguistics from Tokyo Woman’s Christian University in
1981 and 1983, respectively. She was a member of the Japanese
Processing Project at the IBM Tokyo Research Laboratory, where
she worked as a researcher from 1983 to 1987. Her research interests
include Japanese linguistics (syntax, semantics, and morphology)
and natural-language processing.

Masayuki Morohashi 7B Japan Ltd. Tokyo Research
Laboratory, 5-19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan.

Mr. Morohashi received his B.E. in electrical engineering and his
M.E. in computer and logical circuits (majoring in electrical
engineering) from Waseda University, Tokyo, in 1972 and 1974,
respectively. He joined IBM in 1974, and has worked as a researcher
in computational linguistics. He is currently the manager of the
Japanese Processing Project at the Tokyo Research Laboratory,
where he has worked since 1983. Mr. Morochashi’s research interests
include Japanese linguistics (syntax and morphology), discourse
analysis, and natural-language processing in general.

Shigeki Umeda IBM Japan Ltd. Tokyo Research Laboratory,
5-19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan. Mr. Umeda
received his B.E. and M.E. degrees in industrial engineering
(majoring in applied statistics/operations research) from Waseda
University, Tokyo, in 1980 and 1982, respectively. He is a researcher
in the Japanese Processing Group at the IBM Tokyo Research
Laboratory, where he has worked since 1982. Since joining IBM,
Mr. Umeda has been involved in the development of methods and
tools to improve the productivity of natural-language-processing
systems. His research interests include information retrieval, natural-
language processing, and artificial intelligence.

Eiichiro Sumita IBM Japar Ltd. Tokyo Research Laboratory,
5-19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan. Mr. Sumita
received his B.E. and M.E. in computer science from the University
of Electro-Communications, Tokyo, in 1980 and 1982. He is a
researcher in the Japanese Processing Project at the IBM Tokyo
Research Laboratory, where he has worked since 1982, Mr. Sumita’s
research interests include machine learning and natural-language
processing, especially machine translation.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

