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This  paper  presents  the  design of a  broad- 
coverage  Japanese  sentence  analyzer  which 
can be part of various  Japanese  processing 
systems.  The  sentence  analyzer  comprises  two 
components:  the lexical analyzer  and  the 
syntactic  analyzer.  Lexical  analysis, i.e., 
segmenting  a  sentence into words, is a 
formidable  problem  for  a  language like 
Japanese,  because it has  no explicit delimiters 
(blanks)  between  written  words. In practical 
applications, this task is made  more difficult by 
the  occurrence  of  words  not listed in a 
dictionary. We have  developed  a  five-layered 
knowledge  source  and  used it successfully in 
the lexical analyzer,  resulting in very  accurate 
segmentation,  even in cases  where  there  are 
unknown  words.  The  syntactic  analyzer  has  two 
modules:  One consists of  an  augmented 
context-free grammar  and the PLNLP  parser; the 
other is the  dependency  structure  constructor, 
which  converts  the  phrase  structures to 
dependency  structures.  The  dependency 
structures  represent  various  key  linguistic 
relations in a  more  direct way.  The  dependency 
structures  have  semantically  important 
information  such  as  tense,  aspect,  and  modality, 
as  well  as  preference  scores reflecting relative 
ranking  of  parse  acceptability. 
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1. Introduction 
Sentence analysis (i.e., lexical and syntactic analysis) is a key 
technology  in  various  natural-language processing systems 
such as  machine translation,  question answering, and 
information retrieval, since it is the first process an  input 
sentence undergoes, and overall system performance 
depends heavily on its  quality. 

Although a number of Japanese  sentence  analyzers  have 
been developed for various systems [ 1,2], they were designed 
specifically for  their  applications. It is noteworthy that a 
significant amount of knowledge embedded in  such systems 
depends solely on knowledge about  the Japanese language 
itself, not  on a specific application; hence, there has been 
much duplication of effort. Considering the large number of 
emerging natural-language applications, it is important  to 
have a wide-coverage Japanese  sentence  analyzer which is 
independent of  its  application. 

The  main difficulties in  analyzing a written  Japanese 
sentence, compared with  those  of other languages such as 
English, are  the following: First, Japanese  has  multiple 
character sets (three basic types: Kanji,  Hiragana, and 
Katakana, as well as the  Roman alphabet  for borrowed 
words); thus, a single word can be expressed in different 
ways. Second, in Japanese no explicit delimiters  (blanks) are 
supplied between words. These two characteristics of 
Japanese make lexical analysis more difficult and yet even 
more important  than for other languages, especially when an 
input sentence contains  unknown words. The third 
characteristic  which makes analysis of Japanese difficult is 
the fact that Japanese  is a so-called nonconfigurational 
language, Le., has relatively few restrictions on word order. 
Thus purely syntactic analysis is inadequate for  Japanese, 
because it  produces excessively ambiguous results. To 
remedy  this, we introduce  semantic features which are 
domain-independent. 
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In this paper, we present the design and current status of a 
Japanese sentence analyzer which  we are developing. The 
objective of this project is to establish a Japanese sentence- 
analysis  technology  which  is robust enough to cover  almost 
every Japanese sentence, including those containing 
unknown words,  while at the same time retaining 
application-independence. No natural-language application 
system  can be successful without a good sentence analyzer, 
since  natural-language sentences are diverse, and enormous 
linguistic  knowledge is needed to handle the diversity. One 
of the keys to the success of the English-to-Japanese machine 
translation system  SHALT  [3]  was that a very-broad- 
coverage  English syntactic analyzer known as PEG [4,5] was 
already  available, and developers  could  fully  utilize its 
output. Our sentence analyzer will serve as a good starting 
point for further research and development. 

The major characteristics of our system are as follows: 

0 Hypothesis of words not listed in a dictionary. 
Systematic application of  five types of  lexical  knowledge. 
Mizutani’s grammar [6] as the base grammar. 
Preference attachment using  valency  theory. 
Special handling of  auxiliary  verbs to extract modal 

Dependency structures as output. 
information. 

An  overview  of the components is  given in Section 2, 
followed  by a description of each component: lexical  analysis 
in Section 3, syntactic analysis in Section 4. The current 
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status of this project,  which we started in 1985 and have 
since  been  enhancing, is briefly summarized in Section 5. 
We  offer our conclusions in Section 6. 

2. System overview 
As shown in Figure 1, the overall  system  consists of two 
components: a lexical  analyzer and a syntactic  analyzer. 

A Japanese sentence, comprising Kanji, Hiragana, 
Katakana, and other special characters without delimiting 
blanks,  is  first  fed into the lexical-analysis component. An 
example of a Japanese sentence is  shown in Figure l(a). 

The lexical  analyzer  segments the input sentence into 
words by consulting the system dictionary and by applying a 
set of segmenting  rules. It also attaches part-of-speech 
information to each  word  identified during the process.  The 
output of the lexical-analysis component is a sequence of 
segmented  words,  as  shown in Figure I(b). 

The syntactic analyzer produces the dependency structures 
[Figure I(c)J, which  represent  various  key  linguistic  relations. 
They contain semantically important information such as 
tense,  aspect, and modality, as well  as preference  scores 
reflecting  relative ranking of parse  acceptability. 

3. Lexical analysis 
It  is  well  known that Japanese text can  be  described,  from 
the lexical point of  view, as a sequence of phrases,  each of 
which  consists  of a content word and zero or more 
succeeding function words. A content word  is a word that 
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Table 1 Character types and action  names. 

Character types 
A. Alphabetic 
N Numeral  (Kanji or Arabic  numeral) 
K Katakana  character  (phonogram  mainly  used  to  represent 

H Hiragana  character  (phonogram  mainly  used to represent 

J Kanji  character 
I Independent  character,  such as “(”, which  makes a word 

S: Special  character,  such as “-”, a  sequence of which  makes 

D .  Dependent  character (the  segmentation  depends on the 

B Blank  character 
L End-of-line  virtual  character 
blank:  Initial-nil/end-of-data  virtual  character 

foreign  words) 

function words) 

by  itself 

a word 

context) 

Action names 
U Throw  away  the  current  character 
V: Put  word  boundaries  before  and  after  the  current 

W Insert a word  boundary  and  throw  away  the  current 

X Put a word  boundary  before  the  current  character 
Z Noaction 
1: Invoke  the  action “ Z ,  if  the  current  character = the 

previous  character;  otherwise  invoke “ X  
2: Invoke  the  action “ X ,  if the  type  sequence = “TTU” 

(where T, U mean  any  types  and  T # U); otherwise 
invoke “Z” 

3: Invoke  the  action “Z”, if  the  type  sequence = “TUT” 
(where T, U mean  any  types  and T # U); otherwise 
invoke “U” 

character 

character 

has some meaning by itself, such as a noun, verb, or 
adjective.  A function word, on the other hand, is  a  word that 
adds some features such as tense or aspect to the preceding 
content word  an auxiliary  verb, for example, or a  word that 
relates  two content words, such as a  case  particle.  Although 
the order of  phrases in a sentence is  very  flexible, the order 
of words within a  phrase is highly  restricted and hence 
recognizable by means of simple “phrase-internal” 
connection rules,  which characterize consecutive 
word combinations as well as word-stem and 
inflectional/derivational morpheme combinations [7]. 

divide a sentence into words and to assign  a part of  speech to 
every  word.  Typically, the analysis  is camed out in two 
steps: First, the  input string is segmented into phrases,  using 
information derived from shifts in  the character sets; then 
the resulting  segments are analyzed into words  by means of 
phrase-internal connection rules [7-91. This approach has 
been taken because  phrase boundaries are typically 
accompanied by a  shift from a Hiragana character to a Kanji 
character. This regularity  comes from Japanese writing 
conventions, in which content words are customarily written 
in Kanji characters and function words in Hiragana 

Japanese lexical-analysis algorithms have  two goals: to 

240 characters. 

These algorithms can recover  missing proper phrase 
boundaries by repeatedly  applying some sort of phrase 
analysis routine. However,  they  have no effective  way to 
prevent “overcutting,” i.e., cutting the string at a point where 
there is, in actuality, no phrase boundary. To overcome this 
problem, we 

1. Introduce a  more  sophisticated combination of 
techniques for  checking character types (names of 
character sets  such  as Kanji, Hiragana, etc.) than the shift 
from  a Kanji character to a Hiragana character. 

2. Use  a  “loose”  definition of phrase in the phrase-analysis 
algorithm in order to accept spurious segments  (possible 
phrases)  resulting from overcutting. 

Another problem for other lexical  analyzers  is that 
because they rely  completely on dictionary entries,  they  fail 
when  a  word  is encountered that is not listed in a dictionary. 
To overcome this important limitation, we  use rules that 
characterize the combinations of character types that can 
make  words. 

The lexical  analyzer  consists of  five  stages, each  using  a 
distinct kind of  knowledge that is  stored in the form of a rule 
or a  table. The first and second  stages  of  analysis  segment the 
input string into phrases  according to allowable character- 
type combinations and permissible character sequences, 
respectively. The key point here  is that these initial 
segmentations never  segment the text in the middle of a 
word. The third and fourth stages are phrase-analysis 
algorithms, both of which  use  a dictionary and 
morphological  rules  based on the loose definition of phrase, 
but segment the text in different ways. The fourth stage has 
additional rules  which  hypothesize  a  word not listed in the 
dictionary; it is invoked only  when the third stage  fails. The 
last  stage  is  different from the preceding four in that it 
bridges the segmentations based on our phrase  definition 
with the phrase as normally  defined. For example, the first 
four stages  may  wrongly cut a compound into phrases. This 
stage combines those components into a compound. 
Through the five  stages, the analyzer  selects the correct part 
of  speech from the alternatives provided by the dictionary. 

follows: 
To summarize, the stages,  described in detail below, are as 

1. Segmentation by character type. 
2. Segmentation by character sequence. 
3. Segmentation by a  longest matching algorithm based on a 

“loose”  definition of phrase. 
4. If  Stage 3 fails, segmentation by a bottom-up parallel 

algorithm  based on the same definition  with  “word 
presumption” rules. 

5 .  Compound-word composition. 

The analyzer provides no ambiguous segmentation, but may 
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assign ambiguous parts of speech if the local context does 
not give enough information. This kind of ambiguity  may  be 
resolved  by syntactic analysis. 

Segmentation by character type 
A sequence of character types sometimes gives  definite 
information on segmentation. To take a simple  example 
from  English, the sequence NDN (N = numeral, D = “.”) 
implies that “.” is  used as a decimal point (not a period), so 
that no word boundaries should be inserted before and after 
the “.”. 

Knowledge for segmenting by character types  can be 
effectively  represented  by a set of character-type definitions 
(character “a” 4 alphabetic), and rules  having  type patterns 
and their corresponding action names (type “AJ” + action 
“X”). The types and action names used to describe this 
knowledge are shown in Table 1. 

to check  only the character types  between  two  consecutive 
characters, and decides  whether a word boundary is to be 
inserted or not. But the register in the analyzer stores the 
preceding character types to allow actions based on longer 
character sequences.  Experimentally, three is sufficient  for 
the maximum pattern length to be  stored in the register. 

The pattern of a rule with  length  two  causes the analyzer 

Figure 2 depicts how the knowledge in this stage  is  used to 
segment  text. 

Segmentation by character sequence 
The knowledge  used in this stage  is a list of character 
sequences,  each of  which  provides a definite segmentation 
boundary immediately after the last character of the 
sequence. Figure 3 shows an example of the segmentation 
resulting from this stage. 

In Japanese, most  sequences  useful  for this stage are those 
of one or more function words. The most  powerful character 
to give a definite boundary is “e  ”, which  is the case  particle 
for  objects, and which  consists  of a unique character not 
appearing in any other words (in fact, “ 9” is totally  reliable). 

Segmentation by a  longest matching algorithm 
Stage 3 performs segmentation within a phrase determined 
by  Stages 1 and 2. A longest matching algorithm from left to 
right,  with a morphological  check  between  each  consecutive 
two-word candidate, is cheap yet  very  effective (and 
commonly used in existing  analyzers); it is applied to a 
phrase, according to rules  based on a loose  definition of 
phrase (Figure 4). The  input phrase  may contain more than 
one phrase  based on the loose definition, so the algorithm 
applies the rules  iteratively until the input-phrase string is 
exhausted. As stated previously, we define <phrase> to 
accept phrases  resulting  from overcutting by the previous 
stages. Rule 2 is  different from the “precise” definition (the 
ordinary definition in Japanese grammars) in  that it permits 

Segmentation 
knowledge 
in Stage 1 

JJ-Z 

HK- X 

KH- X 

*I-v 

JJHH KKKK HJH I (types) 

I I “*” in the pattern means any type. 

Segmentation 
knowledge 
in Stage 2 

Text 

Segmentation in Stage 2. 

1. <text> : : = <phrase> ... <phrase> 
2. <phrase> : : = <content  word>  <function  words> 

<content  word> I 
<function  words> 

3. <content  word> : : = <a word  in  the  dictionary> I 
<a word by char type rules> 

4. <function  words> : : = <extended funo ... <extended f u n o  
5. <extended funo : : = <function  word> I 

<inflection> 
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<function word- to be a <phrase>. This is  necessary 
because some kinds of boundaries between  a content word 
and a function word are very similar to the boundaries 
between  phrases, and sometimes an inserted  clause  with 
parentheses appears at such a boundary. 

In Rule 3, a content word is supplied either by the 
dictionary or by the rules of character types (“NN . . . N as 
a numeral word). This rule is  also  looser than the precise 
definition, thereby permitting a compound to be  segmented 
into several  phrases.  But this looseness  is  necessary  because 
Stage 1 provides  good word-boundary information (as a 
phrase boundary) within a compound. The discrepancies 
between the phrases determined by our algorithm at this 
stage and the desired  phrases are resolved in the last  stage. 

A function word,  <extended func>, is  supplied by the 
function-word table, which  is stored separately  from the 
dictionary-although the number of function words is small, 
they occur frequently. 

Morphological  checks occur only at the first term of Rules 
2 and 4. A  96-bit part of  speech based on Okochi’s categories 
[ 101 is  used. The morphological  check  is  performed by 
Boolean operations among the parts of  speech and 
connectivity vectors  for  word combinations, eliminating 
illegal segmentations from the list  of  alternatives, as well as 
illegal  part-of-speech  assignments from the alternatives for a 
word. 

Segmentation by a bottom-up parallel  algorithm 
The previous  stage can fail  because it encounters a  word not 
listed in the dictionary or because it cannot find an analysis 
in which  all  word connections are legal.  When this occurs, 
the phrase resulting from Stages 1 and 2 is  segmented  again 
by a bottom-up parallel algorithm (at high cost)  based on the 
same phrase definition used in the previous  stage  (see  Figure 
4) and so-called word-presumption rules. Word-presumption 
rules are used to guess that some unidentified substring is  a 
word on the basis  of character-type sequence.  More 
specifically, they are used to expand Rule 3 of Figure 4, by 
adding new alternatives for <content word>. The bottom-up 
parallel segmentation generates many possible alternative 
segmentations, so the stage  selects the highest-scoring 
alternative by using an evaluation function. 

Informally, the word-presumption rules look for 

Two  consecutive Kanji characters (a well-known  heuristic 

One Kanji character and preceding or succeeding 
rule). 

Hiragana characters of two moras’ (a variation of the 
preceding  rule). 
Three consecutive Kanji characters, which  is  a  special 
pattern for some kinds of proper nouns. 

’ A mora is a linguistic unit used to characterize  languages (such as Japanese) in 
which vowel or syllable lengths are linguistically significant. In Japanese, a  short vowel 
is one mora in length; a long vowel, two. 

A string of Hiragana characters of any length. 
Voicing  of the first consonant of a  word in a compound 
word  except the first one (known as rendaku in Japanese). 
(This should be found in the dictionary.) 

The above rules  also  guess the part of  speech  of the word 
from one of three candidates, taigen (noun), sahen (stem of 
a certain class of  verbs), and keiyoudoushi (stem of a certain 
class  of  adjectives). 

Applying  these  rules to every substring of the segment 
(result from Stages 1 and 2)  yields content-word alternatives 
and finds segmentations according to our phrase  definition. 
A segmentation evaluation function is then applied to each 
alternative segmentation, evaluating it according to the score 
determined by the following  expression: 

Score = (MaxPhraseCnt - PhraseCnt) 
X (CharCnt - PresumedCharCnt), 

where 

MaxPhraseCnt = maximum number of phrases in 
possible alternative segmentation. 
(Actually, the number of characters in 
text  is  used  for convenience in the 
calculation.) 

PhraseCnt = number of phrases in alternative 
segmentation. 

CharCnt = number of characters in text. 
PresumedCharCnt = sum of characters of  every  presumed 

word. 

Note that, even  though the first and second  stages  segment 
the input string into “phrases,”  some “phrases” may include 
more than one actual phrase  because  of  missed  phrase 
boundaries. 

The expression  implies  a  strategy in which the fewer the 
phrases and presumed  words, the more  reliable the 
segmentation.  Selection from among the alternatives with 
the highest  scores  is done by the same  strategy  as the longest 
matching algorithm: The alternative that has the longest 
word in leftmost  position should be selected,  which is the 
same  strategy  used in the third stage. 

Compound-word  composition 
This is the stage  used to resolve  discrepancies that come 
from the loose  definition of phrase. The typical  discrepancy 
is that “sEo6t#?%” (‘information-retrieval’)  may be recognized 
as a compound if it is stored in the dictionary as a 
compound. But  if it is not, the analyzer recognizes this as a 
sequence of  two independent words, “#%E ” (‘information’) 
and “@%” (‘retrieval’). The result depends completely on 
the content of the dictionary, which  implies the continuous 
refinement of the dictionary over many years. To 
circumvent this, the rule “NN + N” (“noun  noun” 
combination generates  a “noun” compound) is employed. 
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Knowledge concerning part-of-speech patterns is  used in 
this stage. This knowledge  describes not only noun 
compounds like the above example, but also compounds of 
other part-of-speech combinations and word-morpheme 
combinations (morphological  checks treat morphemes as 
words). 

4. Syntactic  analysis 
The syntactic-analysis component receives a segmented 
sentence (a sequence  of  words) from the previous step and 
produces its structural description. This section  describes 
some of the major decisions made in developing the 
syntactic component. 

8 Developing a large grammar 
At the outset of a project  such as ours-one  with both 
research and development goals-there  is a formidable 
obstacle: how  best to develop a large grammar that is 
suitable for computer applications. Given the difficulty  of 
developing  large grammars, the idea of starting from  scratch 
was unattractive. A review  of existing grammars, however, 
revealed a variety of problems. 

Japanese which contain a wealth of information relevant to 
our task [ 11-14], but these contain highly informal 
descriptions and so were  judged a poor starting point. On the 
other hand, there are also a number of formal grammars of 
Japanese. All  of these  except one were originally  developed 
primarily to explore  various  issues in theoretical linguistics 
[ 15, 161. There are several  reasons  why we judged these to be 
inappropriate for our purposes. One major problem was that 
the published grammars are too restricted in coverage, at 
least  given our requirements. We might  have  chosen to 
extend one or another of these  formalized grammars, but 
formalization does not guarantee practical  extensibility nor 
suitability for computer applications. For example, the use  of 
a Generalized  Phrase Structure Grammar (GPSG) [ 171 
entails the adoption of a parsing algorithm suitable for this 
class  of grammars. However, there are a number of 
controversial issues [ 181 in the parsing of GPSG grammars 
that we preferred to avoid. Similar comments hold  for 
transformational grammars. In  fact, our general view  of 
current linguistic theories is that, however interesting, they 
are only  partially  formalized and highly  speculative and are 
constantly undergoing  changes in response to current 
theoretical concerns. Since our project  has  long-range 
practical  goals, we  wish to avoid this instability and keep our 
purely theoretical commitments to an absolute minimum. 

This left  us  with the one exception, Mizutani's grammar 
[6), which was relatively  robust,  had  been  developed  for 
computer applications, and, since it is an unaugmented 
context-free grammar, afforded  us a choice of  efficient and 
well-understood  parsing  algorithms. 

There are, of course,  large traditional grammars of 

(5700) NP  POSTP 
--> PP(LNi?CASE = CASE(POSTP), 

TOPIC=TOPIC(POSTP),KOOU = KOOU(POSTP), 
PSMODS=PSMODS ... POSTP) 

(5840)  VERB --> VP(@VERB,HINSISEI = 'YOU') 
(5851)  PP(-DAI,-NO,SF,CASE) 

VP(~NO,CASESO,CASE(PP).ISIN.CASESO, 
CASE(PP).NOTIN.CASES, 
<@CASE(PP).EQ.'DIV'( 
@CASE(PP).lSlN.SF(PP)>) 
--Z VP(-NAI,CASES=LISTIFY<CASE(PP)> ... CASES, 

PRMODS=PP..PRMODS,N=N(PP)+N+4, 
<TOPIC(PP), + DAb)  

Table 2 Feature  types. 

Feature types Number of 
features 

Features  for  syntactic CLASSIFY 27 
checking 

Features  for  meaning FILLSIN,  CF, SF, 17 
extraction MODAL 

The major difficulties  with the grammar were syntactic 
ambiguity,  overgeneration, and insufficient  coverage. 

8 Feature system 
Mizutani's grammar was designed to cover  as many 
phenomena as possible, although at the expense of accepting 
ungrammatical sentences and producing too many 
alternative (and mostly  nonsense)  parses for grammatical 
sentences.  However,  it  is well known that the size  of a 
context-free grammar (CFG) increases  sharply  when a 
grammar writer tries to incorporate fine control (number 
agreement in English,  for  example) as a means for rejecting 
ungrammatical or meaningless  parses. A common solution 
to this problem  is to introduce a feature system [ 191. We 
decided to introduce a feature system into  our grammar 
rules  for another reason as well: to improve the coverage and 
maintainability. In addition, an excellent  parsing  system  was 
available: PLNLP (Programming Language  for Natural 
Language  Processing [4,20,21]) supports interactive 
grammar development and provides a convenient rule- 
writing  language that includes feature handling. An example 
grammar rule  is  shown in Figure 5 (a discussion  is given in 
the later  subsection entitled Dependency structure). 

We  defined  five types of features,  which are summarized 
in Table 2. The CLASSIFY features are for classifying 
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to keep our analyzer as general as possible. For example, SF 

as indicated in Figure 6 is quite simple.  Use  of the features  is 
ACTion  ANlmal-  HUMan explained in the succeeding  sections. 

ABStract TlMe  CONcrete  Location Our feature system  is implemented by adding attributes to 

I NUMber MATerial 
each nonterminal symbol in the original  base-grammar, and 
by  coding  tests on these attributes for the rules. In parsing, 
these attributes are passed  only  from bottom to top. 

nomu (‘drink) 

parses  because  they cannot reject  meaningless interpretations 
in a certain domain. Various  purely syntactic principles of 
preference  such  as  right attachment [22], minimal 
attachment [23], and lexical  preference [24] have  been 
suggested for English, but no such  principles  have  been 
posited  for  Japanese. 

Like the prepositional-phrase-attachment problem in 
English,  argument-predicate attachment is one of the main 
sources of ambiguity in Japanese. If  we know  what kinds of 
modifiers  usually  modify  what kinds of predicates, we can 
attach preference  scores to alternative parses.  Since this 
information depends on individual predicates, we decided to 
encode it in the entries in the lexicon.  However, adoption of 
preference semantics 1251 or case grammar 1261 is 

Keeping  such information consistent requires an enormous 
effort. 

Our solution to this problem is to use  valency grammar 
[27] instead of  case grammar. Valency grammar is  based on 
modifier-modifiee patterns with  surface  case  particles  (case 
grammar uses deep semantic roles  such  as AGENT and 
RECIPIENT). An example of a  valency pattern is  given in 
Figure 7. The verb nomu (‘drink’) takes  two  modifiers,  i.e.,  a 
HuM(an)-type noun phrase with the case particle gu and a 
con(crete)-type noun phrase  with the case  particle wo. 
[There are several  varieties of  valency  theories.  Some  of 
them do not designate “distribution” (i.e., the semantic class 
of modifier noun phrases) in valency patterns. In Japanese 
linguistics,  valencies are usually  discussed  along  with their 
distribution.] HUM and CON are sr-type features.  Although the 
patterns (or cusefiumes)2 still  have to be  coded by hand, this 

nonterminal symbols. For example, we have four kinds of 
ku. They are represented by four nonterminals in the 
original grammar: Muduijuttui-ku, Arujuttui-ku, 
Shunukijuttui-ku, and Noshujutsu-ku. In our grammar these 
are replaced by a  single nonterminal ku augmented with  a 
set of features of a type called CLASSIFY, thus reducing 
complexity and redundancy. There are four other types of 
features: FILLSIN, CF, SF, and MODAL. They are not used to 
reject  illegal  parses, but rather to carry information useful  for 
various applications. The FILLSIN feature indicates that the 
node with this feature may fill in a truce (or gap) within its 
premodifier. For example, the head noun otoko (‘the  man’) 
in the phrase 

watashi ga aisuru otoko (the man whom I love) is much easier and the result more reliable than in the case 
(‘1’) (‘love’) (‘E’) of using deep semantic roles,  because  these patterns can be 

receives the FILLSIN=‘WO’ (case particle for  direct  object) found in existing text and thus are not subjective. In 

feature. addition, there is  a  possibility of future automation of this 

The CF (case frame), SF (semantic feature), and MODAL process. 
features represent information which  is sometimes 
categorized as “semantic.” We treat them as both domain- ’ We use the  term casefiame to represent  the  fact  that  there are a  fixed  number 

244 independent and useful for any application. Our intention is case labels are superficial. 
of named slots. This is to he distinguished,  however,  from  the  usage  in [26], since  our 
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The preference calculation is  performed as follows: A 
nonnegative  integer,  called a preference score, is given to 
every node in a parse tree. Initially,  every node has the 
value 0. The score  propagates from bottom to top by adding 
all  children’s  scores to that of their parent. When a 
modifier-predicate  modification  is encountered in the 
process, a test to determine whether the modifier  fits the 
expected  slot of the predicate is  made.  If it does  fit, a 
“reward,” in accordance with the values  shown in Table 3, is 
added to the predicate node. The table reads that when both 
semantic features for  modifiers and predicates and their case 
particles are equal, the score  is +4, and so on. The feature SF 

was designed for this purpose (see  Figure 6). If the modifier 
does not fit any slot of the predicate, no score  is added. The 
score appearing in  the root node of the tree indicates the 
plausibility of the tree itself. 

An example of scoring  is  shown in Figure 8. The reader 
may  have  noticed that the first  tree (the correct 
interpretation in a neutral situation) gets a higher  score.  Of 
course,  low-rated  trees  which  violate the case frames cannot 
be discarded. Metaphors and negative sentences such as 

My car  drinks gas. 

and 

Personal computers never drink  beer. 

are some examples  which  violate the case-frame patterns. 
There is also a possibility of using  valency theory for 

rejecting incorrect parses by means of encoding not only 
valency patterns which are likely to occur but also  ones 
which never occur. For example, the case particle wo always 
indicates the object case and therefore is  never  used in 
combination with an intransitive verb or an adjective.  Most 
other case  particles,  however,  may be used to indicate 
optional modifiers  such  as time and location, so the 
modifiability depends on the semantic class  of the modifier 
noun. Since we cannot completely  rely on the semantic 
features of nouns [e.g., j i  (‘o’clock’) is  coded as TIME but 
may be used as a direction in certain very  specific domains], 
it is too dangerous to discard  parses  based on this 
information. Hence, we decided not to employ this approach 
generally.  Impossible  modifications such as the wo case just 
described are handled individually by the feature checks in 
the grammar rules. 

to indicate relative strength of modification and although 
further improvement is  being planned, the current setting is 
producing notable results. We tested our analyzer using 225 
sentences of  which 97 were ambiguous with  respect to our 
grammar. The effectiveness  of the preference  scoring  is 
shown in Table 4. In our body of test data, admittedly small, 
the correct parses  always  received the highest  score. 
Although more than one parse  usually  received the highest 

Although the figures in  the scoring table are intended only 

Kare ni heya wo deru youni me  de  abushi  ta 
(‘he’)  (‘roam’)  (‘leave’)  (‘eye’)  (‘make  a  sign’) 
(‘I made  a  sign  to  him  with  my  eyes  to  leave  the  room’) 

score = 8 

‘kareni  heyawo e y o u n i  mede e t a . ’  

deru I I 

HUM  ga  aizusuru 
+4  

LOC wo HUM  ga 

+4 
HUM ni 

score = 4 * 
I I  

‘kareni  heyawo  &youni mede ta.’ 

I I  I 

i 4  

Table 3 Scoring calculation. 

Sm = Sp Sm-= Sp Sm = Unknown or 
Sp = Unknown’ 

Cm = Cp +4 + I  +2 
Cm = Unknown’ +2 +O +1 
Otherwise +O +O +O 

Sm: Semantic feature of modifier 
Sp: Semantic feature of predicate 
Cm: Case particle of  modifier 
Cp: Case particle of predicate 

‘case article missing 
Information not found in the lexicon 

score, no incorrect parse was ranked higher than any  correct 
parse. That is, our algorithm made no  errors. 
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Table 4 Effectiveness of preference  attachment. 

No. ofpredicates A .  No. of B. No. of C. Hit ratio D. No. of E. No. of F. Reduction 
per sentence ambiguous dlfferentiated ( 1 0 0  BIA) all parses per dlfferentiated ratio 

sentences  sentences  sentence parses per (1 00 E/D) 
sentence 

1  17  3  17.6 2.00 1 .oo 
2 
3 
4 

50.0 
60 23 38.3 3.43 1.6 1 46.8 
17  11 64.7 4.18 1.91 45.1 
3  3 100.0 8.00 4.61 58.3 

Total 97 40 41.2 3.88  1.88  48.4 

Sentences are from ‘Japanese-English Sentence Equivalents,” Asahi Publishing Co. 

In Table 4, columns B, D, E, and F correspond to the 
cases  where our method could differentiate  parses and 
reduce  ambiguity. The hit ratio indicates that our method 
was  effective in about 50% of  cases where a sentence has two 
or three predicates,  which  is quite typical and thus 
important. In the remainder of the data, all  parses get the 
same score. The reduction ratio shows the percentage of the 
average number of  parses  with the same highest  score. It can 
be  seen that this ranking algorithm is  effective in that it 
reduces ambiguous trees by about half. In other words, our 
algorithm produces only one or two  parses for these  typical 
sentences. 

Our method deals  with  argument-predicate attachment. 
There are various other kinds of causes of ambiguity, such as 
NP-NP modification and words  with multiple parts of 
speech. The sentences which  were not differentiated  had  only 
ambiguities of types other than argument-predicate 
attachment. The differentiated  sentences had other 
ambiguities;  however, our scoring method was able to handle 
them. On the basis of these experimental results, we  believe 
that we can deal  with the remaining ambiguities in accord 
with this method. 

As in English, M is  expressed  by  auxiliary  verbs. 
Although many Japanese auxiliary  verbs  have more than 

one meaning, it is known that certain meanings are not used 
with certain types of  modified  verbs.  We studied  such 
combinations in detail and developed a set of rules to 
exclude  impossible  readings by analyzing the features 
attached to modifying  auxiliary  verbs and modified  verbs.  At 
the same time, the rules try to give all information which 
can  be  inferred concerning tense,  aspect, and mood. 

Each  auxiliary  verb  is  associated  with a rule that 
represents its meaning.  Using the MODAL features  described 
above, it is  coded  as a mapping from the meaning of the 
sequence of words  already  processed, to a new meaning. For 
example, the meaning of the auxiliary  verb teiru is  written as 
shown in Figure 9. This rule says that the word teiru follows 
the grammatical category V, produces  category V, and that 
when the input V has the feature +cn(ange), the aspect 
information of the resultant V is either STATE, 
RETRo(spective), or ITERA(tive); STATE is  preferred to the 
other two; and so on. 

= aruku (‘walk’) + teiru] is analyzed as follows: 
For example, the Japanese expression aruiteiru [‘walking’ 

Extracting modal information ’aruku’: V(+ACT,+CONT,+PROG) + ‘teiru’ 
Although the main purpose for introducing valency theory 
and  the semantic features  is to provide  preferences  for 
ambiguous parses, the instantiated case-frame information is 
also  useful  for application systems.  Modal information- 
aspect and mood, for  instance-is another example  which  is 
both useful for the application and domain-independent. 
Therefore it is the responsibility of our parser to extract this 
kind of information from a sentence structure. 

The following  rule  is  assumed  by many to represent the 
highest  level  of Japanese sentence structure [ 13,261: 

S + P + M ,  

where S = sentence, P = proposition, and M = modality. 
P consists  of main verb,  case elements (usually NP + case 
particle), and adverbial  expressions;  valency  case  frames 

246 account for quasi-semantic information for P in our parser. 

--> ‘aruiteiru’:  V(aspect=PROGR>RETRO,ITERA) 

The framework  is  also  useful  for some types of the modality- 
scoping  problem. If there are two Vs, say V, and V,, 
preceding an auxiliary  verb, the scope  of the auxiliary  verb 
becomes a problem. Then, if the rule corresponding to the 
auxiliary  verb  does not allow its modification of V, , the 
scope  is  uniquely determined as V,. 

Muraki [28] tried to formalize  auxiliary-verb  meanings as 
rules in a way similar to ours. However, this was not 
intended to produce any useful information for  applications. 
Moreover,  his method assumed numerous interactions 
between P and M in the sentence scheme  described  above, 
and consequently was complex and redundant. The clear 
separation of P and M in our parser  made it more  powerful 
as well as more concise. 
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'teiru': V --> V 
+ CH --> aspect=STATE>RETRO,  ITERA 
+ACT, + CONT, + PROG --> aspect = PROGR>RETRO,ITERA 
+ACT, - CONT --> aspect=RETRO>ITERA 

+ CH, + ACT..: semantic  information of verbs 
STATE: state  after V, 
PROGR: progressive, RETRO: retrospective, ITERA: iterative 

">" and "," represent  strength. A>B means A is  stronger  than B. 

Dependency  structure 
We have adopted dependency structures (DS) for the 
structural description of Japanese sentences, rather than 
phrase structures (PS), which are more commonly used. 

Dependency theory was proposed by Hays [29,30] in 
order to represent the structure of sentences. It corresponds 
to the operator-operand formalism of Hams [31].  A  DS  is  a 
tree with  only  words as nodes and their dependencies as 
links. In contrast, a PS is  a tree with nonterminal symbols 
for  phrases  which bind its constituents. Figure 10 gives  two 
possible  word orders for a Japanese sentence meaning 
'Mario eats an orange.' Figures 11 and 12 give PS and DS 
representations, respectively, of the sentence  shown in Figure 
10(a). In DS, rnario is directly  linked to taberu; in PS, mario 
and taberu are bound through many nonterminals 
(NPs and VPs). We  have,  however, introduced VPs for 
important practical reasons. (It should be noted that there is 
disagreement  over  whether Japanese in fact  has  a VP node 
[ 15,32, 331.) 

As shown in Figure  12, in  our implementation of  DS, 
content words (noun: rnario,  orenji; verb taberu; 
adjective. . .) are represented as node labels,  while function 
words  (particle: ha, wo; auxiliary  verb. . .) are represented as 
features which are prefixed  with  a + sign. 

We  have two major reasons  for adopting DS: 

1 An ordinary PS is  by nature the trace of rule application, 
so it is not adequate in some cases  for structural 
description. There should be computed structure-i.e., 
structural description-different from rule structure. DS 
gives a  useful computed structure because it is well suited 
for nonconfigurational (i.e., permitting relatively  free 
word order) languages  like Japanese. There are, in 
Japanese, many case elements before  a  verb, and they 
can be interchanged freely. For example, the two 
sentences in Figure 10 have the same meaning except for 
noun-phrase focus. There are two ways to describe 

988 

(a) rnarioga orenji wo taberu 
('Mario')  ('orange')  ('eat') 

(b) orenji wo rnario  ga  taberu 
('Mario  eats  an  orange') 

"i"' 
N T  f VP 

(mano) (ha)  (orenjf) (wo) (taberu) 
N0U.N  POSTP  NOUN  POSTP  VERB 

NOUN (rnario, +ha) NOUN (orenji, +wo) 

nonconfigurationality in context-free-grammar  terms: 
One is to set up rules  for  all  possible combinations of 
word order; the other is to use a  binary rule whose shape 
is AB --.f C and to apply it recursively. The former is not 247 
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(a) kyou no atusa ha kakubetu da 
(‘today’) (‘heat‘) (‘extreme’) 
nounpostp noun  postp adj  aux 

(b) ‘Heat of today is extreme’ 
(c) /t is exrremely hot today. 

pron  be  adv  adj  adv 

Example of translation. 

. .  

ADJ  (kakubetu, +be) 

I 
I 

NOUN (atusa,  +subj) 

NOUN (kyou, +of) 

(C) ADJ  (hot, +be) 

PRON r - t l  ADV  ADV 

(It, + subj)  (extremely) (today) 

. .  

Dependency structures for (a) and (c) of Figure 13. 

practical because the number of combinations is  large. 
The latter is  practical, but the structure generated  is 
unnatural because the extra VP nodes resulting from 
binary rules are ultimately unnecessary  linguistically and 
for some purposes actually cause  problems. Therefore, we 
convert PS to DS,  which treats every  case-element 
impartially (see  Figure  12) and for that reason  is suitable 
for the representation of nonconfigurational languages. 

In order to convert PS to DS, the context-free-grammar 
rules  have  been augmented with three features: PRMODS 
(premodifier  list),  HEAD, and PSMODS (postmodifier list). 
These three features, in effect, encode the dependency 
relations. The HEAD feature values correspond to governer 
and  the others to dependents; thus, conversion  is 
straightforward. 

2. DS  is  suitable for a  variety of applications such as 
machine translation, question answering, and information 
retrieval [ 1,34,35]. DS  is less hierarchical, so it is  easy to 
find  a  specified substructure and to modify it. DS also 
requires a  smaller amount of memory and time for such 
processes as pattern matching. 

In Figure 13, an example of machine translation from 
Japanese to English  is  provided.  State-of-the-art machine- 
translation systems  have  usually adopted the so-called 
transfer approach, which has three complicated phases: 
analysis, transfer, and generation [ 1, 36,371.  Because 
Japanese is quite different in various  aspects  from  English, in 
order to make the transfer phase tractable it is important to 
get a more language-neutral representation of the 
information in a Japanese sentence. We have therefore 
adopted DS as the input to transfer (i.e., the output of 
analysis). 

Figure  13  exemplifies the fact that if  we translate a 
Japanese sentence (a) preserving  lexical and syntactic 
properties as much as possible,  we  will not produce a normal 
English sentence (b). In order to get a correct, idiomatic 
translation (c), we must  change both lexical and syntactic 
structures substantially. In other words, we  have to change 
the part of  speech  of the three words kyou, ‘today’ 
(NOUN + ADV); atusa, ‘hot’ (NOUN + ADJ); and 
kakubetu, ‘extremely’  (ADJ + ADV). These  lexical  changes 
naturally induce various  sorts of syntactic changes  as  well. 

But,  since  DSs  have no nonterminals (Figure 14), these 
differences,  relative to PS, are minimized. 

5. Status 
The parsing portion of the syntactic-analysis component is 
written  entirely in Kanjified  PLNLP. The remainder of the 
syntactic-analysis component is  written in Kanjified 
Lisp/VM. We started writing the grammar rules in May 
1985, and are continuously enhancing the grammar. 
Currently, there are 291 grammar rules  with  restrictions. The 
lexicon,  which  comprises about 100000 words,  was initially 
transferred  from  a Kana-to-Kanji conversion dictionary [38], 
and necessary information, such as case frames and semantic 
features, has been  added. 

development in both the Japanese-to-English machine- 
translation project and the natural-language front-end 
project [ 341 in  our laboratory. 

The sentence  analyzer  is  now  being  used for prototype 

6. Concluding remarks 
We have  presented the design and the current status of a 
robust Japanese sentence  analyzer,  which  comprises  a  lexical 
analyzer and a syntactic analyzer. We  have concentrated on 
achieving both robustness and domain-independence. 

There are a number of applications where our sentence 
analyzer can play  a  key  role. The most  obvious  ones are 
machine translation and natural-language  interfaces. Less 
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frequently considered, but still  a  significant application, 
is  proofreading of Japanese text (cf. [39]), since  even 
spell-checking  is  impossible  for Japanese unless  exact  word 
boundaries are identified. 

Much work remains to be done. We are continuously 
enhancing the grammar rules on a trial-and-error basis  using 
a  large amount of training text. It will take some time, but 
we  believe this to be the only way to create  a practical 
grammar. 
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