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An important concern in the field of speech
recognition is the size of the vocabulary that a
recognition system is able to support. Large
vocabularies introduce difficulties involving the
amount of computation the system must perform
and the number of ambiguities it must resolve.
But, for practical applications in general and for
dictation tasks in particular, large vocabularies
are required, because of the difficuities and
inconveniences involved in restricting the
speaker to the use of a limited vocabulary. This
paper describes a new organization of the
recognition process, Multilevel Decoding (MLD),
that allows the system to support a Very-Large-
Size Dictionary (VL.SD)—one comprising over
100000 words. This significantly surpasses the
capacity of previous speech-recognition
systems. With MLD, the effect of dictionary size
on the accuracy of recognition can be studied. In
this paper, recognition experiments using
10000- and 200 000-word dictionaries are
compared. They indicate that recognition using
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a 200000-word dictionary is more accurate than
recognition using a 10000-word dictionary (when
unrecognized words are included in the error
rate).

Introduction
The work described in this paper is part of an IBM France
Scientific Center research project that was begun in 1982.
The research is focused on the feasibility of a Voice-
Activated Typewriter (VAT) for French. The task of a VAT
is to transcribe speech into correctly spelled text. A VAT
does not have to understand what the user dictates, at least
for those portions of the text that are not semantically
ambiguous. But at the same time, considering the variety of
situations and topics where dictation can be used, the user
must not be restricted to a limited subset of a natural
language, for either vocabulary or syntax.

Two different approaches in the design of a dictation
system are reasonable, based on its planned use:

1. The system is to be used in a given context—the dictation
of letters inside a given company, for example. In this
case, it is possible to tailor the vocabulary to the words
most frequently used in the kinds of activities that
predominate in the company.

2. The system is not dedicated to a specific kind of activity
and should serve a large variety of users, without special
adaptation of the vocabulary or syntax. That is, it is a
general-purpose system.
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The first approach makes the recognition problem easier,
once the task has been defined. But the system has to be
modified when the task changes, which may be difficult and
expensive (if, for example, new task-related texts must be
processed to construct a new vocabulary).

The second approach makes the recognition problem
harder, but the system does not have to be changed for each
task. One obvious price to pay for this facility is that the
vocabulary must be larger.

A number of speech-recognition groups are becoming
increasingly interested in large vocabularies (i.e.,
vocabularies of more than 10000 words*). Leading the field
has been the recognizer developed by the Speech
Recognition Group at the IBM Thomas J. Watson Research
Center in Yorktown Heights, New York [1, 2]. This system
recognizes sentences uttered in isolated-word mode (i.e., with
a brief pause after each word), using an English dictionary of
20000 words. It works in real time and is implemented on
an IBM Personal Computer AT® [3] equipped with several
specialized processors. Word-recognition accuracy is about
95% (assuming that all the words are in the dictionary). The
present work is very much inspired by the techniques
invented by the Yorktown group.

Other groups are also working on large vocabularies, but
most of the studies concern recognition of homophone sets
rather than words as a part of sentence recognition (in other
words, linguistic constraints on sequences of words are not
taken into account). Zue and his coworkers [4, 5] have
studied the use of broad phonetic classes and stress to reduce
the search to a subset of a 20000-word dictionary. Gauvain
[6] has compared the performance of word and syllable
templates in the recognition of a 10000-homophone-set
French dictionary using dynamic-programming techniques.
Recognition accuracy was 94% when using word templates
and 88% when using syllable templates. Gupta et al. [7] have
studied a special class of Markov models to recognize items
from a 60000-homophone-set English dictionary, spoken in
isolated mode. Recognition accuracy varied from 52% to
76%, depending on the choice of model.

Our project’s goals include the use of a Very-Large-Size
Dictionary (more than 100000 words), where we can include

* In the context of speech recognition, the word word is, unfortunately, used in at least
three significantly different ways; to eliminate this ambiguity, we will use different
terms for each meaning.

Everyday usage counts a stem (or, in the terminology often used by computational
linguists, a “baseform™ or “lemma”) and its inflected forms together as one word. By
this method, table and tables, for example, would count as a single word. In this
paper, we will use the term word set for this meaning.

Most people currently doing speech recognition recognize acoustic patterns. Since
the body of all acoustic patterns to be recognized can be viewed as comprising the
“dictionary” or “vocabulary,” the acoustic patterns themselves are sometimes called
“words.” In this meaning, voix and voie (which are homophones in French, like sea
and see in English) are considered the same word. When this is the intended meaning,
we will use the term homophone set.

The most common usage in speech recognition is the one based on correct
transcription: Something is recognized correctly if it is spelled correctly in the final
text output. Thus here, table and tables would be counted as different words (thereby
yielding a larger vocabulary); however, interchanging homophones such as voix and
voie in the final text would be scored as an error. We will use the term word for this
meaning—that is, a character string which is distinct in spelling from other character
strings in the vocabulary.
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as many words as we want. In fact, although it is known that
many speakers will never utter more than a few thousand
different word sets, it is impossible (or rather, we don’t know
how) to guess these words in advance; they are known only
with hindsight. Since we do not want to build a system that
recognizes what a given user has said up to now, but rather a
system able to recognize what he will say in the future, we
define the vocabulary as comprising not just those words
that a given user has uttered (active vocabulary) but also
those words that any of a group of listeners is able to
understand. A dictionary which encompasses this ability
contains several tens of thousands of word sets (passive
vocabulary), which, taking into account all inflectional and
derivational forms, represent hundreds of thousands of
words.

In order to study the interest of a Very Large (as opposed
1o a Large) Dictionary, we have performed some
computations on the coverage of dictionaries. The coverage
of a dictionary is the percentage of words in the text that are
found in the dictionary. For speech recognition, that is the
upper bound for the recognition rate of the system, since no
present system is able to recognize a word that is not found
in its dictionary. (It is notable that human beings are able to
do so; that is, they can, for example, identify and spell
correctly—or, at least, reasonably—a proper noun that they
have never heard before.)

There are, in fact, two kinds of coverage, which are
computed differently:

o To compute the static coverage, each occurrence of a word
that is not in the dictionary is counted. This is “batch”
recognition, where the dictionary remains the same
throughout the course of recognition.

& To compute the dynamic coverage, only the first
occurrence of a word that is not in the dictionary is
counted. This is “interactive” recognition, where each new
word is added by the user to the dictionary the first time it
is encountered; after that, it is, of course, no longer
considered new. (In a VAT, the user should have the
option of repeating a word that has been misrecognized. If
the word is still misrecognized, it can be spelled out orally
or input via keyboard. It would be a simple matter to
check whether a spelled-out or typed word is listed in the
dictionary, and, if it is not, to prompt the user for its
possible inclusion.)

Obviously, dynamic coverage is always at least as great as
static coverage, and will be greater with the addition of each
new word.

We compared the coverage of two dictionaries, one
composed of the 20000 most frequent words of a one-
million-word training corpus, the other composed of a full-
sized dictionary of French containing 200000 words. The
coverages were computed on a collection of 50000 words of
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text, different in nature from the texts used in training. The

results are indicated in Table 1. In this computation, proper
names in the text are counted as words. The words that are

not in the 200000-word dictionary are either proper names

or specialized technical terms.

Of course, these results depend partially on the data used,
and in particular on the relation between the training corpus
used to choose the most frequent words and the test text
used to compute the coverage.

Speech recognition in French
Some features of the French language raise particular
problems for speech recognition.

French is a highly inflected language; i.e., a typical lemma
is used to produce forms with different spellings according to
context and the agreement rules that apply to it. A noun
generally produces two inflections, singular and plural; an
adjective four, differing in gender and number; and a verb
around forty, based on person, tense, and mood. The
average number of inflected forms per lemma is seven in
French, as compared to two in English. This makes the total
list of possible words rather large; for example, our full-sized
dictionary of 200000 words corresponds to a list of about
45000 lemmas (inflections with very low frequency of use do
not appear in our dictionary).

Many of these derivations lead to forms that are
homophones. The singular and plural forms of a noun (table
and tables, for example) are usually homophones, because
the plural marker (in this case, the final s) is generally not
pronounced. With the verbs of the first conjugation (the
largest group of regular French verbs), the infinitive, the
second person plural of the present indicative, and all four
forms of the past participle are homophones: e.g., passer (‘to
pass’), passez (‘you pass’), passé, passés, passée, passées
(‘passed’). Many other derivations are comparable. This
makes recognition more difficult because in most cases there
are no acoustic cues to distinguish among the different
spellings, so they must all be processed at the linguistic level
and disambiguated by linguistic constraints alone.

Liaison is a phonetic phenomenon that inserts a
consonant sound between two consecutive spoken words.
For example, les arts is pronounced “lézar” (or, using the
International Phonetic Alphabet, [lezar]), although the two
words are pronounced “1&” ([le]) and “ar” ([aR]),
respectively, in isolation. There are a limited number of
consonants involved in this phenomenon, and they occur in
precise cases. The recognition system has to take into
account the fact that the pronunciation of some words will
depend on this situation.

Another such case involves what is called in French
apostrophe. A number of function words such as la, le, de, se
elide their final vowel when the following word begins with a
phonetic vowel. The vowel is replaced by an apostrophe in
spelling and the two words are concatenated. For example,

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Table 1 Comparison of text coverage by two dictionaries.

Dictionary size Text coverage

(words) (%)
Static Dynamic
20000 94.9 98.2
200000 97.5 99.5

the sequence of words /e ([15]) and art ([ar]) becomes ['art
and is pronounced “lar” ({lar]). For speech recognition, an
additional problem here is that the pronunciation of these
short words is significantly affected by coarticulation with
the first vowel of the second word. It is therefore difficult to
recognize them without taking the vowel into account.

o Syllable approach

A long-standing problem in speech recognition is the choice
of the basic unit to be used at the acoustic level. Reasonable
units include phonemes (linguistically distinctive elementary
sounds), allophones (phonetic variants of phonemes),
subwords, and words. Phonemes are attractive, because a
small set (less than 50 for most languages) is sufficient; but
they are difficult to recognize accurately from the acoustic
signal, because one phoneme may have very different
acoustic characteristics (i.e., different allophones), depending
on the context of the pronunciation. Larger units like
subwords or words are interesting because they provide
constraints on possible sequences of phonemes and can take
into account some coarticulation phenomena. The difficulty
is that there are many more of them. (Allophones are also
numerous and, when used as units, do not facilitate the use
of linguistic constraints and coarticulation data.)

Our approach is to consider the syllable as the basic unit
for acoustic recognition. There are several reasons for this
choice. Syllables are longer than phonemes, so it is easier to
recognize them from the acoustic signal. No more than 5200
different phonetic syllables are required for a complete
description of our 200000-word dictionary.

Another advantage of the syllable is that the problems of
liaison and apostrophe in sentences can be handled easily,
whereas word templates would mean having references for
all possible liaison and apostrophe forms. If we take, for
example, the word artiste ([aRrtist]), using word templates
would require the addition of the following pronunciations:

“lartist” ([lartist]) found in lartiste.
“dartist” ([dartist]) found in d’artiste.
“nartist” ([nartist]) found in un artiste.
“zartist” ([zartist]) found in les artistes.
e and a few more ... .

Since approximately one fourth of all French words begin
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with a phonetic vowel, this would greatly multiply the
number of word templates, With the syllabic approach,
liaison and apostrophe require the introduction of only 1200
new syllables. Thus, 6400 phonetic syllables cover normal
speech for a 200000-word dictionary, including liaison and
apostrophe.

o Mode of pronunciation

A common constraint in the current state of the art in
speech recognition is asking the speaker to make a pause
after every word. This is called isolated-word mode (IW). It
facilitates recognition because coarticulation between words
is reduced and pauses are strong cues in the acoustic
decoding.

In our case, although our ultimate goal is continuous
speech, at the moment we ask the speaker to pause between
syllables, because of our choice of the syllable as the basic
acoustic unit. For example, the sequence

les enfants . ..
will be pronounced as
“lézanfan...” (lezdfa...]).

That is, the speech is produced in isolated-syllable (IS)
mode. (It should be noted that making pauses between
syllables appears not to be very difficult in French, perhaps
because of the stability of word stress.) On the one hand, IS
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mode shares some of the difficulty of continuous-speech
recognition, since (as opposed to IW mode) each syllable
potentially signals a word boundary. On the other hand, this
is counterbalanced by the fact that IS mode has fewer
contextual phonetic effects to deal with and more frequent
silences to serve as anchor points for the decoder.

For example, the sequence of phonetic syllables “l1é zar”
([le zar]) can correspond to the sequence of words les arts
(‘the arts’) or the single word lézard (‘lizard’).

The restriction to IS mode is only a temporary constraint
that facilitates development of and experimentation on
recognition algorithms. It also lowers the amount of
computation needed for the recognition. It is, of course, our
intention to remove this constraint in the future.

Information-theory approach to speech
recognition

Early work in speech recognition using information-theoretic
techniques includes [8] and [9]. In accordance with the
information-theory approach taken by Jelinek and his
colleagues [10-12], the problem of recognizing the sentence
W that corresponds to a given utterance A4 (also called the
acoustic observation) can be recast as the problem of
maximizing the product:

p(A|W) - p(W).

To implement a speech-recognition system, one must
therefore define

o The acoustic observation, i.e., what parameters are
extracted from the acoustic signal captured by the
microphone.

o The acoustic model, which defines p(4 | W) and models
how sentences are pronounced in terms of this
observation.

e The language model, which defines p(W) and thus
establishes which sequences are allowed by the system
(sentences with zero probability will be prohibited).

¢ A decoding strategy to find the sentence that comes closest
to realizing this maximum, since an exhaustive search is
generally not feasible because of the very large number of
possibilities.

o Multilevel decoding
We have formulated a method we call multilevel decoding
(MLD), which is an organization of the recognition process
that makes access to a Very-Large-Size Dictionary (VLSD)
possible. Its major distinctive feature is the use of a syllable
level. Although syllables have been considered as acoustic
units in other speech-recognition efforts [13, 14], this is the
first time that they have been integrated into a complete
system and used with a VLSD.

As shown in Figure 1, MLD organizes recognition into
four stages:
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1. The speech signal is processed to provide the acoustic
observation.

2. A syllable recognizer uses the acoustic model to build a
list of the syllables having the highest probability of
matching a part of the observation.

3. A word recognizer uses these syllables to build a list of
word candidates.

4. A sentence recognizer uses the word candidates and the
language model to build possible sentences.

The flow of data through these stages is mostly one-way,
each level processing data from the previous level and
transmitting the results to the next. The only feedback is in
the decoding strategy which, depending on the status of the
word and sentence recognizers, decides to which part of the
utterance the syllable recognizer should be applied next.

The components of this process are described in greater
detail in the following subsections.

o The acoustic processor

Our acoustic processor is based on a standard centisecond
vector quantizer. The microphone is connected to an analog-
to-digital converter that samples the speech signal at 10 kHz
with 12-bit quantization. We consider consecutive windows
of 128 samples each (12.8 ms). For each window we use a
Hamming window and a fast Fourier transform to compute
the log power spectrum of the signal. This spectrum is
projected on 20 frequency bands arranged according to a
mel scale (linear up to 1000 Hz, logarithmic above). The
result is an acoustic vector with 20 coordinates.

In the training phase, 30000 vectors are clustered into 200
classes by a “k-means” algorithm [15]. Then, both in
training and decoding, the acoustic vectors are replaced by
the number of the class to which they belong. Each window
of 12.8 ms of signal is then replaced by a number in the
range 1 to 200, which serves as its label. The acoustic
observation comprises the sequence of these labels.

Our future plans include the implementation of the
Yorktown acoustic processor 1, 16], which uses a 20-kHz
sampling rate and an ear model to compute the acoustic
parameters.

o The phonetic model
The acoustic model is based on a set of phonetic Markov
machines which have been used in previous work [17}. A
system with 40 “phonemes” has been defined. They
comprise the classical phonemes of French, plus some
specific acoustic events, such as silence, bursts, and end of
syllable. A Markov machine is associated with each
“phoneme.” These machines all have the same structure, as
shown in Figure 2.

The machine in Figure 2 is an example of one of the
models introduced by the Yorktown group. It has seven
states, three null transitions (i.e., those that produce no
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Phonetic Markov machine.

labels), and ten non-null transitions. Each non-null
transition T may produce any label / according to a
probability distribution g (/). Each transition starting from a
state s has the probability g (r) of being taken when the
machine is in the state 5. States 1-5-6-7 are used for
occurrences of lengths 0, 1, 2, or 3 of the phoneme; states
1-2-3-4-7 are used for longer occurrences. To reduce the
number of parameters, the emission probabilities are tied;
that is, we impose the constraints

g, D=4q, 0)=gq, ()=q,D)
4, D=4 _0O=q, 0O =4q, 0 =g, forevery label I
h=q,0=4q0

Te-7
Every phonetic machine has the same structure (except for
the silence machine, which consists of a single loop); only
the probabilities of transitions and production of labels differ
from one machine to another. These probabilities are
estimated during the training phase using an algorithm
known as the “Forward-Backward” algorithm [18].
Training, in our case, is performed on 400 short sentences
pronounced by a single speaker in IS mode.

Each phonetic syllable has a representation as a sequence
of phonemes and is associated with a syllable machine
obtained by concatenating the corresponding phonetic
machines.

g, . D=q

Ta7

o The syllable recognizer
Given an acoustic observation AIT, we have to compute the
list of the most probable syllables (candidates) matching the
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acoustic observation from a given time frame 2. Also, for
each candidate, we would like a score indicating how
probable the syllable is, and an ending time frame indicating
the end of the utterance of the syllable. For simplicity, we
assume that ¢ = 1.

So, given AIT, we want to compute for each syllable S the
following probabilities:

o p(S matches the beginning of AIT), which is used to choose
the best syllables.

o p(the end of the utterance of S'is ¢’), which is used to
choose among possible endings.

Let Q(S) denote the event “the utterance begins with S.”
We then have
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p(S matches the beginning of 4,) = p[X(S) | A]]

_ A 1AS)] - pIAS)]
p(4)) '

Because we want to rely only on acoustics to choose the best
syllables, we assume here that all syllables are equiprobable,
so that all p[Q(S)] are equal. The factor p(AlT) does not
depend on S, so that the choice between syllables depends
only on p[AlTl QS)).

To compute this probability, we build a Markov model for
an utterance that begins with S. As we are in IS mode, we
can say that such an utterance is composed, in sequence, of

o A pause (silence).

o The utterance of the syllable S.
o A pause (silence).

o The rest of the utterance.

A Markov model of the production of this utterance is the
concatenation of the silence machine, followed by the
syllable machine, followed by the silence machine, followed
by a model M of the production of the rest of the utterance
(Figure 3).

We consider here as model M, the Looped Phonetic Model
(LPM) with diphone constraint (see Figure 4). The LPM
with diphone constraint is constructed by placing copies of
all phonetic machines in parallel and connecting their final
states to the initial states by null transitions. The null
transition from the final state of phoneme ¢, to the initial
state of phoneme ¢, is assigned the probability p(4;| ¢,) that
phoneme ¢, follows phoneme ¢, (this probability is
computed on the list of possible syllables). We set to zero the
probability of omission of every phonetic machine, so that
there are no null cycles in the LPM (this avoids some
problems in the succeeding computations). We also add an
initial state I, connected to the initial state of each phoneme
¢, by a null transition with probability p(¢,| silence), because
we assume that this model produces an utterance after a
pause. The final state of the model is the final state of the
copy of the silence machine.

The LPM represents the production of utterances by all
possible sequences of phonemes, the contribution of each
sequence being weighted by its probability according to a
first-order prediction on phonemes.

Now we have

p[Aﬁn(S)] = p(AlT|silence . S . silence - LPM).

The probability of emission of a given observation by a
Markov model is the sum of the probabilities of all paths in
this model that produce this observation (a path is a
sequence of consecutive transitions). So, if E(AlT) is the set of
all paths in the model “silence - S - silence - LPM” that
produce A,T, then
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p(A] |silence - S - silence - LPM) = ¥ p(x).
xEE(AT)

Each such path corresponds to a certain ending of the
utterance of S, the instant where the path goes through the
final state F; of the syllable machine. This allows us to
compute the probability that S matches the beginning of Af'
and finishes at time ¢’. If E(AIT, t') is the set of all paths that
produce A,T and pass through the final state F; at time ¢’,
then

2 p)
x€EA4T)

Y p)’

xeE4])

p(the utterance of S finishes at ¢’ | .S) =

The previous computations allow us to compare

e Different syllables to see which ones best match the
observation and are to be kept as candidates.

o For a given syllable, different possible end times of the
utterance and, thereby, the selection of the most probable
one.

We now examine how to perform these computations
practically. Instead of considering each syllable in isolation,
we take advantage of the phonetic description of the syllables
to merge all the syllable machines into a single model,
structured as a tree, the Syllabic Tree (ST). The ST is
obtained by placing all syllable machines in parallel between
an initial state I and a final state F, and merging from left to
right all copies of identical phonetic machines that start from
the same node.

By concatenating a silence machine, the ST, another
silence machine, and the LPM, we obtain the Syllabic Tree
Matching Model (see Figure 5).

Next we match this model to the observation; i.e., we
compute the probability of being in a given state of the
model and having produced a part of the observation. The
method used to do this is called the forward pass of the
Forward-Backward algorithm. First, we define a partial
order of the states by

s < s iff there exists a null path from s to s’

(this is effectively a partial order since there are no null
cycles in our models). Then, we define afs, ) as the
probability of being in state s and having produced
observation 4;. The as can be computed by the following
recursions;

a(initial state, 0) = 1,
a(s, 0) = 0 if s is not the initial state,
afs, 1) = T als; t — 1) g(s a, 5)

+ X afs) 1) qls) D, s),
s'<s

where g(s’, a, s) is the probability of going from state s’ to
state s and producing the label a; a, is the rth label of the
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Syllabic tree

Syllabic Tree Matching Model.

observation; and g(s; &, s) is the probability of going from
state s’ to state s without producing a label.

The fact that there are no null cycles in the model
guarantees that we can order the states to allow the
computation of a(s, ¢) from the as at time ¢t — 1 and from
previously computed values of the as at time .

We also perform a backward pass that computes the
probability of being in a given state and having produced the
end of the utterance. The 8s are defined as

B(final state, T) = 1,
B(s, T) = 0 if s is not the final state,
Bls, D=2 B(si 1+ 1) - g(s, Ay §)
+ 2 B30 - q(s, D, 5).
Now the probability that a syllable S matches the beginning
of the utterance, as defined previously, is just the sum
PlA] 1S = T oAFy 1) - B(Fy, 1),

I3
where F is the final state of the syllable in the Syllabic Tree.
The probability that the end of the utterance of S is at time
t'is
a(Fss t’)'ﬁ(Fsa t,)
2 a(Fsa t)'ﬂ(Fs, t).

t

pthe utterance of S finishes at ¢'|S) =

In practice, we do not perform the computation of as for
the entire utterance, because this would be very time-
consuming and we are only interested in the match of the
first syllable uttered. To reduce the computation, syllables
corresponding to as with very low values (compared to as on
other states at the same time t) are abandoned. We can thus
prune the ST and continue the computation for the best
candidates only. As we match the model to the observation
(as t goes from 1 to T), the highest (s, ¢)s start in the first
silence machine, then spread into the Syllabic Tree, and
finally accumulate in the second silence machine and in the
LPM. When ¢ is high enough, all significant a(s, #)s will be
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out of the Syllabic Tree. Then, instead of continuing the
computation up to the end of the observation, we stop at
that time, which we call 7. We perform the backward pass
from this time, using the initialization

B(s, tp) = als, 1)

and the recursion already mentioned. (The choice of this
initialization is heuristic and favors “good” paths which give
high « values.)

Note that the only dependency of this syllable recognizer
on the IS mode is in the presence of the silence machines in
the Syllabic Tree Matching model. If these machines were
removed, the same algorithm could be applied to match
syllables in continuous speech. We plan to do so in the
future.

& The word recognizer
The word recognizer keeps lists of partial word hypotheses
and updates them with the lists of syllable candidates
provided by the syllable recognizer.

This update is dependent on the dictionary, which has
over 200000 entries. Each entry is composed of

& The spelling of a word.

¢ One or more pronunciations, transcribed as sequences of
phonetic syllables.

& The possible parts of speech of this word and their
corresponding frequencies.
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For speech recognition, this dictionary has to be indexed
on the basis of phonetic information, because we want to
recover all words corresponding to a given sequence of
phonetic syllables. We structure the phonetic part of the
dictionary as a tree that describes words in terms of
sequences of phonetic syllables (in a way similar to the
Syllabic Tree that describes syllables in terms of phonetic
machines). This tree is called the W/S tree. The arcs are the
phonetic syllables. The nodes correspond to partial-word
hypotheses. The arcs leaving a given node indicate which
syllables can extend the partial word. The leaves in the W/S
tree are the words themselves, and this is where we attach
the information on spelling, parts of speech, and frequency.

To take liaison and apostrophe into account, the W/S tree
is augmented by adding auxiliary entry points, called “heads,”
as shown in Figure 6. Each head corresponds to a consonant
or consonant cluster (such as “l,” “m,” or “z”) that may
occur because of liaison or apostrophe. Each syllable .S that
starts at the root of the tree and begins with a vowel creates
new syllables starting from each head. The new syllables are
formed by the concatenation of the consonant of the head
and the original syllable, and they all go to the final node of
the original syllable. For example, the phonetic syllable “¢”
([e]) will lead to the creation of syllables “1é,” “mé,” “z¢&” ...
({le, me, ze ...]) from different heads of the tree.

For liaison, each word (leaf of the tree) has a
corresponding list of the possible heads which may start the
next word. For example, the word /es can be followed by
words starting at the root of the tree or at the head
corresponding to the liaison form with “z.” It can also be
followed by words starting at the root of the tree. For
apostrophe, information at the root of the tree indicates
which words may lead directly to a head of the tree. For
example, the article or pronoun /e will allow a jump from
the root of the tree to the head corresponding to “1.”

For the 200000-word dictionary, there are about 120000
nodes (partial words), about 340000 arcs (syllables starting
from a node), and 10 different heads.

As stated earlier, the partial-word hypotheses are the nodes
of the W/S tree. Each hypothesis has a beginning and an
ending time frame corresponding to the part of the acoustic
observation that the partial word matches. Considering
partial-word hypotheses that end at a given time frame, the
word recognizer calls the syllable recognizer to get a list of
syllable candidates, with their score and ending time frame.
Then the hypotheses are extended, by looking to see which
syllables are valid arcs leaving the corresponding nodes in
the W/S tree. This leads to new partial-word hypotheses, and
sometimes to full-word hypotheses that are passed to the
sentence recognizer. Full-word hypotheses are passed to the
sentence recognizer together with their beginning, their
ending time frame, and their acoustic probability (i.e., the
probability of producing the corresponding part of the
acoustic observation).
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o The language model

The language model has been described elsewhere [19] and
has been used for phonetic-to-text transcription. Let us just
recall here its major features. It is based on a Markov model
at the part-of-speech level. More precisely, we consider that
sentences are messages from a source that emits words one
after the other. So we can say that

W) =Tl (W, | W),

We make two approximations to estimate these
probabilities:

o Reduction of the size of the context,
pW W) = p(W, | W_,W,_).
e Introduction of the part-of-speech level,

pWW_W_)=pW,Ip) - p(p\D,_,P_)

where p, is one of the parts of speech of the word . The
term p(W,| p,) is a lexical probability that is attached to each
word and stored in the dictionary; p(p,|p,_,p,_)) is a
contextual probability that is intended to model permissible
part-of-speech sequences in sentences.

These probabilities are estimated as relative frequencies,
using a training corpus. The contextual probability is
computed as an interpolation of first-order and second-order
frequencies.

o The sentence recognizer

The sentence recognizer keeps lists of partial-sentence
hypotheses and updates them when word candidates are
provided by the word recognizer.

Partial-sentence hypotheses are sequences of words W}
that match the acoustic observation from the beginning up
to an ending time frame ¢. Each hypothesis is associated with
a score, defined as the product,

pA WY - p(W)),

of the corresponding acoustic and linguistic probabilities.

When word hypotheses are found by the word recognizer,
the sentence recognizer extends the partial-sentence
hypotheses whose acoustic end is at the beginning of the
word. This leads to a longer partial-sentence hypothesis, for
which a new score is computed.

Eventually these longer hypotheses will match the entire
utterance, in which case the score corresponds exactly to the
product,

pA| W) - p(W),

that we wish to maximize, and the hypothesis is a candidate
for the transcription of the utterance. The entire process of
selecting syllable candidates and then word hypotheses
generates a number of sentence hypotheses. The one
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corresponding to the highest product is kept as the sentence
recognized by the system for this utterance.

o The decoding strategy

Decoding processes the utterance from left to right. It starts
from an empty hypothesis and goes into the extension
process until it reaches the end of the utterance.

The decoding strategy has to decide, according to the
status of the word and the sentence recognizers (i.e.,
according to the existing hypotheses and their scores), to
which part of the utterance the syllable decoder should be
applied next.

Several different strategies are possible. The Yorktown
group uses the stack decoding algorithm, which always
extends the best nonextended hypothesis so far. In our case,
we use a time-synchronous strategy which extends the
shortest nonextended hypothesis. This strategy may lead to
some extra work when compared with stack decoding, but it
makes the management of partial hypotheses simpler,
because when we extend the hypothesis ending at time ¢, we
are sure that all shortest hypotheses have been processed, so
that the list of hypotheses ending at time ¢ is complete.

Recognition experiment
The MLD algorithm has been implemented on an IBM 4381
and runs in batch mode. It has been tested on a text
composed of 79 short sentences, uttered in IS mode by the
same speaker as in training. These sentences come from a set
of letters that do not belong to the corpus used to select
frequent words. The test text has 722 words and 1143
syllables.

We tested recognition using three different dictionaries:

» The first one (D) comprised the 10000 most frequent
words, extracted from a large corpus. This yielded a Large
dictionary which covers 94% of the test text (due to the
small size of the text, static and dynamic coverage are
equal).

& For the second (D, ,5), we added the 43 uncovered words
of the text to D,,. This yielded a Large (artificially
constructed) dictionary which, of course, covers 100% of
the test text.

¢ The third one (D,,,) is the full-sized dictionary, comprising
200000 words—a Very Large dictionary which also covers
100% of the test text.

Table 2 gives error rates (defined as the percentage of
words not correctly recognized) for recognition experiments
using the three dictionaries. These results show that
recognition using D, is 4.6% better than recognition using
D,,. This improvement comes from two phenomena acting
in opposition. On the one hand, D, has a 6% better
coverage than D, . On the other hand, the greater size of

D,,, leads to more errors than D . 235
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Table 2 Recognition with three dictionaries.

Dictionary Size Text coverage  Error rates
(words) (%) (%)
D, 10000 94 17.3
Dioias 10043 100 10.6
D,y 200000 100 127

If we now compare recognition using D,,, and D g, ,,
(both giving complete coverage), we see that the error rate of
the former, despite its greater size, is only 2.1% more.

In other words, if we use a Very Large rather than a Large
dictionary, we lose 2.1% because of a higher error rate, but
more than make up for it by gaining 6% in coverage.

Obviously, the ideal dictionary would be D, , ,,—small
size but 100% coverage. Unfortunately, of course, it is
impossible to construct such a dictionary independent of a
particuiar text.

It should be noted that absolute values of the recognition
rate must be considered with care when one system is
compared to another, because they depend crucially on the
conditions of the experiments. For example, the above
results cannot be directly compared with those of Gauvain
[6] since Gauvain’s are in terms of homophone sets. Also, in
his experiments, each word in the 10000-word dictionary
has been uttered and is tested once, whereas our experiments
deal with words in sentences, where frequent words
(generally the shortest and the most ambiguous) occur
several times. The same considerations apply to the work of
Gupta et al., reported in [7].

The work at IBM Yorktown is similar enough to ours to
allow meaningful comparison. Several factors may
contribute to the difference between our 12.7% error rate
and their 5% error rate:

o As described earlier, French is more phonetically
ambiguous than English. In fact, half of the errors in our
experiment are “linguistic” errors, where a homophone has
been found but the wrong spelling has been chosen.

o Their 5% error rate is computed differently and does not

include the effect of the coverage of their 20000-word

English dictionary. This coverage is estimated to be 97.6%

of text, which would give a total error rate of about 8%.

Our part-of-speech-based language model is not as precise

as the trigram language model of the Yorktown system

(although our approach allows a VLSD to be handled

easily, which is not the case with the trigram approach).

o Finally, our acoustic model may be more rudimentary
because it uses a smaller number of machines and a
smaller amount of training data.

Conclusion
In this paper, we have described a new organization for a
speech recognizer based on a decomposition into syllable,
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word, and sentence levels. This new organization, called
multilevel decoding, allows a Very-Large-Size Dictionary (in
our case 200000 words) to be supported for speech
recognition—a significant step toward the realization of
practical voice-activated typewriters.

MLD has been implemented and tested. When comparing
recognition with 200000-word and 10000-word dictionaries,
we found that the 6% gain in coverage more than makes up
for the 2.1% loss in recognition accuracy. This result
supports the validity of VLSD for dictation systems.

As noted in the Introduction, the work reported in this
paper is part of an effort toward achieving a VAT. Present
research is focused on improving the quality of acoustic and
language models (see Derouault’s work [20], for example).
We also plan to process continuous speech instead of
constrained speech; and to use special processors to perform
this expensive decoding in real time.
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