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An important  concern in the field of speech 
recognition is the  size of the  vocabulary  that a 
recognition  system is able to support.  Large 
vocabularies  introduce  difficulties  involving  the 
amount  of  computation  the  system  must  perform 
and  the  number  of  ambiguities it must  resolve. 
But, for practical applications in general  and  for 
dictation  tasks in particular, large vocabularies 
are  required,  because of the  difficulties  and 
inconveniences  involved in restricting the 
speaker to the  use  of  a limited vocabulary.  This 
paper  describes  a new  organization  of  the 
recognition  process,  Multilevel  Decoding (MLD), 
that  allows  the  system to support  a  Very-Large- 
Size  Dictionary (VLSD)-one comprising  over 
100000  words.  This significantly  surpasses  the 
capacity  of  previous  speech-recognition 
systems.  With MLD, the  effect of dictionary  size 
on  the  accuracy  of  recognition  can be studied. In 
this paper, recognition  experiments  using 
10 000- and  200  000-word dictionaries  are 
compared.  They  indicate  that  recognition  using 
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a  200000-word  dictionary is more  accurate  than 
recognition  using  a  10000-word  dictionary  (when 
unrecognized  words  are  included in the  error 
rate). 

Introduction 
The work  described in this paper is part of an IBM France 
Scientific Center research  project that was begun in 1982. 
The research  is  focused on the feasibility of a  Voice- 
Activated  Typewriter  (VAT)  for  French. The task of a VAT 
is to transcribe speech into correctly  spelled text. A VAT 
does not have to understand what the user dictates, at least 
for those portions of the text that are not semantically 
ambiguous.  But at the same time, considering the variety of 
situations and topics  where dictation can be used, the user 
must not be restricted to a limited subset  of  a natural 
language,  for either vocabulary or syntax. 

system are reasonable,  based on its planned use: 
Two  different approaches in the design of a dictation 

1. The system  is to be  used in a  given  context-the dictation 
of letters inside  a  given  company, for example. In this 
case, it is  possible to tailor the vocabulary to the words 
most frequently used in the kinds of activities that 
predominate in the company. 

2. The system  is not dedicated to a  specific kind of activity 
and should serve  a  large  variety of  users, without special 
adaptation of the vocabulary or syntax. That is, it is  a 
general-purpose  system. 
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The first approach makes the recognition  problem  easier, 
once the task has been  defined.  But the system has to be 
modified  when the task  changes,  which  may  be  difficult and 
expensive  (if, for example, new task-related texts must be 
processed to construct a new vocabulary). 

The second approach makes the recognition  problem 
harder, but the system  does not have to be  changed for each 
task. One obvious price to pay  for this facility  is that the 
vocabulary must be  larger. 

A number of speech-recognition groups are becoming 
increasingly interested in large  vocabularies  (i.e., 
vocabularies of more than 10000 words*).  Leading the field 
has been the recognizer  developed by the Speech 
Recognition Group at the IBM Thomas J. Watson  Research 
Center in Yorktown Heights, New York [ I ,  21. This system 
recognizes sentences uttered in isolated-word mode (i.e.,  with 
a  brief  pause after each  word),  using an English dictionary of 
20000 words. It works in real time and is implemented on 
an IBM Personal Computer AT@ [3] equipped with  several 
specialized  processors.  Word-recognition  accuracy  is about 
95% (assuming that all the words are in the dictionary). The 
present  work  is  very much inspired by the techniques 
invented by the Yorktown group. 

Other groups are also working on large  vocabularies, but 
most of the studies concern recognition of homophone sets 
rather than words as a part of sentence  recognition (in other 
words,  linguistic constraints on sequences of words are not 
taken into account). Zue and his  coworkers [4,5] have 
studied the use of broad phonetic classes and stress to reduce 
the search to a  subset of a 20 OOO-word dictionary. Gauvain 
[6] has compared the performance of word and syllable 
templates in the recognition of a 10000-homophone-set 
French dictionary using dynamic-programming techniques. 
Recognition  accuracy was 94% when  using  word templates 
and 88% when  using  syllable  templates. Gupta et al.  [7]  have 
studied a  special  class of Markov models to recognize items 
from a 60000-homophone-set English dictionary, spoken in 
isolated  mode.  Recognition  accuracy  varied from 52% to 
76%, depending on the choice of model. 

Our project’s  goals include the use  of a  Very-Large-Size 
Dictionary (more than 100000 words),  where we can include 

*In the context of speech  recognition,  the  word word is,  unfortunately, used in  at  least 

terms for  each  meaning. 
three significantly  different ways; to  eliminate  this  ambiguity, we will use different 

Everyday  usage wunts a stem (or, in the  terminology  often used by  computational 
linguists, a “baseform”  or  “lemma”)  and  its  inflected  forms  together as one word.  By 
this  method, tabk and tables, for example,  would  count as a  single  word.  In  this 
paper,  we will use the term word set for this meaning. 
Most people  currently  doing  speech  recognition recognize acoustic  patterns.  Since 

the  body of all acoustic patterns to be recognized can be viewed as comprising  the 
“dictionary”  or  “vocabulary,”  the  acoustic  patterns  themselves are sometimes  called 
‘‘words.”  In this meaning, voix and voie (which are homophones  in  French,  like sea 
and see in  English) are considered  the  Same  word.  When this is the  intended  meaning, 
we will use the  term homophone set. 

transcription:  Something  is recognized correctly  if  it is spelled c o d y  in the  final 
text  output. Thus here, table and rubles would be counted as different  words  (thereby 
yielding  a  larger  vocabulary);  however,  interchanging  homophones  such as voix and 
voie in the  final  text  would he scored as an  error. We will use the  term word for this 
meaning-that is, a character  string  which is distinct in spelling from  other  character 
strings in the  vocabulary. 

The  most  common usage in  speech  recognition is the one based on correct 
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as many words as we want. In fact, although it is known that 
many  speakers will never utter more than a few thousand 
different  word  sets, it is  impossible (or rather, we don’t  know 
how) to guess  these  words in advance;  they are known  only 
with  hindsight.  Since we do not want to build  a  system that 
recognizes  what  a  given  user has said up to now, but rather a 
system able to recognize  what  he  will say in the future, we 
define the vocabulary as comprising not just those words 
that a  given  user has uttered (active  vocabulary) but also 
those  words that any of a group of listeners  is  able to 
understand. A dictionary which  encompasses this ability 
contains several tens of thousands of  word  sets  (passive 
vocabulary),  which, taking into account all  inflectional and 
derivational forms,  represent hundreds of thousands of 
words. 

In order to study the interest of a Very  Large (as opposed 
to a  Large) Dictionary, we  have performed some 
computations on the coverage  of  dictionaries. The coverage 
of a dictionary is the percentage of words in the text that are 
found in the dictionary. For speech  recognition, that is the 
upper bound for the recognition rate of the system,  since no 
present  system  is  able to recognize  a  word that is not found 
in its dictionary. (It is notable that human beings are able to 
do so; that is,  they can, for example,  identify and spell 
correctly-or, at least, reasonably-a proper noun that they 
have  never  heard  before.) 

computed differently: 
There are, in fact, two kinds of  coverage,  which are 

To compute the static coverage,  each  occurrence  of  a  word 
that is not in the dictionary is counted. This is “batch” 
recognition,  where the dictionary remains the same 
throughout the course of recognition. 

occurrence  of  a  word that is not in the dictionary is 
counted. This is “interactive” recognition,  where  each  new 
word  is added by the user to the dictionary the first time it 
is encountered; after that, it is, of course, no longer 
considered  new. (In a VAT, the user should have the 
option of repeating  a  word that has  been  misrecognized. If 
the word  is  still  misrecognized, it can be  spelled out orally 
or input via keyboard. It would  be a  simple matter to 
check  whether  a  spelled-out or typed  word  is  listed in the 
dictionary, and, if it is not, to prompt the user  for its 
possible  inclusion.) 

To compute the dynamic coverage,  only the first 

Obviously, dynamic coverage  is  always at least  as  great as 
static coverage, and will be greater  with the addition of each 
new word. 

We compared the coverage  of  two dictionaries, one 
composed of the 20000 most frequent words of a  one- 
million-word training corpus, the other composed of a  full- 
sized dictionary of French containing 200000 words. The 
coverages  were computed on a  collection of 50000 words of 
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text, different in nature from the texts used in training. The 
results are indicated in Table 1. In this computation, proper 
names in the text are counted as words. The words that are 
not in the 200000-word dictionary are either proper names 
or specialized  technical terms. 

Of  course,  these  results depend partially on the data used, 
and in particular on the relation between the training corpus 
used to choose the most frequent words and the test  text 
used to compute the coverage. 

Speech  recognition  in  French 
Some features of the French  language  raise particular 
problems for  speech  recognition. 

French is a highly  inflected  language;  i.e., a typical lemma 
is  used to produce forms with  different  spellings  according to 
context and the agreement rules that apply to it. A noun 
generally  produces  two  inflections,  singular and plural, an 
adjective four, differing in gender and number; and a verb 
around forty,  based on person,  tense, and mood. The 
average number of inflected forms per lemma is  seven in 
French, as compared to two in English. This makes the total 
list  of  possible  words rather large;  for  example, our full-sized 
dictionary of 200000 words corresponds to a list of about 
45000 lemmas (inflections  with very  low frequency of  use do 
not appear in our dictionary). 

homophones. The singular and plural forms of a noun (table 
and tables, for example) are usually homophones, because 
the plural marker (in this case, the final s) is  generally not 
pronounced. With the verbs  of the first conjugation (the 
largest group of regular French verbs), the infinitive, the 
second  person plural of the present indicative, and all four 
forms of the past  participle are homophones: e.g., passer (‘to 
pass’), passez (‘you  pass’), passe,  passes,  passee, passees 
(‘passed’). Many other derivations are comparable. This 
makes  recognition more difficult  because in most  cases there 
are no acoustic cues to distinguish among the different 
spellings, so they must  all  be  processed at the linguistic level 
and disambiguated by linguistic constraints alone. 

consonant sound between two consecutive  spoken  words. 
For example, les arts is pronounced “ltzar” (or, using the 
International Phonetic Alphabet, [leza~]), although the two 
words are pronounced “l?’ ([le]) and “ar” ([a~]),  
respectively, in isolation. There are a limited number of 
consonants involved in this phenomenon, and they  occur in 
precise cases. The recognition  system has to take into 
account the fact that the pronunciation of some words  will 
depend on this situation. 

apostrophe. A number of function words such as la, le, de,  se 
elide their final vowel  when the following  word  begins  with a 
phonetic vowel. The vowel is  replaced by an apostrophe in 
spelling and the two  words are concatenated. For example, 

Many of  these derivations lead to forms that are 

Liaison is a phonetic phenomenon that inserts a 

Another such case involves  what  is  called in French 

Table 1 Comparison of text coverage by two dictionaries. 

Dictionary size 
(words) 

Text coverage 
(%) 

Static Dynamic 

20 OOO 94.9 98.2 
200000 91.5 99.5 

the sequence of  words le ([la]) and art ([a~]) becomes l’art 
and is pronounced “lar”  la^]). For speech  recognition, an 
additional problem  here  is that the pronunciation of these 
short words  is  significantly  affected  by coarticulation with 
the first  vowel  of the second  word.  It  is  therefore  difficult to 
recognize them without taking the vowel into account. 

Syllable approach 
A long-standing  problem in speech  recognition  is the choice 
of the basic unit to be  used at the acoustic  level.  Reasonable 
units include phonemes (linguistically distinctive elementary 
sounds), allophones (phonetic variants of phonemes), 
subwords, and words. Phonemes are attractive, because a 
small  set (less than 50 for most  languages) is  sufficient; but 
they are difficult to recognize accurately from the acoustic 
signal,  because one phoneme may  have  very  different 
acoustic  characteristics  (i.e.,  different allophones), depending 
on the context of the pronunciation. Larger units like 
subwords or words are interesting because  they  provide 
constraints on possible  sequences of phonemes and can take 
into account some coarticulation phenomena. The difficulty 
is that there are many more of them. (Allophones are also 
numerous and, when  used  as units, do not facilitate the use 
of linguistic constraints and coarticulation data.) 

Our approach is to consider the syllable as the basic unit 
for  acoustic  recognition. There are several  reasons  for this 
choice.  Syllables are longer than phonemes, so it is  easier to 
recognize them from the acoustic  signal. No more than 5200 
different phonetic syllables are required  for a complete 
description of our 200000-word dictionary. 

liaison and apostrophe in sentences  can be handled easily, 
whereas  word templates would mean having  references  for 
all  possible  liaison and apostrophe forms. If  we take, for 
example, the word artiste ([aRtist]),  using  word templates 
would require the addition of the following pronunciations: 

Another advantage of the syllable  is that the problems of 

“lartist” ([la~tist]) found in l’artiste. 
“dartist” ([da~tist]) found in d’artiste. 
“nartist” ([na~tist]) found in un artiste. 
“zartist” ([za~tist]) found in les artistes. 
and a few more . . . . 

Since approximately one fourth of  all  French  words  begin 
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Signal 

I 
Acoustic processor 

Acoustic  observation 

Syllable recognizer Dictionary of syllables 
Acoustic model 

Syllable cadidates 
I t Word recognizer Dictionary of words 
I 

Word candidates 

+ 
Final text 

with  a phonetic vowel, this would  greatly multiply the 
number of word  templates.  With the syllabic approach, 
liaison and apostrophe require the introduction of only 1200 
new  syllables. Thus, 6400 phonetic syllables  cover normal 
speech for a 200 000-word dictionary, including liaison and 
apostrophe. 

Mode of pronunciation 
A common constraint in  the current state of the art in 
speech  recognition  is  asking the speaker to make a pause 
after every  word. This is  called  isolated-word mode (IW). It 
facilitates  recognition  because coarticulation between  words 
is reduced and pauses are strong cues in the acoustic 
decoding. 

In our case, although our ultimate goal  is continuous 
speech, at  the moment we  ask the speaker to pause  between 
syllables,  because  of our choice of the syllable as the basic 
acoustic unit. For example, the sequence 

les enfants 

will  be pronounced as 

“16 zan fan . . .” ([le zii fi . . . I). 
That is, the speech  is  produced in isolated-syllable (IS) 

mode. (It should be noted that making pauses  between 
syllables appears not to be very  difficult in French, perhaps 
because of the stability of word  stress.) On the one hand, IS 

mode shares some of the difficulty  of continuous-speech 
recognition,  since  (as  opposed to IW mode) each  syllable 
potentially  signals  a  word boundary. On the other hand, this 
is counterbalanced by the fact that IS mode has fewer 
contextual phonetic effects to deal  with and more frequent 
silences to serve  as anchor points for the decoder. 

For  example, the sequence of phonetic syllables “16 zar” 
([le z a ~ ] )  can correspond to the sequence of  words les arts 
(‘the arts’) or the single  word Ikzurd (‘lizard‘). 

that facilitates development of and experimentation on 
recognition  algorithms. It also  lowers the amount of 
computation needed for the recognition. It is, of course, our 
intention to remove this constraint in the future. 

The restriction to IS mode is only a temporary constraint 

Information-theory  approach  to  speech 
recognition 
Early  work in speech  recognition  using information-theoretic 
techniques includes [8] and [9]. In accordance with the 
information-theory approach taken by Jelinek and his 
colleagues [ 10-121, the problem of recognizing the sentence 
W that corresponds to a  given utterance A (also  called the 
acoustic  observation) can be  recast  as the problem of 
maximizing the product: 

P(A I W )  . P ( W .  

To implement a  speech-recognition  system, one must 
therefore  define 

The acoustic  observation, i.e.,  what parameters are 
extracted from the acoustic  signal captured by the 
microphone. 

how sentences are pronounced in terms of this 
observation. 

The acoustic model, which  defines p(A I W )  and models 

The language model, which  defines p( W )  and thus 
establishes  which  sequences are allowed  by the system 
(sentences  with  zero  probability will be  prohibited). 
A decoding  strategy to find the sentence that comes  closest 
to realizing this maximum, since an exhaustive  search  is 
generally not feasible  because  of the very  large number of 
possibilities. 

Multilevel  decoding 
We  have formulated a method we  call multilevel  decoding 
(MLD),  which  is an organization of the recognition  process 
that makes  access to a Very-Large-Size Dictionary (VLSD) 
possible.  Its major distinctive feature is the use  of  a  syllable 
level.  Although  syllables  have  been  considered as acoustic 
units in other speech-recognition  efforts [ 13,  141, this is the 
first time that they have  been  integrated into a complete 
system and used  with  a  VLSD. 

four stages: 
As shown in Figure 1, MLD organizes  recognition into 
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1. The speech  signal  is  processed to provide the acoustic 
observation. 

2. A syllable  recognizer  uses the acoustic model to build  a 
list of the syllables  having the highest  probability  of 
matching a part of the observation. 

3. A word  recognizer  uses  these  syllables to build  a  list of 
word candidates. 

4. A sentence  recognizer  uses the word candidates and the 
language  model to build  possible  sentences. 

The flow  of data through these  stages  is  mostly  one-way, 
each  level  processing data from the previous  level and 
transmitting the results to the next. The only  feedback is in 
the decoding  strategy  which, depending on the status of the 
word and sentence recognizers,  decides to which part of the 
utterance the syllable  recognizer should be applied next. 

The components of this process are described in greater 
detail in the following  subsections. 

The  acoustic  processor 
Our acoustic  processor is based on a standard centisecond 
vector quantizer. The microphone is connected to  an analog- 
to-digital converter that samples the speech  signal at 10  kHz 
with  12-bit quantization. We consider  consecutive  windows 
of  128  samples  each  (12.8  ms). For each  window we  use a 
Hamming window and a  fast Fourier transform to compute 
the log  power spectrum of the signal. This spectrum is 
projected on 20  frequency bands arranged  according to a 
me1  scale (linear up to 1000  Hz, logarithmic above). The 
result  is an acoustic vector  with  20  coordinates. 

In the training phase, 30000 vectors are clustered into 200 
classes  by a “k-means” algorithm [ 151. Then, both in 
training and decoding, the acoustic  vectors are replaced by 
the number of the class to which  they  belong.  Each  window 
of  12.8 ms of  signal  is then replaced by a number in the 
range 1 to 200,  which  serves as its label. The acoustic 
observation  comprises the sequence of these  labels. 

Our future plans include the implementation of the 
Yorktown acoustic processor [ 1, 161, which  uses  a  20-kHz 
sampling rate and an ear model to compute the acoustic 
parameters. 

The  phonetic  model 
The acoustic model is  based on a  set of phonetic Markov 
machines which  have  been  used in previous  work [ 171. A 
system  with 40 “phonemes” has been  defined.  They 
comprise the classical phonemes of French, plus some 
specific acoustic events,  such as silence,  bursts, and end of 
syllable. A Markov machine is  associated  with  each 
“phoneme.” These machines all  have the same structure, as 
shown in Figure 2. 

The machine in Figure  2  is an example of one of the 
models introduced by the Yorktown group. It has  seven 
states, three null transitions (i.e., those that produce no 

“.. .._ ‘..A ................ f . .  

.._ ... ... 
“b.. ................................ 

labels), and ten non-null transitions. Each non-null 
transition 7 may produce any label I according to a 
probability distribution q,(l). Each transition starting from  a 
state s has the probability qs(7) of  being taken when the 
machine is in the state s. States 1-5-6-7 are used  for 
occurrences of lengths 0, 1,2, or 3 of the phoneme; states 
1-2-3-4-7 are used  for  longer  occurrences. To reduce the 
number of parameters, the emission  probabilities are tied; 
that is,  we impose the constraints 

Every phonetic machine has the same structure (except for 
the silence machine, which  consists of a  single loop); only 
the probabilities of transitions and production of labels  differ 
from one machine to another. These  probabilities are 
estimated during the training phase  using an algorithm 
known  as the “Forward-Backward”  algorithm [ 181. 
Training, in our case,  is  performed on 400 short sentences 
pronounced by a  single  speaker in IS mode. 

of phonemes and is  associated  with  a  syllable machine 
obtained by concatenating the corresponding phonetic 
machines. 

Each phonetic syllable  has  a representation as a  sequence 

The  syllable  recognizer 
Given an acoustic  observation AT, we  have to compute the 
list of the most  probable  syllables (candidates) matching the 231 
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p ( S  matches the beginning  of AT) = p [ Q ( S )  I AT] 

Silence  Syllable  Silence 
- - P[ATI Q(S)l . P[Q(S)l 

P U T )  

Because  we want to rely only on acoustics to choose the best 
syllables,  we assume  here that all  syllables are equiprobable, 

an utterance that begins  with S. As  we are in IS mode, we 
can  say that such an utterance is  composed, in sequence, of 

'4.. 

A pause  (silence). 
The utterance of the syllable S. 
A pause  (silence). 
The rest of the utterance. 

A Markov  model of the production of this utterance is the 
concatenation of the silence machine, followed  by the 
syllable machine, followed  by the silence machine, followed 
by a model M of the production of the rest  of the utterance 
(Figure 3). 

(LPM) with diphone constraint (see Figure 4). The LPM 
with diphone constraint is constructed by placing  copies of 
all phonetic machines in parallel and connecting their final 
states to the initial states by null transitions. The null 
transition from the final  state of phoneme &t to the initial 
state of phoneme 6; is  assigned the probability p(6 ,  I bj)  that 

We consider  here as model M, the Looped Phonetic Model 

Looped Phonetic Model. probability of omission of  every phonetic machine, so that 

initial state I, connected to the initial state of each phoneme 
q5i by a null transition with  probability ~ ( 6 ~  I silence),  because 

acoustic observation from a given time frame t. Also, for we assume that this model  produces an utterance after a 
each candidate, we would  like a score indicating how  pause. The final state of the model is the final state of the 
probable the syllable  is, and an ending time frame indicating copy  of the silence machine. 
the end of the utterance of the syllable. For simplicity, we The  LPM  represents the production of utterances by  all 
assume that t = 1. possible  sequences of phonemes, the contribution of each 

So, given AT, we want to compute for  each  syllable S the sequence  being  weighted  by its probability  according to a 
following  probabilities:  first-order  prediction on phonemes. 

Now  we  have 

p ( S  matches the beginning of AT), which  is  used to choose p[ATl Q(S)] = p(ATI silence . S . silence . LPM). 

p(the end of the utterance of S is t'), which  is  used to The probability of emission of a given  observation  by a 
the best  syllables. 

choose among possible  endings.  Markov  model  is the sum of the probabilities of  all paths in 
this model that produce this observation (a path is a 
sequence of consecutive  transitions). So, if &AT) is the set of 

Let Q(S)  denote the event "the utterance begins  with S." all paths in the model  "silence . S . silence . LPM" that 
We then have produce AT, then 232 
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~ ( A T I  silence . s silence . LPM) = p(x). 

Each  such path corresponds to a certain ending of the 
utterance of S, the instant where the path goes through the 
final state F, of the syllable machine. This allows us to 
compute the probability that S matches the beginning of AT 
and finishes at time t'. If .E@;, t ' )  is the set of  all paths that 
produce AT and pass through the final state Fs at time t ' ,  
then 

*€(AT, 

c. P(X) 

c. P(X). 
p(the utterance of S finishes at t' I S )  = 

x€€(AT.l') 

The previous computations allow  us to compare 

Different  syllables to see which  ones  best match the 

For a given  syllable,  different  possible end times of the 
observation and are to be kept as candidates. 

utterance and, thereby, the selection of the most  probable 
one. 

We  now examine how to perform these computations 
practically.  Instead of considering each  syllable in isolation, 
we take advantage of the phonetic description of the syllables 
to merge  all the syllable machines into a single  model, 
structured as a tree, the Syllabic Tree (ST). The ST is 
obtained by placing  all  syllable machines in parallel  between 
an initial state I and a final state F, and merging  from  left to 
right all copies  of identical phonetic machines that start from 
the same node. 

By concatenating a silence machine, the ST, another 
silence machine, and the LPM, we obtain the Syllabic  Tree 
Matching  Model (see Figure 5). 

Next we match this model to the observation; Le.,  we 
compute the probability of being in a given state of the 
model and having produced a part of the observation. The 
method used to  do this is  called the forward  pass  of the 
Forward-Backward  algorithm.  First, we define a partial 
order of the states by 

s < s' iff there exists a null path from s to s' 

(this is  effectively a partial order since there are no null 
cycles in our models). Then, we define a(s, t )  as the 
probability of being in state s and having produced 
observation A:. The as can be computed by the following 
recursions: 
, 

a(initial state, 0) = 1, 
a($, 0) = 0 if s is not the initial state, 

. a(s, t )  = c 4 s :  t - 1) 4 s :  a,, s) 

+ c. 4 s ;  t )  4s: 0, 4 ,  
S' 

S ' U  

where q(s: a, s) is the probability of going  from state s' to 
state s and producing the label a; a, is the tth label  of the 
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observation; and q(s: 0, s) is the probability of  going from 
state s' to state s without producing a label. 

guarantees that we can order the states to allow the 
computation of a(s, t) from the as at time t - 1 and from 
previously computed values of the as at time t .  

We also  perform a backward  pass that computes the 
probability of being in a given state and having  produced the 
end of the utterance. The Ps are defined as 

The fact that there are no null cycles in the model 

P(fina1 state, T )  = 1, 
B(s, T )  = 0 if s is not the final state, 

. P(s, t> = c. P o :  1 + 1) . d s ,  a,+,, s') 
S' 

+ E P(s: t) * d s ,  0, s'). 
S ' l S  

Now the probability that a syllable S matches the beginning 
of the utterance, as defined  previously, is just the sum 

P[ATl W ) l  = c 4 F s ,  t )  * P V , ,  t ) ,  
I 

where F, is the final state of the syllable in the Syllabic  Tree. 
The probability that the end of the utterance of S is at time 
t' is 

In practice, we do not perform the computation of as for 
the entire utterance, because this would  be  very time- 
consuming and we are only  interested in the match of the 
first  syllable uttered. To reduce the computation, syllables 
corresponding to as with very  low values (compared to as on 
other states at the same time t )  are abandoned. We can thus 
prune the ST and continue the computation for the best 
candidates only. As we match the model to the observation 
(as t goes from 1 to T ) ,  the highest a(s, t)s start in the first 
silence machine, then spread into the Syllabic Tree, and 
finally accumulate in the second  silence machine and  in the 
LPM.  When tis  high enough, all  significant a($, t )s  will  be 
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+To root 
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“.. . 

“\Tohead ‘‘z” 

Head “z” /” 

out of the Syllabic  Tree. Then, instead of continuing the 
computation up to the end of the observation, we stop at 
that time, which  we  call tF. We perform the backward  pass 
from this time, using the initialization 

and the recursion  already mentioned. (The choice of this 
initialization is heuristic and favors “good” paths which  give 
high LY values.) 

Note that the only dependency of this syllable  recognizer 
on the IS mode is in the presence of the silence machines in 
the Syllabic Tree Matching model. If  these machines were 
removed, the same algorithm could  be applied to match 
syllables in continuous speech. We plan to  do so in the 
future. 

The word  recognizer 
The word  recognizer  keeps  lists  of partial word  hypotheses 
and updates them with the lists of  syllable candidates 
provided by the syllable  recognizer. 

over  200 000 entries.  Each entry is  composed of 
This update is dependent on the dictionary, which has 

The spelling of a word. 
0 One or more pronunciations, transcribed as sequences of 

The possible parts of speech of this word and their 
phonetic syllables. 

corresponding frequencies. 234 
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For speech  recognition, this dictionary has to be indexed 
on the basis of phonetic information, because we want to 
recover  all  words corresponding to a given  sequence of 
phonetic syllables.  We structure the phonetic part of the 
dictionary as a tree that describes  words in terms of 
sequences of phonetic syllables (in a way similar to the 
Syllabic Tree that describes  syllables in terms of phonetic 
machines). This tree  is  called the W/S  tree. The arcs are the 
phonetic syllables. The nodes correspond to partial-word 
hypotheses. The arcs  leaving a given node indicate which 
syllables can extend the partial word. The leaves in the W/S 
tree are the words  themselves, and this is  where we attach 
the information on spelling, parts of speech, and frequency. 

To take liaison and apostrophe into account, the W/S  tree 
is augmented by adding auxiliary entry points, called “heads,” 
as  shown in Figure 6. Each  head corresponds to a consonant 
or consonant cluster (such as “1,” “m,”  or “z”) that may 
occur  because of liaison or apostrophe. Each  syllable S that 
starts at  the root of the tree and begins  with a vowel creates 
new  syllables starting from each  head. The new  syllables are 
formed by the concatenation of the consonant of the head 
and  the original  syllable, and they  all go to the final node of 
the original  syllable. For example, the phonetic syllable ‘%“ 
([e])  will  lead to the creation of  syllables  “16,” “m6,” “z? . . . 
([le, me, ze . . .I)  from  different  heads  of the tree. 

For  liaison,  each  word  (leaf of the tree) has a 
corresponding  list of the possible  heads  which  may start the 
next  word. For example, the word les can be followed  by 
words starting at the root of the tree or at the head 
corresponding to the liaison  form  with  “z.” It can  also be 
followed  by words starting at the root of the tree. For 
apostrophe, information at the root of the tree indicates 
which  words  may  lead  directly to a head of the tree. For 
example, the article or pronoun le will  allow a jump from 
the root of the tree to the head corresponding to “1.” 

For the 200000-word dictionary, there are about 120 000 
nodes (partial words), about 340000 arcs  (syllables starting 
from a node), and 10 different  heads. 

of the W/S  tree.  Each  hypothesis has a beginning and an 
ending time frame corresponding to the part of the acoustic 
observation that the partial word  matches.  Considering 
partial-word  hypotheses that end at a given time frame, the 
word  recognizer  calls the syllable  recognizer to get a list  of 
syllable candidates, with their score and ending time frame. 
Then the hypotheses are extended, by looking to see which 
syllables are valid  arcs  leaving the corresponding nodes in 
the W/S  tree. This leads to new partial-word  hypotheses, and 
sometimes to full-word  hypotheses that are passed to the 
sentence  recognizer.  Full-word  hypotheses are passed to the 
sentence  recognizer  together  with their beginning, their 
ending time frame, and their acoustic  probability  (i.e., the 
probability of producing the corresponding part of the 
acoustic  observation). 

As stated earlier, the partial-word  hypotheses are the nodes 
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The language  model 
The language  model has been  described  elsewhere [ 191 and 
has been  used  for phonetic-to-text transcription. Let  us just 
recall  here its major features. It is  based on a  Markov  model 
at the part-of-speech  level. More precisely,  we consider that 
sentences are messages  from  a source that emits words one 
after the other. So we can  say that 

P(w:) = n P(y. I q-'). 
i 

We make  two approximations to estimate these 
probabilities: 

Reduction of the size  of the context, 

where pi is one of the parts of  speech  of the word Wr The 
term p(  W, I pi) is  a  lexical  probability that is attached to each 
word and stored in the dictionary; p(  pi I pi-zpi-l) is  a 
contextual probability that is intended to model  permissible 
part-of-speech  sequences in sentences. 

These  probabilities are estimated as relative  frequencies, 
using  a training corpus. The contextual probability  is 
computed as an interpolation of first-order and second-order 
frequencies. 

The sentence  recognizer 
The sentence recognizer  keeps  lists  of  partial-sentence 
hypotheses and updates them when  word candidates are 
provided by the word  recognizer. 

Partial-sentence  hypotheses are sequences of words W: 
that match the acoustic observation  from the beginning up 
to  an ending time frame t. Each  hypothesis  is  associated  with 
a  score,  defined as the product, 

of the corresponding acoustic and linguistic  probabilities. 

the sentence  recognizer extends the partial-sentence 
hypotheses  whose  acoustic end is at the beginning of the 
word. This leads to a  longer  partial-sentence  hypothesis,  for 
which  a  new score  is computed. 

Eventually  these  longer  hypotheses will match the entire 
utterance, in which  case the score corresponds exactly to the 
product, 

When  word  hypotheses are found by the word  recognizer, 

P(A I W )  . P(Wh 

that we  wish to maximize, and the hypothesis  is  a candidate 
for the transcription of the utterance. The entire process of 
selecting  syllable candidates and then word  hypotheses 
generates  a number of  sentence  hypotheses. The one 
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corresponding to the highest product is  kept as the sentence 
recognized  by the system for this utterance. 

The  decoding  strategy 
Decoding  processes the utterance from  left to right. It starts 
from an empty hypothesis and goes into the extension 
process until it reaches the end of the utterance. 

The decoding  strategy  has to decide,  according to the 
status of the word and the sentence recognizers  (i.e., 
according to the existing  hypotheses and their scores), to 
which part of the utterance the syllable decoder should be 
applied  next. 

Several  different  strategies are possible. The Yorktown 
group uses the stack  decoding algorithm, which  always 
extends the best nonextended hypothesis so far. In our case, 
we  use a time-synchronous strategy  which extends the 
shortest nonextended hypothesis. This strategy  may  lead to 
some  extra work when compared with  stack  decoding, but it 
makes the management of partial hypotheses  simpler, 
because  when  we extend the hypothesis ending at time t ,  we 
are sure that all shortest hypotheses  have  been  processed, so 
that the list  of  hypotheses ending at time t is  complete. 

Recognition  experiment 
The MLD algorithm has  been implemented on an IBM 438 1 
and runs in batch  mode. It has  been  tested on a  text 
composed of 79 short sentences, uttered in IS mode by the 
same  speaker as in training. These  sentences come from  a  set 
of letters that do not belong to the corpus used to select 
frequent words. The test  text  has 722 words and 1143 
syllables. 

We tested  recognition  using three different  dictionaries: 

The first one (Dlo) comprised the 10000 most frequent 
words,  extracted  from  a  large  corpus. This yielded  a  Large 
dictionary which  covers 94% of the test  text (due to the 
small  size  of the text, static and dynamic coverage are 
equal). 
For the second (D10+43), we added the 43 uncovered  words 
of the text to  Dlo. This yielded  a  Large  (artificially 
constructed) dictionary which, of course,  covers 100% of 
the test  text. 
The third one (D,,) is the full-sized dictionary, comprising 
200000 words-a  Very  Large dictionary which  also  covers 
100% of the test text. 

Table 2 gives error rates  (defined as the percentage of 
words not correctly  recognized) for recognition experiments 
using the three dictionaries. These  results  show that 
recognition  using D,, is 4.6% better than recognition  using 
Dl,,. This improvement comes from two phenomena acting 
in opposition. On the one hand, D,, has a 6% better 
coverage than Dl,,. On the other hand, the greater  size  of 
D,, leads to more errors than Dl,,. 
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Table 2 Recognition with three dictionaries. 

Dictionary Size Text coverage Error rates 
(words) (X) (%I 

Dl0 IOOOO 94 17.3 
Dl,,, 10043 1 0 0  10.6 
D m  200000 100 12.7 

If  we  now compare recognition  using D,, and 
(both giving complete coverage),  we  see that  the error rate of 
the former, despite its greater size,  is  only  2.1 % more. 

In other words,  if we  use a  Very  Large rather than a  Large 
dictionary, we  lose  2.1 % because of a  higher error rate, but 
more than make up for it by gaining 6%  in coverage. 

Obviously, the ideal dictionary would  be Dl,+,,”small 
size but 100% coverage. Unfortunately, of course, it is 
impossible to construct such a dictionary independent of a 
particular text. 

It should be noted that absolute values of the recognition 
rate must be  considered  with care when one system  is 
compared to another, because they depend crucially on the 
conditions of the experiments. For example, the above 
results cannot be directly compared with those of Gauvain 
[6]  since  Gauvain’s are in terms of homophone sets.  Also, in 
his experiments, each  word in  the 10000-word dictionary 
has been uttered and is  tested once, whereas our experiments 
deal  with  words in sentences,  where frequent words 
(generally the shortest and the most ambiguous) occur 
several  times. The same considerations apply to the work  of 
Gupta et al., reported in [7]. 

The work at IBM Yorktown is similar enough to ours to 
allow  meaningful comparison. Several factors may 
contribute to the difference between our 12.7% error rate 
and their 5% error rate: 

As described earlier, French is more phonetically 
ambiguous than English. In fact,  half  of the errors in  our 
experiment are “linguistic” errors, where  a homophone has 
been found but the wrong  spelling has been  chosen. 
Their 5 %  error rate is computed differently and does not 
include the effect  of the coverage of their 20000-word 
English dictionary. This coverage  is estimated to be 97.6% 
of text, which  would give a total error rate of about 8%. 
Our part-of-speech-based  language  model  is not as precise 
as the trigram language  model of the Yorktown system 
(although our approach allows  a  VLSD to be handled 
easily,  which  is not the case  with the trigram approach). 
Finally, our acoustic model may  be more rudimentary 
because it uses a  smaller number of machines and a 
smaller amount of training data. 

Conclusion 
In this paper, we have  described  a new organization for  a 
speech  recognizer  based on a decomposition into syllable, 236 
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word, and sentence  levels. This new organization, called 
multilevel  decoding,  allows  a  Very-Large-Size Dictionary (in 
our case  200 000 words) to be supported for  speech 
recognition-a  significant step toward the realization of 
practical  voice-activated  typewriters. 

MLD has been implemented and tested.  When comparing 
recognition  with  200000-word and 10000-word dictionaries, 
we found that the 6% gain in coverage  more than makes up 
for the 2.1 % loss in recognition  accuracy. This result 
supports the validity of  VLSD  for dictation systems. 

As noted in the Introduction, the work reported in this 
paper  is part of an effort toward achieving  a VAT. Present 
research  is  focused on improving the quality of acoustic and 
language  models (see Derouault’s  work  [20],  for  example). 
We also  plan to process continuous speech  instead  of 
constrained speech; and to use  special  processors to perform 
this expensive  decoding in real time. 
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