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We  describe  a  research  project  in  automatic 
speech  recognition  which  has  led  to  the 
development  of  an  experimental large- 
vocabulary  real-time  recognizer for Italian,  and 
show  how the  maximum-likelihood  techniques 
which  had been employed  in  the  development of 
prototype  recognizers  for  English  can  be 
tailored  to  a  language  with  substantially  different 
characteristics. 

Introduction 
Existing  speech-recognition  technologies  have  proven 
adequate for simple tasks  involving  small  vocabularies (tens 
or hundreds of words) and suitable for limited applications 
(typically,  recognition of a set of commands uttered in an 
isolated  fashion by an operator whose hands are busy). 
Systems found on the market are usually independent of the 
target  language. Interesting applications in an office 
environment, such as text dictation and database query, 
need, on the other hand, the ability to handle natural 
language and pronunciation. This requires  large  vocabularies 
(thousands of words) and substantially more  sophisticated 
techniques which take into account language-specific 
knowledge on phonology, syntax, and (surface)  semantics. 

Topyright 1988 by International  Business  Machines  Corporation. 
Copying in printed  form  for  private  use is permitted  without 
payment of royalty  provided  that ( 1 )  each reproduction is done 
without  alteration  and (2) the Journal reference  and  IBM  copyright 
notice are included on the first  page.  The title and  abstract,  but no 
other  portions, of this paper  may be copied or  distributed  royalty 
free  without  further  permission by computer-based  and  other 
information-service  systems.  Permission to republish any  other 
portion of this paper must be obtained  from  the  Editor. 

Two approaches are currently popular in the research 
community. One approach, based on a priori expert 
knowledge  of the acoustic  properties of spoken  language 
[ 1,2], attempts to decode the phonetic information 
conveyed by speech, by means of  Artificial Intelligence 
methods. Sometimes a linguistic  analysis  based on syntactic 
and semantic rules [ 31 is also  performed. The other approach 
employs  statistical  models  for both acoustic and linguistic 
analysis, and has already  been  successfully  applied to 
develop experimental speech-recognizer  prototypes. The role 
of human knowledge  is limited to the design  of a basic 
model of  speech production and perception;  statistics is  used 
as a methodology  for implementation of the model by 
automatic learning from data. 

in the techniques proposed by researchers at the IBM 
Thomas J. Watson  Research Center, which  led to the 
development of prototype large-vocabulary  real-time 
recognizers of spoken  English [4,5]. Our work on speech 
recognition of Italian was founded on these  techniques. The 
same  methodology  is  being  applied to large-vocabulary 
recognition of French by a research group at the IBM Paris 
Scientific Center [6]. 

identification of the human-determined elements of the 
model that could be deemed independent of the target 
natural language, and those that had to be  changed,  thereby 
showing that the method can be successfully tailored to 
different  langyages. 

The real-time isolated-utterance speech-recognition  system 
we developed for the Italian language handles dictionaries of 

The most notable example of the latter approach is found 

One feature distinguishing our approach is the 
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up to 6500 words. Experimental recognition  accuracy  is  over 
96% [7]. 

Research on large-vocabulary Italian speech  recognition 
has come to be  of  widespread interest and is  being  pursued 
at several public and private institutions [8-IO]. No 
prototype showing comparable performances has as yet 
been made public. 

In the next  section a brief description of the probabilistic 
approach is  provided.  Acoustic and language  modeling of 
Italian, and architectural issues are discussed in the 
succeeding  sections. The last  sections offer experimental 
results and remarks about possible  extensions to other 
languages. 

The  probabilistic  approach  to  speech 
recognition: A review 
This section  gives,  for the convenience of the reader, a brief 
description of the probabilistic approach to speech 
recognition. 

be the acoustic information, extracted from the speech 
signal,  from  which the system  will try to recognize  which 
words  were uttered. The aim is to find the particular 
sequence  which  maximizes the conditional probability 
P( Wl A), i.e., the most  likely  word  sequence  given the 
acoustic information. By Bayes' theorem, 

Let F = w, w2 . . . wN be a sequence of N words, and let A 

P(A I is the probability that the sequence of words  @'will 218 
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produce the acoustic string 2, that is, the probability that the 
speaker, pronouncing the words F, will utter sounds 
described by d. P( is the a priori probability of the word 
string W, that is, the probability that the speaker will  wish to 
pronounce the words W. P(2)  is the probability of the 
acoustic  string 2; it is not a function of F, since it is fixed 
once d is measured, and can thus be ignored  when  looking 
for the maximum over @'. 

A consequence of this equation is that the recognition  task 
can be decomposed into the following  subtasks (Figure 1): 

I. Perform acoustic processing to encode the speech  signal 
into a string of  values A representative of its acoustic 
features, and, at the same time, adequate for a statistical 
analysis. 

acoustic model must be created). 
2. Compute the probability P(2I w) (for this purpose an 

3. Evaluate P( F) (for this a language model is  needed). 
4. Look, among all  possible  sequences of words,  for the 

most  probable  one, by means of an efficient search 
strategy. 

Acoustic processing 
In our system, as in the prototypes for the English  language, 
acoustic  processing  is implemented (in an acousticfront-end) 
by a model of the human auditory system [ 1 I ]  and a vector 
quantizer. The digitized  acoustic  signal (20K samples  per 
second, 12 bits  per sample) is  processed to extract, every 10 
milliseconds, a vector of 20 parameters,  which  represent, 
essentially, the signal  log  energy in 20 frequency bands 
(spaced in accordance  with the frequency  sensitivity of the 
human ear), and transformed nonlinearly to take into 
account adaptation capability to different sound levels. The 
vector quantization replaces  each  vector  with an acoustic 
label identifying the closest prototype vector  belonging to a 
speaker-dependent precomputed codebook of 200 elements, 
as  shown in Figure 2. 

Search strategy 
The search  strategy  is  based on the stack sequential decoding 
algorithm [ 121. It controls the decoding  process by 
hypothesizing the most  likely  sequence  of  words  (by  means 
of an efficient  heuristic method), and requests the evaluation 
of linguistic and acoustic  probabilities  according to the 
hypothesized  left context of the sentence.  Stack  decoding 
proceeds  from  left to right, and therefore is intrinsically well 
suited to a real-time  system,  which  recognizes  word 
sequences  while  they are being  spoken. 

Acoustic model 
The acoustic  model  is  based on Markov  sources [ 131. A 
Markov  source of acoustic  labels is essentially a probabilistic 
finite-state machine. At  fixed intervals of time a random 
transition is taken, which  may or may not cause a change of 
state, and a random acoustic  label  is emitted. Transitions 
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and label  emissions occur according to probability 
distributions depending only on the source state, not on 
previous history (Figure 3). While it is  possible to observe 
the string of labels produced by the source, the sequence of 
states it visits remains hidden. These models are therefore 
named hidden Markov models. For the purpose of  speech 
recognition, a phonetic unit, modeled by a Markov source, is 
associated  with  each  of the basic sounds of the language. 
A word  is  described by the concatenation of the Markov 
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sources corresponding to the string of phonetic units forming 
its pronunciation (Figure 4). Estimation of the probability 
parameters of the Markov  models (acoustic training) is 
accomplished by the Baum-Welch  algorithm [ 141, which 
attempts to maximize P ( 2  I m for a known training text 
uttered by the speaker.  Algorithms are also available  for the 
task of acoustic matching, i.e., the evaluation of P@ I m 
when  performing  speech  decoding,  according to the model 
parameters computed during training. 219 
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l L  
L j = ,  

Ei = - - x 2 log,& w, I w,,, . . . wt-,),  

Perplexity  is the average uncertainty (the branchingfactor) of 
the model  expressed by the equivalent number of 
equiprobable words. 

acoustic  model and the language  model take into account 
specific properties of the Italian language. Only a  general 
description is  given  here,  while  language-specific  issues are 
discussed in greater detail in the following  sections. 

Unlike the acoustic front-end and the search  strategy, the 

Example of Markov model of a phonetic unit. Every centisecond a Acoustic modeling of Italian 
j transition is taken and an acoustic label is emitted. To achieve  good  recognition  accuracy, it is  necessary to 

design  a  specific  set of Markovian phonetic units (the 
phonetic alphabet) to describe the pronunciation of the 
words of the language. This set, in order to preserve the 
linguistic information conveyed by the utterance of a  word, 
should not be simpler than  the set of phonemes, the classical 
units defined  by the phonology of the language as classes  of 
sounds carrying the same  linguistic information. The 
phonetic alphabet should also  describe the most  relevant of 
systematic  speech-variability phenomena (such  as  stress and 
coarticulation) not reflected  by  phonemes. A too-detailed 

; Markov model of a word, obtained by concatenation of the models of 1 its phonetic units. 

Language model 
The language  model estimates the probability of a  word 
sequence = w, w2 . . wN by evaluating the probability of 
each  word,  given the left context of the sentence: 

N 

i= I 

In accordance with the statistical approach, the estimator is 
built from relative  frequencies  extracted from a  large corpus 
of sentences. To estimate the probability of a  word, contexts 
with the same last  N - 1 words are considered equivalent 
(N-gram  language  model [ 151): 

P(wi I w, . . . Wi-J = P ( W i  I wi-N+I . * Wi-J 

The predictive  power of a  probabilistic  language  model  is 
measured by perplexity [ 161, defined as 

P = 2  3 

R 

where I? is an estimate of the entropy (according to the 
language-model probability p )  computed on a text w ,  . . wL 

220 generated by the source  which is being modeled 

model,  involving  a  large number of parameters, might 
require an unacceptably  large  statistical  sample  of the 
speaker’s  voice for training. The design  of the phonetic 
alphabet should, then, look  for the best  trade-off  between 
detail of modeling and brevity of training. Some  researchers 
use units based on structural elements more complex than 
phonemes, such  as diphones, demisyllables, or syllables.  In 
order to keep the number of parameters low, we based our 
units on an augmented set of phonemes (context-dependent 
phonemes are also  proposed in [ 171). This allowed the choice 
of a  single  topological  structure-designed to provide 
enough  degrees  of  freedom-for  all the Markov  sources 
associated  with the phonetic units. Differentiation among 
phonetic Markov  sources  is thus left  entirely to the 
parameter-estimation process  (acoustic training). 

alphabet has not yet  been  developed. Our approach 
combines the results of traditional acoustic and phonetic 
research  with  analysis  of  statistical data. The procedure  is 
largely  a trial-and-error process.  We introduce modifications 
to the phonetic alphabet (initially  composed of the original 
30 Italian phonemes) and then verify  whether an 
improvement has  occurred. For the purpose of data analysis 
and performance evaluation, a  large  multispeaker  speech 
database (more than 50000 utterances of individual words) 
was built. The speech  signal  is  aligned to the Markov  sources 
describing the spoken  sentences by means of the Viterbi 
algorithm [ 181, thus finding the segments of the utterance 
corresponding to each phonetic unit. 

A systematic  procedure  for  finding an optimal phonetic 
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Possible  modifications to the phonetic alphabet are often 
suggested  by phonological considerations. An example is the 
sound In/, normally an alveolar  nasal,  which  becomes  velar 
when  followed  by  a /gJ or /k/: This leads to the definition of 
a separate phonetic unit for the latter case.  Potentially  weak 
phonetic units are also found by performing  recognition  tests 
on utterances from the database, without using the 
information provided  by the language  model  (which  may 
mask acoustic-model inaccuracies), and by analyzing 
decoding errors. The phonetic description of words 
most frequently unrecognized  is studied for  possible 
improvements. 

In order to verify  whether  a  modification to the phonetic 
alphabet produces an improvement, the most  conclusive 
measure  consists in performing recognition  tests on several 
speakers. We developed some faster  measures  which  proved 
very helpful.  A  modification frequently introduced is the 
modeling of a sound, previously  described by a  single 
phonetic unit M, by  two  new units M ,  and M,,  chosen on 
the basis of the phonetic context (as for the above-mentioned 
case of the sound In/). To measure the value of the 
modification, we estimate whether the utterances of the new 
units show  systematic,  statistically  significant  differences,  by 
computing their Kullback  divergence (or cross-entropy), 
defined as 

where the summation should include all  possible  strings 2 of 
acoustic labels.  A  global  measure  of the quality of the 
phonetic representation is  provided by the mutual 
information between the phonetic alphabet M and the set  of 
speech alignments A: 

A  significant  increase of mutual information is  a  good  index 
of an improvement of the phonetic alphabet. Practical 
methods for estimating divergence and mutual information 
are described in [ 191. 

A  peculiarity of the Italian language is the high frequency 
of  vowels. The ratio of consonants to vowels in a  word, 
which  is  particularly low in all Romance languages, is only 
1.12 for Italian, while  for  English it is 1.4 1 and for German, 
1.71  [20].  Therefore,  special care was  used in modeling 
vowels: The seven  vowel phonemes of Italian are described 
by eighteen distinct phonetic units. 

To achieve  increased  tolerance.  for  regional  accents, we 
introduced “ambiguous” phonetic units. An example  is the 
vowel “e,”  which,  according to correct Standard Italian 
pronunciation, should be open (/e/) in some words and close 

Table 1 Word  recognition  accuracy of sentences from a 1000- 
word  dictionary,  uttered by ten  speakers  decoded  without  any 
language model,  using three  different  phonetic  alphabets. 

Phonetic 
alphabet 

Recognition accuracy 
(%) 

Average Best Worst 

PH45 88.7 91.9 84.6 

PH55 90.9  93.9 85.6 

PH56 92.2  95.1 89.5 

(/e/) in others. The “e” of  several  words, though, is  subject to 
mispronunciation (sometimes due to hypercorrection 
because the two vowels have  merged in the native  dialects of 
the speaker). Our first  model  strictly  respected the correct 
Standard pronunciation, and included only two units for the 
stressed “e,” EO and EC. This led to poor training and 
recognition of some  speakers. We then introduced the unit 
EX, associated  with  occurrences of “e”  subject to 
mispronunciation. For one speaker,  for  example,  divergences 
computed after the modification were 

d(E0,  EC) = 20.0, 

d(EX, EC) = 7.1, 

d(EX,  EO) = 8.4, 

while before the modification it was 

d(E0,  EC) = 13.2. 

These  figures  show that the new alphabet presents better 
discrimination of consistent pronunciations of “e,” while the 
new ambiguous unit is rather well matched to both 
pronunciations. 

Table 1 shows the recognition  accuracy  achieved  for 50 
test  sentences (1025 total words,  extracted from a dictionary 
of  1000  words), uttered by each of ten speakers and decoded 
without any language  model,  employing three different 
phonetic alphabets: 

PH45 The 30 Italian phonemes augmented to 45 units, on 
the basis  of  simple  phonological considerations. 

PH55 An extended  set built by means of the previously 
described  techniques. 

PH56 The previous  set  with the addition of a  special unit to 
model the glottal  pulse  produced at the end of words 
with  a  final consonant. 

The addition of the glottal-pulse unit notably increased 
performance, in spite of the fact that few Italian words end 
in a consonant, because  (when pH55 was used) those words 
were often  confused  with similar words ending in a vowel. 221 
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An  essential  problem  is the design  of the training text. It 
should be  kept as short as possible, but each phonetic unit 
should be represented many times in several  different 
contexts in order to provide enough data for  good estimation 
of the Markov parameters. Our experiments show that 
substantially better recognition  accuracy  is  achieved  when 
the training text is created from meaningful  sentences rather 
than random sequences of  words. This ensures higher 
consistency  with the sentences uttered during recognition 
sessions. Therefore the training text is built manually. 

In a  large-dictionary  real-time  speech-recognition  system, 
it is computationally very demanding to perform  a  detailed 
match of the  input utterance to all the items in the 
vocabulary.  A commonly accepted solution is to carry out 
recognition in more than one stage. In the first  stages  a  fast, 
rough  analysis  is  performed to eliminate items displaying 
gross  mismatches to the incoming utterance. In this way a 
small number of items are selected, the most  likely  being 
identified in the last  stage, through a detailed match 
computation. 

We investigated an interesting approach to fast acoustic 
matching, consisting in grouping  words into equivalence 
classes, in order to represent  more than one word  by a  single 
acoustic  model. During recognition, the utterance is  initially 
matched against  class  models, and thereafter against the 
individual models of the words  belonging to the selected 
classes.  Let c be  a  generic  word  class, CF(c) the 
computational cost of a  fast match against  class c, and N, the 
number of  classes;  similarly,  let w be  a  generic  word, CD(w) 
the computational cost of a more detailed match against 
word w, and N, the average number of words  selected  by the 
fast-match  stage.  A  small number of  classes  saves 
computation in the first matching stage: 

C(Fast-match) = NcE[CF(c)]. 

On the other hand, because the class model must represent 
all the words in the class,  a  large number of words  per  class 
leads to inaccurate models, and to low selectivity; the 
computational cost  of the detailed match grows  with N,: 

C(Detai1eLmatch) = N,E[C,(w)]. 

A  good  classification should reduce the number of  classes 
to a minimum without losing  accuracy. We studied two 
different methods: 

1. Define  a distance measure  between  word  models and 
perform clustering [2 I]. 

2. Find broad phonetic categories and map the phonetic 
units of each  word into them, so that each  sequence of 
phonetic categories  identifies  a  word equivalence class 
1191. 

An automatic method of selecting phonetic categories 
222 consists in looking for the partition P of the set of phonetic 

units which has the highest mutual information with  respect 
to the acoustic  labels,  given  a  target number of  classes k :  

m(P, A) = maxm(P, A). 

Due to the combinatorial explosion of the number of 
partitions, an exhaustive  search is infeasible, and some 
heuristic method must be  used. Our approach consists in 
looking  for the best partition, starting with one unit per 
category and reducing the number of categories by  successive 
merges. The traditional greedy technique, which  iteratively 
carries out the best  merge  of  two  categories,  ensures 
optimization on a  local  scale  only.  An improvement to this 
technique consists in performing,  each time two  classes are 
merged,  all  those movements of a  single  element  which 
increase mutual information. We found that still better 
results can be obtained by applying  a more advanced 
heuristic method of state search,  formally identical to the 
tree  ordered-search algorithm [22]. We associate to a 
partition P into n classes  a cost expressed  by 

C(P) = - m(P, A), 

where m is the mutual information for P and q is the highest 
expected mutual information for  a partition of cardinality n. 
This enables  us to compare the cost  of partitions of different 
cardinalities. The algorithm keeps an ordered  list  of  lowest- 
cost partitions, initialized to contain only the trivial partition 
with one unit per class. Iteratively, it computes new 
partitions (by  performing  merges  of  two  classes  belonging to 
the best partition so far) and inserts them into the ordered 
list. 

This is the best partition into six  classes found by the 
algorithm  for one speaker: 

/a/ sounds. 
Back  vowels. 
Most front vowels, one liquid, and one nasal. 
Most liquids and nasals, one /e/ sound, and one voiced 
plosive. 
Plosives. 
Fricatives. 

This classification  yields  a  fast match with low 
computational cost, but selectivity remains unsatisfactory. 
We are currently studying methods to identify  classification 
techniques which jointly optimize the cost  of  fast match and 
of detailed match. The word-classification techniques were 
applied to Italian, but are immediately extendible to other 
languages. 

Language  modeling of Italian 
Our corpus was formed  from  a  set of magazine  articles and 
news-agency  flashes on economy and finance, amounting to 
about ten million  words. Figure 5 is  a  graph of the frequency 
of the words,  ordered  by  decreasing number of occurrences. 
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To evaluate the practical  usability of our recognizer, 
coverage  by dictionaries of increasing  size has been 
measured (Figure 6). Coverage  is, as expected, not as 
complete as for a language  like  English  (which  has  far  fewer 
inflected  forms), but is  nevertheless  encouraging. The curves 
represent  values for the same dictionaries applied to three 
corpora on economy and finance: 

Corpus A1 (constructed from news-agency  flashes), from 
which the dictionaries were generated by taking the most 
frequently occumng words. 
Corpus A2, disjoint from A 1 but produced from the same 
source  as A I .  
Corpus M 1, produced from a different  source (magazine 
articles). 

The three-gram  model  displayed a performance comparable 
to that of the English  one, although Italian, like the other 
Romance languages,  is  significantly  different from English 
on the morphological  level (higher number of inflected 
forms) as well as on the syntactic one (weaker constraints on 
word order in the sentence; strict gender and number 
concordance). The experimental perplexity of the three-gram 
model  for the 6500-word dictionary was 110.65 (the two- 
gram  model  gave p = 150.73, the one-gram  model 
p = 780.99). 

The choice of N = 3 for the N-gram  language  model  is 
suggested  by the size  of the corpora available in practice 
(tens of millions of words),  which do not contain enough 
statistical data for an adequate estimation of probabilities of 
longer  sequences of  words.  We  verified that N-gram  language 
models  with N > 3, based on statistics  collected from the 
same corpus, display  perplexities not significantly  lower than 
the three-gram  model. 

Perplexity  is an intrinsic measure of the predictive  power 
of the language model, which  does not take into account its 
interaction with the acoustic  model. A study on coupling 
effects  between acoustic and linguistic  models  showed that 
they  provide  essentially independent information. We  first 
measured how the predictive  power of the three-gram 
language  model  (expressed  by  perplexity)  changed  when its 
choice was limited to a subset of m words of the vocabulary 
(including the right  word)  chosen randomly. The same 
experiment, performed  on  subsets  selected  according to 
acoustic similarity to the right  word,  showed no significant 
differences in the behavior of the perplexity as a function 
of m. 

However, at least for a strongly  inflected  language  like 
Italian, it should be  possible to  do even better than such 
independence. This remark is prompted by experimental 
results [23] obtained in comparing a three-gram  language 
model  with one based on grammatical categories [24]: While 
the former exhibited lower  perplexity, the latter was found to 
perform better when the acoustical information was taken 
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into account-i.e.,  when  perplexity  was  measured  only on a 
subset of words  selected according to acoustical  similarity to 
the right  word. 

The  design of the system took into account language- 
specific phenomena, such  as  elision and what  is  known in 
Italian as apostrophe. For example, to dictate the word all', 
in phrases  like all'obiettivo, the user  may  choose among 
three pronunciations: 223 
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Pronunciation 1 is common to the word al, while 
pronunciation 2 is common to the word allo. The language 
model is able to disambiguate  properly. 

SPKl SPK3 
SPK2 SPK4 

Architecture 
The development of the recognizer  has taken place on an 
experimental system  consisting  of a workstation  based on an 
IBM Personal Computer AT@ [25] equipped with a special 
signal-processing  card  [26] (the acoustic front-end) and a 
host running VM/SP  (which handles the decoding stage- 
search coordination, acoustic and language  modeling). The 
recognized  text  is  displayed on a 3270 terminal. The user 
can  edit the text  using the keyboard and produce a hard 
copy on the attached printer. 

An advantage of this architecture is that the decoding SPK5 SPKI AVG 
SPK6 SPKR stage  relies on general-purpose  hardware  only. This has 

allowed  us to run the speech  recognizer on several 
System/370 mainframes, connected through 3270  cable to 

workstation, consisting of a PC  AT equipped with  two to 
five special  cards,  in accordance with the Tangora 
architecture [5,27]. 

~ l o o o  words iiiiiiiiii3000 . . . . . . . . . , words Experimental  results 
Several  speakers trained the system  by reading a 20-minute 
text. The personalized parameters were  used to perform 
recognition  tests on sets of  50 meaningful  sentences  (1025 
total words) uttered by the speaker. Figure 7 shows the 
percent error rates achieved when no language  model  is 
employed (that is, the words in the dictionary are considered 
equiprobable), for recognizers  based on three dictionaries of 
different  sizes (1000, 3000, and 6500 words). Figure 8 refers 
to the same recordings  decoded  using the language  model. 

The amount of computation performed in the decoding 
stage, C, displayed a sublinear increase  with  respect to the 

5 

4 

3 

2 

1 

0 
SPKl SPK3 SPK5  SPK7 AVG dictionary size:  C(3000)  was  2.3 x C( lOOO), while  C(6500) 

SPK2 SPK4 SPK6 SPK8 was 4.0 X C( 1000). 

Some  recognition experiments were performed  on 
speakers  who had not previously trained the system. The 

1. /all 
2. / d o /  
3. /allapostrofo/ 224 

PAOLO D'ORTA  ET AL. 

a powerful  set  of techniques for  modeling the complex 
phenomenon of natural speech.  These techniques have the 
advantage of  allowing the model  designers to concentrate on 
the specific structural properties of the language, while 
leaving the task of a detailed quantitative description to 
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automatic statistical methods. Thus, in building a structural 
description of the language under study, statistics and 
information theory can usefully integrate the knowledge 
provided by disciplines  such as acoustics and linguistics. 

performance displayed by this approach for the English 
language.  We  believe that it can be successfully applied to 
many other languages.  Some potential problems are the 
following: 

The results  achieved in prior studies confirm the excellent 

The acoustic front-end may require different  analysis of 
the signal to take into greater account features (such as 
pitch) which in some languages carry more relevant 
linguistic information than in English and Italian. 
Languages  with many forms  for  each  lexeme and/or many 
compound words  may  need  substantially  larger 
dictionaries to achieve  acceptable  coverage. 
Languages  with a large  variety  of sounds may require a 
larger  acoustic  vector  codebook or may  need continuous 
modeling. 
It might be unacceptably unnatural to leave  pauses 
between  words  (we found that Italian speakers  become 
accustomed to it very  quickly). 

Nevertheless,  these  methodologies  seem a promising  basis  for 
the development of continuous-speech  recognizers. 

extension  of the vocabulary and studies on human-factors 
aspects of the man-machine interface. 

Short-term goals of this project will include further 
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