Large-vocabulary
speech
recognition:

A system for the
ltalian language

by Paolo D'Orta
Marco Ferretti
Alex Martelli
Sergio Melecrinis
Stefano Scarci
Giampiero Volpi

We describe a research project in automatic
speech recognition which has led to the
development of an experimental large-
vocabulary real-time recognizer for Italian, and
show how the maximum-likelihood techniques
which had been employed in the development of
prototype recognizers for English can be
tailored to a language with substantially different
characteristics.

Introduction

Existing speech-recognition technologies have proven
adequate for simple tasks involving small vocabularies (tens
or hundreds of words) and suitable for limited applications
(typically, recognition of a set of commands uttered in an
isolated fashion by an operator whose hands are busy).
Systems found on the market are usually independent of the
target language. Interesting applications in an office
environment, such as text dictation and database query,
need, on the other hand, the ability to handle natural
language and pronunciation. This requires large vocabularies
(thousands of words) and substantially more sophisticated
techniques which take into account language-specific
knowledge on phonology, syntax, and (surface) semantics.
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Two approaches are currently popular in the research
community. One approach, based on a priori expert
knowledge of the acoustic properties of spoken language
[1, 2], attempts to decode the phonetic information
conveyed by speech, by means of Artificial Intelligence
methods. Sometimes a linguistic analysis based on syntactic
and semantic rules [3] is also performed. The other approach
employs statistical models for both acoustic and linguistic
analysis, and has already been successfully applied to
develop experimental speech-recognizer prototypes. The role
of human knowledge is limited to the design of a basic
model of speech production and perception; statistics is used
as a methodology for implementation of the model by
automatic learning from data.

The most notable example of the latter approach is found
in the techniques proposed by researchers at the IBM
Thomas J. Watson Research Center, which led to the
development of prototype large-vocabulary real-time
recognizers of spoken English [4, 5]. Our work on speech
recognition of Italian was founded on these techniques. The
same methodology is being applied to large-vocabulary
recognition of French by a research group at the IBM Paris
Scientific Center [6].

One feature distinguishing our approach is the
identification of the human-determined elements of the
model that could be deemed independent of the target
natural language, and those that had to be changed, thereby
showing that the method can be successfully tailored to
different langyages.

The real-time isolated-utterance speech-recognition system

we developed for the Italian language handles dictionaries of 217

PAOLO D'ORTA ET AL.




218

Acoustic

model
Filt Protot;
and 1JAD | spectrum| eoor T 11%41% | Search  |M1%2
amplifier| |Converter] lextraction] " |celection strategy

Frontend
Language
model]

Structure of the probabilistic speech recognizer.

up to 6500 words. Experimental recognition accuracy is over
96% [71.

Research on large-vocabulary Italian speech recognition
has come to be of widespread interest and is being pursued
at several public and private institutions [8-10]. No
prototype showing comparable performances has as yet
been made public.

In the next section a brief description of the probabilistic
approach is provided. Acoustic and language modeling of
Italian, and architectural issues are discussed in the
succeeding sections. The last sections offer experimental
results and remarks about possible extensions to other
languages.

The probabilistic approach to speech
recognition: A review

This section gives, for the convenience of the reader, a brief
description of the probabilistic approach to speech
recognition.

Let W = w,w, --. w, be a sequence of N words, and let 4
be the acoustic information, extracted from the speech
signal, from which the system will try to recognize which
words were uttered. The aim is to find the particular
sequence which maximizes the conditional probability
P(W| 4), i.e., the most likely word sequence given the
acoustic information. By Bayes’ theorem,

P12) = LA

P(4| W) is the probability that the sequence of words ¥ will
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produce the acoustic string A4, that is, the probability that the
speaker, pronouncing the words W, will utter sounds
described by 4. P(W) is the a priori probability of the word
string W, that is, the probability that the speaker will wish to
pronounce the words . P(4) is the probability of the
acoustic string A4; it is not a function of W, since it is fixed
once A is measured, and can thus be ignored when looking
for the maximum over W.

A consequence of this equation is that the recognition task
can be decomposed into the following subtasks (Figure 1):

1. Perform acoustic processing to encode the speech signal
into a string of values A4 representative of its acoustic
features, and, at the same time, adequate for a statistical
analysis.

2. Compute the probability P(4 | W) (for this purpose an
acoustic model must be created).

3. Evaluate P(W) (for this a language model is needed).

4. Look, among all possible sequences of words, for the
most probable one, by means of an efficient search
strategy.

Acoustic processing

In our system, as in the prototypes for the English language,
acoustic processing is implemented (in an acoustic front-end)
by a model of the human auditory system [11] and a vector
quantizer. The digitized acoustic signal (20K samples per
second, 12 bits per sample) is processed to extract, every 10
milliseconds, a vector of 20 parameters, which represent,
essentially, the signal log energy in 20 frequency bands
(spaced in accordance with the frequency sensitivity of the
human ear), and transformed nonlinearly to take into
account adaptation capability to different sound levels. The
vector quantization replaces each vector with an acoustic
label identifying the closest prototype vector belonging to a
speaker-dependent precomputed codebook of 200 elements,
as shown in Figure 2.

Search strategy

The search strategy is based on the stack sequential decoding
algorithm [12]. It controls the decoding process by
hypothesizing the most likely sequence of words (by means
of an efficient heuristic method), and requests the evaluation
of linguistic and acoustic probabilities according to the
hypothesized left context of the sentence. Stack decoding
proceeds from left to right, and therefore is intrinsically well
suited to a real-time system, which recognizes word
sequences while they are being spoken.

Acoustic model

The acoustic model is based on Markov sources [13]. A
Markov source of acoustic labels is essentially a probabilistic
finite-state machine. At fixed intervals of time a random
transition is taken, which may or may not cause a change of
state, and a random acoustic label is emitted. Transitions
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Acoustic representation of the Italian phrase riconoscimento della voce (‘voice recognition’): (a) speech waveform; (b) spelling segmented to align
with (c) wideband energy spectrum; (d) centisecond acoustic vectors; (€) vector prototypes corresponding to acoustic labels.

and label emissions occur according to probability
distributions depending only on the source state, not on
previous history (Figure 3). While it is possible to observe
the string of labels produced by the source, the sequence of
states it visits remains hidden. These models are therefore
named hidden Markov models. For the purpose of speech
recognition, a phonetic unit, modeled by a Markov source, is
associated with each of the basic sounds of the language.

A word is described by the concatenation of the Markov
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sources corresponding to the string of phonetic units forming

its pronunciation (Figure 4). Estimation of the probability

parameters of the Markov models (acoustic training) is

accomplished by the Baum-Welch algorithm [14], which

attempts to maximize P(4 | W) for a known training text

uttered by the speaker. Algorithms are also available for the

task of acoustic matching, i.e., the evaluation of P(4| W)

when performing speech decoding, according to the model

parameters computed during training. 219
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Example of Markov model of a phonetic unit. Every centisecond a
transition is taken and an acoustic label is emitted.

T —_— e

Markov model of a word, obtained by concatenation of the models of
its phonetic units.

7

Language model
The language model estimates the probability of a word

sequence W = w,w, - .- w, by evaluating the probability of
each word, given the left context of the sentence:

N
P(w, -+ wy) =1 Pw,|w, --- w_)).

=1
In accordance with the statistical approach, the estimator is
built from relative frequencies extracted from a large corpus
of sentences. To estimate the probability of a word, contexts
with the same last N — 1 words are considered equivalent
(N-gram language model [15]):
P(Wil W o

W) = POV W, yey -0 Wiy):

The predictive power of a probabilistic language model is
measured by perplexity [16}], defined as

p=2"

where H is an estimate of the entropy (according to the
language-model probability ) computed on a text W o-e Wy
generated by the source which is being modeled:
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A=-
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Perplexity is the average uncertainty (the branching factor) of
the model expressed by the equivalent number of
equiprobable words.

Unlike the acoustic front-end and the search strategy, the
acoustic model and the language model take into account
specific properties of the Italian language. Only a general
description is given here, while language-specific issues are
discussed in greater detail in the following sections.

Acoustic modeling of Italian

To achieve good recognition accuracy, it is necessary to
design a specific set of Markovian phonetic units (the
phonetic alphabet) to describe the pronunciation of the
words of the language. This set, in order to preserve the
linguistic information conveyed by the utterance of a word,
should not be simpler than the set of phonemes, the classical
units defined by the phonology of the language as classes of
sounds carrying the same linguistic information. The
phonetic alphabet should also describe the most relevant of
systematic speech-variability phenomena (such as stress and
coarticulation) not reflected by phonemes. A too-detailed
model, involving a large number of parameters, might
require an unacceptably large statistical sample of the
speaker’s voice for training. The design of the phonetic
alphabet should, then, look for the best trade-off between
detail of modeling and brevity of training. Some researchers
use units based on structural elements more complex than
phonemes, such as diphones, demisyllables, or syllables. In
order to keep the number of parameters low, we based our
units on an augmented set of phonemes (context-dependent
phonemes are also proposed in [17]). This allowed the choice
of a single topological structure—designed to provide
enough degrees of freedom—for all the Markov sources
associated with the phonetic units. Differentiation among
phonetic Markov sources is thus left entirely to the
parameter-estimation process (acoustic training).

A systematic procedure for finding an optimal phonetic
alphabet has not yet been developed. Our approach
combines the results of traditional acoustic and phonetic
research with analysis of statistical data. The procedure is
largely a trial-and-error process. We introduce modifications
to the phonetic alphabet (initially composed of the original
30 Italian phonemes) and then verify whether an
improvement has occurred. For the purpose of data analysis
and performance evaluation, a large multispeaker speech
database (more than 50000 utterances of individual words)
was built. The speech signal is aligned to the Markov sources
describing the spoken sentences by means of the Viterbi
algorithm [18], thus finding the segments of the utterance
corresponding to each phonetic unit.
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Possible modifications to the phonetic alphabet are often
suggested by phonological considerations. An example is the
sound /n/, normally an alveolar nasal, which becomes velar
when followed by a /g/ or /k/: This leads to the definition of
a separate phonetic unit for the latter case. Potentially weak
phonetic units are also found by performing recognition tests
on utterances from the database, without using the
information provided by the language model (which may
mask acoustic-model inaccuracies), and by analyzing
decoding errors. The phonetic description of words
most frequently unrecognized is studied for possible
improvements.

In order to verify whether a modification to the phonetic
alphabet produces an improvement, the most conclusive
measure consists in performing recognition tests on several
speakers. We developed some faster measures which proved
very helpful. A modification frequently introduced is the
modeling of a sound, previously described by a single
phonetic unit M, by two new units M, and M,, chosen on
the basis of the phonetic context (as for the above-mentioned
case of the sound /n/). To measure the value of the
modification, we estimate whether the utterances of the new
units show systematic, statistically significant differences, by
computing their Kullback divergence (or cross-entropy),
defined as

P(A| M)

dM,, M) =3 P(A|M)log = =—
)= L P P(A| M)

PA| M)

+§P(Z|M2)103m,

where the summation should include all possible strings 4 of
acoustic labels. A global measure of the quality of the
phonetic representation is provided by the mutual
information between the phonetic alphabet M and the set of
speech alignments A:

- PA\M)
m = log———.

M3 3 A e
A significant increase of mutual information is a good index
of an improvement of the phonetic alphabet. Practical
methods for estimating divergence and mutual information
are described in [19].

A peculiarity of the Italian language is the high frequency
of vowels. The ratio of consonants to vowels in a word,
which is particularly low in all Romance languages, is only
1.12 for Italian, while for English it is 1.41 and for German,
1.71 [20]. Therefore, special care was used in modeling
vowels: The seven vowel phonemes of Italian are described
by eighteen distinct phonetic units.

To achieve increased tolerance for regional accents, we
introduced “ambiguous” phonetic units. An example is the
vowel “e,” which, according to correct Standard Italian
pronunciation, should be open (/¢/) in some words and close
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Table 1 Word recognition accuracy of sentences from a 1000-
word dictionary, uttered by ten speakers decoded without any
language model, using three different phonetic alphabets.

Phonetic Recognition accuracy
alphabet (%)
Average Best Worst
PH45 88.7 91.9 84.6
PHS55 90.9 93.9 85.6
PHS56 92.2 95.1 89.5

(/e/) in others. The “e” of several words, though, is subject to
mispronunciation (sometimes due to hypercorrection
because the two vowels have merged in the native dialects of
the speaker). Our first model strictly respected the correct
Standard pronunciation, and included only two units for the
stressed “e,” EQ and EC. This led to poor training and
recognition of some speakers. We then introduced the unit
EX, associated with occurrences of “e” subject to
mispronunciation. For one speaker, for example, divergences
computed after the modification were

d(EO, EC) = 20.0,

KEX, EC)=17.1,
d(EX, EO) =84,
while before the modification it was

d(EO, EC) = 13.2.

These figures show that the new alphabet presents better
discrimination of consistent pronunciations of “e,” while the
new ambiguous unit is rather well matched to both
pronunciations.

Table 1 shows the recognition accuracy achieved for 50
test sentences (1025 total words, extracted from a dictionary
of 1000 words), uttered by each of ten speakers and decoded
without any language model, employing three different
phonetic alphabets:

PH45 The 30 Italian phonemes augmented to 45 units, on
the basis of simple phonological considerations.

PHS55 An extended set built by means of the previously
described techniques.

PHS56 The previous set with the addition of a special unit to
model the glottal pulse produced at the end of words
with a final consonant.

The addition of the glottal-pulse unit notably increased
performance, in spite of the fact that few Italian words end
in a consonant, because (when PH55 was used) those words

were often confused with similar words ending in a vowel. 221
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An essential problem is the design of the training text. It
should be kept as short as possible, but each phonetic unit
should be represented many times in several different
contexts in order to provide enough data for good estimation
of the Markov parameters. Our experiments show that
substantially better recognition accuracy is achieved when
the training text is created from meaningful sentences rather
than random sequences of words. This ensures higher
consistency with the sentences uttered during recognition
sessions. Therefore the training text is built manually.

In a large-dictionary real-time speech-recognition system,
it is computationally very demanding to perform a detailed
match of the input utterance to all the items in the
vocabulary. A commonly accepted solution is to carry out
recognition in more than one stage. In the first stages a fast,
rough analysis is performed to eliminate items displaying
gross mismatches to the incoming utterance. In this way a
small number of items are selected, the most likely being
identified in the last stage, through a detailed match
computation.

We investigated an interesting approach to fast acoustic
matching, consisting in grouping words into equivalence
classes, in order to represent more than one word by a single
acoustic model. During recognition, the utterance is initially
matched against class models, and thereafter against the
individual models of the words belonging to the selected
classes. Let ¢ be a generic word class, C.(c) the
computational cost of a fast match against class ¢, and N, the
number of classes; similarly, let w be a generic word, C,(w)
the computational cost of a more detailed match against
word w, and N,, the average number of words selected by the
fast-match stage. A small number of classes saves
computation in the first matching stage:

C(Fast_match) = N_E[C(c)].

On the other hand, because the class model must represent
all the words in the class, a large number of words per class
leads to inaccurate models, and to low selectivity; the
computational cost of the detailed match grows with N, :

C(Detailed_match) = N_E[C(w)].

A good classification should reduce the number of classes
to a minimum without losing accuracy. We studied two
different methods:

1. Define a distance measure between word models and
perform clustering {21].

2. Find broad phonetic categories and map the phonetic
units of each word into them, so that each sequence of
phonetic categories identifies a word equivalence class
[19].

An automatic method of selecting phonetic categories
consists in looking for the partition P of the set of phonetic
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units which has the highest mutual information with respect
to the acoustic labels, given a target number of classes k:

m(P, A) = maxm(P, A).

Due to the combinatorial explosion of the number of
partitions, an exhaustive search is infeasible, and some
heuristic method must be used. OQur approach consists in
looking for the best partition, starting with one unit per
category and reducing the number of categories by successive
merges. The traditional greedy technique, which iteratively
carries out the best merge of two categories, ensures
optimization on a local scale only. An improvement to this
technique consists in performing, each time two classes are
merged, all those movements of a single element which
increase mutual information. We found that still better
results can be obtained by applying a more advanced
heuristic method of state search, formally identical to the
tree ordered-search algorithm [22]. We associate to a
partition P into # classes a cost expressed by

CP) = n(n) — m(P, A),

where m is the mutual information for P and 7 is the highest
expected mutual information for a partition of cardinality 7.
This enables us to compare the cost of partitions of different
cardinalities. The algorithm keeps an ordered list of lowest-
cost partitions, initialized to contain only the trivial partition
with one unit per class. Iteratively, it computes new
partitions (by performing merges of two classes belonging to
the best partition so far) and inserts them into the ordered
list.

This is the best partition into six classes found by the
algorithm for one speaker:

e /a/ sounds.

e Back vowels.

e Most front vowels, one liquid, and one nasal.

e Most liquids and nasals, one /e/ sound, and one voiced
plosive.

o Plosives.

e Fricatives.

This classification yields a fast match with low
computational cost, but selectivity remains unsatisfactory.
We are currently studying methods to identify classification
techniques which jointly optimize the cost of fast match and
of detailed match. The word-classification techniques were
applied to Italian, but are immediately extendible to other
languages.

Language modeling of Ralian

Our corpus was formed from a set of magazine articles and
news-agency flashes on economy and finance, amounting to
about ten million words. Figure 5 is a graph of the frequency
of the words, ordered by decreasing number of occurrences.
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To evaluate the practical usability of our recognizer,
coverage by dictionaries of increasing size has been
measured (Figure 6). Coverage is, as expected, not as
complete as for a language like English (which has far fewer
inflected forms), but is nevertheless encouraging. The curves
represent values for the same dictionaries applied to three
corpora on economy and finance:

e Corpus Al (constructed from news-agency flashes), from
which the dictionaries were generated by taking the most
frequently occurring words.

e Corpus A2, disjoint from A1 but produced from the same
source as Al.

e Corpus M1, produced from a different source (magazine
articles).

The three-gram model displayed a performance comparable
1o that of the English one, although Italian, like the other
Romance languages, is significantly different from English
on the morphological level (higher number of inflected
forms) as well as on the syntactic one (weaker constraints on
word order in the sentence; strict gender and number
concordance). The experimental perplexity of the three-gram
model for the 6500-word dictionary was 110.65 (the two-
gram model gave p = 150.73, the one-gram model
p=780.99).

The choice of N = 3 for the N-gram language model is
suggested by the size of the corpora available in practice
(tens of millions of words), which do not contain enough
statistical data for an adequate estimation of probabilities of
longer sequences of words. We verified that N-gram language
models with N > 3, based on statistics collected from the
same corpus, display perplexities not significantly lower than
the three-gram model.

Perplexity is an intrinsic measure of the predictive power
of the language model, which does not take into account its
interaction with the acoustic model. A study on coupling
effects between acoustic and linguistic models showed that
they provide essentially independent information. We first
measured how the predictive power of the three-gram
language model (expressed by perplexity) changed when its
choice was limited to a subset of m words of the vocabulary
(including the right word) chosen randomly. The same
experiment, performed on subsets selected according to
acoustic similarity to the right word, showed no significant
differences in the behavior of the perplexity as a function
of m.

However, at least for a strongly inflected language like
Italian, it should be possible to do even better than such
independence. This remark is prompted by experimental
results [23] obtained in comparing a three-gram language
model with one based on grammatical categories [24]: While
the former exhibited lower perplexity, the latter was found to
perform better when the acoustical information was taken
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Frequency of words in a corpus of economic and financial news,
ordered by decreasing number of occurrences. The curve is well
approximated by the function f(n) = 0.1/n.
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Coverage of the corpus as a function of the size of the dictionary.

into account—i.e., when perplexity was measured only on a
subset of words selected according to acoustical similarity to
the right word.

The design of the system took into account language-
specific phenomena, such as elision and what is known in
Italian as apostrophe. For example, to dictate the word all’,
in phrases like all’obiettivo, the user may choose among
three pronunciations:
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1000 words 3000 words  §i# 6500 words

SPK1 SPK3 SPK5 SPK7 AVG
SPK2 SPK4 SPK6 SPK8

Percent word error rates of recognition experiments for three
dictionaries of increasing size. No language model is used.

M 1000 words 3000 words i 6500 words

SPK1 SPK3 SPK5 SPK7 AVG
SPK2 SPK4 SPK6 SPK8

Percent word error rates of recognition experiments for three
dictionaries of increasing size. The three-gram language model
is used.

1. jal/
2. /allo/
3. /allapostrofo/
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Pronunciation 1 is common to the word a/, while
pronunciation 2 is common to the word allo. The language
model is able to disambiguate properly.

Architecture

The development of the recognizer has taken place on an
experimental system consisting of a workstation based on an
IBM Personal Computer AT® {25] equipped with a special
signal-processing card [26] (the acoustic front-end) and a
host running VM/SP (which handles the decoding stage—
search coordination, acoustic and language modeling). The
recognized text is displayed on a 3270 terminal. The user
can edit the text using the keyboard and produce a hard
copy on the attached printer.

An advantage of this architecture is that the decoding
stage relies on general-purpose hardware only. This has
allowed us to run the speech recognizer on several
System/370 mainframes, connected through 3270 cable to
the acoustic-processing workstation. An IBM 3090 CPU has
provided enough computing power to achieve real-time
recognition for the largest dictionary we have developed so
far (6500 words).

The recognizer has also been implemented on a single
workstation, consisting of a PC AT equipped with two to
five special cards, in accordance with the Tangora
architecture [5, 27}.

Experimental results

Several speakers trained the system by reading a 20-minute
text. The personalized parameters were used to perform
recognition tests on sets of 50 meaningful sentences (1025
total words) uttered by the speaker. Figure 7 shows the
percent error rates achieved when no language model is
employed (that is, the words in the dictionary are considered
equiprobable), for recognizers based on three dictionaries of
different sizes (1000, 3000, and 6500 words). Figure 8 refers
to the same recordings decoded using the language model.

The amount of computation performed in the decoding
stage, C, displayed a sublinear increase with respect to the
dictionary size: C(3000) was 2.3 X C(1000), while C(6500)
was 4.0 X C(1000).

Some recognition experiments were performed on
speakers who had not previously trained the system. The
Markov parameters had been trained on a mixture of voices
of ten speakers. Recognition accuracy, for a 1000-word
dictionary, ranged from 89% to 94%.

Conclusions

Recent research on probabilistic methodologies has provided
a powerful set of techniques for modeling the complex
phenomenon of natural speech. These techniques have the
advantage of allowing the model designers to concentrate on
the specific structural properties of the language, while
leaving the task of a detailed quantitative description to
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automatic statistical methods. Thus, in building a structural
description of the language under study, statistics and
information theory can usefully integrate the knowledge
provided by disciplines such as acoustics and linguistics.

The results achieved in prior studies confirm the excellent
performance displayed by this approach for the English
language. We believe that it can be successfully applied to
many other languages. Some potential problems are the
following:

e The acoustic front-end may require different analysis of
the signal to take into greater account features (such as
pitch) which in some languages carry more relevant
linguistic information than in English and Italian.

» Languages with many forms for each lexeme and/or many
compound words may need substantially larger
dictionaries to achieve acceptable coverage.

¢ Languages with a large variety of sounds may require a
larger acoustic vector codebook or may need continuous
modeling.

e It might be unacceptably unnatural to leave pauses
between words (we found that Italian speakers become
accustomed to it very quickly).

Nevertheless, these methodologies seem a promising basis for
the development of continuous-speech recognizers.

Short-term goals of this project will include further
extension of the vocabulary and studies on human-factors
aspects of the man-machine interface.
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