CRITAC—

An experimental
system

for Japanese
text proofreading

by Koichi Takeda
Emiko Suzuki
Tetsuro Nishino
Tetsunosuke Fujisaki

This paper describes an experimental expert
system for proofreading Japanese text. The
system is called CRITAC (CRITiquing using
ACcumulated knowledge). It can detect
typographical errors, Kana-to-Kanji conversion
errors, and stylistic errors in Japanese text. We
describe the basic concepts and features of
CRITAC, including preprocessing of text, a
high-level text model, Prolog-coded heuristic
proofreading knowledge, and a user-friendly
interface. Although CRITAC has been primarily
designed for Japanese text, it appears that most
of the concepts and the architecture of CRITAC
can be applied to other languages as well.

1. Introduction

Text proofreading on a computer has been one of the most
attractive facilities since word processing became an
everyday use of computers. Although simple spelling
checkers and writing tools [1] for English text are widely
available, detection of grammatical and stylistic errors in text
is still a research issue [2]. This is because such text
proofreading involves a fair amount of natural-language
processing. The task becomes even harder for Japanese text
since, among other things, words are not separated by

©Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

blanks, and segmentation of the text into words is not trivial.
Therefore, human proofreading remains a time-consuming
part of the text-preparation process even though editing,
formatting, and distributing the text are fairly well
automated.

CRITAC (CRITiquing using ACcumulated knowledge)

[3, 4] is our solution to the above problem. It is an expert
system for proofreading (and, we hope, critiquing) Japanese
text. CRITAC is based on a conceptual representation of text
(called structured text), a Prolog-coded heuristic knowledge
base for proofreading, and text preprocessing to generate a
physical representation of the structured text. Structured text
allows us to express high-level proofreading knowledge
without worrying about how text is physically stored. In
particular, CRITAC exhibits an incremental growth of
proofreading capability through the accumulation of
heuristic knowledge. This advantage is further discussed in
Section 2. The concepts of structured text and the
proofreading knowledge base are explained by using English-
like text in Section 3.

Implementation of CRITAC and its sample proofreading
session are shown in Sections 4 and 5, respectively. (Since
these issues are language-dependent, we provide some
information about the Japanese writing system in the
Appendix to help the reader understand the issues.) A
summary and an outline of future work are given in
Section 6.

2. Knowledge-based approach to text
proofreading
There are many types of errors we can find in text. They

might be classified into spelling, grammatical, and stylistic 201

KOICHI TAKEDA ET AL.

202

TEXT T: “I have a pen. I found a notebook in the room.”

GRAMMAR G: {S-» NP VP PERIOD, S — NP VP PP PERIOD,
NP — DET NOUN, NP — PRONOUN,
VP — VERB, VP -» VERB NP, PP — PREP NP,
DET — “the”, DET — “a”, NOUN — “pen”,
NOUN — “notebook”, NOUN — “room”,
PRONOUN -» “I”, VERB ~» “have”,
VERB — “found”, PREP — “in”, PERIOD — “.”}

STRUCTURED TEXT

text(t1,isecl}).
sect(secl,{parl}).
para(parl,{sl,s2}).
sent(s1,{npl,vp1,w5}).

sent(s2,{np3,vp2,ppl,w13}).

phrase(npl,fwl}).
phrase(vpl,fw2,np2}).
phrase(np2,{w3,w4}).
phrase(np3,{w6}).
phrase(vp2,{w7,np4}).
phrase(np4,{w8,w9}).
phrase(pp1,{w10,np5}).
phrase(np5,{wl1,w12}).

word(w1,“I”).
word(w2,“have™).
word(w3,“a”).
word(wd4,“pen”).
word(w5,“.”).
word(w6,“I”).
word(w7,“found™).
word(w8,“a”).
word(w9,“notebook™).
word(w10,“in”™).
word(w!1,“the”).
word(w12,“room™).
word(w13,“.”).

errors, or syntactic and semantic errors, etc. It is important,
however, to consider the range of complexity required for a
computer to detect such errors (or problems) as the

following:

e An abstract exceeds the preset limit of 300 words.

e A proper noun is found that does not begin with a capital

letter.

o The incorrect expression many money occurs.
o The conclusion of the paper is too vague.

Some of these errors are detected easily, whereas others are
so difficult to find that powerful syntactic and semantic

analysis is required. Although text critiquing using a natural-

language parser [5] and possibly its extension to semantic

processing as in [6, 7] are promising methods to explore, we

need a more integrated framework to cover each of the

problems mentioned earlier.

Our requirement can be satisfied by a knowledge-based
system approach [8] which has these properties:

KOICHI TAKEDA ET AL.

e Fragments of proofreading knowledge can be described.

o Each piece of knowledge can be accumulated
incrementally in a knowledge base.

o Proofreading knowledge can be modularized according to
the types of errors to be detected by the knowledge.

e Procedural modules such as a syntactic parser and
semantic analyzer can be plugged into the system to
perform specific proofreading.

Thus, we can build up an expert system by collecting and
formulating human proofreading knowledge. Our approach
is implemented to satisfy the following requirements:

® Representation of text Text is a central object of the
system. Proofreading knowledge is applied to the text, and
a user should be able to modify the text to correct errors.

® Representation of proofreading knowledge Proofreading
knowledge can be formed by a set of rules. Each rule
describes a specific type of error declaratively even though
it might actually invoke a procedure (e.g., a parser) to
verify the rule.

o User interface In some cases, the system does not have
the competence of a human expert. It may fail to
correct/detect some errors, or may even make a mistake.
Thus, the interface is crucial in helping a user confirm
each system-detected error. The user interface should also
be designed to support user-initiated proofreading, which
can be intricate and ad hoc.

We discuss these components in the next section.

3. Structured text and proofreading knowledge
base

It has often been posited that text has an inherent hierarchy.
A simple version of the hierarchy is as follows:

text
section
paragraph
sentence
phrase
word.

Recent text-processing systems can handle each element in
the hierarchy to support advanced editing and formatting of
text, which has motivated logical text modeling [9].

Proofreading also requires a logical text model, but to do a
satisfactory job, grammatical knowledge and domain
knowledge are also needed for handling textual content.
Since domain knowledge is beyond the scope of this paper,
we concentrate on how to incorporate logical structure and
syntactic knowledge.

Grammatical knowledge in CRITAC comprises a lexicon,
a set of morphological rules, and a grammar. The lexicon
consists of a set of words associated with attributes such as

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

root form, parts-of-speech, and pronunciation. By
morphological rules we mean a mapping between entries in
the lexicon and specific forms of words occurring in text. A
syntactic grammar is a mapping between sentences and
syntactic structures.

& Structured text

Structured text is our conceptual view of text. It combines a
logical structure of text and syntactic knowledge, as shown in
Figure 1. Throughout the paper, we use Prolog [10] notation
for structured text and proofreading knowledge. In Figure 1,
we have structured text for text 7 represented by six types of
Jacts—text(), sect(), para(), sent(), phrase(), and word(). The
Jacts are defined in the section immediately following. It
should be noted that variables begin with uppercase letters
and constants either begin with lowercase letters or are
quoted strings.

text(T,Sectlds) Text 7T consists of a sequence of sections
identified by SectIds. T is an identifier of text, and
Sectlds is a list of identifiers of sections.

sect(Sec,Paralds) A section Sec consists of a sequence of
paragraphs identified by Paralds. Sec is an identifier of a
section, and Paralds is a list of identifiers of paragraphs.

para(Par,Sentlds) A paragraph Par consists of a sequence of
sentences identified by Sentlds. Par is an identifier of a
paragraph, and Sentlds is a list of identifiers of
sentences.

sent(S,Ids) A sentence S consists of a sequence of phrases
and words identified by /ds. S is an identifier of a
sentence, and Ids is a list of identifiers of phrases and
words.

phrase(P,Ids) A phrase P consists of a sequence of phrases
and words identified by Ids. P is an identifier of a
phrase, and Ids is a list of identifiers of phrases and
words.

word(W,String) W is an identifier of a word. String is a
spelling of the word identified by W.

Although we represented “string” only at the word level, it
is easy to produce the definition text(T,Sectlds,String)
instead of text(T,Sectlds), thereby taking a different
conceptual view. Other facts can also be modified similarly.
One alternative way is to define an auxiliary set of facts
string(Id String), which is true if String is a character string
for an object Id. We can think of this fact as a function to
compute a character string of a given object Id.

The hierarchy among these six types of objects is
represented by logical links using identifiers (see Figure 2).
An identifier is a surrogate in the sense of [11] of each
object. Note that a syntax tree of a sentence defined by a
grammar is embedded in logical links of sent() and phrase().
It is also important to note that we can associate a word in
word() with as many attributes as we have in our lexicon,

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

text(tl, {secl})
sect(secl,{parl})
para(parl,{s1,s2})
sent(s1,{npl,vpl,w5})
t— phrase(npl,{wl})
word(w1,“I”)
|— phrase(vpl,{w2,np2})
tword(wz,“have”)
phrase(np2,{w3,w4})
word(w3,“a™)
word(w4,“pen”)
— word(w$5,“.”)
— sent(s2,{np3,vp2,ppl,wi3})
|— phrase(np3,{wé6})
word(w6,“I”)
— phrase(vp2,iw7,np4})
word(w7?,“found”)
phrase(np4,{w8,w9})
word(w8,“a”)
word(w9,“notebook”)
— phrase(pp1,{w10,np5})
word(w10,“in”).
phrase(np5,{wi1,wl12{)
word(w11,“the”)
word(w12,“room”™)

e word(w13,“.”)

Logical links among objects in structured text.

For example, if we have parts-of-speech and pronunciation
for each word in the lexicon, we will have

word(W,String,Parts-of-speech,Pronunciation)

instead of word(W,String). It follows that we can successfully
hide procedural aspects of text processing from structured
text. A lexical analyzer, a parser, and dictionary lookup are
no longer necessary for structured text because all the
information obtained from these procedures is already
represented in the structured text. These procedures are
either called prior to the generation of physical text
representation or invoked dynamically to formulate the
structured text. The former case is called preprocessing of
text; the latter is known as on-the-fly processing.

It is apparent from our definition of structured text that
the entire text can be managed by a relational database [12]
system by associating each type of fact with one relation.
This is a great advantage, because we can automatically
enjoy such benefits of relational database systems as high-
level query languages, view mechanisms, security protection,
and concurrency control [13]. It is also possible to

KOICHI TAKEDA ET AL.

203

204

A KWIC view is used to arrange a set of words consecutively.
A set of compound words containing common primitive
words can be arranged consecutively in a KWIC view.

@

A KWIC viewisused to...
... consecutively in a KWIC view.
A set of compound words ...
...to arrange a set of words consecutively.
...in a KWIC view .
AKWIC view isusedto...
...asetof words consecutively.
... of compound words containing ...

)

implement structured text in an extended relational catabase
model [14], semantic data models [15], or an object-oriented
programming language [16].

A detailed examination of the types of word attributes that
are required for a specific language (in this case, German)
may be found in [17]. Attributes of higher types of objects,
say the heading of a section, can be handled similarly.
Choices of attributes and types of objects are language-
dependent.

o External views of text

Structured text is a conceptual view of text primarily
designed for programmers and knowledge engineers of the
proofreading system. This view is not appropriate for end
users because it is harder for them to browse and edit the
structured text than a plain view of text, i.e., a sequence of
characters. Therefore, external views are designed to provide
users with an easy means of browsing and editing text as well
as all the information available from structured text. Two
kinds of external views are given here. One is called a source
view, the other is called a KWIC (Key Word In Context) view
(see Figure 3). Both of these views seem to be a plain
representation of text, but we can support such operations as

& Movement/deletion of words, noun phrases, relative
clauses, or sentences.

» Display of lexical information, synonyms, or antonyms of
a word.

« Application of proofreading knowledge.

KOICHI TAKEDA ET AL.

The KWIC view consists of # lines, where # is the number
of keywords in the text. In the conventional sense of KWIC,
keywords are usually content words (nouns, verbs, etc.) and
each line is a sentence where each keyword appears. We
extend the notion of a KWIC view such that

& Keywords can be any single type of object in the structured
text which is specified by some predicate (e.g., proper
nouns, noun phrases, or first sentences of paragraphs).

& The context of each keyword, which is a logical line of the
KWIC view, can be any type of object in the structured
text. The type of context must be either superordinate or
equal to the type of keywords.

& The ordering of KWIC lines is a total ordering of
keywords, such as an alphabetical ordering or an ordering
by appearance in the text. A predecessor or successor of
each keyword in the context might be used to define an
ordering as well.

In accordance with the definitions above, we can get a
KWIC view of all the proper nouns with noun phrases as
context in an alphabetical ordering,

Updates through external views are immediately reflected
by conceptual and physical representation of text. It is
pussible to switch multiple external views to update single
physical texts. Thus, external views provide a very flexible
user interface. Discussion of multiple views and text analysis
can be found in [18].

& Proofreading knowledge
Proofreading knowledge can be described as a set of Prolog
predicates of the form

error(Id, Type-of-Error) < cond,(Id) & . . . & cond,(Id),

where Id is an identifier of an object in structured text,
Type-of-Error is an error type to be detected, and cond,(Id),
..., cond,(Id) are predicates which define a specific error.

For example, if we decide to detect text whose abstract
contains more than 300 words,

error(Text,long-abstract) « text(Text,Sectlds) &
member(Sect,Sectlds) &
isAbstract(Sect) &
numberOf Words(Sect,X) &
moreThan(X,300).

will be the proofreading rule. Here, member(Sect,Sectlds) is
true if Sect is in the list Sectlds; isAbstract(Sect) is true if
Sect is an identifier of an abstract; numberOf Words(Sect, X)
is true if X is the number of words appearing in the section
Sect; and moreThan(X,300) is true if X is more than 300.
These predicates are further defined by other predicates
unless they are either facts of structured text or built-in
predicates [10].

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Let us consider ambiguous sentences and invalid
sentences. An ambiguous sentence s/ might be represented
by multiple facts

sent(sl,Ids,), sen(sl,1ds,), . . ., sent(s1,1ds,),

where Ids,,. . ., Ids,, are distinct lists of identifiers. Thus,
detection of ambiguous sentences is written as

error(Sent,ambiguous) « sent(Sent,Idsl) &
sent(Sent,Ids2) &
notEqual(Ids1,Ids2).

Since a sentence tends to have multiple syntactic structures
except in restricted domains, it might be better to modify
this rule so that limited types of ambiguities (e.g., a noun
phrase “A and B or C”) can be detected. By invalid
sentences we mean sentences which cannot be parsed by a
given grammar. An invalid sentence has either an unknown
word or a subsequence of words which the grammar cannot
map to a tree. By adding auxiliary facts, say unknown(ld)
and invalidSequence(Sent,Ids), we can detect and locate the
errors. Efforts to generate reasonable parses for
“unorthodox” sentences [19] can be incorporated to detect
stylistic problems.

We end this section with an interesting combination of
KWIC views and proofreading rules. If we allow
“pronunciation” ordering of keywords, we can arrange
homonyms such as hair and hare adjacently in a KWIC
view. For example, we can detect successive keywords hair
and hare followed immediately, say, by in the park, where
either keyword might be incorrect—a situation which could
easily occur in text created with a voice-input method. We
can also detect lack of conformity in word usage such as
style errors and stylistic errors by an alphabetical ordering of
keywords and their successors. Note that the detection of
these possible errors can be performed in time proportional
to the number of keywords once such a KWIC view is
computed, and it is easy for a user to verify each error in the
KWIC view because of the consecutive arrangement of
keywords.

4. System architecture

CRITAC is our implementation of the concepts described
earlier. The architecture of CRITAC, shown in Figure 4,
consists of four major components: a text compiler, a text
editor, an SQL/DS [20] dictionary server, and a proofreading
knowledge base written in IBM Prolog [21].

& Text compiler
The text compiler is a preprocessor of text. It generates

o A physical representation of structured text. This is a
collection of facts written in IBM Prolog. Since we use
Prolog for physical representation, the conceptual and
physical views of text are the same.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

SQL/DS dictionary
Server
Plain text Text editor I

I Proofreading knowledge base - J

I Source view IKWIC viewl
Text compiler
User interface

Table 1 Text compiler versus compilers of programming

languages.
Text compiler Compilers of programming
languages
Source Plain text written ina A program written in a source
natural language programming language
Object A Prolog program (a A program written in a target
collection of facts) programming language
Other External views and Source listing and error
output eITOr Messages messages

& A source view of text and proofreading (error) messages,
which are cross-referenced. We call this batch
proofreading; a user can get the same messages during
interactive proofreading using the text editor. The same
proofreading knowledge base is used in both cases. An
example of proofreading messages is given in Figure 5.

o Optionally, a KWIC view of the text and some statistics of
the sort described in {1]. Currently, only a few types of
statistical information are available for Japanese text.

As shown in Table 1, the text compiler is analogous to
compilers of programming languages.

Figure 6 shows the types of objects that have been
designed for Japanese structured text. As discussed in the
Appendix, seg() is specific to Japanese. It corresponds to a

segment (or, in Japanese, bunsetsu), which consists of one 205

KOICHI TAKEDA ET AL.

Segment

% ERROR 31 on line 23 position 6 . THEMEHR S X 7 L8012,
WHTHEWEEIFELNTHET,
MERTIID) IEAL? Connectivity violation

* ERROR 33 on line 40 position 35 : PEH» & 1
REROTRIERD) $ LA ?

D Ty BEFTEIMNBIITTEID) ZRAL?

Unconverted Hiragana character

* ERROR 17 on line 24 position 28 : T X - T,
1 2DOXDOPICF U SEIRRELELN T T T,

BOECE LY TEZEA»? Repetitive use of the same expression

content word that may be followed by a sequence of 2. Content words in the segments are recognized by looking

206

function words. In Figure 6, head() corresponds roughly to
word() in the previous section. Currently we allow only one
text at a time in the system, and text consists simply of
paragraphs, not sections. Moreover, a Japanese grammar has
not yet been incorporated into the system. Thus, the present
version of structured text is a combination of a simple
hierarchy of objects and morphological knowledge. An
example of structured text is shown in Figure 7.

The text processing necessary to generate the above
structured text is illustrated in Figure 8. A sample Japanese
sentence is given whose transliteration and translation
appear, respectively, above and below the sentence. The
steps involved in the process are as follows:

1. A segmentation algorithm is applied to the sentence. This
algorithm contains about 100 heuristic rules, each of
which specifies the cases where a segment boundary
usually appears. The accuracy of this segmentation
algorithm is about 97.5%.

KOICHI TAKEDA ET AL.

them up in a primitive-word dictionary. If a content word
is a compound word, it is further decomposed into
primitive words. Since many compound words (in
particular, Kanji compound words) have ambiguities of
decomposition, we use a stochastic estimation algorithm
[22] to find the most likely decomposition. This is a
version of algorithms for Markov models found in

[23, 24]. The accuracy of decomposition is about 96.5%.

. Function words in each segment are identified. The

connectivity of these function words (see the description
in the Appendix) is verified. The connectivity is described
by an automaton [25], and a valid sequence of function
words corresponds to an acceptable transition in the
automaton.

. The internal structure of each Kanji compound word is

analyzed. The internal structure is represented as a binary
tree which is described by a probabilistic context-free
grammar [26] of compound words. Again, a stochastic
estimation algorithm is used to get the most likely parse

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

tree [27]. One example of a nontrivial parse tree is shown
in Figure 9, where we have alternative parses such as

((very (large computing)) machinery) or
(((very large) computing) machinery)

in addition to the correct one, i.e.,
((very large)(computing machinery))
of Figure 9.

o Text editor

The text editor provides source and KWIC views, and
facilitates the browsing and modification of text through
these views. When a user asks the system to apply
proofreading rules, diagnostic messages will appear on the
screen, with possible errors underlined in the text. In
addition, the types of errors and their explanations can be
obtained by hitting a certain key on a keyboard with a
cursor locating a particular underlined portion. A
mechanism to reflect the updates in external views of
structured text is not yet fully supported.

o SQL/DS on-line dictionary server
On-line access to system dictionaries or an encyclopedia [28]
is a very useful facility in an advanced text-processing

system. Such sources can be used to confirm system-detected

errors or to help user-initiated proofreading. We have
implemented a dictionary server using SQL/DS, a relational
database system. It contains spelling, pronunciation, and
parts of speech for about 30000 Kanji primitive words.
Thus, retrieving attributes of a word, which we discussed in
the previous section, is actually interpreted as a relational
query to the dictionary server.

Since SQL/DS supports an excellent relational query
language, most of the users’ requests for lexical information
can be expressed as simple relational queries. For example,
retrieving all the homonyms of a word is mapped to the

query

SELECT spelling
FROM word__table
WHERE word__table.pronunciation = X

SELECT, FROM, and WHERE are reserved words of
SQL/DS. “SELECT spelling” asks SQL/DS to return values
of spelling. “FROM word_table” means that the range of
retrieval is a word_table relation. “WHERE
word_table.pronunciation = X” specifies that we are only
interested in those words whose pronunciation is X. When
this query is issued, X is replaced with the pronunciation of
a given word. Thus, the entire meaning of this query is ‘Give
me the spelling of all the words in word__table whose
pronunciation is X.’

Searching for homonyms or words starting with the same
characters appears to be common, and queries of these types
are stored in the system beforehand. These queries are called

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

seg(I,J,K,Seg) A character string Seg is the Kth segment in
the Jth sentence of the Ith paragraph. Here, a triple
(1,J,K) is an identifier of Seg. I, J, and K denote the
same indexes below.

head(1,J,K,Cont,Pro,Pos,Lab) Cont is a content word
(possibly a compound word) of the segment identified by
I, J, and K. Pro and Pos are the pronunciation and parts
of speech of Cont, respectively. Lab is a list of labels to
denote prefixes, suffixes, and primitive words appearing
in Cont.

tail(LJ,K,Func,Pos) Func is a list of function words in the
segment identified by I, J, and K. Pos is the part of
speech of the last function word of Func.

punc(L,J,K,Punc) Punc is either a period or comma (if any) of
the segment identified by L, J, and K.

sent(I,J,S) S is a sentence which is a sequence of segments
seg(L,J,K,Seg) for all K.

para(L,P) P is a paragraph which is a sequence of sentences
sent(L,J,S) for all J.

text(T) T is text which is a sequence of paragraphs para(l,P)
forall L.

Types of objects in Japanese structured text.

canned queries. Canned queries are issued by either hitting
an assigned key or giving the name of a query with its
parameters. A user does not have to learn the query language
to issue a canned query. Additional features of the SQL/DS
dictionary server are ad hoc queries and the view
mechanism. A user can access specific data by formulating a
query. Once a query is expressed, it will be issued to the
dictionary server just like a canned query. A view is a virtual
relation whose contents are returned values of a query. For
example, we can define a private “noun table” whose
definition is the query

SELECT spelling, pronunciation
FROM word_.table
WHERE word__table.part_of_speech = “noun”

The “noun table” has two attributes, spelling and
pronunciation, and contains all the nouns from word__table.

o Proofreading knowledge base

Our proofreading knowledge base consists of about 40 rules
for detecting about 20 types of errors. We describe a few of
the rules which detect common errors.

KOICHI TAKEDA ET AL.

207

seg(1,1,1, ' 7—F 7oy ¥ '), |

head(1,1,1, ' 7—F7axy¥ 'aqil,' bbiAr¥-E ' ail, 13, 18, 19},
"K '.nil).

tail(1,1,1, ' @ ' .nil, {76}).

seg(1,1,2, ' ¥IZ).

head(1,1,2,"' ¥k ' .ail, ' 3 X w9 ' nil, {13, 19}, '12 ' .nil).

tail(1,1,2, ' i ' .nil, {78}).

seg(1,1,3, ' fEw '),

head(1,1,3, "#t ' mil, ' £ 3% ' .ail, {10}, ' 1 ' .nil).

tail(1,1,3, ' \» ' .nil, {28}).

punc(1,1,3, ', ').

seg(1,2,1, ' BAREXEL ').

head(1,2,1, ' HAFE '. 'XF "ail, ' ITIFAZ . " kAL & ' ail, 19},
"12S ' . '12" nil). -

tail(1,2,1, ' % ' .nil, 77}).

seg(1,2,2, '"fERT B2 L"),

head(1,2,2, ' fERX ' nil, ' & <&\ ' nil, {13, 19}, '12" ail).

tail(1,2,2, '3 ', ' 2 & . 'A% il {75)).

seg(1,2,3,' BHBICH->T & "),

head(1,2,3, ' &% ' ail, ' X5\ "nil, {19}, ' 12" .ail).

tail(1,2,3, "' " s LT, "& ', "% " il {63}).

punc(1,2,3, ', ').

seg(1,3,1, ' L& L ').

head(1,3,1, ' LA L "wil,' L2*L ' .il, nil, ' H' .nil).

Sample structured text.

208

KOICHI TAKEDA ET AL. IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

"IV 19 vaIIvL IHOIOX

‘paugopun
SI PIOA UMOWYUN UE JO Y233ds jo 1ed ay) asnedaq

602

Qe U oI IO N ['PEdY —
(PIOA\1USIUODPIEAUL Y [T

[k

a1 Aq painided AIe[TWIs ST ASeD SI[] "SI[NSAI PIOM JUUOD

uMmo{UN UR ‘SI3)orIEYD Tuey] JO UONBUIqUIOD UAOUUN

Ue OJuI SI9)0eIeyd BUBSRIIH SWOS SU7i24U00 U JO SIFoRIRyD
eueyeley] JurdA) ul aYe)sit B Spew sey Jasn € J]

*Os[e SpIOM UOTIdUN) JO douanbas

pl[eAUI UE SE Pajeor) AJ[ensn st SuLns eueSely 2yl ‘SuLns

8861 HOUVI ¢ 'ON ¢ "IOA 'dOT4A3d SHA ' WAl

Huey Surpuodsarios oY) ojul 3uLns eueSeIry € HIAU0D

01 uUs10810J SBY 135N B J] "3 PUB ‘[‘T JO dnfea 3y) Suisn

£q IOLI5 9} 91800] Ued am “[Tu ST §033ds Jo 1red asoym ()[re}

© ST 919Y} SUBAW YOIgMm ()[IE] B JO Q0URISUT UE YIIM palfiun

ST O[O STYY JT JBY) 9JON] ‘JIU ‘ST Jey}—paugapun s1 duanbas

B (ONS Ul PIOM UOTIOUNJ IsB] 9y} JO Yyo3ads jo ped ay) asneoaq

‘(ruoung Y ‘rPIrer — (PIO UONOUNPIEAUT Y [T)I[n

a[nI ay) 4q pajpuey

SI 9SBO SIY], "S)NS3I UAYJO (SPI0m UONoUNy Jo duInbas

pI[eAUl UE “3'T) SPIOM UOTIOUNY JO UOTIB[OIA AJATIDOUUOD

e ‘s1910e1eyd euedeny SuidAl ul 9)elsI € 9pBU Sey Jasn
© J["uOwWwod jsoul 9y} Suowe a1k sI0115 [eorydesdodA],

*20uajuds asauede © Juissadold

piom punodwo)) ;D

XIgng -§

(SI9)0RIRYD 7) PIOM QAT A\

xyyaid :d W
J
D
(fuoo—q1ar) (fgO:osed) (9ponaed [U0o~qIoA) (rg0O:ose0) %
"L~ A DN rt 26N (%w
GIoA unou gIoA/Unou unou
M M M d M S M
ure)qo juawgos ssaooud axd 1x9) a8enSue; ueder

L%_/ L%XJ

N ey - [~ “EX/#¥H 't

‘o / ZWX/ 2L/ 2R EE¥A T

*SJUSWI39s Ureqo am ‘1xa) asoueder sseoordaid om usym

‘oE e WX RefdEw M % X #¥H I

"II9 O NS)ISUNG OININS LIOYS B O oysung 0SUOYIN

210

NN

Ichou |oogata | keisan | ki
1 KB B ArE
“very”’ “‘large”’ ‘“computing”’ “‘machinery”’

P: Prefix
W: Primitive word (2 characters)
S: Suffix

C: Compound word

Parse tree of a Kanji compound word.

Some stylistic problems are expressed by our rules quite
simply. We have rules to detect constructions such as

OO Stt o i
My mother’s company’s location is...
(repetition of possessive noun phrase)

HFAAHDIVEBBIUCoMMICLY
Applying equations A or B and C,

(ambiguous modification)

or to detect incorrect ending of sentences.

Detection of a conversion error is harder because
conversion gives a valid word but makes an incorrect choice
of Kanji words. It is sometimes impossible to detect the error
without understanding the context. For example, a user may
convert a Hiragana string

kousei suru
8w T3
into
kousei suru
Bx T2

‘to construct’
instead of

kousei suru
KE T3

‘to proofread’

KOICHI TAKEDA ET AL.

If a user makes such a mistake once out of several times
(that is, there is one instance of ‘to construct’ and several
instances of ‘to proofread’ in the text), we can detect the
mistake by using a homonym detection rule:

rule(I1,J1,K1,12,J2,K2, homonyms)
« head(11,J1,K1,Contl,Pro,Posl,Labl) &
head(12,J2,K2,Cont2,Pro,Pos2,Lab2) &
notEqual(Cont1,Cont2).

Strictly speaking, we have to check whether Contl and Cont2
are primitive words. This kind of rule is efficiently verified
by materializing a KWIC view, as discussed earlier; it is
called a KWIC rule [3]. Other rules are called source rules.

5. Sample proofreading session

In this section, we give an example of interactive
proofreading in CRITAC. A typical sequence is the
following:

1. Invoke the text editor with the source view of the text.
Let the system apply the proofreading rules. If errors are
detected, the corresponding part in the source view is
underlined (Figure 10). Proofreading rules are applied to
a part of the structured text which is shown on the screen.
The user can scroll the screen to see the rest of the text.

2. Display the explanation for each error (Figure 11).
Explanations include rewriting suggestions for stylistic
problems.

3. Locate an error in a KWIC view to see if the same errors
have been made in the text (Figure 12). The default
KWIC view comprises primitive content words as
keywords, sentences as context, and pronunciation
ordering of keywords. Pronunciation ordering in Japanese
is basically a lexicographical ordering of Hiragana
notations of keywords. Switching between source and
KWIC views is one of the functions associated with
function keys.

4. Display homonyms of a keyword by invoking a
dictionary server (Figure 13) to suggest alternatives for
potential homonym errors.

6. Summary and future work

We have introduced the basic concepts and architecture of
CRITAC, a knowledge-based proofreading system. The
advantages of conceptual and external text representations, a
proofreading knowledge base, and a dedicated database
system for text proofreading have been discussed.

Because our knowledge base does not yet contain a full
complement of proofreading rules, evaluation of the system
is still incomplete. Qur preliminary results show that about
80% of 50 errors collected from first drafts of technical
papers can be detected by our rules.

Future work includes

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

e Collection of text containing errors; classification of errors
and writing proofreading rules for them.

e Design and implementation of a simple grammar and
grammatical error checking based on case grammar [29].

o Use of the SQL/DS database system to manage the entire
structured text.

¢ Combination of CRITAC with other text-processing
application systems, such as a machine-translation system
and a document-formatting system.

Appendix: Basics of the Japanese writing
system

This appendix is intended for the reader who knows little
about the Japanese language and writing system. The
Japanese language has three separate sets of characters—
Hiragana, Katakana, and Kanji. Hiragana and Katakana are
phonetic character sets; they are collectively known as Kana
characters, and are essentially isomorphic. Each of them has
83 characters (though three more characters are sometimes

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Source view with errors underlined. The numbers preceding the underlines are error-classification codes.

included in Katakana for special purposes) which are
combined to form all the sounds in spoken Japanese; the
spoken language has between 100 and 200 distinct syllables.
The Kanji character set contains several tens of thousands of
characters, but only a few thousand characters are in
common use—that is, characters which are used in
newspapers and other publications for the nonspecialist.
Since many Kanji characters represent pronunciations of
one or two syllables and there are fewer than 200 different
syllables, homonyms are quite common in words consisting
of Kanji characters.

Hiragana characters are used primarily as function words
(case markers, aspect and modality markers, etc.) which
follow content words. A few content words are also written
in Hiragana characters. Katakana characters are used chiefly
for words borrowed from foreign languages and for
onomatopoetic words. Proper nouns and names in foreign
languages are usually transliterated using Katakana
characters. Kanji characters, which originated from Chinese

KOICHI TAKEDA ET AL.

211

212

ideographs, are used for the stems of most content words
(nouns, verbs, adjectives, etc.). In addition, Roman
characters and Arabic numerals are frequently used to
denote foreign words and numbers; thus it is possible for
some readers to understand a mathematical paper written in
Japanese without knowing the language.

One important property of Japanese text is that characters
are written in a continuous stream, so the word boundaries
(blanks) must be determined by the reader. The writing
system uses commas and periods as in English text, but
commas are inserted more arbitrarily. There is a tendency
for readers to process Japanese sentences segment by
segment rather than word by word. A segment (as described
earlier) consists of a content word followed by zero or more
function words. For example, the Japanese sentence shown
in Figure 14 will be understood by reading three segments,
watashi hd, toukyou ni, and yu ki ta i.

KOICHI TAKEDA ET AL.

Source view of Figure 10 with explanation of one of the errors (numbered 36).

The notion of connectivity is important in distinguishing
meaningful segments. Connectivity can be described as a set
of rules determining whether one word (either a content or a
function word) can follow another. For example, the third
segment in the above sentence is valid only if the three
particles appear in this order. Other than connectivity, the
Japanese language has very few rules of grammatical
agreement, and the order of segments is relatively flexible.
Any permutation of the above three segments can be
understood, although the totally reversed sequence of
segments sounds terrible. It follows that the language has
only a few counterparts of the types of grammatical errors
listed in [2].

One type of error specific to Japanese text is the Kana-to-
Kanji conversion error. Japanese word processors in current
use are equipped with a Roman alphabet keyboard, just like
the ones used for, e.g., English. Each key of the keyboard has

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

i gty i gt i

been labeled with both a letter of the Roman alphabet and a
Hiragana (Katakana) character. With the combination of
Roman alphabet keys and a Shift key, a user can type in any
Hiragana character by pressing at most two keys at a time,
There is a special key called the Kana key, which switches
the entry mode between the Roman alphabet and Kana
characters. A Kanji word is obtained by entering its sound in
Hiragana, and then hitting another special key called the
Conversion key. The word processor converts the Hiragana
string into its corresponding Kanji word. If there is more
than one Kanji word for a given Hiragana string, the word
processor shows the most recently used Kanji word among
those homonyms first; then, if necessary, the user finds the
correct Kanji word by hitting the Conversion key to get the
next possibility. Because of the large number of homonyms
in Kanji words, the user is liable to make an incorrect choice
of a Kanji word that has the correct pronunciation but the

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

KWIC view obtained by switching from the source view of Figure 10.

wrong meaning. This is called a Kana-to-Kanji conversion
erTor.

Acknowledgments

We would like to thank Hiroshi Maruyama for his work on
building an early prototype of the CRITAC knowledge base,
Masayuki Morohashi and Shigeki Umeda for their
comments and discussions on our approach, and two
anonymous referees for their helpful comments and
suggestions on this paper.

References
1. L. Cherry, “Writing Tools,” IEEE Trans. Commun. COM-30,
No. 1, 100-105 (January 1982).
2. G. E. Heidorn, K. Jensen, L. A. Miller, R. J. Byrd, and
M. S. Chodorow, “The EPISTLE Text-Critiquing System,” IBM
Syst. J. 21, No. 3, 305-326 (1982).

KOICHI TAKEDA ET AL.

213

214

can then select the correct primitive word.

. K. Takeda, T. Fujisaki, and E. Suzuki, “A Japanese Text
Proofreading System—CRITAC,” Proc. COLING 86
(Proceedings of the 11th International Conference on
Computational Linguistics), Bonn, West Germany, August
25-29, 1986, pp. 412-417.

. K. Takeda, E. Suzuki, and T. Fujisaki, “A User Interface of a
Text Proofreading System,” Proceedings of the IEEE Computer
Society Office Automation Symposium, April 1987, pp. 15-24.

. S. D. Richardson, “Enhanced Text Critiquing Using a Natural
Language Parser,” Research Report RC-11332, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, August
1985.

. Jean Fargues, Marie-Claude Landau, Anne Dugourd, and
Laurent Catach, “Conceptual Graphs for Semantics and
Knowledge Processing,” IBM J. Res. Develop. 30, No. 1, 70-79
(January 1986).

. John F. Sowa and Eileen C. Way, “Implementing a Semantic
Interpreter Using Conceptual Graphs,” IBM J. Res. Develop. 30,
No. 1, 57-69 (January 1986).

. Adrian Walker, “Knowledge Systems: Principles and Practice,”
IBM J. Res. Develop. 30, No. 1, 2-13 (January 1986).

. A.J. H. M. Peels, N. J. M. Janssen, and W. Nawijn, “Document
Architecture and Text Formatting,” ACM Trans. Office Info.
Syst. 3, No. 4, 347-369 (October 1985).

KOICHI TAKEDA ET AL.

10

11.

12.

13.

14.

15.

16.

Homonyms returned from the dictionary server. Given a primitive word as a key, the dictionary server displays a list of its homonyms. The user

. A. Walker, M. McCord, J. F. Sowa, and W. G. Wilson,
Knowledge Systems and Prolog, Addison-Wesley Publishing Co.,
Reading, MA, 1987.

E. F. Codd, “Extending the Database Relational Model to
Capture More Meaning,” ACM Trans. Database Syst. 4, No. 4,
397-434 (December 1979).

E. F. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Commun. ACM 13, No. 6, 377-387 (June 1970).

C. J. Date, An Introduction to Database Systems, Third Edition,
Addison-Wesley Publishing Co., Reading, MA, 1981.

P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe,

J. Guenauer, V. Lum, P. Pistor, and G. Walch, “A DBMS
Prototype to Support Extended NF2 Relations: An Integrated
View of Flat Tables and Hierarchies,” Proceedings of the ACM
SIGMOD 1986 Conference on Management of Data, May 1986,
pp. 356-367.

R. Hull and R. King, “Semantic Database Modelling: Survey,
Applications, and Research Issues,” Technical Report CRI
87-20, Computer Research Institute, University of Southern
California, Los Angeles, March 1987.

A. Goldberg and D. Robson, Smalltalk-80—The Language and
Its Implementation, Addison-Wesley Publishing Co., Reading,
MA, 1983.

. B. Barnett, H. Lehmann, and M. Zoeppritz, “A Word Database

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Watashi ha

o ® A

el

case marker verb particle

noun case marker noun

() (subject) (Tokyo) (place)

tou kyou ni yu ki ta

i. [transliteration]

N\

particle particle

17

(go) (incomplete) (wish) (present/future)

‘I would like to go to Tokyo.’’ [translation]

Sample Japanese sentence separated into segments (bunsetsu).

for Natural Language Processing,” Proc. COLING 86, Bonn,
West Germany, August 25-29, 1986, pp. 435-440.

18. L. D. Misek-Falkoff, “Data Base and Query Systems: New and
Simple Ways to Gain Multiple Views of the Patterns in Text,”
Research Report RC-8769, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, March 1981.

19. K. Jensen, G. E. Heidorn, L. A. Miller, and Y. Ravin, “Parse
Fitting and Prose Fixing: Getting a Hold on Ill-Formedness,”
Amer. J. Computat. Linguist. (now Computat. Linguist.) 9, Nos.
3-4, 123-136 (July-December 1983).

20. SQL/Data System Concepts and Facilities, August 1983; Order
No. GH24-5013, available through IBM branch offices.

21. VM/Programming in Logic—Program Description/Operations
Manual, September 1985; Order No. SH20-6541, available
through IBM branch offices.

22. T. Fujisaki, “Studies on Handling of Ambiguities in Natural
Languages” (in Japanese), Ph.D. Thesis, Tokyo University,
September 1985.

23. G. David Forney, Jr., “The Viterbi Algorithm,” Proc. IEEE 61,
No. 3, 268-278 (March 1973).

24. L. R. Bahl, F. Jelinek, and R. L. Mercer, “A Maximum
Likelihood Approach to Continuous Speech Recognition,”

IEEE Trans. Pattern Recogn. & Machine Intell. PAMI-S, No. 2,

179-190 (March 1983).

25. M. Okochi, “Japanese Morphological Rules for Kana-to-Kanji
Conversion: Concepts” (in Japanese), Technical Report N:G318-
1560, IBM Tokyo Scientific Center, Chiyoda-ku, Tokyo,
December 1981.

26. T. Fujisaki, “A Stochastic Approach to Sentence Parsing,” Proc.
COLING ’84, Stanford, CA, July 2-6, 1984, pp. 16-19.

27. T. Nishino and T. Fujisaki, “A Stochastic Parsing of Kanji
Compound Words” (in Japanese), Technical Report TR87-0026,
IBM Tokyo Research Laboratory, Chiyoda-ku, Tokyo, April
1987.

28. S. A. Weyer and A. H. Borning, “A Prototype Electronic
Encyclopedia,” ACM Trans. Office Info. Syst. 3, No. 1, 63-88
(January 1985).

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

29, C. Fillmore, “The Case for Case,” Universals in Linguistic
Theory, E. Bach and R. T. Harms, Eds., Holt, Rinehart &
Winston, New York, 1968, pp. 1-81.

Received March 19, 1987, accepted for publication
September 7, 1987

Koichi Takeda Center for Machine Translation, Carnegie Mellon
University, Schenley Park, Pittsburgh, Pennsylvania 15213.

Mr. Takeda received his B.E. and M.E. in information science from
Kyoto University, Japan, in 1981 and 1983, respectively. He worked
on database design and theory of nested relations while he was at
Kyoto University. Since joining the Tokyo Research Laboratory,
IBM Japan, in 1983, he has worked on stochastic Japanese language
processing, a Japanese text-proofreading system, and machine
translation. Mr. Takeda received an Honorable Mention Award for
Outstanding Young Researchers from the Information Processing
Society of Japan in 1985. He is currently a visiting researcher at the
Center for Machine Translation, Carnegie Mellon University,
working on a joint project on English-Japanese bidirectional
machine translation. Mr. Takeda is a member of the Association for
Computing Machinery, the Information Processing Society of Japan,
the Institute of Electronics, Information and Communication
Engineers, and the Japan Society for Software Science.

Emiko Suzuki IBM Tokyo Research Laboratory, 5-19 Sanbancho,

Chiyoda-ku, Tokyo 102, Japan. Ms. Suzuki is a member of the

Japanese Processing Group at the Tokyo Research Laboratory, IBM

Japan. She received her B.S. and M.S. in information sciences from 215

KOICHI TAKEDA ET AL.

216

the University of Tsukuba, Ibaraki, Japan, in 1981 and 1983,
respectively. Ms. Suzuki has been working on Japanese language
processing, a proofreading knowledge base, and a Japanese grammar
for a machine-translation system since joining IBM in 1983. She is a
member of the Information Processing Society of Japan and the
Japan Society for Software Science.

Tetsuro Nishino Tokyo Denki University, Department of
Information Sciences, Hatoyama-machi, Hiki-gun, Saitama 350-03,
Japan. Mr. Nishino received his B.S. and M.S. degrees in
mathematics from Waseda University, Tokyo, Japan, in 1982 and
1984, respectively. At the Tokyo Research Laboratory, IBM Japan,
he worked in the areas of attribute grammar and stochastic natural-
language processing from 1984 to 1986. He is currently a research
associate in information sciences at Tokyo Denki University.

Mr. Nishino’s research interests include theory of automata, formal
languages, and computational complexity. He is a member of the
Japan Society for Software Science.

Tetsunosuke Fujisaki IBM Thomas J. Watson Research Center,
P.O. Box 704, Yorktown Heights, New York 10598. Dr. Fujisaki is
currently manager of the Hand Input Recognition Group of the IBM
Thomas J. Watson Research Center. He joined IBM in 1971 at the
Tokyo Scientific Center, IBM Japan, and, until 1983, worked in
areas of Japanese language processing, including database-query
understanding and text processing. Dr. Fujisaki was a visiting
lecturer at the Tokyo Institute of Technology during the period from
1979 to 1981. In 1982 and 1983, he spent eighteen months at the
Thomas J. Watson Research Center continuing research on
probabilistic language parsing. From 1983 until 1986, he managed
an Al group at the IBM Tokyo Research Laboratory. Dr. Fujisaki
obtained his B.S., M.S., and Ph.D. degrees in mathematical
engineering from the University of Tokyo in 1969, 1971, and 1985,
respectively. He is a member of the Association for Computational
Linguistics, the Association for Computing Machinery, the
Information Processing Society of Japan, and the Institute of
Electrical and Electronics Engineers.

KOICHI TAKEDA ET AL.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

