Spelling
assistance
for compound
words

by Rudolf Frisch
Antonio Zamora

This paper describes a method for providing
spelling assistance for Germanic compound
words. The technique systematically analyzes
an unknown word to determine its components,
using a dictionary which associates word
components with codes that describe their
compounding characteristics. Language-specific
morphological transformations are used to take
into consideration common intraword elision
patterns. Special dictionary entries, heuristic
rules, and lexical distance measures are used to
provide the best possible replacement
compound words. The method is fast and
provides spelling assistance and hyphenation
support in an interactive environment.

introduction

Spelling verification and assistance are now considered
essential components of word-processing packages even for
personal computers. Spelling verification is the process of
highlighting the misspellings of a document, whereas spelling
assistance involves displaying a set of correctly spelled words
which could potentially replace a misspelling. The level of
support provided by these programs depends on the
capabilities of the computer and on the sophistication of the
software.

©Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

In general, all spelling-verification programs work by
referencing a dictionary of correctly spelled words [1-4].
Interactive spelling verification can be supported by
encoding the dictionaries as hashcodes to achieve the
necessary response time, but such dictionaries cannot be
used to support spelling aid because the words cannot be
reconstructed from the hashcodes. The latest generation of
software uses compressed dictionaries which take into
consideration the frequency of occurrence of the words to
achieve the desired speed and to have the reversibility
necessary to supply words from the dictionary as spelling-aid
candidates [4-6].

The basic technique used for providing spelling-aid
candidates is to scan a word list (or part thereof), associate a
figure of merit with each word in the list, and present a
number of words with the best figures of merit as
replacement candidates. The figures of merit can be obtained
by using a measure for string similarity which determines
how many error operations are required to change one word
to another [5-7].

Spelling-support technology has not evolved for all
languages with the same ease as it has for English. The
morphological simplicity of written English and strong
economic marketing factors are responsible for the rapid
maturation of the English technology. The spelling-support
technology for English can be used for other languages with
few changes, but there are some languages, such as Finnish,
which have an elaborate inflectional system and cannot use
the same technology [8]. There are also languages (e.g.,
German) which can use most of the technology, but require
special compound-word handling.

Because word agglutination is not a very productive word-
formation mechanism in written English, it is possible to

RUDOLF FRISCH AND ANTONIO ZAMORA

195

196

include a very large percentage of compound words in a
computerized word list. This is not feasible for other
Germanic languages due to the exceedingly large
combinatorial compounding possibilities which they allow. If
one were to create a large list of compound words—e.g., for
German—this would require an enormous amount of
storage, but it still would not guarantee that scanning the list
would result in the retrieval of suitable candidates for
misspelled compound words or that correctly spelled
compound words would match against it.

The “compound word” concept
Compound words are a common occurrence in the
Germanic-language family. Present-day Germanic languages
are generally divided into the North Germanic and West
Germanic groups. The main languages of the former include
Danish, Icelandic, Norwegian, and Swedish, whereas the
latter include Afrikaans, Dutch, English, and German,
Compound words can be formed through

a. A simple word sequence such as salt water, sugar cube,
snow removal equipment repair facility.

b. A sequence of words joined by required hyphens, e.g.,
mother-in-law, able-bodied.

c. A sequence of words directly agglutinated, such as
homemaker, housewife, or the German word
Gesundheitsamt (‘health department’).

It is important to notice that a component of a compound
word formed by mechanisms b or ¢ might not be usable as a
word by itself, e.g., “bodied” in b, or “Gesundheits” in ¢.
The morphological mechanism of word compounding in
English has been examined by Botha [9].

In this paper, the concept of “compound word” will be
restricted to compound words formed by mechanism ¢
above, since this paper deals only with the problem of
providing spelling assistance for misspelled compound words
that do not have internal punctuation delimiters. It should
also be noted that although the approach presented here is
generally applicable to the Germanic languages, it is not
limited to them.

Dictionary features

Earlier work [10] on compound-word spelling verification
provided the basic characteristics of the dictionary which
were adapted for compound-word spelling aid. The
dictionary consists, in essence, of a list of words each of
which is associated with codes that indicate whether the
word can be 1) stand-alone, 2) a front component, 3) a
middle component, or 4) a back component of a compound
word. Since these four attributes are independent, any of 15
possible codes can be associated with a dictionary word to
indicate its compounding characteristics. In addition to these
codes, a different set of codes can be used to specify
language-dependent transformations [11].

RUDOLF FRISCH AND ANTONIO ZAMORA

The consequence of this coding scheme is that the
dictionary can contain some morphemes that are only
combining forms rather than stand-alone words. Such forms
(e.g., in English, the form Russo, as in Russo-Japanese)
cannot be presented as aid candidates outside of an
appropriate compound-word context.

Words that are altered when combined in particular
sequences are entered in the dictionary in their different
forms. Such words are created by the occurrence of
“fugen-characters” (binding morphemes) or letter sequences
which are inserted at the junction of some word
agglutinations. For example, in German the word Achtung
(‘attention’), which can be a stand-alone or back component,
is transformed to the form Achtungs when it is used as a
front or middle component. The inclusion in the dictionary
of words with these binding morphemes (s in this case)
improves both the reliability of the decompounding process
and its speed.

Decomposition of compound words

The identification of the components of a compound word is
the most important step for word verification and for
providing spelling aid. The word-decomposition module
starts by looking in the dictionary for words which are initial
substrings of the compound word. As each word is found, its
compounding attributes are checked to make sure that it can
be a front component. If not, the word is rejected as a
possible component, and the search through the dictionary
continues [10]. Once all the possible initial components have
been identified, the remaining portion of the compound
word is subjected recursively to the same substring-matching
procedure against the dictionary, but the compounding
attributes must be those of a middle or back component (the
latter only if the remaining portion of the compound
matches exactly against a word in the dictionary).

Many ambiguous cases (sun + glasses, sung + lasses) will
be resolved by the decomposition process on the basis of the
compounding attributes found in the dictionary, but some
words may have more than one set of acceptable
components. Since the process is recursive and requires
constant access to the dictionary, the computer time
required to decompound a word depends on the degree of
branching of the compound word. The degree of branching
is proportional to the length of the compound word and to
the length of the components in the dictionary. The degree
of branching, and execution time, can be reduced by
eliminating from the dictionary short words which can be
front or middle components and which are frequently found
as substrings in many words. Removal of these words from
the dictionary is practical for those short words which occur
only in combination with a relatively small number of other
words; it is accomplished by adding to the dictionary all
compound words containing the component.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

Juxtaposition is not the only mechanism employed to
create compound words; as stated earlier, binding
morphemes sometimes occur between the components. By
including components with their binding morphemes as
lexical entries, decomposition of compound words can be
accomplished with the same mechanism. However, in
addition to inserting characters, some Germanic languages
elide characters at component interfaces during
compounding. In general, decomposition of words formed
by elision of characters is accomplished by language-specific
procedures which are applied at component boundaries
when the dictionary look-up fails to find adequate dictionary
words. In some languages elisions are defined strictly by the
characters before and after the interface (for example, in
Norwegian and Swedish, if the component before the
junction terminates in two equal consonants and the
component after the junction starts with the same
consonant, one of these is always elided during
compounding). Similar rules apply in German—for
example, when the words Schiff (‘ship’) and Fahrt (‘ride’) are
combined to form Schiffahrt (‘navigation’).

In some languages elisions have grammatical
dependencies. For example, Afrikaans has an elision
mechanism for word forms containing the binding
morpheme s followed by another word starting with 5. Some
of these word forms can occur as stand-alone words when
they happen to represent plurals. The decompounding
algorithm can cope with such elisions if the appropriate
codes are in the dictionary. Once the elision has been
recognized, it is merely necessary to indicate that the
remaining portion of the compound word starts at the last
character of the preceding component, and the normal
process is continued.

The identification of the components of a compound
word provides a way to verify spelling and also makes it
possible to hyphenate properly. Generally it is preferable to
hyphenate at the boundary of two components, and if
characters have been elided it is necessary to restore them.
Thus, Schiffahrt, when hyphenated between its components,
retains all the £, i.e., Schiff-fahrt. The information derived
from word decomposition provides the major break points
for the word. These are supplemented with the internal
hyphenation points available in the dictionary for each word
component.

Description of the general approach

An early prototype for compound-word spelling assistance
investigated by the authors consisted in having the user
identify the beginning and ending of the misspelled
component of a compound word, after which the computer
system would provide replacement candidates as for any
other isolated word. Upon selection of one of the candidates,
the computer system replaced the misspelled component and

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

constructed the correct compound word. The system was
cumbersome because it had poor human factors,

The fully automatic version has the advantage of having a
single human interface for the spelling-aid mechanism for
simple and compound words. The spelling-aid algorithm
uses the decompounding algorithm because it needs to
identify the components. It proceeds in three phases. First,
the “unknown” component of a compound word is
identified by locating components that precede or follow the
unknown component. Then, spelling aid is invoked to
retrieve a list of correctly spelled words from the dictionary
which are most similar to the unknown component. Finally,
plausible compound words are generated by using the
leading components, the candidate replacements from the
spelling-aid list, and the trailing components.

More specifically, the first phase starts by looking in the
dictionary for words which are initial substrings of the
compound word while checking the word attributes for
consistency. The algorithm uses language-specific
morphological transformations to take into consideration
elision patterns at possible component junctions. However,
whereas the decompounding algorithm terminates when no
more known components are encountered, the aid algorithm
goes further. It skips one character of the remaining portion
of the compound word and attempts the substring-matching
procedure against the dictionary. If this is not successful,
another character is skipped and the remaining string is
processed again until either a back component is found or
there are no more characters to process.

The first phase, thus, isolates a single unknown
component preceded and followed by leading and trailing
strings which consist of zero or more components. If the
leading string has zero components, the unknown
component is at the beginning of the compound word; if the
trailing string has zero components, the unknown
component is at the end of the compound; otherwise, it is
embedded within the compound word.

The second phase uses the traditional spelling aid for
simple words with the unknown component as an argument.
A list of spelling candidates and their corresponding
compounding attributes is obtained from the dictionary.

The third phase generates compound words that meet the
constraints implied by the compounding flags, and the
resulting compound words are then ranked against the input
word using a string-similarity measure. A list of compound
words ranked according to this measure is presented to the
user.

The compound-word spelling-assistance
algorithm

This section provides details of the algorithm used to provide
spelling assistance for compound words. Some language-

specific features for German are included in this algorithm. 197

RUDOLF FRISCH AND ANTONIO ZAMORA

198

Step 1 Examine the input word (for which spelling aid has
been requested) to find if the word is correctly
spelled. If it is, display a message and exit.

Step 2 Invoke simple spelling aid for the input word,
obtaining candidates and their figures of merit. If
the figure of merit is within specified limits for at
least one candidate (i.e., there is a very good fit
between the candidate and the input word), display
the candidates and exit.

Step 3 Check the length of the input word for (preset)
upper and lower bounds. If the length is outside the
range, display simple spelling-aid candidates, if any;
if there are none, display a message. Exit.

Step 4 Change the first letter of the input word to
uppercase and all other letters to lowercase. From
this point forward this will be considered the input
word.

Step 5 Examine the input word (now with the first letter in
uppercase) to see if it is a valid compound word. If
50, put the word into the candidate list and go to
the last step.

Step 6 Examine the input word. If it is correctly spelled
except for required elisions, make the required
elisions, put the word into the candidate list, and go
to the last step.

Step 7 Examine the input word without its last letter. If it
is correctly spelled, put the word into the candidate
list and go to the last step.

Step 8 Examine the input word without its last letter. If it
is correctly spelled except for required elisions,
make the required elisions, put the word into the
candidate list, and go to the last step.

Step 9 Match the input word against the dictionary to
obtain all possible initial strings containing one or
more valid sequences of components (these are
called “frontwords”™).

Step 10 Select a frontword obtained as a result of Step 9.

Step 11 Obtain all possible terminal strings containing one
or more valid sequences of components (these are
called “backwords™). This involves skipping
characters until a valid verification is achieved on
the remainder of the input string.

Step 12 Select the first backword, forming a
frontword/backword pair.

Step 13 Invoke simple spelling aid for the characters
delimited by the frontword/backword pair (this is
the “unknown” component). The candidates
obtained from simple-word spelling aid are called
“aidwords.”

Step 14 If the unknown word is shorter than a preset
minimum length and both frontword and
backword are not null, concatenate frontword and
backword, obtain figure of merit, and post to the
candidate list. If either the frontword or the

RUDOLF FRISCH AND ANTONIO ZAMORA

backword is null, go to Step 16. If the unknown
word equals or exceeds the minimum length and if
no aidwords are found, go to Step 16; otherwise go
to the next step.

Step 15 Concatenate the frontword, each aidword, and the
backword; evaluate the figure of merit for each; and
post to the candidate list.

Step 16 If the unknown word already has an elision letter as
its first letter (as defined in Step 17) go to Step 18.

Step 17 Examine the frontword/unknown-word junction
for the possibility of an elision. If this possibility
exists, it is necessary to restore the elided letter and
repeat Steps 13-16 for the modified unknown
word. If this possibility does not exist, go to the
next step.

Step 18 1f there is another backword for this frontword,
form a new frontword/backword pair and repeat
Steps 13-18; otherwise go to the next step.

Step 19 1f there is another frontword, repeat Steps 11-19
for this frontword; otherwise go to the next step.

Step 20 If no candidates have been found and if the first
two characters of the input word are identical
except for case, delete the second character of the
input word and repeat Steps 5-20. (This is done
only for the first two characters of the original word
for which spelling assistance has been requested; if
this has been done once, do not repeat.)

Step 21 Examine all candidates for required elisions and
make them as required by the language.

Step 22 If no candidates are available from either simple
spelling aid or compound spelling aid, display a
message. Otherwise display candidates ranked by
figure of merit.

Discussion of results

The spelling-assistance algorithm depends on the
performance of its subordinate procedures. It is affected in
particular by the decompounding procedure, the spelling-
assistance procedure for simple words, and the codes for
compounding stored in the dictionary. With regard to the
decompounding procedure, both Type-1 errors (flagging a
correctly spelled word) and Type-II errors (not flagging a
misspelled word) have been observed, but the error rate is
small (less than one percent).

For the hyphenation function, the results have been
extremely satisfactory. The only limitation found was the
possibility of multiple decomposition of the compound
word. For example, the German string Staubecken can be
decomposed into Stau + Becken (‘collection basin’) or
Staub + Ecken (‘dust corners’).

Whereas for compound words spelling verification and
hyphenation are basically analytical procedures, spelling
assistance deals with compound-word synthesis; therefore,
syntactic and semantic criteria need to be used to judge the

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

suitability of the generated words. As can be expected,
compound-word spelling assistance is less efficient at finding
the “correct” replacement candidate than is spelling
assistance for simple words; but what is more important, in
contrast to the latter, it can generate replacement candidates
which are lexically odd or unacceptable (e.g., churchgoer and
housewife are fine but kitchengoer and homewife are

not [9]).

The algorithm was tested against a sample of 227
misspelled German compound words extracted from a large
corpus (over 65000 words containing approximately 14000
unique words) of German test documents. Of these
misspelled words, 85% had two components, 14% had three
components, and 1% had four components. Analysis of the
words generated as candidates showed that the results were
very dependent on the efficiency of the spelling assistance for
simple words (simple aid). If the “correct” candidate was not
generated for the “unknown” component of the compound
word, it was not possible to generate the correct compound
word. The spelling assistance for compound words presented
the correct compound in 70% of the test cases. In the
remaining cases the correct compound was not in the list
(19%) or no candidate list was given because there were no
plausible candidates for the misspelled component (11%).

In addition, lexically unacceptable forms were generated
when some of the candidates presented by the simple aid
had the appropriate compounding attributes in the
dictionary but were inappropriate for the context. The
results were quantified as foliows: If simple aid provided a
list with the “correct” candidate X times out of Y, then the
compound spelling aid presented the correct candidate
approximately as the square of that ratio—i.e., (X/ YY. The
number of lexically unacceptable candidates was relatively
large, although not intolerable for German in a word-
processing environment. When the candidates had two
components, 34% were unacceptable, but 54% were
unacceptable when there were more than two components.
Overall, 38% of the compound aid candidates were
unacceptable.

Further examination of the output candidates also
indicated that a significant proportion of the unacceptable
words had more components than the original word due to
the occurrence of short character sequences common in the
language which could also be compound-word components
(e.g., German ges). However, such candidates generally
occurred at the end of the candidate list because they had a
worse figure of merit (less similarity to the input word).

The algorithm was modified on the basis of these results.
As a first step, a limit was placed on the number of
components in a replacement candidate, the number being a
function of the length of the compound word. Additional
constraints were imposed on the figure of merit required to
generate a replacement candidate. Finally, the maximum
number of compound candidates presented by the program

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

GERSPAID RFT AS Page 1
Line 0

—

G R B e R e I AL R s I LR bt Al Tt
Page 1----

Herr Direktor Hans Mayer

Augusta-Allee 17

Mannheim

Sehr geehrter Herr Direktor:

Anbei die von Thnen erbetenen Karten zum Stuttgarter
Balletttheqter. Die Vorstellung findet am 6. Dezember statt.

DEUTSCH DEUTSCH(COMPOUND)
Balletttruppe ~ Ballettheater
Balletteuse Ballettheatern

Balletteusen Ballettheaters

Ballettratte

--------------------- End of Document- -~ =-=-==--==--=~-«--~-
PF | =HELP 2=Insert 3=END 4 =Instr. 5=RFind 6=Aid
PF 7 =Backward 8=Forward 9=invoke sc 10=Command 11=Next 12=Cmdline

Example of combined simple- and compound-word spelling
assistance in a word-processing system. The aid candidates are
displayed in a window under the misspelled word.

was reduced from six to four. As a result of these
improvements, the number of semantically unacceptable
candidates was reduced by more than 20% without a
practical effect on the efficiency of the compound-word
spelling-assistance function.

Conclusion

Implementing a program to provide spelling assistance for
misspelled compound words is a complex problem. On the
one hand, there are difficult linguistic issues that require
semantic resolution, and irregularities in the use of binding
characters or in the elisions between components that
require sophisticated algorithms and extensive dictionary
look-up. On the other hand, the design of practical spelling-
assistance programs has to take into consideration the
computational efficiency and response time expected by the
users. This may involve examination of statistical factors
that have some bearing on the problem. For example, when
looking for ways of improving program performance, we
observed that compound words with more than three
components are rare. Thus, in the implementation of the
program we made sure that two- and three-component
words were handled efficiently.

Another design consideration based on our observations
was the identification of the “unknown” component in the
compound word. Empirically, we have found that most
misspellings have few errors and affect a single component.
It happens that such cases are the ones for which an
automatic approach has the greatest likelihood of
succeeding. We have not found any reliable and efficient

RUDOLF FRISCH AND ANTONIO ZAMORA

199

200

ways of correcting words with more than one incorrect
component.

The technique described here is an effective way of
providing spelling assistance for on-line word-processing
systems. Compound words, because of their length, are
misspelled more frequently than simple words. For this
reason, compound-word spelling assistance when combined
with aid for simple words significantly improves the service
to the user (see Figure 1). The speed with which the spelling
candidates are presented is satisfactory (less than two
seconds), but there are some linguistic problems which we
are currently addressing. For example, the compounding
codes associated with the dictionary entries are not
completely effective in preventing invalid associations. This
sometimes results in the incorrect identification of
components during verification, or, worse, it can result in
the generation of compound-word candidates which do not
make semantic sense. One way in which we foresee this
problem being solved is by including syntactic and semantic
features in the dictionary, but this solution will not be an
easy one to accomplish. Additional improvements can be
achieved by improving the efficiency of the algorithm for
simple-word spelling assistance, by studying short words
which are frequent substrings of other words, and by
carefully editing the compounding attributes for the words.

Acknowledgments

The authors would like to acknowledge the contributions of
V. R. Bass, V. A. Bonebrake, J. K. Landis, M. S. Neff,

R. J. Urquhart, and S. C. Williams toward the development
of a method for verifying the spelling of compound words
which provided the basis for this work.

References

1. A. Zamora, “Control of Spelling Errors in Large Data Bases,”
The Information Age in Perspective, Proc. ASIS 15, 364-367
(1978).

2. A. Zamora, “Automatic Detection and Correction of Spelling
Errors in a Large Data Base,” J. ASIS 31, No. 1, 51-57 (1980).

3. J. J. Pollock and A. Zamora, “Automatic Spelling Correction in
Scientific and Scholarly Text,” Commun. ACM 27, No. 4, 358-
368 (1984).

4. J. L. Peterson, “Computer Programs for Detecting and
Correcting Spelling Errors,” Commun. ACM 23, No. 12, 676~
687 (1980).

5. D. B. Convis, D. Glickman, and W. S. Rosenbaum,
“Instantaneous Alpha Content Prescan Method for Automatic
Spelling Error Correction,” U.S. Patent 4,355,371, 1983.

6. D. B. Convis, D. Glickman, and W. S. Rosenbaum, “Alpha
Content Match Prescan Method for Automatic Spelling Error
Correction,” U.S. Patent 4,328,561, 1982.

7. R. Lowrance and R. A. Wagner, “An Extension of the String-to-
String Correction Problem,” J. ACM 22, No. 2, 177-183 (1975).

8. H. Jappinen and M. Ylilammi, “Associative Model of
Morphological Analysis: An Empirical Inquiry,” Comput.
Linguist. 12, No. 4, 257-272 (1986).

9. R. P. Botha, Morphological Mechanisms. Lexicalist Analysis of
Synthetic Compounding, Language and Communication
Library, Volume 7, Pergamon Press, Oxford, 1984.

RUDOLF FRISCH AND ANTONIO ZAMORA

10. V. R. Bass, V. A. Bonebrake, J. K. Landis, M. S. Neff,
R. J. Urquhart, and S. C. Williams, (a) “Compound Word
Suitability for Spelling Verification,” U.S. Patent 4,672,571,
1987; (b) “Compound Word Spelling Verification,” U.S. Patent
Application Serial No. 06/664,183, filed October 24, 1984.

11. A. Zamora and R. Frisch, “Method for Verifying Spelling for
Compound Words,” U.S. Patent Application Serial No. MA9-
86-011, filed March 12, 1987.

Received February 13, 1987, accepted for publication August
6, 1987

Rudolf Frisch Sy Sims School of Business, Yeshiva University,
500 West 185th Street, New York, New York 10033. Dr. Frisch
teaches Management Information Systems and Management
Science. In 1987 he retired from IBM, where he was an advisory staff
member working on automation of linguistic support functions. He
received B.S. degrees in physics and mathematics from Sao Paulo
State University, Sdo Paulo, Brazil, and C.E. and E.E. degrees from
Mackenzie College, Sdo Paulo. After working as a civil engineer, he
applied his electrical engineering background to transmission
optimization of microwave and cable-based networks. From 1968 to
1971 Dr. Frisch taught electrical engineering and computer science
at New York University, where he received his doctorate in 1971.
He worked as a consultant on minicomputers and data
communications, and later joined Lever Brothers, where he worked
to improve computer applications in business, manufacturing, and
engineering. Dr. Frisch has published on topics in pure and applied
sciences as well as in engineering. He has also served as a referee for
the Zeitschrift fur Mathematik and is a member of several
professional and honor societies.

Antonio Zamora IBM Corporation, 10401 Fernwood Road,
Bethesda, Maryland 20817. Mr. Zamora is a senior staff member
currently working on the development of natural-language parsers
and their application in multilingual word-processing environments.
He received a Bachelor’s degree in chemistry from the University of
Texas and for many years worked in the research department of
Chemical Abstracts Service, where he developed computer-based
methods for handling structural chemical information and chemical
literature. After receiving a Master’s degree in computer science
from Ohio State University in 1969, Mr. Zamora worked on
automatic abstracting, automatic indexing, and automatic
classification of documents based on syntactic and semantic
attributes of natural language, as well as on spelling-error detection
and correction. Mr. Zamora has always had a strong interest in
processing natural language with computers; his research work has
appeared in numerous publications and received an award from the
American Society for Information Science in 1971. He has also
served on the advisory board of the Journal of Chemical Information
and Computer Sciences and is a member of a number of professional
societies.

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

