An experiment
in computational
discrimination

of English

word senses

by Ezra Black

A number of researchers in text processing have
independently observed that people can
consistently determine in which of several given
senses a word is being used in text, simply by
examining the half dozen or so words just
before and just after the word in focus. The
question arises whether the same task can be
accomplished by mechanical means.
Experimental results are presented which
suggest an affirmative answer to this query.
Three separate methods of discriminating
English word senses are compared information-
theoretically. Findings include a strong
indication of the power of domain-specific
content analysis of text, as opposed to domain-
general approaches.

1. Introduction

It is difficult to suggest a branch of natural-language
processing which would fail to benefit from a procedure for
identifying the senses of the words used in text. To take a
single example, researchers in the field of speech recognition
need information concerning the word sequence already
recorded at a given point in time, so that they may
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accurately predict the word or words about to be received.
For instance, consider the word will. While in its modal use
it is one of the most frequent items in many sorts of text
(cf., e.g., Francis and Kucera [1]), there are certainly a large
number of text domains in which its appearance as, say, the
will of last will and testament narrows the range of its likely
right neighbors by impressive amounts, as against the
uncategorized occurrence of the string will. Generalizing, it
seems fair to assume that predictions of right context will
differ appreciably depending upon the sense(s) of the
predictor word(s).

This paper gives an account of experimentation, described
more fully in Black [2], designed to compare and evaluate
three possible methods of computational word-sense
identification. As can be seen from the literature review in
this section, the procedures chosen for contrast partially
reflect current approaches to the problem. Section 2 presents
the experiment itself, while Section 3 discusses it and
suggests future research directions.

We now briefly survey computational sense research for
which either a large-scale implementation or the materials
for such development are in existence.

Débili comes to the task of word-sense discrimination
armed with a listing, obtained computationally (see [3}), of
word pairs observed to have entered into certain dependency
relations in previously analyzed text. For instance, having
processed the sentence, Le bail a expiré (‘The lease has
expired’), Débili’s procedure “knows” that bail (‘lease’) and
expiré (‘expired’) can occur in the subject/main-verb
dependency relation. Other such relations include
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somewhat, a “validity” score of 1 is given to word pairs
which are on this list, and a score of 0 is given to pairs which
are not. Given this database, the disambiguation routine
adopted is, briefly, as follows: Assume that a given word has
three senses. Suppose the word is the French expire. Then an
enumeration is made of all the synonyms of expire when the
word has sense 1, and the same is done for senses 2 and 3.
Call these enumerations “word families.” Now suppose it is
to be determined which sense of expire occurs in the new
sentence, Le bail expire a la fin du mois (‘The lease expires
at the end of the month’), where expire can be either
expire(FINIR) (‘ends’), expire(MOURIR) (‘dies’), or
expire(RESPIRER) (‘breathes out’). A preprocessor

identifies the word pair bail/expire as standing in the
subject/main-verb relation. The maximum is now calculated
of the Cartesian products of the validity scores of the word
families of the uncertain or polysemous word expire and of
the ex hypothesi unambiguous word bail, and the sense is
chosen whose word family yields this maximum. Hence, a
sense is most likely to be selected as correct if it or its near
semantic relatives have occurred in previously examined text
in the exact dependency relation under scrutiny.

If for Débili, “sense disambiguation is morphology,” for
Gross and his associates, “sense disambiguation is syntax.”
Gross [4] presents an interesting and provocative orientation
toward sense discrimination in English (and, by implication,
in French and other Romance languages as well). Each word
of Gross’s lexicon corresponds to a line of a lexicon-
grammar, which is a two-dimensional matrix, apparently on
the order of 32000 % 400 [4, 5] for French at present, and of
uncertain size for English. Columns of the lexicon-grammar
are labeled with possible syntactic properties of an entry
word. Most of these consist of intraclausal syntactic
environments in which the candidate word can or cannot
appear in a given slot; these environments can be sequences
of syntactic categories to the right and/or left of the word, or
they can be sequences of lexical items to the right and/or left
of the word, or, finally, they can be combinations of the
latter two possibilities. In addition, certain properties of one
or more nouns involved in the environment—properties
which some linguists have called syntactic, others
semantic—such as “concrete,” “animate,” and “human,” are
labels of still other columns. Each cell is marked with a + or
a — depending on whether the team of linguists conducting
the research finds the clause represented by the cell to be
acceptable or unacceptable. (For a description of Gross’s
methods of linguistic team investigation, see [5].) By
inspecting the syntactic context of a given word token,
candidate senses are eliminated whose conditions for usage,
as catalogued in the lexicon-grammar, are not met.

The problem confronted by Kelly and Stone [6] arose
within the context of the operation of a suite of programs
previously developed by Stone and his associates, whose
purpose was to pass through a text, assigning to each

EZRA BLACK

appropriate word a label representing a particular content-
analytic category. (For presentations of content analysis, see
Budd et al. [7] and Rosengren [8].) They found early on in
the application of the system that its utility was sharply
reduced by its lack of ability to assign parts of speech and
word senses [6, p. 1]. What they therefore did was to
construct a preprocessing program to perform such
assignments. (Part-of-speech labeling by computer is a
problem that is completely distinct from sense
identification—one that is well in hand at present. It has
been performed, for instance, by the Continuous Speech
Recognition Group of IBM’s Thomas J. Watson Research
Center, using the Viterbi algorithm (on which see, e.g.,
Forney [9]), and achieving a >98% accuracy of prediction
for 29 syntactic categories. A different approach to part-of-
speech labeling, also quite successful and implemented over
a much larger set of categories, on the order of 200, is being
taken by G. Leech and his associates at the University of
Lancaster, England [10-13]. There are quite a number of
other programs in existence which perform this task with a
fairly high level of accuracy.)

Drawing from a corpus of about six million tokens within
the domain of interest to the content analysts they wished to
serve—namely behavioral science—they selected a sample of
510 976 tokens [6, p. 5]. They then restricted their efforts to
the part-of-speech labeling and/or sense disambiguation of
1815 types.

Approximately eight individuals—undergraduates,
graduate students, Kelly, and Stone—together worked from
a KWIC concordance of the items selected, over the
510 976-token corpus. [A KWIC concordance (Key Word In
Context) for some word w is a file each record of which
features w at roughly the same field, often set off on both
sides by one or two padded blank characters. To the left and
right of w in a given record is the sequence of words or other
character strings which, respectively, precede and follow w in
a particular line of the text over which the concordance has
been constructed.] The first step in the data analysis carried
out consisted of establishing senses for each word. General
orientation to this task was obtained by consulting an
unabridged dictionary’s definition; at this point, attention
was turned exclusively to the concordance itself as the source
of information for the words under scrutiny. In the case of
senses, as opposed to parts of speech, it was found that the
dictionary served in only the most general way to guide the
formulation of definitional criteria. Even where the
dictionary senses could be adopted as such, “the set of senses
is itself relative to our pragmatic aims—i.e., we ask which of
‘the senses’ of this entry seem useful, or worth
discriminating. To this end we were aided by our
accumulated knowledge of what kinds of distinctions are
important to content analysis work” (p. 10). Presumably, by
“content analysis work” is meant content analysis work in
the behavioral sciences. It turned out that the influence of
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the domain of application was quite radical in terms of the
partitioning of senses, as compared either to a standard
dictionary definition or to partitions from other domains.

The goal of the analysis of a given word was to come up
with an ordered set of disambiguation rules which bear on
the word itself—i.e., look for its morphological
characteristics—and on any number of words within a
window of word-plus-and-minus-four-words. Any word in
this range can be tested by a rule for part of speech, for
membership in one or more of a set of semantic categories
listed below, and for Boolean combinations of these
conditions. Passage or failure of a given test was allowed to
determine either assignment of a specific word sense
number, or a jump to a subsequent rule in the set, or even to
a rule in the set for some other word.

As suggested above, senses were simply stipulated, as a
function of the meaning differences which, it was believed, a
behavioral scientist would find revealing or important, and
after having read one dictionary’s listing of meanings for
general orientation. For the purpose of word-sense
discrimination, Kelly and Stone created sixteen semantic
categories: Animate, Human (Male, Female, Kinship),
Collective, Abstract Noun (Abstract, Time, Distance), Social
Place, Body Part, Political, Economic, Color,
Communication, Emotions, Frequency, Evaluative
Adjective, Dimensionality Adjective, Position Adjective, and
Degree Adverb.

Sinclair [14] considers the lemma yield—the collection of
word forms such as yielding, yields, yield, etc., each in its
several functions. He claims that about 70% of the
occurrences of the lemma yield in the 7.3-million-word
Birmingham database of English display what he calls an
“alignment” of “sense and structure.” Specifically, if one
knows which representative of the lemma occurs in a given
citation, e.g., if yields as a plural noun occurs—then the
assertion is that one can predict with 70% accuracy whether
the ‘give way’ meaning, the ‘produce’ meaning, the
‘lead to’ meaning, or one of several “minor meanings” of
yield is being used.

In Amsler [15], structurally determined keywords of
definitions of the New Merriam-Webster Pocket Dictionary
(G. and C. Merriam, Eds., 1971) are disambiguated
essentially by hand. That is, concordances are labeled, as was
done by Kelly and Stone. The resulting information is used
to automatically construct lexical hierarchies based on the
text of the Merriam-Webster definitions. Further work is
suggested in which each definition would be disambiguated
in its entirety, in the sense that each of the words it
contained, and not simply its “keywords” or “head words,”
would be assigned a sense number. This work would proceed
automatically, in a bootstrapping process by which each
correctly disambiguated definition would constitute
additional data of the store from which word-sense
discrimination decisions were made. (For work which
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continues in the direction of dictionary-processing research
taken by Amsler, see Chodorow et al. [16]. Here semantic
hierarchies are extracted from Webster’s Seventh New
Collegiate Dictionary by automatic and semiautomatic
methods.) In addition, the conjecture is made that such a
fully disambiguated dictionary could serve to distinguish
word senses in free text [15, p. 123].

Amsler and Walker presented a related idea for a research
program in [17]. Word senses can be distinguished, they
reported, in the following manner: Let each word within a
paragraph be assigned all its possible “subject categories” as
listed in the computer-readable version of the Longman
Dictionary of Contemporary English (Longman Group Ltd.,
Eds., Longman, Burnt Mill, England, 1978). The print
version of this unfortunately does not list these subject
categories. The category most frequently represented among
the words of the paragraph is the theme or subject area it
covers. Accordingly, wherever one of the possible senses of a
word within the paragraph is assigned the “theme category,”
it may be selected as correct. Actually, this account of their
approach is probably oversimplified, since they report using
some 1600 categories compounded in some way from the
roughly 125 “major” and 250 “minor” subject categories of
the Longman Dictionary.

A sampling of these subject categories, where in the
interest of clarity we let the major categories begin with
capital letters and the minor ones with lowercase letters, is as
follows: Baseball, Building, car building, bricklaying,
carpentry, plastering, plumbing, Beauty Culture, cosmetics,
hairdressing, perfumery, Basketball, Bible, . . .,
Numismatics, currencies, Occult, alchemy, palmistry,
astrology, spiritualism, Occupation, medical profession, royal
rank, . .., Transport, Tobacco, Nonautomotive Vehicles,
Water Sport, swim clothing, swimming, Winter Sport,
curling, ice skating. As should be clear, the minor categories
cited each belong with the closest preceding major category.

Weiss [18] confronts sense differentiation from the point
of view of the discipline of information retrieval. He designs
and tests a program embodying the following procedure: He
wishes to learn the contextual concomitants of sense-label
assignments associated with a set of input sentences all
featuring some word w, and originating in any sort of
corpus. To this end, he induces an ordered set of sense-
determination rules on the basis of an initial, “training”
corpus C1, and applies these to a “test” corpus C2 drawn
(randomly?) from the initial set of citations, in such a way
that C1 and C2 are disjoint.

Starting with the empty set of rules, his procedure
examines each sentence/label pair of C1, and performs one
or more of the following operations: It adds a rule or rules; it
deletes a rule or rules; and/or it adds a deleted rule to a
running list of “prohibited new rules.” What is a rule? There
are two sorts—template and contextual rules. Template rules

are of the form, “word x occurs in the current sentence 187
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Table 1 Results of Weiss’s sense-label assignment [18, p. 40].

Word T C I U RR RP*
DEGREE 180 160 12 8 0.89 0.93
TYPE 180 164 4 12 0.91 0.98
VOLUME 180 152 15 13 0.84 0.91
Total 540 476 31 33 0.88 0.94

* RR: Number right over number seen.
+ RP: Number right over number both seen and categorized.

within two words to the left or right of word w whose senses
are being disambiguated.” Contextual rules say: “word y
occurs in the current sentence within five words to the left or
right of word w.” There are two additional differences
between template and contextual rules:

& Template rules are ordered, en bloc, before contextual
rules.

& Contextual rules do not count “function words”—in some
sense of this term which need not occupy us—but
template rules count all words.

When meeting a new sentence/label pair, the procedure
first attempts to apply, in order, every rule it knows, until a
rule is satisfied. It then matches the label predicted by rule
with the actual label of the sentence. If there is a match, it
simply proceeds to the next sample. Otherwise, it traces back
to the offending rule, and both deletes it and adds it to the
list of rules which cannot be coined in the future. There is a
tendency for the useful rules within each set—the templates
and the contextuals—to “rise to the top of the stack” as
incorrect rules are deleted.

Once the final sentence of Cl is examined, attention shifts
to C2. Now, in test mode, the only function remaining of the
three utilized on C1 is rule application. That is, each
sentence of C2 is labeled according to the rule set derived
from C1. An additional function is added, specific to the
present phase: tallying of right and wrong answers. Accuracy
scores are determined on the basis of the following figures:
the total T of samples in the data set (=N); the number C of
correctly resolved ambiguities; the sum 7 of incorrectly
resolved ambiguities; and the number U of unresolved
ambiguities. The two evaluative statistics employed are
“resolution recall” RR = C/T, and “resolution precision”
RP=C/(C+ ).

Weiss obtains the results shown in Table 1, where
DEGREE, TYPE, and VOLUME are the actual words used
to test his procedures.

The work of Dahlgren [19] formally resembles both that
of Weiss and that of Kelly and Stone in the sense that the
mechanism of sense discrimination used is an ordered set of
categorial, i.e., “yes-or-no” as opposed to probabilistic, rules.
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Like Weiss, she uses “frequent collocates” as one sort of
criterion for establishing differences. Like Kelly and Stone,
she also uses a second kind of rule, one based on the local
syntax of the token under analysis, and relying on a
previously-carried-out parse. Sample syntactic questions,
used when a noun is being disambiguated, concern the
presence or absence of an associated definite article, personal
pronoun, or noun complement. Other such questions
include whether the noun serves as object of a preposition,
or as subject or object of particular verbs. A third sort of
question, and the most novel of the three types, is the one
using “common-sense knowledge” as defined on the basis of
the results of a number of psycholinguistic studies (e.g.,
Ashcraft [20], Rosch et al. [21]) within what amounts to
prototype theory. Each word to be disambiguated is
represented via a “tangled hierarchy” of ontological
predicates derived from the sort of study just referred to, and
various questions are defined which turn on the similarity or
lack of similarity between the representation of the word in
focus and some other word or words in its environment. For
instance, one question type looks for such resemblance in a
second noun standing in conjunction with the noun under
examination; if such commonality is indeed found, the
proper sense is deemed to have been identified. The rules are
applied in three tiers: first the “frequent collocate™ questions,
then the syntactic questions, and finally the common-sense-
knowledge questions—with later tiers being reached only
when earlier ones have failed to yield a unique sense
selection.

Concordances drawn from a corpus of legislative English
were used to test the rule set. Seven nouns (office, hand,
company, idea, crop, people, and school) were used, in an
average of 313 different citations each. The correct sense was
selected in 96% of the citations attempted.

2. Description and results of experimentation
The aim of the experiment to be reported was to compare
three methods of computational determination of English
word senses. The corpus selected for processing consisted of
some 22 million tokens’ worth of the Canadian House of
Commons’ official proceedings, for a period during the late
1970s. As such proceedings are called Hansards [22] in
Canada, the corpus is referred to here as the Hansard
database. A pool of about 1000 types occurring in the
Hansards was chosen so as to ensure a varied frequency
distribution of sample types. Of these 1000 or so, five types
were selected to which each of the three methods would be
applied, as a basis for comparison. Potential members of the
set of five types were chosen randomly, and those candidates
were retained which met preset requirements of usefulness
for the experimental task (e.g., the type must have at least
three senses within a single part of speech).

The experimental types were interest, point, power, state,
and terms. A concordance over all 22 million Hansard
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tokens was compiled for each. [The TUPLES text analysis
system (Byrd [23]) was used for the generation of
concordances and for additional purposes to be described
subsequently.] After close inspection of a concordance, it
was decided which part of speech and which selection of
possible senses within that part of speech would be chosen
for the type in question. About 2000 concordance lines were
obtained for each test word, after elimination of duplicate
entries, incorrect-part-of-speech entries, and entries in which
the test word bore a sense other than one of those selected.
All lines of each such concordance were then hand-labeled as
to which of the selected senses characterized the node word
(in the terminology of Sinclair [24]})—the token in focus in
each particular concordance line. All of the test words except
one had four stipulated senses; the remaining word had three
such senses. The part of speech chosen for all five words was
“nominal.” See [2] for details and commentary. Each
concordance was then randomly partitioned into an
approximately-1500-line “training corpus” and a 500-line
“test corpus.” The former would be submitted to each
method under consideration, as the basis for the formulation
of generalizations and predictions as to when the node word
would most probably bear each of the given senses. The
latter would permit the evaluation of the degree of
correctness of each method’s predictions concerning a test
word.

As stated earlier, three methods of sense discrimination
were under scrutiny. A “method” consisted of a set of 81
“contextual categories” or “contextual event types” which
could be defined anew for each of the test words; or once
and for all, independently of which test word they were
applied to; or in a mixture of both these modes. The notion
of utilizing “context” to discriminate word senses was thus
made precise: The “context” of a token with reference to the
concordance line in which it figures was taken as the pattern
of presences and absences in that line of exponents of each
of 81 “event types.”

In order to quantify the predictions of each method with
regard to the contextual conditions most likely to be
associated with the occurrence of each stipulated sense of a
test word, and thereby to permit the comparison of the
methods, a decision tree (Meisel [25]) with maximum
mutual information as the node-label selection criterion
(Lucassen [26]) was constructed for each of the five
1500+-line training corpora, using each of the three methods
being compared, for a total of 15 trees. (See the Appendix
for an introductory sketch of the concepts of “decision tree”
and “maximum mutual information.”) Every tree so derived
from a training corpus was then employed to predict the
senses of the 500 lines of the corresponding test corpus. The
probability was calculated that the sense associated with each
of the 500 lines was correctly predicted. The average of these
probabilities was taken, and the result expressed in
logarithmic form, yielding the entropy of the test data as
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modeled by each of the fifteen training-data trees. The
average entropy for each method over the five test words
analyzed was the statistic used to compare the three
methods. The method achieving the least uncertainty in its
sense predictions of the words examined would display the
lowest entropy.

A dictionary-based domain-general method (henceforth
method DG) was developed, based loosely on the work of
Amsler and Walker reviewed above. Each of the 500 most
frequently appearing words of the entire 2000-line
concordance was automatically looked up in the on-line
version of the Longman Dictionary of Contemporary English
(henceforth LDOCE). If any of the word’s definitions in
LDOCE features a given “subject code” (see the account of
the work of Amsler and Walker described earlier), then the
word is added to a file listing ail the words in the
concordance whose definitions include that subject code.
When processing is completed, what results is a sort of
profile of the words which have occurred most frequently in
an entire 2000-line concordance, from the point of view of
the subject codes employed in LDOCE. The 500 most
frequently occurring words in one of these concordances
correspond to all those words which occur there from =5
times to =10 times. The requisite 81 categories were
obtained in this manner for each of the five test words.

In contrast with domain-general method DG, two
domain-specific methods were developed, henceforth DS1
and DS2. DS1, inspired in some measure by Weiss [18],
described earlier, might better be called text- or
concordance-specific than domain-specific, however, as it is
based completely on the frequencies of different lexical items
in the 1500+-line training corpus. Two classes of categories,
on the analogy of Weiss’s template and contextual rules,
were used here. The first consisted of the 41 types occurring
most frequently in the window n + 2 of the training corpus
being processed, where n + x means the sequence of words
beginning x words to the left of the node word, and ending x
words to its right. The aim here was to capture those words
in close grammatical construction with the node. The second
class of categories excluded “function words” from its
purview (see Black [2] for details) and ranged over an entire
concordance line. The 40 most frequent words fulfulling
these conditions for a given training corpus made up this
class. The idea of this second sort of category was to recover
collocates (see, for example, Sinclair [24], Jones and Sinclair
[27]) of the node. Thus, in the case of DS1 each category
consisted of a single word, whereas in DG a category was
more often comprised of a list of words—all those with one
or more LDOCE definitions that included the subject code
which named the category.

The second of the two domain-specific methods, DS2,
partially resembles DS1 in that 20 of its 81 categories were
concordance-specific, consisting of the 20 words or two-word
sequences which occur most frequently in a given training
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Table 2 Entropy of test data for test words selected.

Test word Entropy(chance)
interest 2.00
point 1.20
power 1.97
state 1.99
terms 1.93
Average 1.82

corpus in the windows n + 1 and # + 2, respectively.
However, the bulk of the categories of DS2—the remaining
61—were derived not from the test-word concordance itself
at all, but rather, strictly from the concordances of 100 other
types occurring in the Hansards. Crucially, none of the five
test words was included in this set of 100 concordances.
These 61 files were generated in a manner completely unlike
any of the procedures described so far. Recall that about
1000 types occurring in the Hansards were chosen to
guarantee a broad frequency distribution of sample types. A
chance selection was made from these 1000, of 100 types, for
which concordances were then produced over the full
approximately 22-million-word corpus. Then each such
concordance was analyzed quite closely from what might be
called a content-analytic point of view, and many of the
words and expressions which were uncovered in the course
of this analysis were loaded into one or another of the 61
“content-analytic” DS2 files.

Actually, the loading of the 61 files took place through a
bootstrapping process which started with no “content-
analytic” files at all and, of course, no words or expressions
entered in such files; and which ended with 61 fully stocked
files. The procedure by which this result was obtained was
the following: The 100 concordances were examined
seriatim. In the case of any given concordance, this
examination began with a first reading whose aim was the
stipulation of a set number of node-word meanings relative
to the corpus. Each sense was assigned a label consisting of a
number. There followed a second reading of the
concordance, in which all words and expressions which
occurred were listed and partitioned according to the node-
sense number of the line in which they were found. Next, an
attempt was made to partition along thematic lines each list
of sense-particular words and expressions. In the course of
processing the first ten or fifteen concordances, any theme
was entertained. Some of these early themes which did not
survive were Advertising, Capital Goods, Industry,
Obligative, and Try. However, beyond this point it started to
become clear what the useful thematic categories were for
this domain, or, better, “world.” (For the notion “world,” see
Black [2, Ch. 2].) A theme was considered useful and
adopted if the presence of one of its exponents in a
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concordance line—either alone or in conjunction with
exponents of a small number of other themes—sufficed in a
large percentage of cases to determine the sense number of
the line’s node. The proliferation of themes was, in an
informal sense, asymptotic, and fell off dramatically after
about 40 concordances had been considered. In a final
reading, conducted after the processing of all 100
concordances was complete, those concordances taken up at
the beginning of the process were reanalyzed in terms of the
final set of thematic categories, so that uniformity of
classification was ensured. A sample of the 61 categories
arrived at in this manner is as follows: CONTROVERSY,
DOCUMENT, ENERGY, GOVERNMENT_BODY,
NEGATIVE_CONNOTATION, MILITARY/FORCE,
PARLIAMENTARY_MOVES, POWERFUL_PEOPLE,
RESPONSIBILITY, TRANSPORT, VOTERS. It is essential
to note that these content-analytic categories were
hypothesized to be valid for all or most of the types
occurring in the Hansards, not simply for the five test words.
Part of the motivation for selecting the five experimental
words via random methods was to test the validity of the
DS2 categories across the range of Hansard types.

Fifteen analyses of test data were performed on the basis
of the decision trees obtained from the fifteen corresponding
analyses of training data. These results are presented below.

As a preliminary, it will be useful to give a brief
explanation of the statistical measure in terms of which the
results are expressed. This is the entropy measure. Consider
that if we had four possible senses for a node, and if all
senses were equally likely, the entropy of the data under
examination would be 2 bits. That is, it would require 2 bits
to convey the information that four choices are present.
(Hereafter, entropy will be understood to be expressed in
bits.) If it happened that all senses were not equally likely—
i.e., that we knew there were more instances of some senses
than of others—the entropy of the data would be a little less
than 2. Now if by using method DG or DS1 or DS2 we were
able on average to eliminate from consideration two of the
possible sense choices, and if the remaining two choices were
equally likely, then the entropy of the data would be 1. If
there were a perfect method, one which always correctly
narrowed the four possibilities down to a single choice, then
the entropy of the data would be 0.

In the case of the data we are considering, all words except
one had four senses, while the remaining one ( point) had
three. If the only facts known about the test data were how
many instances were present of Sense 1, Sense 2, and so
forth, the results shown in Table 2 would occur on average.
The results obtained via methods DG, DS1, and DS2 (see
Table 3) should be compared with the results of chance
selection in Table 2.

A further result is that, for two of the words selected at
random, when the 20 structural categories of DS2 were
replaced by the 20 DS1 categories that appear highest in the
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DS1 decision tree, the result was nearly identical in each case
with the minimum of DS1 and DS2. Specifically, this
combination of DS1 and DS2 for the word point resulted in
an entropy of 0.64, which is exactly identical with

min(DS1, DS2) for this word. The same combination
applied to the word state yielded an entropy of 0.66, which
is within 0.02 of min(DS1, DS2) for state (in fact, it is better
by that amount). Projecting this result onto the entire set of
five test words by averaging the minima of DSI and DS2, we
obtain an estimated entropy of 0.78 using the particular
method of combining the two DS approaches which is
described just above.

An additional statistic of interest is “percent correct,” i.e.,
the number of correct sense choices divided by the total
number of predictions made. Table 4 shows the results of
random sense selection. The percent-correct results obtained
when methods DG, DS1, and DS2 are applied to the data
are given in Table 5.

3. Discussion

In the experiment under discussion, chance selection of
senses yielded 1.82 on average—close to the “worst case”
figure of 2.00 referred to in the previous section. Now both
methods DS1 and DS2 were able to reduce the entropy of
the data to below 1.00, whereas method DG turned out
considerably closer to chance in its results (at 1.49, on
average) than to either of the remaining two methods. In
fact, in the case of the test word point, random sense
selection would have resulted in an entropy of 1.20, while
method DG actually did worse than chance, at 1.48.

In terms of percent correct, again methods DS1 and DS2
do roughly twice as well as chance, at 72% and 75%
respectively, vis-a-vis the chance percentage of 37% correct.
But method DG achieves only a 27% improvement over
chance, with a percent-correct rate of 47.

An analysis of the DG trees themselves, and of the
contents of the DG categories, suggests why this method’s
performance was somewhat lower than that of DS1 or DS2.
Those categories which rise to the top of a useful decision
tree, in the present experimental environment, are typically
connected with the thematic or structural functioning of the
node word in a way that is intuitively obvious. Thus, the
category “PLACE” appears at the top of the DS2 decision
tree for point, since almost every sample in which the word
is used to mean ‘geographical location’ has some exponent of
this category, and not many other lines do. Hence,
“PLACE” is quite “helpful” (informative) for the
disambiguation of the nodes of this concordance. Similarly,
in the DS|1 tree for terms, the categories “IN” “THE,” and
“OF” rise to positions at or near the root, and the reason for
this seems to have to do with the predictive power of such
frequent expressions as in terms of and the terms of, each of
which characterizes two of the four senses of terms (although
not the same two) to the practically complete exclusion of
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Table 3 Entropy of leaves of generated decision trees for test

data.
Test word Entropy(DG) Entropy(DS1) Entropy(DS2)
interest 1.47 0.83 1.23
point 1.48 0.76 0.64
power 1.50 0.74 0.77
state 1.63 0.94 0.68
terms 1.38 1.21 0.99
Averages 1.49 0.90 0.86

Table 4 Results for random sense selection: percent correct.

Test word % Correct(chance)
interest 28
point 66
power 33
state 27
terms 31
Average 37

Table 5 Results for sense selection by methods DG, DS1, and
DS2: percent correct.

Test word % Correct(DG) % Cor- % Cor-
rect(DSI) rect(DS2)
interest 47 72 63
point 46 76 83
power 48 77 76
state 42 71 81
terms 50 62 70
Averages 47 72 75

the remaining meanings. But this phenomenon appears not
to characterize the DG trees. More specifically, there are
cases where the categories that exist in the list of 375
Longman subject classes—categories one might choose on
an intuitive basis as “relevant”—do not seem to attract any
of the 500 most frequently appearing words of a test item,
and therefore do not get a chance to appear near the root.
On the other hand, there are instances where the intuitively
likely categories are in fact represented in the tree. But then
they tend not to inhabit the upper reaches of the tree. For
instance, in the DG tree for interest, classes such as
“COMMERCE,” “BANKING,” and “FINANCIAL” do
occur in the decision tree, but they are not near the top, and
only serve to categorize small numbers of samples. What this
situation suggests is that the DG method may fail to reflect
the thematic organization of the concordances analyzed.

A look into the DG category files themselves provides
further possible explanations of the lower DG scores. Even

EZRA BLACK

191




192

1 (Question x)

One-level decision tree.

the most common “function words” are given very complete
descriptions in terms of the subject classes, so that, for
example, every occurrence of on or off is categorized as
indicating that there is some sense in which the topic
“ELECTRICITY” is being discussed. Therefore, one might
guess that DG performance would improve substantially if
function words were removed from the input to the
Longman categories, and only content words were retained.
However, what typically happened when this was tried was
that words which were “content” items but still high in
frequency, such as point when it occurred in concordances
other than its own, were placed in a rather large number of
categories, including, e.g., “MATHEMATICS” and “LAW.”
And most of these categories did not seem to bear directly
on the themes addressed in the Hansard concordances.
Frequent content words accumulated in these less helpful
classes, so that powerful categories emerged which perhaps
served to diminish the effectiveness of the DG classification
scheme.

Turning to DS1 and DS2, it seems that well-chosen (and
automatically chosen) exclusively structural categories did
nearly as well as a combination of about 3/4 thematic and
1/4 structural classes. The important point, it appears, is that
the two methods each beat each other soundly once (with
DS1 the winner for interest and DS2 the victor for terms),
and that overall DS is superior two of five times and DS2
three of five times. This indicates that neither method can
stand by itself, but rather that each is in need of the other to
perform well. Clearly this observation suggests tasks for
future research, such as, first, varying the number and
character of DS1 categories entering into combination with
the DS2 host; and second, attempting to discern the source
or sources of DS1’s power by teasing apart its elements and
investigating their performance in different combinations,
and in combination with the DS2 structural classes.

The experimentation presented suggests a number of
additional avenues for future research. The underlying
purpose of the study discussed here has been to test the
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efficacy of variant basic orientations in the discrimination of
English word senses. None of the approaches employed
could now be used exactly as is to actually process large
volumes of text with the aim of automatically differentiating
word senses. This is because of the necessity for hand-
labeling of concordances, and further, because of the grand
scale on which this labeling is required. In the background
lies another difficulty, but one whose elimination is probably
a more distant objective. This difficulty is that the content
analysis itself had to be carried out by a person. While
automation of this latter task does not seem a forlorn hope,
obviating the need for hand-labeling does appear the greatly
more tractable task of the two at present.

Appendix

An intuitive approach to the terms “decision tree” and
“maximum mutual information” is as follows: Assume that
we wish to construct a system of event classification which
yields us progressively more certainty as more details are
considered. In the case of word-sense disambiguation, we
need to reduce our uncertainty concerning which of a pool
of preselected senses best characterizes a particular instance
of the use of a test word. The formal measure of uncertainty
is called entropy, and is equivalent to the average number of
bits of information it takes to transmit the identity of an
event using an optimal coding scheme. One system of
classification of the type we seek is called the binary decision
tree. To understand what this amounts to, start with a set of
yes-or-no questions which may be asked about events of the
type under study; for our purposes, these might be questions
of the form, “Was there a word or expression of contextual
event type T in the concordance line under scrutiny?” From
this set of questions choose that question with the following
characteristic;: Knowing the answer to this question reduces
the average entropy of the outcomes of the process more
than knowing the answer to any of the other questions
would. The question that reduces entropy the most is said to
display “maximum mutual information” with the outcome
of the process. We can picture what we now have as a one-
level decision tree, consisting of a root and two leaves (see
Figure 1). Note that node 1, the root node of the tree, is
associated with Question x, the one which best met the
decision criterion, just outlined, for node-label selection. The
average entropy of nodes 2 and 3 is lower than the entropy
of node 1. We extend the decision tree beyond level 1 by
processing nodes 2 and 3 in the same manner as node 1 was
processed. To treat node 2, we find the best question to ask
of all samples for which Question x was false; to treat node
3, we find the best question to ask of all samples for which
Question x was true. Again, “best” means “leading to the
greatest reduction in average entropy.” So the average
entropy of the leaves of the two-level decision tree (Figure 2)
is less than that of the leaves of the one-level tree shown in
Figure 1. A binary decision tree is a vehicle, then, for
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discovering an answer to the question, “Which of this pool
of questions are most useful to ask of my data, and in what
order should they be asked?”
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