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A graph-unification-based  representation 
language is described  that  was  developed as 
the  grammar  formalism  for  the  LILOG  research 
project at IBM Germany. The  Stuttgart 
Unification  Formalism (STUF) differs  from  its 
predecessors  in  its  higher  flexibility  and  its 
algebraic  structure.  It  is  well  suited  for  the 
implementation of rather  different  linguistic 
approaches,  but  is  currently  employed  mainly  in 
the  development  of  Categorial  Unification 
Grammars  with  a lexicalized compositional 
semantics.  Examples  from  the  syntactic  and 
semantic  processing  of  natural  language are 
used  to  illustrate  the  virtues of the  formalism 
and of  our lexicalist  approach  to  linguistic 
analysis. 

1. Introduction 
The theoretical and computational virtues Of unification- 
based grammar formalisms  have  been  heralded in the recent 
literature on computational linguistics.  These  advantages 
have  led  many  researchers to adopt this paradigm in their 
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theoretical  models as well as in their computer 
implementations. Linguistic  frameworks that utilize the 
concept of unification,  such as Lexical Functional Grammar 
and Generalized  Phrase Structure Grammar, have  become 
well-respected competitors of more traditional theories. 

graph-unification  formalism  can be  employed  for the 
development and implementation of a  strongly  lexicalist 
theory of syntactic and semantic  processing. 

The STuttgart Unification  Formalism  (STUF), which has 
been  developed  for IBM Germany’s  Project  LILOG,*  is not 
committed to any particular grammatical theory.  It  provides 
encoding  strategies  of  syntax  rules and lexical  entries  from 
several  linguistic  frameworks,  such as Generalized  Phrase 
Structure Grammar (GPSG) [ 11, Lexical Functional 
Grammar (LFG) [2], Augmented  Phrase Structure Grammar 
(APSG) [3], Head-driven  Phrase Structure Grammar 
(HPSG) [4], Categorial Grammar (CG) [ 5 ] ,  and Categorial 
Unification Grammar (CUG) [6]. This is  possible  because 
syntactic constituents, lexical  entries, and various  rule  types 
(such as ordinary  phrase-structure  rules,  metarules,  linear 
precedence  rules, and lexical  rules)  are  represented in a 
uniform way. The directed  graph,  much as in  other 
unification  grammar  systems,  forms the basis for the 
representation.  Yet, STUF not only  permits  combining 

In this paper, we  seek to demonstrate how a highly  flexible 

* Projec¶ LILOG in the  Division of Science  and  Technology of IBM Germany has as 
its main goal the use and  development of advanced Linguistic and LOGical methods 
for the  understanding of German through a knowledge” program  system. 

1BM J .  RES. DEVELOP, VOL. 32 NO. 2 MARCH 1988 GOSSE BOUMA, ESTHER KONIG, AND HANS USZKOREIT 



solutions from  different  linguistic  frameworks, it also 
provides an algebraic notation for the specification of graphs 
that exhibits a high  degree  of  expressive  power and semantic 
clarity. 

In STUF, graphs can be  specified in terms of other graphs, 
which are either called by name or constructed by 
description. Graphs may be called  within other graphs at any 
level  of  embedding. A basic concept in the specification and 
processing  of graphs is graph application. A certain restricted 
class  of functions from  graphs to graphs  may  themselves  be 
encoded  as  graphs.  These function or functor graphs  can 
then be  applied to argument graphs to yield value  graphs. 
Graph application is  used  for  Categorial Grammar rules, 
lexical  rules, and GPSG metarules, and for the construction 
of the semantics. 

A first  test implementation in VM-PROLOG incorporated 
the basic notions and notations of the formalism. The 
implementation is currently being  expanded to cover  all of 
STUF. 

In this paper, we concentrate on the application of the 
formalism.  Although STUF is to a large extent theory- 
neutral, in writing actual grammars we favor a highly  lexical 
brand of grammar that has its roots in Categorial  Unification 
Grammar, a combination of Categorial Grammar and 
Unification Grammar. In this type of grammar, the only 
rules that combine syntactic constituents are functional 
application and functional composition, which are 
implemented in STUF as  cases  of  graph application. This 
means that all combinations of constituents are binary. One 
of the two combining elements is the functor; the other is the 
argument. Traditional categorial grammars employing  only 
functional application have  often  been  criticized by linguists 
for their lack  of  syntactic sophistication. The combination of 
graph  unification and functional application or composition 
has added the missing  expressive  power. The  STUF 
formalism in turn provides a language that is better suited 
for CUGs than previous  unification grammar models. 

Our exposition starts with an outline of the basic 
principles and notations of the formalism in Section 2. 

In  Section 3, examples from English are used to 
demonstrate the advantages of our approach for syntax. 
Universal  principles, constraints, and conventions that are 
expressed in English in most grammatical theories,  such  as 
the Head Feature Convention, can be  encoded as graphs that 
constrain other graphs.  In  Section 4, examples are presented 
for the application of the STUF formalism to the 
construction of a compositional semantics.  Two 
construction methods are discussed and compared. The first 
one is lambda conversion (functional application applied to 
lambda expressions),  which  parallels the use  of functional 
application for syntactic analysis in the traditional approach 
of strict compositional semantics. The second  one,  which we 
call “direct construction,” is a unification-based alternative 
to the use  of lambda conversion in natural-language 
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semantics. It is demonstrated how solutions for anaphora 
resolution that are adopted from  Kamp’s  Discourse 
Representation Theory (DRT) [7] and Heim’s  File  Change 
Semantics [8] can be integrated in our system. 

Section 5 ,  Conclusions, contains a brief  discussion  of the 
theoretical and practical  relevance of the work  presented. 

2. Outline of the formalism 

Graph  unification  and the roots of STUF 
As pointed out in the Introduction, unification grammar 
(UG) has  become one of the most  successful  theoretical 
paradigms in the area of natural-language  processing. The 
use  of graph  unification in linguistic  processing  was 
introduced by Kay [9] in his Functional Unification 
Grammar (FUG). Although UG has its roots in 
computational linguistics, it is  now  also  widely  accepted in 
other areas of formal linguistics. The basic  concepts of 
unification grammar have  become  integral parts of such 
widespread grammatical frameworks as LFG and GPSG. 
These concepts are the central notions of implemented 
grammar formalisms  such as the PATR-I1  system [ 101 
developed at SRI International and of more recent  linguistic 
frameworks  such  as  HPSG and CUG. 

The common denominator among all the variants of UG 
formalisms  is the use  of complex attribute-value structures in 
the representation of linguistic units and the utilization of 
graph  unification or some similar operation for  testing, 
propagating, and merging  of the information encoded in 
these structures. 

The attribute-value structures can be viewed as single- 
rooted  directed  graphs  with  labeled edges. A graph  may  be 
empty (the empty graph), it may  be an atom (an atomic 
graph), or it may  be a set  of  edges  whose labels are the 
attributes (a  complex graph). Each  edge points to a graph 
that is the value of the attribute that labels the edge.  (Some 
formalisms  also  allow other types of values  such  as  sets or 
strings.) 

of subsumption. If a graph A is  more  general in its 
information content than a graph B, we say that A strictly 
subsumes B. B is subsumed by A if it contains at least the 
information contained in A. A unifies  with B to a graph C if 
and only if C is the most  general  graph that is  subsumed by 
A and B. If such a graph  does not exist,  i.e., if the 
information contained in A is not compatible with the 
information contained in B, the unification fails. 

Many notations for  such attribute-value structures have 
been  proposed. The two  most common notations are 
exemplified in Figure 1 by  two representations of the same 
structure. The index ( 1) marks a reentrancy point. The 
subgraph  after the first  occurrence of the index  does not have 
to be repeated at the place  where the index occurs again 
because  it  is  already  represented  by the index  marker.  (Of 
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course, the index stands for the subgraph itself, not  just for 
its contents.) 

It is more than  just  the notation in which the UG 
formalisms differ.  Even  if we do not consider notation and, 
moreover, abstract away from the diverging encoding 
strategies that are introduced by the adopted linguistic 
theories, there is still  space enough for a large  variety  of 
formalisms due to the existence  of a large  variety of 
proposed rule types, a number of operations that go beyond 
graph unification, and diverging approaches to phrase 
structure. 

For all employed representations and operations, a 
common semantics can be constructed [ 1 11. This means that 
different aspects of  these formalisms can be  freely combined 
and that only a fraction of the theoretically available 
possibilities have been tried out. 

The existing UG formalisms fall into two categories: those 
that were  designed for a particular grammatical framework 
and those that were not. The grammar formalisms of GPSG 
[ 11, HPSG [4], and LFG [2]  belong to the former class. In 
the latter class are  the powerful grammar formalisms of 
FUG [9] and PATR-I1 [ 101, which can be  viewed as flexible 
computer languages  for natural-language processing. 

The theories,  strategies, methods, and formal constructs of 
172 current formal linguistic theories are changing rapidly. Thus, 
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a flexible  research  system  for syntactic and semantic 
processing that is not dedicated to  the development of a 
specific  linguistic theory should not be based on a formalism 
of the first  class. The philosophy behind the systems of the 
second  class  is to provide powerful tools for the 
representation of grammars that can accommodate a variety 
of  strategies and analyses from more than one theory. 

For our work, the use and development of advanced 
linguistic and logical methods for the understanding of 
German through a knowledge-based  program  system, we 
have adopted the latter philosophy.  LILOG  is a basic 
research project that extends into the year 199 1. It  is 
therefore of utmost importance for the goals of the project to 
use  highly  flexible  systems, since this is the only chance to 
keep the technologies that are employed up-to-date. 

The STUF system incorporates most of the basic concepts 
of the PATR-I1 formalism. (A preliminary version of the 
STUF formalism was presented in [ 121.) STUF goes beyond 
its predecessors in its  expressive  power, in the variety of 
permitted rule types, and in its general  algebraic notation for 
the specification of directed graphs. The additional properties 
increase the flexibility  of the formalism and provide a more 
intuitive language  for representing and processing  graphs. 

Basic constructs of STUF 
Conceptually STUF consists  of  two components that can be 
modified independently of  each other: the graph- 
specification component and  the grammar-definition 
component. The graph-specification component provides a 
notation for the description of graphs together with the 
corresponding semantics. In our project, it is used not only 
in the linguistic analysis but also  for the representation and 
management of  knowledge. The grammar-definition 
component contains the notation for  lexical entries and 
different  types  of grammar rules together with their meaning 
in the definition of a language. 

Since all lexical entries and all  types of rules are 
represented  as  graphs, a simple operation of graph 
declaration suffices  for  defining (or declaring) the appropriate 
graphs through the graph-specification  language. 

Graph declaration 
Since  all  rules,  lexical entries, and moreover all constituents 
in the analysis are represented as directed graphs, the 
notation for  describing and defining such graphs plays a 
central role in the  STUF formalism. A graph declaration 
consists of the graph name and of the specification  of the 
graph separated by a colon: 

graph-name : graph-specification. 

The graph specification is terminated by a period. Just as in 
LISP and several other modern programming languages, the 
declaration of a variable and its value assignment are 
combined in one operation. However, in this language,  value 
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assignment is in the spirit of the unification  idea: The new 
value of the graph name is unified  with its old value. If the 
name has no previous value, the empty graph is assumed 
and the new value is therefore fully determined by the graph 
specification.  Usually, one does not want to declare a graph 
twice in the same grammar. Thus one might question the 
significance of the decision to use  unification instead of 
overwriting in the assignment of  values. But STUF is a truly 
declarative language. The linear order of declarations does 
not influence the interpretation of the grammar. STUF 
differs from PATR-I1 in this respect,  since there, a second 
declaration of the same variable  leads to a compile-time 
error. However, we point out to the worried grammar writer 
that  our decision does not imply that inadvertent reuse of 
the same graph name must remain undetected. A good 
compiler for STUF should offer the possibility  of notifying 
the user  when a graph name is declared more than once. 

A similar strategy should be  used  for unification failures 
during the compilation of grammars. Whereas such failures 
lead to compile-time errors in PATR-11, in STUF  the value 
FAIL is assigned.  (FAIL corresponds to the designated  value 
TOP in [ 131.) Graphs that contain FAIL do not make sense 
in the kind of grammars we are working  with. Here again, 
the compiler should notify the user of the potential source 
for run-time errors. Graphs that contain the graph FAIL  as a 
subgraph have to be marked as being partially inconsistent 
in the implementation because they cannot be  used anymore 
in most components of the analysis.  Using the FAIL  value 
instead of simple unification failure has a couple of 
advantages,  which are described in [ 141. 

Graph specification 
A graph can be  specified by a name or by a description. A 
graph name pulls in a copy of the value that has been 
assigned to  that name. A graph description depends on the 
type  of the graph. If the graph is empty, the graph is denoted 
as the empty string or as the symbol 0. If the graph is the 
failure graph, it is denoted by the  designated atom FAIL; if it 
is an atomic graph, it is denoted by the atom. The interesting 
part of the notation is the way in which  complex graphs are 
described. A complete graph  is  seen as the result of an 
operation on graphs: 

complex-graph :: = “(” graph-operation “)”. 

The most common graph operation is unification. It is 
denoted by a list of operands that  are separated by U or by 
an empty operator symbol. Another graph operation is 
disjunction. It is written as a list of disjunct graphs separated 
by the disjunction operator I. The graphs that are connected 
by disjunction are possible  values  for the (sub)graph. If a 
nondisjunctive graph is unified  with a disjunction, it is 
unified  with  every disjunct. If two disjunctive graphs are 
unified, the result is the cross product, Le., the disjunction of 
their crosswise unifications [ 151. 

The following  graph declaration is a fictitious example for 
the interaction of unification and disjunction: 

PastParticiple : (Verb Nonfinite (Perfective I Passive)). 

The graph PastParticiple is  defined as the unification of three 
other graphs:  Verb, Nonfinite, and the disjunction of the 
graphs Perfective and Passive. 

We  have not yet  provided any means for constructing 
complex graphs as sets  of attributes and values. To this end, 
we need a way to introduce edges and subgraphs. The only 
subgraph specification that we  will describe  here  is the path 
specification,  which we have adopted from PATR-11. A path 
is written as a sequence  of  edge  labels (attributes) enclosed 
by angle  brackets. A path is a sequence of  edges that leads to 
some subgraph. A simple path specification is the list  of 
atoms that label the edges  of the path. The leftmost label 
names an edge that starts at the root of the graph; the 
rightmost one belongs to the edge that immediately points to 
the subgraph to be  specified. Thus the empty path ( ) 
specifies the root. Any path of length 1 specifies an 
immediate subgraph of the root. Examples that illustrate the 
path notation can be drawn from Figure 1. In the graph, 
there is a single path leading to the atomic graph t, which is 
labeled (b   d )  , Two paths lead to the subgraph that is 
indexed  with ( 1 ): (a)  and  (b  c) . The subgraph could be 
referred to by either path specification. 

specifying paths than just concatenation of  edge labels. An 
important feature is the use of regular  expressions in path 
specification that was introduced in LFG under the term 
“functional uncertainty.” Such path specifications can 
denote potentially infinite sets of paths. They are especially 
useful  for the declarative specification of sets of subgraphs. 
The path specification (x+), for example, could be  used to 
access any subgraph that can be reached from the root by 
just traversing paths with the label  x. As in the common 
notation for  regular  expressions, the superscripted plus sign 
stands for the positive  Kleene-closure. The Kleene-star is 
permitted as well. It is also  possible to define path variables, 
names that stand for  sets  of  paths. 

The appropriate operation for  assigning  values to 
subgraphs is the graph equation, which  resembles the 
equation notations of LFG and PATR-11. STUF equations 
are sequences  of graph and subgraph specifications separated 
by equal signs.  Delimiter-omission  rules  specify the 
conditions under which equations may be written without 
enclosing  parentheses.  We do not state these rules  here, but 
omit parentheses wherever the scope of the operator is 
clearly  recognizable. 

The semantics is rather straightforward: The operation 
returns a graph in which the subgraphs that are denoted by 
subgraph  specifications are unified  with  each other and with 
the graphs denoted by the graph specifications. In contrast to 
the equation in PATR-11, the operation is commutative. 

The formalism actually  provides  more means for 

IBM J. RES.  DEVELOP.  VOL. 32 NO. 2 MARCH 1988 GOSSE BOUMA,  ESTHER KbNIG, A N D  HANS USZKOREIT 



Functor graph 

The following  two equations have the same meaning: 

(agr number) = pl, 
pl = (agr number). 

Both return the following  graph: 

[agr : [number : pl ] 1. 
The equation below  merely  unifies  two  subgraphs: 

(number) = (subject number). 

This is the result: 

number : ( 1 )  
subject : [number : ( 1 )] 1 . [ 

The next equation contains an embedded equation: 

((case) = nom) = (subject). 

This is the corresponding graph 

[subject : [case : nom] 1. 

The graph in Figure 1 could be represented by the two 
following equations: 

(a) = (b   c)  = (((e) = r)((Q = s)), 
(b  d) = t. 

The notation does not rule out equations without any 
subgraph specifications. The graph specifications in such 
equations would  be  unified  with  each other but not with a 
subgraph of the graph that is returned by the equation. Such 
an equation would return the empty graph.  Since there is an 
easier way to label the empty graph-actually one that does 
not require any writing at all-it would be a rather 
superfluous use  of the notation. However, it is not the task 

174 of the formalism to prevent its abuse. A notation that is 

syntactically and semantically  clean  is to be  preferred  over 
one that sacrifices  such  features in exchange  for  more  user 
guidance.  Again, the structure of the implementation needs 
to be separated from the design  of the formalism: The 
compiler (or interpreter) can offer guidance for the user 
through warnings  or other notifications. 

Graph application 
The three operations on graphs that we  have introduced so 
far suffice to describe the representations that are needed in 
the grammar. However, STUF provides another operation in 
addition to unification, disjunction, and graph equation, 
which  is  called  graph application. Uszkoreit [6] introduces a 
method of representing certain functions on graphs as graphs 
themselves. There, this method is employed  for the encoding 
of categorial grammars in a graph-unification  formalism. 
(Further developments of the resulting CUGs and their 
efficient encoding in STUF are discussed in Section 3.) The 
concept of graph application is  based on the insight that 
every  complex  graph can actually  be  viewed  as encoding a 
set  of functions from  graphs to other graphs. 

Graph application can be  viewed  as a noncommutative 
binary operation on graphs. The operation can be further 
parametrized by adding two  path  specifications. Thus, the 
operation becomes a function of four arguments-a functor 
graph, an argument path, an argument graph, and a value 
path: 

ga(functor-graph, argument-path, argument-graph, 
value-path). 

As depicted in Figure 2, its value  is determined as follows. 
Take a functor graph and unify the argument graph  with the 
subgraph of the functor graph that is  designated by the 
argument path. The value of the application is the subgraph 
of the functor graph that is designated  by the value  path. 

Graph application is a useful  way  of defining  graphs as 
being constrained by other graphs  without  having to include 
the constraining graph  fully in the constrained graph. 
Usually, at least  some information is carried over  from the 
argument graph to the value  graph. 

A simple  encoding of functional application uses functor 
graphs that contain an edge labeled  “arg”  leading to the 
argument subgraph and another one with the label ‘‘Val” that 
leads to the value  subgraph. The corresponding  call of graph 
application is accordingly  parametrized: 

value-graph = 
ga(functor-graph, (arg), argument-graph, (Val)). 

The  lexical  rules  of  PATR-I1  can  also  be  viewed as 
instances  of  graph application. A lexical  rule contains an 
attribute “in” and an attribute “out.” A lexical entry is 
unified  with the value of “in.” The lexical rule yields as a 
result the value of “out.” Parts of the information contained 
in  the original entry may be included in  the new entry: 
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output-entry = ga(lexica1-rule, (in), input-entry, (out)). 

A highly  simplified  version  of the passive rule, as given in 
Figure 3, might  serve as an example: The expressive  power 
of graph application comprises several other operations on 
graphs that have been discussed in the literature. It is easy to 
see  how simple binary graph unification could be expressed 
as an instance of graph application: 

result-graph = ga(graph- 1, (), graph-2, ()). 

Graph-2 is  unified  with the root of graph- 1. The result is 
again the root. Unification with a subgraph can be  expressed 
in a similar way: 

result-graph = 
ga(graph- 1, subgraph-specification,  graph-2, ( )). 

Graph extraction yields a subgraph of another graph: 

extracted-graph = 
ga(main-graph, ( ), 0, subgrapkspecification). 

Only a few  of the potential uses  of graph application will 
occur very frequently in the definitions of grammars. The 
most frequent use in our own  work  has  been the encoding of 
functional application in syntax and semantics. Examples 
are discussed in the remainder of this paper.  Because 
functional application occurs rather frequently, an 
abbreviatory convention can be introduced in the notation. 
If one agrees in advance on subgraph specifications for 
argument and value  subgraphs, functional application may 
be simply written as functor[argument]. If, e.g., the 
argument subgraph is always under (function argument), 
and the value subgraph under (function value), then  the 
following equivalence holds: 

ga(G-f, (function argument), G a ,  (function value)) = 

G-f [ G-a] . 

We  now leave the graph-specification component of the 
formalism and  turn to the grammar-definition component. 
Other features, applications, and problems of the graph- 
specification  language are discussed in [ 141. 

Grammar component 

Lexical entries 
The lexicon definition contains pairs of terminal strings and 
associated graphs. A lexical entry is  simply a graph 
declaration. Here is a simplified example of a lexical entry 
for the English verb like: 

like : (Verb Transitive). 

Rules with omission of parentheses permit an even simpler 
notation: 

like : Verb Transitive. 

“Verb” and “Transitive” are names of graphs (templates) 
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whose unification yields the content of the lexical 
representation. (In  an actual lexicon one also wants to 
specify the semantic content of the word and include the 
lexical string in the representation.) 

declaration. “Transitive” might  be  declared in terms of the 
graphs “Subject” and “Object.” The resulting modular 
structure of the lexicon has practical advantages that cannot 
be overestimated. Changes in the syntax or in the 
compositional semantics do not necessitate  excessive  lexicon 
editing, no matter how  lexicalized the linguistic framework 
might  be. The editing is restricted to the relevant graph 
definition. The same lexicon can be  used  for experimenting 
with  different syntactic approaches, for it is just  the 
definitions of certain templates that need to be exchanged. 

The graphs “Verb” and “Transitive” are defined by graph 

Grammar rules 
A full description of the types of grammar rules that are 
supported by the formalism would go far beyond the scope 
of this paper. Instead we  will try to convey the basic 
principles that underlie STUF rules. 

A syntax rule in STUF is a graph.  Therefore, it needs to 
be declared  as such. The simple sentence rule that is  usually 
written as S + NP VP  plus annotations might be declared as 
follows: 

S-formation : (mother cat) = s 
(daughter-1 cat) = np 
(daughter-2 cat) = vp 
(daughter-1 agr) = (daughter2 agr). 

However,  linguists are used to their traditional notation. Just 
as in PATR-11,  we therefore permit the notation 
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functional application (rightward) : A + A/B B 
functional application (leftward) : A -+ B A\B 

Thts sentence contains 
NP/N  N 

five words 
(S\NP)/NP  NP/N  N 

NP 
ra ___ functional  application 

functional  application 
NP 

S\NP 

S 
functional  application 

STUF  Graph notation 

a. (syn) = n [Syn : n] 

b. (syn val syn) = np syn : val : [syn : np] 
(syn dir) = right 
(syn arg syn) = n [ [dir : right ]I 

arg : [Syn : n] 

S-formation : mother -+ daughter-1 daughter2 
(mother  cat) = s 
(daughter-1 cat) = np 
(daughter2  cat) = vp 

176 (daughter-1 agr) = (daughter2 agr). 
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In our example, it is obvious that the phrase-structure rule at 
the top has not added any information. Yet, this is only true 
because the information that states the immediate 
dominance and linear precedence relation among the three 
constituents that are mentioned in the rule has  been omitted 
from the graph. Since the encoding of this information is 
irrelevant in the context of the current discussion, we do not 
demonstrate it in this article. The only  aspect of the actual 
encoding that is of interest here is the strategy of using the 
phrase-structure notation as an abbreviation for a graph that 
adds the necessary information about the position of the 
constituents with  respect to one another in the syntactic tree. 

3. A CUG syntax in STUF 
In this section we discuss  how  Categorial Grammar can be 
reformulated as a unification grammar, compatible with the 
STUF format. The resulting Categorial Unification 
Grammar (CUG) combines the advantages of Categorial 
Grammar with those of  using Unification Grammar. Here 
we are concerned with  syntax only; the relationship to 
semantics and parsing  is  discussed in Section 4. 

Basic Categorial Grammar 
After  being invented by Ajdukiewicz  [5],  Categorial 
Grammar was,  for almost forty years, studied only by 
logicians and mathematicians (such as  Bar-Hillel, Lambek, 
Geach, and Montague). Linguistic interest in these 
grammars arose at the beginning of this decade. That 
Categorial Grammar is an interesting and successful 
framework  for doing linguistics  is illustrated by  work on 
unbounded dependencies [ 161, X’-grammar [ 171, 
coordination [ 18, 191, V-raising  [20], and morphology  [21], 
to name but a few. More recent developments have  led to a 
combination of  Categorial Grammar with  unification-based 
formalisms [6,22,23]. 

that not only can one analyze the semantics of natural 
language as consisting of functor-argument structures, but 
one can do this for  syntax as well. A determiner, for 
instance, is a functor which takes a noun as argument and 
produces an  NP as value (this is written NP/N). An 
intransitive verb  is a functor taking an NP as argument to 
produce a sentence as value (written as S\NP; the backslash 
indicates that this functor follows rather than precedes its 
argument). A transitive verb takes an NP as argument to 
produce a phrase of the same category as intransitive verbs 
[(S\NP)/NP]. There are (minimally) two reduction rules 
governing the process  which combines functors and 
arguments (see Figure 4). 

A sample derivation in Categorial Grammar is presented 
in Figure 5. 

Two advantages of  using  Categorial Grammar deserve to 
be mentioned. First of all, there is a clear relation between 
syntax and semantics: Whenever application takes place in 

The central idea behind Categorial Grammar is the insight 
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a. He walks 
NP[3sg,nom] S\NP[3sg,nom] 

S 

b. *They walks 
NP[plu,nom] S\NP[3sg,noml 

* 

are written  next to the category  it  belongs to, whereas 
features  ranging  over complete categories are written under 
it.) 

Thus, the feature specification  [VFORM: bare] will  have 
to be  percolated from the verb solve to the VP. The most 
common assumption in this case  is to assume that features 
will  always  percolate  from the head of a phrase to the 
mother of that phrase (this is incorporated explicitly in 
GPSG [ 11 as the “Head Feature Convention,” or HFC). In 
Categorial Grammar, a somewhat  different picture arises. 
Usually, it will  be the case that the head  of the phrase is the 
functor within that phrase (see  [27]). This means that for 
purposes of feature distribution one can add to the 
reduction-rules the path equation shown in Figure 16. This 
rule will account for the percolation in Figure 15. Cases 
where the head of a phrase  is the argument, rather than the 
functor, arise if modifiers and specifiers are combined with a 
head. This is  typically the case  if a determiner combines with 
a noun (see Figure 17). 

For such  cases, it is  assumed that specifiers and modifiers 
are characterized by the fact that they contain the path 
equation 
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Peter will solve the problem. 
NP (NP\S)/VP[bare] VP/NP NP 

[bare] 

VP 
[bare] 

NP\S 

S 

: Feature percolation. 

(functor mor) = (value mor) 

(mor) = (syn arg mor). 

In  Figure 17 this is  made  explicit by coindexing  these  two 
positions. The above path equation and the Functor Feature 
Convention together guarantee that the HFC will hold in 
CUG as  well. 
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(sem lambda) = (sem formula arg) 
. (sem formula pred) = sleeps 

:. Simple lambda expression in STUF 

sem : lambda : ( 1 )  
[formula : k p d  ; 

4. Constructing  semantic  representations 
in  a  CUG 
Construction of semantic representations for natural- 
language sentences should be done in a systematic way. 
Since it is performed after the syntactic analysis  of a 
sentence-or in parallel-the most obvious approach is to 
take the  (output of the) parsing process as a guideline for the 
construction of the semantic representation of a sentence. 
This corresponds to the basic  idea  of compositional 
semantics. Approaches to translation and compiling 
techniques in computer science  [28] and linguistic proposals 
resemble  each other very much. Bach  [29] states the rule-to- 
rule hypothesis which  says that each production rule in a 
grammar has associated rules for semantic construction. In 
compiler construction theory this would be called “syntax- 
directed translation.” Each grammar symbol has attributes 
which transport the information needed  for constructing the 
translation of the input code. The set  of attributes for each 
grammar symbol is partitioned into two disjoint sets: 
synthesized and inherited attributes. The values  of 
synthesized attributes of a grammar symbol depend only on 180 
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the values of its daughter nodes; inherited attributes inherit 
their values from attributes of mother or sister  nodes in the 
parse  tree. The single  use  of inherited attributes eases top- 
down  parsing and  the parallel construction of the  output 
structure; the use  of  synthesized attributes in grammar eases 
bottom-up syntactic analysis and semantic construction. 

Parsing in categorial grammars is inherently bottom-up, 
because all syntactic information is stored in the lexicon, and 
thus, there are usually no top-down expectations which the 
parser could exploit, apart from the very general  rules  of 
functional application (which indeed could be considered as 
a skeleton of production rules  of  context-free grammars in 
Chomsky Normal Form). Using a unification formalism 
allows for encoding attributes which are inherited among 
sisters. The relations among attributes of the functor and of 
the argument can be stated in the functional application 
rules. Furthermore, unification blurs the distinction between 
inherited and synthesized attributes, because  all attribute 
values are expressed  as (shared) pointers to graphs. In a 
strictly declarative grammar it  is not important when one of 
these graphs pointed at is instantiated (i.e., is assigned a 
concrete value). 

Obviously, there is both inherited and synthesized 
information to be dealt with in syntactic analysis. 
Morphological  features, syntactic categories, and (partial) 
semantic representations can be associated  with  lexemes, 
which means that they represent synthesized information. 
Contextual information, e.g., representation of antecedents 
for anaphora resolution, could even be inherited from 
previous sentences when a whole  text is being  parsed. 

Construction rules 
Both  syntax-directed translation and compositional 
construction of semantic representations require a mapping 
of syntactic rules into construction rules. In the case  of 
categorial grammar, there must be a semantic construction 
rule which corresponds to the syntactic rules characterized 
by functional application. Following the tradition of 
categorial grammars, the rule for constructing the SEMantic 
representation of the VALUE  of a functional application is 
lambda conversion. For a certain subset  of the traditional 
lambda calculus, lambda conversion can easily  be  defined  in 
STUF as graph application, which we call “lambda 
conversion on graphs” [30]. 

attribute in addition to the SYNtax attribute. The value of 
the SEM attribute can then be a lambda expression  coded in 
STUF (see Figure 18). 

“sleeps(pedro)”  for the sentence Pedro sleeps. (cf. Figure 19), 
the lambda expression [lambda X sleeps(X)] has to be 
applied to the proper-noun translation “pedro.” Exceeding 
the means of STUF, an additional operation “lambda 
conversion” could be imagined (see Figure 20). 

Suppose that every  category graph has a SEMantic 

In order to yield the semantic representation 
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Without spoiling the clarity of the  STUF formalism by 
introducing additional arbitrary functions, lambda 
conversion on graphs can be encoded “statically” as in 
Figure 21. 

The idea  of a graph-unification formalism is to take 
advantage of the virtues of structure sharing in an optimal 
way. Structure sharing means that  a subgraph can be 
identified in the supergraph by any representative of the class 
of paths leading to it. Lambda conversion on graphs accesses 
the LAMBDA argument graph of the FUNCTOR by the 
path ( sem lambda). 

Because (sem formula arg) = (sem lambda) holds by 
definition of the lambda formula, the location of the 
argument graph is  also determined by the path 
(sem formula arg) . By using this latter path for argument 
access, the category definition of one-place  verbs can be 
reformulated, as shown  in Figure 22, to include the rule for 
“direct construction” of the  output representation. 

The (lambda) path is now redundant. In this simple  case, 
the construction rule consists only of the two path equations 
of Figure 23. 

Lambda conversion on graphs is a general rule which is 
used  for semantic construction along with functional 
application rules in syntax. For “direct construction” of 
semantic representations, there must be at least one 
construction rule  associated  with  each functor category. 

“Direct construction rules” are another step to 
lexicalization of grammatical information, as they appear in 
the graphs associated  with  lexemes. 

The advantage of direct construction rules  is that they 
allow  for stating transparently the functor-argument relation 
for the construction of the semantic representation of the 
corresponding syntactic constituent. For lambda formulae 
the inversion of syntactic functor-argument relations for 
semantic purposes often must be accomplished by 
complicated type-raising mechanisms. 

Treatment of contextual information 
Partial semantic representations are defined in the lexicon; 
therefore, they represent information transported by 
synthesized attributes. But (as exemplified in Figure 24) what 
happens to contextual information which  has to be 
inherited? 

In a bottom-up parse  with functional application only, 
there is no antecedent available  when the anaphoric pronoun 
his is encountered. 

A syntactic solution can  be found which  allows  for strict 
left-to-right parsing and therefore left-to-right propagation of 
contextual information. Pareschi and Steedman [3 11 propose 
using  type-raising and functional composition (see  also 
Figure 9) as additional “syntax rules.” Our example would 
then appear as shown  in Figure 25 (with  type-raising  for 
noun phrases). In the case  of forward anaphora such as the 
pronoun his in the sentence Pedro beats his donkey, the 
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Rightward-Application:  value + functor argument 

(value sem) = 
lambda-conversion ((functor sern), (argument sern)) 

Rightward-Application: value + functor argument 

(functor sem lambda) = (argument sem) 
(value sem) = (functor sem formula) 

syn: [Val : 

dir : 
arg : 

L 

sem: ( 2 )  :: 

syn: s 
sem: ( 2 )  
left 

syn: np 1 sem: ( 1 )  

[ formula: [ ;;d ; ;’Pe..ll] 

(syn arg sem 
(syn val  sem 

) = (sem formula arg) 
I )  = (sern) 
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analysis in Figure 25 provides the antecedent Pedro when his 
is encountered. For backward anaphora, the information 
that an antecedent is expected  would  be  passed  through the 
“analysis tree.” Pedro beats his donkey. 

NP  (S\NP)/NP NP/N N 
functional application As a paradigm  for the treatment of contextual 

NP information, we want to sketch how anaphora resolution  can 
functional application be  realized on Discourse Representation Structures (DRSs) 

functional application syntax  analysis. 
(S\NP) [7] construed from an underlying CUG in parallel with 

S First, a graph representation for (partial) DRSs must be 
chosen, illustrated in Figures 26 and 27 by the graph 
representation of the two-place  verb bears. In  Kamp’s 

Pedro beats his donkey. 
NP (S\NP)/NP NP/N N 

~- 

I I - lpedrol 

S/NP 5 - type-raising 
S/(S\NP) 

functional  composition 

functional  composition 
S/N 

(pedro,  chiquita) 

functional  application 
S 

(sem formula in first) = (sem formula out first rest) 
(sem formula in rest) = (sem formula out rest) 
(sem formula out first  first pred) = beats 
(sem first  first argl ) = 0 
(sem first  first arg2) = 0 

of Johnson and Klein  [32]  for  organizing  DRSs as list 
structures. Contrary to Kamp’s initial notation, the list  of 
reference markers and the list  of conditions on reference 
markers are merged into one list (but markers are still 
distinct  from conditions because  they  will  have a specific 
representation; e g ,  they could be  values  of a MARKER 
attribute). 

relation  between an antecedent and a DRS,  which  is 
represented as a list  of antecedents and conditions: 
((rest* first)+). This membership constraint is stated in the 
semantic representation of the pronoun, as shown in Figure 
29. 

The  values of the IN- and the OUT-attributes are used  as 

Anaphora resolution  can be  expressed as a membership 

place-holders in order to “thread” contextual information 
the DRSs contain through the syntax  tree. In a CUG, 
“threading” is carried out by inheritance of attribute values 
among sister  nodes. In the functional application rule, this 
means that FUNCTOR and ARGUMENT share 
substructures. With semantic construction rules 
reformulated  for the construction of  DRSs, the verb’s 
semantic representation will  fill the “scope” of its object. The 
representation of the whole VP is in the scope of the subject 
NP of the sentence. At this point, the information the 
pronoun is  looking  for is provided. 

In a declarative  formalism,  looking  for a member in a list 
means the same as predicting the existence of a member in a 
list. In this regard, the pure functional application approach 
of Figure 24  is equivalent to what appears in Figure  25. It 
seems,  however,  cognitively more appropriate to propagate 
information strictly  from  left to right during processing  of a 
sentence.  Categorial  Unification Grammar, apparently, offers 
the means  for experimentation with  different  syntacto- 
semantic approaches to model  cognitive  processing  of 
language. 
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partial information in an elegant  way, the inherent potential 
for structure sharing, the declarative description of 
information flow, and a mathematically clean and 
computationally tractable type system  with inheritance. 

Our representation language supports all the desirable 
features of previous unification  formalisms.  Moreover, 
recent  extensions to other formalisms such as disjunction 
and functional uncertainty are already  integrated in its 
algebraic notation. In contrast to earlier formalisms, graphs 
are always built from other graphs by means of a small 
number of  well-defined operations. Graphs can be  embedded 
in graphs at any depth. At any place  where a graph  can 
occur in the specification of another graph, a graph name 
can be  used as a place  holder for a predefined  graph. 

of a certain class of functions as graphs and the use  of  all 
complex graphs as functions from graphs to graphs.  Here, 
the inherent partialness of graphs in a graph-unification 
system  is  exploited  for the implementation of functional 
application with built-in parametrized polymorphism. 

Although the formalism supports different brands of 
phrase-structure grammars, including the ID/LP notation of 
GPSG [ 11, it is  especially  well suited for  lexicalized  types  of 
grammar such as Categorial  Unification Grammar. The 
modularized  specification  of  graphs permits the encoding of 
linguistic  generalizations in a very  concise  way. 

A graph-unification formalism  like STUF also  allows  for 
the parallel  processing of syntactic and semantic 
information. Lexical and contextual aspects of utterances are 
encoded using the same,  declarative notation. Although 
different  types and pieces  of information about linguistic 
units are represented in a uniform way and as parts of the 
same structure, they can be  kept apart conceptually and in 
the actual design  of the grammar. They can be  defined 
separately and combined either at compile time or at run 
time using the graph-name (template) facility of the 
formalism. The paralleling of syntactic rules  (i.e.,  categories) 
and semantic construction rules  meets the requirement of 
the principle of compositional semantics. 

In this paper, we  have shown  examples of the use of 
STUF for the representation of linguistic  knowledge. The 
application of the STUF language to the representation of 
the conceptual aspects of  lexical semantics and to general 
knowledge representation are currently under investigation 
by our group. 
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