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A flexible
graph-unification
formalism

and its application

by Gosse Bouma

Esther Konig
Hans Uszkoreit

to natural-language

processing

A graph-unification-based representation
language is described that was developed as
the grammar formalism for the LILOG research
project at IBM Germany. The Stuttgart
Unification Formalism (STUF) differs from its
predecessors in its higher flexibility and its
algebraic structure. It is well suited for the
implementation of rather different linguistic
approaches, but is currently employed mainly in
the development of Categorial Unification
Grammars with a lexicalized compositional
semantics. Examples from the syntactic and
semantic processing of natural language are
used to illustrate the virtues of the formalism
and of our lexicalist approach to linguistic
analysis.

1. Introduction

The theoretical and computational virtues of unification-
based grammar formalisms have been heralded in the recent
literature on computational linguistics. These advantages
have led many researchers to adopt this paradigm in their
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theoretical models as well as in their computer
implementations. Linguistic frameworks that utilize the
concept of unification, such as Lexical Functional Grammar
and Generalized Phrase Structure Grammar, have become
well-respected competitors of more traditional theories.

In this paper, we seek to demonstrate how a highly flexible
graph-unification formalism can be employed for the
development and implementation of a strongly lexicalist
theory of syntactic and semantic processing.

The STuttgart Unification Formalism (STUF), which has
been developed for IBM Germany’s Praject LILOG,* is not
committed to any particular grammatical theory. It provides
encoding strategies of syntax rules and lexical entries from
several linguistic frameworks, such as Generalized Phrase
Structure Grammar (GPSG) [1], Lexical Functional
Grammar (LFG) [2], Augmented Phrase Structure Grammar
(APSG) {31, Head-driven Phrase Structure Grammar
(HPSG) [4], Categorial Grammar (CG) [S], and Categorial
Unification Grammar (CUG) [6]. This is possible because
syntactic constituents, lexical entries, and various rule types
(such as ordinary phrase-structure rules, metarules, linear
precedence rules, and lexical rules) are represented in a
uniform way. The directed graph, much as in other
unification grammar systems, forms the basis for the
representation. Yet, STUF not only permits combining

* Project LILOG in the Division of Science and Technology of IBM Germany has as
its main goal the use and development of advanced LInguistic and LOGical methods
for the understanding of German through a knowledge-based program system.
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solutions from different linguistic frameworks, it also
provides an algebraic notation for the specification of graphs
that exhibits a high degree of expressive power and semantic
clarity.

In STUF, graphs can be specified in terms of other graphs,
which are either called by name or constructed by
description. Graphs may be called within other graphs at any
level of embedding. A basic concept in the specification and
processing of graphs is graph application. A certain restricted
class of functions from graphs to graphs may themselves be
encoded as graphs. These function or functor graphs can
then be applied to argument graphs to yield value graphs.
Graph application is used for Categorial Grammar rules,
lexical rules, and GPSG metarules, and for the construction
of the semantics.

A first test implementation in VM-PROLOG incorporated
the basic notions and notations of the formalism. The
implementation is currently being expanded to cover all of
STUF.

In this paper, we concentrate on the application of the
formalism. Although STUF is to a large extent theory-
neutral, in writing actual grammars we favor a highly lexical
brand of grammar that has its roots in Categorial Unification
Grammar, a combination of Categorial Grammar and
Unification Grammar. In this type of grammar, the only
rules that combine syntactic constituents are functional
application and functional composition, which are
implemented in STUF as cases of graph application. This
means that all combinations of constituents are binary. One
of the two combining elements is the functor; the other is the
argument. Traditional categorial grammars employing only
functional application have often been criticized by linguists
for their lack of syntactic sophistication. The combination of
graph unification and functional application or composition
has added the missing expressive power. The STUF
formalism in turn provides a language that is better suited
for CUGs than previous unification grammar models.

Our exposition starts with an outline of the basic
principles and notations of the formalism in Section 2.

In Section 3, examples from English are used to
demonstrate the advantages of our approach for syntax.
Universal principles, constraints, and conventions that are
expressed in English in most grammatical theories, such as
the Head Feature Convention, can be encoded as graphs that
constrain other graphs. In Section 4, examples are presented
for the application of the STUF formalism to the
construction of a compositional semantics. Two
construction methods are discussed and compared. The first
one is lambda conversion (functional application applied to
lambda expressions), which parallels the use of functional
application for syntactic analysis in the traditional approach
of strict compositional semantics. The second one, which we
call “direct construction,” is a unification-based alternative
to the use of lambda conversion in natural-language
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semantics. It is demonstrated how solutions for anaphora
resolution that are adopted from Kamp’s Discourse
Representation Theory (DRT) [7] and Heim’s File Change
Semantics [8] can be integrated in our system.

Section 5, Conclusions, contains a brief discussion of the
theoretical and practical relevance of the work presented.

2. Outline of the formalism

o Graph unification and the roots of STUF

As pointed out in the Introduction, unification grammar
(UG) has become one of the most successful theoretical
paradigms in the area of natural-language processing. The
use of graph unification in linguistic processing was
introduced by Kay [9] in his Functional Unification
Grammar (FUG). Although UG has its roots in
computational linguistics, it is now also widely accepted in
other areas of formal linguistics. The basic concepts of
unification grammar have become integral parts of such
widespread grammatical frameworks as LFG and GPSG.
These concepts are the central notions of implemented
grammar formalisms such as the PATR-II system [10]
developed at SRI International and of more recent linguistic
frameworks such as HPSG and CUG.

The common denominator among all the variants of UG
formalisms is the use of complex attribute-value structures in
the representation of linguistic units and the utilization of
graph unification or some similar operation for testing,
propagating, and merging of the information encoded in
these structures.

The attribute-value structures can be viewed as single-
rooted directed graphs with labeled edges. A graph may be
empty (the empty graph), it may be an atom (an atomic
graph), or it may be a set of edges whose labels are the
attributes (a complex graph). Each edge points to a graph
that is the value of the attribute that labels the edge. (Some
formalisms also allow other types of values such as sets or
strings.)

The operation of graph unification is based on the notion
of subsumption. If a graph A is more general in its
information content than a graph B, we say that A strictly
subsumes B. B is subsumed by A if it contains at least the
information contained in A. A unifies with B to a graph C if
and only if C is the most general graph that is subsumed by
A and B. If such a graph does not exist, i.e., if the
information contained in A is not compatible with the
information contained in B, the unification fails.

Many notations for such attribute-value structures have
been proposed. The two most common notations are
exemplified in Figure 1 by two representations of the same
structure. The index (1) marks a reentrancy point. The
subgraph after the first occurrence of the index does not have
to be repeated at the place where the index occurs again

because it is already represented by the index marker. (Of 171
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Two notations for directed graphs.

course, the index stands for the subgraph itself, not just for
its contents.)

It is more than just the notation in which the UG
formalisms differ. Even if we do not consider notation and,
moreover, abstract away from the diverging encoding
strategies that are introduced by the adopted linguistic
theories, there is still space enough for a large variety of
formalisms due to the existence of a large variety of
proposed rule types, a number of operations that go beyond
graph unification, and diverging approaches to phrase
structure.

For all employed representations and operations, a
common semantics can be constructed {11]. This means that
different aspects of these formalisms can be freely combined
and that only a fraction of the theoretically available
possibilities have been tried out.

The existing UG formalisms fall into two categories: those
that were designed for a particular grammatical framework
and those that were not. The grammar formalisms of GPSG
[1], HPSG [4], and LFG [2] belong to the former class. In
the latter class are the powerful grammar formalisms of
FUG [9] and PATR-II [10], which can be viewed as flexible
computer languages for natural-language processing.

The theories, strategies, methods, and formal constructs of
current formal linguistic theories are changing rapidly. Thus,
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a flexible research system for syntactic and semantic
processing that is not dedicated to the development of a
specific linguistic theory should not be based on a formalism
of the first class. The philosophy behind the systems of the
second class is to provide powerful tools for the
representation of grammars that can accommodate a variety
of strategies and analyses from more than one theory.

For our work, the use and development of advanced
linguistic and logical methods for the understanding of
German through a knowledge-based program system, we
have adopted the latter philosophy. LILOG is a basic
research project that extends into the year 1991, It is
therefore of utmost importance for the goals of the project to
use highly flexible systems, since this is the only chance to
keep the technologies that are employed up-to-date.

The STUF system incorporates most of the basic concepts
of the PATR-II formalism. (A preliminary version of the
STUF formalism was presented in [12].) STUF goes beyond
its predecessors in its expressive power, in the variety of
permitted rule types, and in its general algebraic notation for
the specification of directed graphs. The additional properties
increase the flexibility of the formalism and provide a more
intuitive language for representing and processing graphs.

® Basic constructs of STUF

Conceptually STUF consists of two components that can be
modified independently of each other: the graph-
specification component and the grammar-definition
component. The graph-specification component provides a
notation for the description of graphs together with the
corresponding semantics. In our project, it is used not only
in the linguistic analysis but also for the representation and
management of knowledge. The grammar-definition
component contains the notation for lexical entries and
different types of grammar rules together with their meaning
in the definition of a language.

Since all lexical entries and all types of rules are
represented as graphs, a simple operation of graph
declaration suffices for defining (or declaring) the appropriate
graphs through the graph-specification language.

Graph declaration

Since all rules, lexical entries, and moreover all constituents
in the analysis are represented as directed graphs, the
notation for describing and defining such graphs plays a
central role in the STUF formalism. A graph declaration
consists of the graph name and of the specification of the
graph separated by a colon:

graph__name : graph__specification.

The graph specification is terminated by a period. Just as in
LISP and several other modern programming languages, the
declaration of a variable and its value assignment are
combined in one operation. However, in this language, value
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assignment is in the spirit of the unification idea: The new
value of the graph name is unified with its old value. If the
name has no previous value, the empty graph is assumed
and the new value is therefore fully determined by the graph
specification. Usually, one does not want to declare a graph
twice in the same grammar. Thus one might question the
significance of the decision to use unification instead of
overwriting in the assignment of values. But STUF is a truly
declarative language. The linear order of declarations does
not influence the interpretation of the grammar. STUF
differs from PATR-II in this respect, since there, a second
declaration of the same variable leads to a compile-time
error. However, we point out to the worried grammar writer
that our decision does not imply that inadvertent reuse of
the same graph name must remain undetected. A good
compiler for STUF should offer the possibility of notifying
the user when a graph name is declared more than once.

A similar strategy should be used for unification failures
during the compilation of grammars. Whereas such failures
lead to compile-time errors in PATR-II, in STUF the value
FAIL is assigned. (FAIL corresponds to the designated value
TOP in [13].) Graphs that contain FAIL do not make sense
in the kind of grammars we are working with. Here again,
the compiler should notify the user of the potential source
for run-time errors. Graphs that contain the graph FAIL as a
subgraph have to be marked as being partially inconsistent
in the implementation because they cannot be used anymore
in most components of the analysis. Using the FAIL value
instead of simple unification failure has a couple of
advantages, which are described in [14].

Graph specification

A graph can be specified by a name or by a description. A
graph name pulls in a copy of the value that has been
assigned to that name. A graph description depends on the
type of the graph. If the graph is empty, the graph is denoted
as the empty string or as the symbol &. If the graph is the
failure graph, it is denoted by the designated atom FAIL; if it
is an atomic graph, it is denoted by the atom. The interesting
part of the notation is the way in which complex graphs are
described. A complete graph is seen as the result of an
operation on graphs:

complex__graph :: = “(” graph__operation “)”.

The most common graph operation is unification. It is
denoted by a list of operands that are separated by U or by
an empty operator symbol. Another graph operation is
disjunction. It is written as a list of disjunct graphs separated
by the disjunction operator |. The graphs that are connected
by disjunction are possible values for the (sub)graph. If a
nondisjunctive graph is unified with a disjunction, it is
unified with every disjunct. If two disjunctive graphs are
unified, the result is the cross product, i.e., the disjunction of
their crosswise unifications [15].
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The following graph declaration is a fictitious example for
the interaction of unification and disjunction:

PastParticiple : (Verb Nonfinite (Perfective | Passive)).

The graph PastParticiple is defined as the unification of three
other graphs: Verb, Nonfinite, and the disjunction of the
graphs Perfective and Passive.

We have not yet provided any means for constructing
complex graphs as sets of attributes and values. To this end,
we need a way to introduce edges and subgraphs. The only
subgraph specification that we will describe here is the path
specification, which we have adopted from PATR-IL. A path
is written as a sequence of edge labels (attributes) enclosed
by angle brackets. A path is a sequence of edges that leads to
some subgraph. A simple path specification is the list of
atoms that label the edges of the path. The lefimost label
names an edge that starts at the root of the graph; the
rightmost one belongs to the edge that immediately points to
the subgraph to be specified. Thus the empty path ()
specifies the root. Any path of length 1 specifies an
immediate subgraph of the root. Examples that illustrate the
path notation can be drawn from Figure 1. In the graph,
there is a single path leading to the atomic graph t, which is
labeled (b d). Two paths lead to the subgraph that is
indexed with (1): (a) and (b ¢). The subgraph could be
referred to by either path specification.

The formalism actually provides more means for
specifying paths than just concatenation of edge labels. An
important feature is the use of regular expressions in path
specification that was introduced in LFG under the term
“functional uncertainty.” Such path specifications can
denote potentially infinite sets of paths. They are especially
useful for the declarative specification of sets of subgraphs.
The path specification (x"), for example, could be used to
access any subgraph that can be reached from the root by
just traversing paths with the label x. As in the common
notation for regular expressions, the superscripted plus sign
stands for the positive Kleene-closure. The Kleene-star is
permitted as well. It is also possible to define path variables,
names that stand for sets of paths.

The appropriate operation for assigning values to
subgraphs is the graph equation, which resembles the
equation notations of LFG and PATR-II. STUF equations
are sequences of graph and subgraph specifications separated
by equal signs. Delimiter-omission rules specify the
conditions under which equations may be written without
enclosing parentheses. We do not state these rules here, but
omit parentheses wherever the scope of the operator is
clearly recognizable.

The semantics is rather straightforward: The operation
returns a graph in which the subgraphs that are denoted by
subgraph specifications are unified with each other and with
the graphs denoted by the graph specifications. In contrast to
the equation in PATR-II, the operation is commutative.
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Functor graph

Schema of graph application.

The following two equations have the same meaning:

(agr number) = pl,
pl = (agr number).

Both return the following graph:

[agr : [number : pl ] ].

The equation below merely unifies two subgraphs:
(number) = {subject number).

This is the result:

number : (1)
subject : [number : (1)]}.

The next equation contains an embedded equation:
({case) = nom) = {subject).

This is the corresponding graph:

[subject : [case : nom] ].

The graph in Figure 1 could be represented by the two
following equations:

{a) = (bc) =(({e) = )((f) =5s)),
(bdy=t.

The notation does not rule out equations without any
subgraph specifications. The graph specifications in such
equations would be unified with each other but not with a
subgraph of the graph that is returned by the equation. Such
an equation would return the empty graph. Since there is an
easier way to label the empty graph—actually one that does
not require any writing at all—it would be a rather
superfluous use of the notation. However, it is not the task
of the formalism to prevent its abuse. A notation that is
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syntactically and semantically clean is to be preferred over
one that sacrifices such features in exchange for more user
guidance. Again, the structure of the implementation needs
to be separated from the design of the formalism: The
compiler (or interpreter) can offer guidance for the user
through warnings or other notifications.

Graph application

The three operations on graphs that we have introduced so
far suffice to describe the representations that are needed in
the grammar, However, STUF provides another operation in
addition to unification, disjunction, and graph equation,
which is called graph application. Uszkoreit [6] introduces a
method of representing certain functions on graphs as graphs
themselves. There, this method is employed for the encoding
of categorial grammars in a graph-unification formalism.
(Further developments of the resulting CUGs and their
efficient encoding in STUF are discussed in Section 3.) The
concept of graph application is based on the insight that
every complex graph can actually be viewed as encoding a
set of functions from graphs to other graphs.

Graph application can be viewed as a noncommutative
binary operation on graphs. The operation can be further
parametrized by adding two path specifications. Thus, the
operation becomes a function of four arguments—a functor
graph, an argument path, an argument graph, and a value
path:

ga(functor_graph, argument__path, argument_graph,
value__path).

As depicted in Figure 2, its value is determined as follows.
Take a functor graph and unify the argument graph with the
subgraph of the functor graph that is designated by the
argument path. The value of the application is the subgraph
of the functor graph that is designated by the value path.

Graph application is a useful way of defining graphs as
being constrained by other graphs without having to include
the constraining graph fully in the constrained graph.
Usually, at least some information is carried over from the
argument graph to the value graph.

A simple encoding of functional application uses functor
graphs that contain an edge labeled “arg” leading to the
argument subgraph and another one with the label “val” that
leads to the value subgraph. The corresponding call of graph
application is accordingly parametrized:

value__graph =
ga(functor__graph, (arg), argument__graph, (val)).

The lexical rules of PATR-II can also be viewed as
instances of graph application. A lexical rule contains an
attribute “in” and an attribute “out.” A lexical entry is
unified with the value of “in.” The lexical rule yields as a
result the value of “out.” Parts of the information contained
in the original entry may be included in the new entry:
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output_entry = ga(lexical _rule, (in), input_entry, (out)).

A highly simplified version of the passive rule, as given in
Figure 3, might serve as an example: The expressive power
of graph application comprises several other operations on
graphs that have been discussed in the literature. It is easy to
see how simple binary graph unification could be expressed
as an instance of graph application:

result__graph = ga(graph__1, (), graph_2, (}).

Graph__2 is unified with the root of graph_1. The result is
again the root. Unification with a subgraph can be expressed
in a similar way:

result__graph =
ga(graph__1, subgraph_specification, graph_2, ()).

Graph extraction yields a subgraph of another graph:

extracted__graph =
ga(main_graph, (), &, subgraph_specification).

Only a few of the potential uses of graph application will
occur very frequently in the definitions of grammars. The
most frequent use in our own work has been the encoding of
functional application in syntax and semantics. Examples
are discussed in the remainder of this paper. Because
functional application occurs rather frequently, an
abbreviatory convention can be introduced in the notation.
If one agrees in advance on subgraph specifications for
argument and value subgraphs, functional application may
be simply written as functor[argument]. If, e.g., the
argument subgraph is always under (function argument),
and the value subgraph under {function value), then the
following equivalence holds:

ga(G_f, (function argument), G_a, (function value)) =
G_f[G_a].

We now leave the graph-specification component of the
formalism and turn to the grammar-definition component.
Other features, applications, and problems of the graph-
specification language are discussed in [14].

o Grammar component

Lexical entries

The lexicon definition contains pairs of terminal strings and
associated graphs. A lexical entry is simply a graph
declaration. Here is a simplified example of a lexical entry
for the English verb like:

like : (Verb Transitive).

Rules with omission of parentheses permit an even simpler
notation:

like : Verb Transitive.

“Verb” and “Transitive” are names of graphs (templates)
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subj by-obj

Graph for a simplified version of the passive rule.

whose unification yields the content of the lexical
representation. (In an actual lexicon one also wants to
specify the semantic content of the word and include the
lexical string in the representation.)

The graphs “Verb” and “Transitive” are defined by graph
declaration. “Transitive” might be declared in terms of the
graphs “Subject” and “Object.” The resulting modular
structure of the lexicon has practical advantages that cannot
be overestimated. Changes in the syntax or in the
compositional semantics do not necessitate excessive lexicon
editing, no matter how lexicalized the linguistic framework
might be. The editing is restricted to the relevant graph
definition. The same lexicon can be used for experimenting
with different syntactic approaches, for it is just the
definitions of certain templates that need to be exchanged.

Grammar rules

A full description of the types of grammar rules that are
supported by the formalism would go far beyond the scope
of this paper. Instead we will try to convey the basic
principles that underlie STUF rules.

A syntax rule in STUF is a graph. Therefore, it needs to
be declared as such. The simple sentence rule that is usually
written as S — NP VP plus annotations might be declared as
follows:

S-formation : (mother cat) = s
{daughter__1 cat) = np
(daughter__2 cat) = vp
(daughter__1 agr) = (daughter_2 agr).

However, linguists are used to their traditional notation. Just
as in PATR-IL, we therefore permit the notation
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functional application (rightward)
functional application (leftward)

:A—-A/B B
:A—-B A\B

This sentence contains five words
NP/N N (S\NPY/NP NP/N N
ra functional application
NP NP
functional application
S\NP
functional application
S

Sample derivation.

STUF Graph notation
a. (syn)=n [syn : n]
b. (syn val syn) = np syn: | val: [syn : np]

(syn dir) = right
(syn arg syn) =n

dir :  right

arg: [syn: n]

Categories in STUF: (a) represents a noun, (b) a determiner.

S-formation : mother — daughter__1 daughter_2
(mother cat) = s
(daughter__1 cat) = np
(daughter__2 cat) = vp
(daughter__1 agr) = (daughter_2 agr).
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In our example, it is obvious that the phrase-structure rule at
the top has not added any information. Yet, this is only true
because the information that states the immediate
dominance and linear precedence relation among the three
constituents that are mentioned in the rule has been omitted
from the graph. Since the encoding of this information is
irrelevant in the context of the current discussion, we do not
demonstrate it in this article. The only aspect of the actual
encoding that is of interest here is the strategy of using the
phrase-structure notation as an abbreviation for a graph that
adds the necessary information about the position of the
constituents with respect to one another in the syntactic tree.

3. A CUG syntax in STUF

In this section we discuss how Categorial Grammar can be
reformulated as a unification grammar, compatible with the
STUF format. The resulting Categorial Unification
Grammar (CUG) combines the advantages of Categorial
Grammar with those of using Unification Grammar, Here
we are concerned with syntax only; the relationship to
semantics and parsing is discussed in Section 4.

% Basic Categorial Grammar

After being invented by Ajdukiewicz [5], Categorial
Grammar was, for almost forty years, studied only by
logicians and mathematicians (such as Bar-Hillel, Lambek,
Geach, and Montague). Linguistic interest in these
grammars arose at the beginning of this decade. That
Categorial Grammar is an interesting and successful
framework for doing linguistics is illustrated by work on
unbounded dependencies [16], X’-grammar [17],
coordination [18, 19], V-raising [20], and morphology [21],
to name but a few. More recent developments have led to a
combination of Categorial Grammar with unification-based
formalisms [6, 22, 23].

The central idea behind Categorial Grammar is the insight
that not only can one analyze the semantics of natural
language as consisting of functor-argument structures, but
one can do this for syntax as well. A determiner, for
instance, is a functor which takes a noun as argument and
produces an NP as value (this is written NP/N). An
intransitive verb is a functor taking an NP as argument to
produce a sentence as value (written as S\NP; the backslash
indicates that this functor follows rather than precedes its
argument). A transitive verb takes an NP as argument to
produce a phrase of the same category as intransitive verbs
[(S\NP)/NP). There are (minimally) two reduction rules
governing the process which combines functors and
arguments (see Figure 4).

A sample derivation in Categorial Grammar is presented
in Figure 5.

Two advantages of using Categorial Grammar deserve to
be mentioned. First of all, there is a clear relation between
syntax and semantics: Whenever application takes place in
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a. He walks

NP([3sg.nom] S\NP[3sg,nom]
S
b. *They walks
NP{plu,nom} S\NP][3sg,nom]

*

Agreement.

Peter will solve the problem.
NP (NP\S)/VP(bare] VP/NP NP
[bare]
VP
[bare]
NP\S

syn : np

mor : case : nom
agr . 3sg
gender @ male

(functor mor) = (value mor)

Representation of he.

The functor feature convention.

are written next to the category it belongs to, whereas
features ranging over complete categories are written under
it.)

Thus, the feature specification [VFORM: bare] will have
to be percolated from the verb solve to the VP. The most
common assumption in this case is to assume that features
will always percolate from the head of a phrase to the
mother of that phrase (this is incorporated explicitly in
GPSG [1] as the “Head Feature Convention,” or HFC). In
Categorial Grammar, a somewhat different picture arises.
Usually, it will be the case that the head of the phrase is the
functor within that phrase (see [27]). This means that for
purposes of feature distribution one can add to the
reduction-rules the path equation shown in Figure 16. This
rule will account for the percolation in Figure 15. Cases
where the head of a phrase is the argument, rather than the
functor, arise if modifiers and specifiers are combined with a
head. This is typically the case if a determiner combines with
a noun (see Figure 17).

For such cases, it is assumed that specifiers and modifiers
are characterized by the fact that they contain the path
equation

IBM J. RES. DEVELOP. VOL. 32 NO. 2 MARCH 1988

the boy
NP/N(1) N
(1) [sg.male]
NP
[sg.male]

Sample derivation.

{mor) = (syn arg mor).

In Figure 17 this is made explicit by coindexing these two
positions. The above path equation and the Functor Feature
Convention together guarantee that the HFC will hold in
CUG as well.
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(sem lambda) = (sem formula arg)
(sem formula pred) = sleeps

Simple lambda expression in STUF.

[syn : [val: [syn: s
dir : [left ] W
arg : [syn: np]

sem : [lambda : (1)
formula :[pred : sleeps]
-

arg : (1)

Syntax and semantics of a one-place verb.

4. Constructing semantic representations

in a CUG

Construction of semantic representations for natural-
language sentences should be done in a systematic way.
Since it is performed after the syntactic analysis of a
sentence—or in parallel—the most obvious approach is to
take the (output of the) parsing process as a guideline for the
construction of the semantic representation of a sentence.
This corresponds to the basic idea of compositional
semantics. Approaches to translation and compiling
techniques in computer science [28] and linguistic proposals
resemble each other very much. Bach [29] states the rule-to-
rule hypothesis which says that each production rule in a
grammar has associated rules for semantic construction. In
compiler construction theory this would be called “syntax-
directed translation.” Each grammar symbol has attributes
which transport the information needed for constructing the
translation of the input code. The set of attributes for each
grammar symbol is partitioned into two disjoint sets:
synthesized and inherited attributes. The values of
synthesized attributes of a grammar symbol depend only on

GOSSE BOUMA, ESTHER KONIG, AND HANS USZKOREIT

the values of its daughter nodes; inherited attributes inherit
their values from attributes of mother or sister nodes in the
parse tree. The single use of inherited attributes eases top-
down parsing and the parallel construction of the output
structure; the use of synthesized attributes in grammar eases
bottom-up syntactic analysis and semantic construction.

Parsing in categorial grammars is inherently bottom-up,
because all syntactic information is stored in the lexicon, and
thus, there are usually no top-down expectations which the
parser could exploit, apart from the very general rules of
functional application (which indeed could be considered as
a skeleton of production rules of context-free grammars in
Chomsky Normal Form). Using a unification formalism
allows for encoding attributes which are inherited among
sisters. The relations among attributes of the functor and of
the argument can be stated in the functional application
rules. Furthermore, unification blurs the distinction between
inherited and synthesized attributes, because all attribute
values are expressed as (shared) pointers to graphs. In a
strictly declarative grammar it is not important when one of
these graphs pointed at is instantiated (i.e., is assigned a
concrete value).

Obviously, there is both inherited and synthesized
information to be dealt with in syntactic analysis.
Morphological features, syntactic categories, and (partial)
semantic representations can be associated with lexemes,
which means that they represent synthesized information.
Contextual information, e.g., representation of antecedents
for anaphora resolution, could even be inherited from
previous sentences when a whole text is being parsed.

& Construction rules

Both syntax-directed translation and compositional
construction of semantic representations require a mapping
of syntactic rules into construction rules. In the case of
categorial grammar, there must be a semantic construction
rule which corresponds to the syntactic rules characterized
by functional application. Following the tradition of
categorial grammars, the rule for constructing the SEMantic
representation of the VALUE of a functional application is
lambda conversion. For a certain subset of the traditional
lambda calculus, lambda conversion can easily be defined in
STUF as graph application, which we call “lambda
conversion on graphs” [30].

Suppose that every category graph has a SEMantic
attribute in addition to the SYNtax attribute. The value of
the SEM attribute can then be a lambda expression coded in
STUF (see Figure 18).

In order to yield the semantic representation
“sleeps(pedro)” for the sentence Pedro sleeps. (cf. Figure 19),
the lambda expression [lambda X sleeps(X)] has to be
applied to the proper-noun translation “pedro.” Exceeding
the means of STUF, an additional operation “lambda
conversion” could be imagined (see Figure 20).

IBM J. RES. DEVELOP.” VOL. 32 NO. 2 MARCH 1988




Without spoiling the clarity of the STUF formalism by
introducing additional arbitrary functions, lambda
conversion on graphs can be encoded “statically” as in Rightward-Application: value — functor argument
Figure 21.

The idea of a graph-unification formalism is to take
advantage of the virtues of structure sharing in an optimal
way. Structure sharing means that a subgraph can be
identified in the supergraph by any representative of the class
of paths leading to it. Lambda conversion on graphs accesses
the LAMBDA argument graph of the FUNCTOR by the
path (sem lambda).

Because (sem formula arg) = (sem lambda) holds by
definition of the lambda formula, the location of the
argument graph is also determined by the path
(sem formula arg). By using this latter path for argument
access, the category definition of one-place verbs can be
reformulated, as shown in Figure 22, to include the rule for {functor sem lambda) = (argument sem)
“direct construction” of the output representation. (value sem) = (functor sem formula)

The (lambda) path is now redundant. In this simple case,
the construction rule consists only of the two path equations
of Figure 23.

Lambda conversion on graphs is a general rule which is
used for semantic construction along with functional
application rules in syntax. For “direct construction” of
semantic representations, there must be at least one
construction rule associated with each functor category.

“Direct construction rules” are another step to
lexicalization of grammatical information, as they appear in _ -

(value sem) =
lambda-conversion ({functor sem}, (argument sem})

Possible encoding of lambda conversion.

Rightward-Application: value — functor argument

Lambda conversion on graphs.

the graphs associated with lexemes. syn: | val @ jsyn: s }
The advantage of direct construction rules is that they . sem: (2)
allow for stating transparently the functor-argument relation dir : left
for the construction of the semantic representation of the arg - [Syn: np ]
corresponding syntactic constituent. For lambda formulae sem: (1)
the inversion of syntactic functor-argument relations for sem: (2) ::
semantic purposes often must be accomplished by formula: | pred : sleeps
complicated type-raising mechanisms. L [ [arg Q) H

o Treatment of contextual information

Partial semantic representations are defined in the lexicon;
therefore, they represent information transported by
synthesized attributes. But (as exemplified in Figure 24) what | Category of a one-place verb with construction rule.
happens to contextual information which has to be -
inherited?

In a bottom-up parse with functional application only,
there is no antecedent available when the anaphoric pronoun
his is encountered.

A syntactic solution can be found which allows for strict
left-to-right parsing and therefore left-to-right propagation of
contextual information. Pareschi and Steedman [31] propose
using type-raising and functional composition (see also
Figure 9) as additional “syntax rules.” Our example would
then appear as shown in Figure 25 (with type-raising for
noun phrases). In the case of forward anaphora such as the
pronoun #is in the sentence Pedro beats his donkey, the

(syn arg sem) = (sem formula arg)
(syn val sem) = (sem)

Direct construction rule in STUF.

181
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Pedro beats his donkey.
NP (S\NP)/NP NP/N N

functional application
NP

functional application
(S\NP)

functional application

i
-

1 Functional-application analysis.

&

.

Pedro beats __his donkey.
NP (S\NP)/NP NP/N N
{} —» {pedro}
—— type-raising
S/(S\NP)
functional composition
S/NP

functional composition
S/N
{pedro, chiquita}

functional application

' I
o . e

Left-to-right propagation of contextual information.

o

(sem formula in first) = (sem formula out first rest)
(sem formula in rest) = (sem formula out rest)
(sem formula out first first pred) = beats

(sem first first argl) = @

(sem first first arg2) = @&

GOSSE BOUMA, ESTHER KONIG, AND HANS USZKOREIT

analysis in Figure 25 provides the antecedent Pedro when his
is encountered. For backward anaphora, the information
that an antecedent is expected would be passed through the
“analysis tree.”

As a paradigm for the treatment of contextual
information, we want to sketch how anaphora resolution can
be realized on Discourse Representation Structures (DRSs)
[7] construed from an underlying CUG in parallel with
syntax analysis.

First, a graph representation for (partial) DRSs must be
chosen, illustrated in Figures 26 and 27 by the graph
representation of the two-place verb beats. In Kamp’s
notation this would correspond to Figure 28.

The graph representation for DRSs follows the proposals
of Johnson and Klein [32] for organizing DRSs as list
structures. Contrary to Kamp’s initial notation, the list of
reference markers and the list of conditions on reference
markers are merged into one list (but markers are still
distinct from conditions because they will have a specific
representation; e.g., they could be values of a MARKER
attribute).

Anaphora resolution can be expressed as a membership
relation between an antecedent and a DRS, which is
represented as a list of antecedents and conditions:

((rest* first)"). This membership constraint is stated in the
semantic representation of the pronoun, as shown in Figure
29.

The values of the IN- and the OQUT-attributes are used as
place-holders in order to “thread” contextual information
the DRSs contain through the syntax tree. In a CUG,
“threading” is carried out by inheritance of attribute values
among sister nodes. In the functional application rule, this
means that FUNCTOR and ARGUMENT share
substructures. With semantic construction rules
reformulated for the construction of DRSs, the verb’s
semantic representation will fill the “scope” of its object. The
representation of the whole VP is in the scope of the subject
NP of the sentence. At this point, the information the
pronoun is looking for is provided.

In a declarative formalism, looking for a member in a list
means the same as predicting the existence of a member in a
list. In this regard, the pure functional application approach
of Figure 24 is equivalent to what appears in Figure 25. It
seems, however, cognitively more appropriate to propagate
information strictly from left to right during processing of a
sentence. Categorial Unification Grammar, apparently, offers
the means for experimentation with different syntacto-
semantic approaches to model cognitive processing of
language.

5. Conclusions

The advantages of unification-grammar formalisms for
natural-language processing have been widely discussed in
the literature. Among them are the ability to represent
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partial information in an elegant way, the inherent potential

for structure sharing, the declarative description of
_information flow, and a mathematically clean and

computationally tractable type system with inheritance.

Our representation language supports all the desirable
features of previous unification formalisms. Moreover,
recent extensions to other formalisms such as disjunction
and functional uncertainty are already integrated in its
algebraic notation. In contrast to earlier formalisms, graphs
are always built from other graphs by means of a small
number of well-defined operations. Graphs can be embedded
in graphs at any depth. At any place where a graph can
occur in the specification of another graph, a graph name
can be used as a place holder for a predefined graph.

The operation of graph application permits the encoding
of a certain class of functions as graphs and the use of all
complex graphs as functions from graphs to graphs. Here,
the inherent partialness of graphs in a graph-unification
system is exploited for the implementation of functional
application with built-in parametrized polymorphism.

Although the formalism supports different brands of
phrase-structure grammars, including the ID/LP notation of
GPSG [1], it is especially well suited for lexicalized types of
grammar such as Categorial Unification Grammar. The
modularized specification of graphs permits the encoding of
linguistic generalizations in a very concise way.

A graph-unification formalism like STUF also allows for
the parallel processing of syntactic and semantic
information. Lexical and contextual aspects of utterances are
encoded using the same, declarative notation. Although
different types and pieces of information about linguistic
units are represented in a uniform way and as parts of the
same structure, they can be kept apart conceptually and in
the actual design of the grammar. They can be defined
separately and combined either at compile time or at run
time using the graph-name (template) facility of the
formalism. The paralleling of syntactic rules (i.e., categories)
and semantic construction rules meets the requirement of
the principle of compositional semantics.

In this paper, we have shown examples of the use of
STUF for the representation of linguistic knowledge. The
application of the STUF language to the representation of
the conceptual aspects of lexical semantics and to general
knowledge representation are currently under investigation
by our group.
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