Fundamental
guestions

in the theory of
electromigration

by A. H. Verbruggen

The theory of electromigration is focused on the
force acting on a lattice defect in a metallic
sample that carries an electric current. Much
work has been done to obtain a better
understanding of the underlying physical
mechanisms. The force has been calculated
numerically for defects in several metals, and a
qualitative agreement with the experiments has
often been found. There are, however, still
discussions about the relevance of certain
contributions to the force. These originate from
conceptual difficulties related to 1) the nature of
the screening of the electric field at the site of
an impurity by the conduction electrons and 2)
the existence and significance of
inhomogeneities in the electric field and current
flow near an impurity. This paper provides a
review of the basic models and of questions

which still exist in the theory of electromigration.

The relevance of these questions is illustrated
by results of experimental work on the
electromigration of H in V, Nb, and Ta.

1. Introduction

When a strong electric current is passed through a metallic
sample, the diffusional motion of impurities and/or
vacancies is biased in a direction along or opposite to the
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current flow. This phenomenon is called electromigration
[1], and recent technological interest arises from its
manifestation as a cause of failure in integrated circuits. In
the context of solid-state physics, theoretical studies of
electromigration are focused on describing the various
contributions to the driving force. This work revealed a
number of still-existing fundamental conceptual problems
which are important for a better understanding of electron
transport in metals. For instance, a clear physical picture of
the local electric field around an impurity in a current-
carrying sample has not yet been given. This paper provides
an overview of the basic models and questions in the theory
of electromigration. In a simple picture, the driving force is
split into two contributions: The first arises from the direct
action of the external field on the charge of the migrating ion
(“direct force™), the second from the scattering of the
conduction electrons by the impurity or vacancy under
consideration (“wind force”). Therefore,

F=2Z¢eE +F, = Z*E, M

wind

where Z, is the bare valence of the migrating defect with
respect to the host lattice, e the elementary charge assumed
to be positive throughout this article, and E the macroscopic
(space-averaged) electric field. Z* is called the effective
valence of the defect. The wind-force contribution was
ignored before the mid-fifties. Electromigration was called
“electrolysis of metallic alloys.” In 1954, in an unpublished
internal IBM memorandum, Landauer derived an
expression for the wind force by using momentum balance
arguments. In the first part of this paper we discuss the
development of the description of wind force.

The publication of a paper by Bosvieux and Friedel in
1962 [2] was the beginning of a strong disagreement about 93
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the existence of the direct-force contribution. It was argued
that the electric field at the site of, say, an interstitial
impurity is screened by the conduction electrons. This
controversy, which still exists, and further developments are
described in the second part.

In order to provide a feeling about the experimental
situation, as an intermezzo, results of electromigration
measurements of hydrogen in V, Nb, and Ta are presented
[3]. The results are regarded as a source of inspiration to
look for field inhomogeneities. Landauer’s residual resistivity
dipole [4] and carrier density modulation [5] provide
mechanisms for such inhomogeneities. These concepts are
discussed in the fifth section. Finally, conclusions are drawn,
and it is pointed out that electromigration theory is expected
to benefit from insights obtained in the field of mesoscopic
physics.

2. Wind force

The first published model, describing the interaction between
conduction electrons carrying the electric current and the
migrating ion, is the ballistic model of Fiks [6] and
Huntington and Grone [7]. In this model it is assumed that
the wind force on a lattice defect is given by the momentum
transfer by the electrons per unit time as they are scattered
by the defect. For an impurity in a free electron gas, this idea
can be formulated as

Fona = E k= K)Piph(l = f), @
kK"

where K is the wavevector of the electrons and Py the
transition probability given by the generalized Golden Rule;
Jf; 1s the shifted Fermi-Dirac distribution function

0
f=Ti+ (— %f—> (—eyV;- £, 3

where /7 is the Fermi-Dirac distribution in the absence of
the electric field, e the elementary charge, = the relaxation
time of the electrons including all scattering mechanisms, ¥;
the Fermi velocity, and E the macroscopic electric field. An
evaluation of (2) using (3) leads to

- nr o
= (~e)E
wind niTi( e) ) (4)
or
. np, .
Fina = (O, 5)
np

where n (n)) is the electron (impurity) density, 7, is the
transport lifetime corresponding to the scattering by the
impurity under consideration, p is the total resistivity, and p,
is the contribution of the impurities to the resistivity. The
wind force in this model is directed opposite to E. F,,,_, is
proportional to the residual resistivity p; and inversely
proportional to the total resistivity. The wind force is thus
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expected to decrease with increasing temperature. For a
defect producing an increase in resistivity of 1 xQ-cm per
at%, we find for, say, copper at room temperature

e,
np

~ 50.

In free-electron-like metals the wind-force contribution is
thus expected to be dominant. This is confirmed
experimentally for some metals, but much smaller values for
the wind force have also been found [1]. Cases where the
wind force is in the same direction as the electric field are no
exception either (see [1] and Section 4).

It is not clear how the ballistic model has to be extended if
we want to go beyond the free-electron approximation. First,
the momentum of a Bloch electron is not equal to Ak, and
second, it is not obvious how, in more complicated cases
such as the scattering by clusters of atoms or by atom-
vacancy complexes, the momentum transfer must be
partitioned among defects and lattice. This problem is
circumvented in the approach of Bosvieux and Friedel [2].
Due to the scattering of the electrons by a defect, the current
flow near the defect is disturbed. This disturbance can be
regarded as a current-induced local polarization of the
charge distribution. In a stationary situation, the force
exerted by the lattice defect on the electrons for maintaining
these disturbances is equal to the force exerted on the defect
by the polarized charge distribution. The wind force is then
given by

) 1%
Foina = f n(F) [— 5;”] d’, (6)

where n(F) is the actual electron density in presence of
impurity and electric field, and V, is the bare potential of the
defect located at position R,. Within an independent-particle
approximation, n(7) around an impurity can be obtained by
populating the electron-scattering states y;(7) according to
the shifted Fermi-Dirac distribution function f; [Equation

Q)
n# =3 flvdPl. )
k

For a justification of Equation (6), reference is usually
made to the Born-Oppenheimer adiabatic approximation
and/or to the Feynman-Hellman theorem. Equation (6) is
also recovered in evaluations of Kubo’s linear response
formalism [8] for the driving force by Sham {9] and Schaich
{10]. The importance of using the linear response formalism
is that starting from a many-body statistical mechanical
expression one is able to delineate in a systematic way the
nature of the introduced approximations.

Equations (6) and (7) are the starting point of all
calculations of the wind force in real/ metals. There are,
however, rather subtle nuances, for instance in how self-
consistency is achieved.
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Sorbello [11] calculated the wind force for vacancies and
impurities for virtually all free-electron-like metals within
the pseudopotential formalism. The same technique was
used by Genoni and Huntington [12] to study the anisotropy
of Z* in Zn. Lou et al. [13] used pseudopotential models of
increasing sophistication to calculate the anisotropy of Z* in
Zn, Cd, and Mg. In general, the agreement between these
theoretical results and experimental work is reasonable,
especially in view of the sensitivity of the computations to
the choice of form factor and the inaccuracy of some
experimental data. Gupta [14, 15] evaluated Equation (6)
within the muffin-tin formalism for calculating the wind
force in noble and transition metals. The results for the
noble metals seem satisfactory. In Nb, values for Z* for
vacancies and impurities are an order of magnitude too
small. Brand and Lodder [16, 17] studied this system by
using a finite cluster of muffin-tin potentials. In this model
multiple scattering effects are preserved. Their results are
satisfactory, although there is a marked dependence on
cluster size. The same model was applied to migrating
hydrogen interstitials in transition metals (see Section 4).

In spite of the reasonable agreement between theory and
experiment, the situation is still not completely satisfactory,
since questions remain about the validity of approximations
made in the evaluations of Equation (6). Landauer [5]
emphasized that certain contributions are ignored if we
evaluate Equation (6) in the Born approximation, as
discussed in Section 5. At present, full state-of-the-art
calculations and more accurate experimental data are still
highly desirable.

3. Direct force

Bosvieux and Friedel [2] presented the first nontrivial theory
of the direct-force contribution in electromigration. Until
then the direct force was assumed to be given by ZbeE [see
Equation (1)].

For a free-electron model without current and the electric
field treated as a perturbation, Bosvieux and Friedel arrived
(by using first-order stationary-state perturbation theory) at
the following conclusions: 1) in the free-electron
approximation, all ions (and all electrons) in a pure metal
feel the electric field without screening; 2) an impurity in a
metal does not feel any supplementary force with respect to
the metal ions as a consequence of its different charge. This
can be interpreted as meaning that any difference in valence
of an impurity with respect to the metal atoms is screened by
the conduction electrons and is ineffective for the direct
force. As a consequence, there is no direct force on an
interstitial impurity. These conclusions, drawn in 1962, were
the beginning of a debate which is still proceeding. Gupta
and coworkers [15] asserted in 1983 that the direct force is
zero for a migrating ion in the saddle-point position. On the
other hand, in 1986 Lou et al. [13] used the first term in
Equation (1) for the direct force.
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To illustrate the conceptual difficulty: For a neutral atom
in an electric field, it is well known that the applied field at
the nucleus is exactly compensated by a field due to the
polarization of the electrons in bound states. It is also well
known that an impurity in a metal is screened by the
conduction electrons. However, it is not at all clear that the
screening by conduction electrons is tied to the impurity in
such a way that the electric field at the site of an interstitial
impurity vanishes completely. Das and Peierls [18] argue
that if this were true for, say, a proton in a metal, it would
also hold for an electron, and a metal should not have any
electric conductivity.

An argument used by workers who advocate the existence
of the direct force is that eventual screening of the electric
field by the electrons should follow from the expression for
the electron-impurity interaction as used by Bosvieux and
Friedel for the wind force, i.e., Equation (6). It is obvious
that complete screening of the direct force cannot occur in
the limit of weak scattering. The part of #(7) that gives a
nonzero contribution to the force is first-order in ¥ or Z.
Consequently, F, , is of order Z7, in contrast to the
screening of Bosvieux and Friedel, which is first-order in Z.

Along the same line, the work of Das and Peierls [18],
using the Boltzmann equation for describing the interaction
between an ion and a free-electron gas carrying a current, or
the work of Schaich [19], based on the density matrix
formalism, should have yielded the screening of the direct
force if it were present. This is not the case. Screening shows
up in the final results only in the scattering potential of the
impurity.

Recently Sorbello [20] succeeded in deriving a tractable
expression for the direct force on a strong scatterer in a free-
electron gas starting from the linear response mechanism. A
model calculation for an s-scatterer shows the possibility of a
significant reduction or enhancement of the direct force.
Unfortunately, the theory is formulated in such a way that it
is not clear (to the author) what the physical origin of this
behavior is. Sorbello emphasizes that the “screening” in this
theory is dynamical and is not present in a static
polarization type of calculation like the one performed by
Bosvieux and Friedel. This dynamical aspect is also present
in Landauer’s carrier density modulation (CDM) effect [S]
(see Section 5).

In the context of this controversy, it is interesting to
examine experimental work on electromigration; therefore,
we consider the results of electromigration measurements of
Hin V, Nb, and Ta.

4. Electromigration of H in V, Nb, and Ta

The hydrides of the group-V transition metals are especially

attractive for an experimental study of electromigration.

Hydrogen occupies in these metals the tetrahedral interstitial

sites, and the diffusion coefficient is very large (D ~ 10~°

cmz/s). This makes it possible to perform accurate 95
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Effective valence Z* against inverse resistivity for H in V, Nb, and
Ta, The lines are least-squares fits of the expression Z* = Z, + K/p
(0, VHg 41553 €5 VHp g1005 ® NbHg 1103 A, NDH o5
B, NbHy 9,03 O> TaHy gggs3 2, TaHy g1g)-

Table 1 Parameters obtained from least-squares fits of the
expression Z* = Z, + K/p to electromigration data for H in V, Nb,
and Ta.

Z, K
(zQ-cm)
v 1.11 £ 0.1 991
Nb 0.44 £ 0.1 26+ 2.5
Ta 1.23 £ 0.1 -16+1.5

experiments over a wide temperature range well below the
melting temperature of the metal.

From an electromigration experiment we obtain the
effective valence Z* defined in Equation (1). The
temperature dependence of Z* provides information about
the various contributions to the driving force. In all
Boltzmann-equation types of theories, the wind force is
proportional to the relaxation time of the electrons, leading
to F,, , = KeE/p(T) (K is a constant) [see Equation (5)]. We

expect the temperature dependence of Z* to be described by
Z* = Z,+ K/p(T), @®

where Z, is the temperature-independent direct-force
contribution. Measured values for the effective valence Z*
for H in V, Nb, and Ta are plotted against inverse resistivity
in Figure 1. The data are remarkably well described by
Equation (8). The parameters obtained from least-squares
fits of this relation are given in Table 1. For H in all three
metals, Z, is clearly different from zero. This cannot be
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understood without taking into account a temperature-
independent direct-force contribution [21]. Particularly
striking are the Ta results, which would require the wind
force to increase with increasing temperature if no direct
force were assumed. This would be at variance with all
theoretical models of the wind force in electromigration
published so far. It is especially interesting, however, that
although Z, for H in V is very close to the value +1 expected
for a bare proton, in Nb and Ta sizable deviations from this
value are found. This demonstrates in fact the complexity of
the direct-force contribution.

As mentioned in the previous section, values for Z,
deviating from Z, have been found by Sorbello in his theory
on the direct force on a strong scatterer in a free-electron gas
{20]. The results can also be interpreted as evidence for the
existence of electric field inhomogeneities. In the analysis of
the experiments, the field is assumed to be uniform and
equal to its space-averaged value. Along this line we arrive at
Landauer’s CDM effect, which provides a mechanism for
field inhomogeneities near lattice defects independent of the
relaxation of the electrons. We discuss this in the next
section.

The wind-force contribution in VH_, NbH , and TaH
shows a very interesting behavior. For H in V and Nb, the
wind force is in the same direction as the direct force,
whereas the opposite is true for H in Ta. Moreover, the
magnitude of the wind-force contribution to the driving
force is of the same order as the direct force. As mentioned
in Section 2, for free-electron-like metals the wind force is
often an order of magnitude larger. This shows that the role
of the host lattice is very important. The small wind force is
thought to be due to the compensation of contributions.
Lodder and Brand [17] found in calculations of the wind
force for H in V, Nb, Ta, Cu, and Pd a large compensation
between contributions corresponding to different angular
momentum numbers. Gupta et al. [15] ascribe a low value
for the wind force for vacancies in Nb to cancellations
between the contributions of various parts of the Fermi
surface. In this spirit it is understandable that the sign for the
wind force is not the same for all group-V transition metals,
although they have a very similar electronic structure.

5. Field inhomogeneities

Landauer [5] has emphasized that when Equation (6) is
evaluated within the Born approximation, two corrections
should be taken into account. The first is the residual
resistivity dipole (RRD) field, which makes a contribution to
the wind force. The second, the carrier density modulation
effect, provides a mechanism for a screening-like
contribution to the direct force.

& Residual resistivity dipole
The basic idea behind the RRD is the following. Consider
the introduction of an extra impurity in a current-carrying
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metallic sample. Maintaining the current flow implies that
the voltage across the sample, or the space-averaged electric
field, goes up. It is very unlikely that the increase in field is
uniform; it must be related to the position of the additional
scatterer. Landauer studied this extra field in his 1957 paper
[4]. By using a semiclassical analysis, he found that the
charge around the scatterer is distributed in a dipolar way.
The spatial average of the resulting dipole fields around the
impurities is the same as that obtained by the usual approach,
which does not explicitly consider the spatial variation.

The dipole field is non-oscillatory and is, since it is
proportional to the cross section of the scatterer, of second
or higher order in the potential.

Sorbello [22] has calculated the RRD field explicitly for a
(strong) s-scatterer in jellium using partial-wave-scattering
theory. In addition to other terms, a contribution is found
which is exactly the dipolar distribution as obtained by
Landauer if s-wave scattering is assumed in his expression.

In [23] it was stated that when the scattering state ¢ is
written as ¥ = ¥, + ¥, where ¢, is the unperturbed
wavefunction, the RRD field corresponds to |, |2.
However, as pointed out by Sorbello and Dasgupta [24] in
their reference 42, one should also take into account terms
corresponding to ¥5v¥,.. Gupta [25] noted recently that the
RRD field for an s-scatterer as found by Sorbello [22] is
entirely due to the ¥, contribution.

The significance of the RRD for the driving force in
electromigration must be seen in relation to the work of
Bosvieux and Friedel [2]. These authors used the Born
approximation and calculated »(7) to the first order in V. As
mentioned above, the RRD field is of second or higher order
in the potential and gives in the case of strong scattering a
significant correction to the wind force. In later work (see,
¢.g., Schaich [10]) it was noted that there is no need for an
order-by-order calculation of the corrections. The scattering
problem can be solved exactly.

o Carrier density modulation
The origin of the carrier density modulation effect [5, 26, 27]
is the increased (reduced) electron density in the immediate
vicinity of a lattice defect with an attractive (repulsive)
potential. Continuity of current then implies a change in
velocity (or acceleration) of the carriers near the impurity. In
a stationary situation this acceleration must be caused by a
local electric field. Or, from another point of view, a change
in conductivity near a defect implies a local change in
electric field. For an attractive potential the CDM field is in
the opposite direction from the background field. This
means that the direct force on a migration impurity is
reduced. Thus, the CDM effect provides an alternative
screening mechanism for the direct force. The CDM effect is
also important for resistance measurements.

Landauer [27] has derived a qualitative model for the
effect of CDM on both the driving force in electromigration
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and the electrical conductivity. Sorbello and Dasgupta [24],
using a density matrix technique, found in the lowest order
in Z the same CDM effect on the conductivity. Sorbello’s
theory [20] on the direct force produces results similar to
those of CDM, but at the moment it is not clear how the two
are related.

The most serious appeal to the CDM effect has been made
by Das and Peierls [28] and Landauer [29] in explaining
what Landauer called the Das-Peierls electromigration
theorem. By considering the momentum balance of the
electrons in the presence of field impurities and background
scattering, Das and Peierls found that the force on an ion
(including the direct force) is given by

F = —n(2o/o)~0)E, ©

where 1, is the electron density of the pure metal and Ap is
the change in resistivity caused by a defect density of one per
unit volume. The resemblance of Equation (9) to Equation
(5) for the wind force suggests that the direct force is
removed by screening, contrary to the conclusions in Section
4. Das and Peierls and Landauer assert that this “screening”
is in fact a manifestation of the CDM effect. These authors
have speculated that the Das-Peierls electromigration
theorem might have an extended range of validity because it
is an exact relation between observable quantities. Plotting
the results from Figure 1 as a function of Ap(T")/o(T) shows
that the force does not vanish as Ap(7)/p(7) — 0, so the
electromigration theorem does not give a correct description
of the experimental data. This calls for a critical examination
of the momentum balance of electrons in real metals.

6. Conclusions

Although quantitative calculations of the driving force in
electromigration have been made which are in reasonable
agreement with the experiments, it is at present not clear
whether or not all relevant contributions have been taken
into account correctly. Fundamental questions are the
following:

1. To what extent is the applied field screened by the
conduction electrons at the site of an impurity in a
current-carrying sample?

2. What is the nature of the field inhomogeneities near a
lattice defect; how are they described, and what is their
relevance for electromigration?

Insight into these questions is of interest for the wide field of
electron transport in solids.
Electromigration theory is expected to benefit from the
field of mesoscopic physics [30]. Explanations of the
Aharonov-Bohm effect and the universal conductance
fluctuations observed in samples with dimensions in the
submicron regime are based on the “Landauer formula” [4].
This expression relates the transmission of a potential barrier 97
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