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The theory  of  electromigration is focused  on  the 
force  acting  on  a lattice defect in a  metallic 
sample  that  carries  an  electric  current.  Much 
work  has  been  done to obtain  a  better 
understanding  of  the  underlying  physical 
mechanisms.  The  force  has  been  calculated 
numerically  for defects in several  metals,  and  a 
qualitative  agreement  with  the  experiments  has 
often  been  found.  There are,  however, still 
discussions  about  the  relevance  of  certain 
contributions to the  force.  These  originate  from 
conceptual difficulties related to 1) the  nature  of 
the  screening of the  electric field at  the site of 
an impurity  by  the  conduction  electrons  and 2) 
the  existence  and  significance  of 
inhomogeneities in the  electric field and  current 
flow  near  an  impurity.  This  paper  provides  a 
review  of  the  basic  models  and  of  questions 
which still exist in the  theory  of  electromigration. 
The  relevance  of  these  questions is illustrated 
by  results  of  experimental  work  on  the 
electromigration  of H in V, Nb, and Ta. 

1. Introduction 
When  a strong electric current is  passed through a  metallic 
sample, the diffusional motion of impurities and/or 
vacancies is  biased in a direction along or opposite to the 
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current flow. This phenomenon is  called electromigration 
[ 11, and recent technological interest arises  from its 
manifestation as a  cause of failure  in  integrated  circuits.  In 
the context of solid-state  physics,  theoretical studies of 
electromigration are focused on describing the various 
contributions to the driving force. This work  revealed  a 
number of still-existing fundamental conceptual problems 
which are important for a better understanding of electron 
transport in metals. For instance, a  clear  physical picture of 
the local  electric field around an impurity in a current- 
carrying sample has not yet  been  given. This paper provides 
an overview  of the basic  models and questions in the theory 
of electromigration. In  a simple picture, the driving force  is 
split into two contributions: The first  arises  from the direct 
action of the external field on the charge of the migrating  ion 
(“direct force”), the second  from the scattering of the 
conduction electrons by the impurity or vacancy under 
consideration (“wind  force”). Therefore, 

E = Z,eE + EWind = z*eE, (1) 

where Z,  is the bare  valence of the migrating  defect  with 
respect to the host  lattice, e the elementary charge  assumed 
to be positive throughout this article, and E the macroscopic 
(space-averaged)  electric field. Z* is  called the effective 
valence  of the defect. The wind-force contribution was 
ignored  before the mid-fifties.  Electromigration  was  called 
“electrolysis of metallic alloys.”  In 1954, in an unpublished 
internal IBM memorandum, Landauer derived an 
expression  for the wind  force by  using momentum balance 
arguments. In the first part of this paper we discuss the 
development of the description of  wind  force. 

The publication of  a paper by  Bosvieux and Friedel in 
1962 [2] was the beginning of a strong disagreement about 93 
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the existence  of the direct-force contribution. It was  argued 
that the electric field at the site of, say, an interstitial 
impurity is  screened by the conduction electrons. This 
controversy, which  still  exists, and further developments are 
described  in the second part. 

In order to provide a feeling about  the experimental 
situation, as an intermezzo, results of electromigration 
measurements of hydrogen in V, Nb, and  Ta are presented 
[3]. The results are regarded  as a source of inspiration to 
look for  field inhomogeneities. Landauer's residual resistivity 
dipole [4] and carrier density modulation [5] provide 
mechanisms for such inhomogeneities. These concepts are 
discussed in the fifth section. Finally, conclusions are drawn, 
and it  is pointed out that electromigration theory is expected 
to benefit from insights obtained in the field  of  mesoscopic 
physics. 

2. Wind force 
The first  published model, describing the interaction between 
conduction electrons carrying the electric current and the 
migrating ion, is the ballistic model of Fiks [6] and 
Huntington and Grone [7]. In this model  it is assumed that 
the wind  force on a lattice defect is given  by the  momentum 
transfer by the electrons per unit time as they are scattered 
by the defect. For an impurity in a free electron gas, this idea 
can be formulated as 

Fw,nd = 2 h(L - k' )Pz;h( 1 - h~),  - 
(2) 

;,kt 

where is the wavevector  of the electrons and P;,t the 
transition probability given  by the generalized Golden Rule; 

is the shifted Fermi-Dirac distribution function 

where J i  is the Fermi-Dirac distribution in the absence of 
the electric  field, e the elementary charge, 7 the relaxation 
time of the electrons including all scattering mechanisms, 
the Fermi velocity, and E the macroscopic electric field.  An 
evaluation of (2) using (3) leads to 

or 

where n (n,) is the electron (impurity) density, T~ is the 
transport lifetime corresponding to the scattering by the 
impurity under consideration, p is the total resistivity, and pi 

is the contribution of the impurities to the resistivity. The 
wind  force in this model is directed opposite to 8. Fwnd is 
proportional to the residual  resistivity pi and inversely 

94 proportional to the total resistivity. The wind  force is thus 

expected to decrease  with increasing temperature. For a 
defect producing an increase in resistivity of 1 pQ-cm per 
at%, we  find for,  say, copper at room temperature 

In  free-electron-like metals the wind-force contribution is 
thus expected to be dominant. This is confirmed 
experimentally for some metals, but much smaller values  for 
the wind  force  have  also  been found [ 11. Cases  where the 
wind  force  is  in the same direction as the electric field are no 
exception either (see [ 11 and Section  4). 

It  is not clear how the ballistic model has to be extended if 
we want to go  beyond the free-electron approximation. First, 
the  momentum of a Bloch electron is not equal to hk, and 
second, it  is not obvious how, in more complicated cases 
such as the scattering by clusters of atoms  or by atom- 
vacancy  complexes, the  momentum transfer must be 
partitioned among defects and lattice. This problem is 
circumvented in the approach of  Bosvieux and Friedel  [2]. 
Due to the scattering of the electrons by a defect, the current 
flow near the defect  is disturbed. This disturbance can be 
regarded as a current-induced local polarization of the 
charge distribution. In a stationary situation, the force 
exerted by the lattice defect on  the electrons for maintaining 
these disturbances is equal to the force exerted on the defect 
by the polarized charge distribution. The wind  force  is then 
given  by 

where n( i )  is the actual electron density in presence of 
impurity and electric  field, and Vb is the bare potential of  the 
defect  located at position R , .  Within an independent-particle 
approximation, n ( i )  around  an impurity can be obtained by 
populating the electron-scattering states +c( i )  according to 
the shifted Fermi-Dirac distribution function& [Equation 
(311: 

For a justification of Equation (6), reference  is  usually 
made to  the Born-Oppenheimer adiabatic approximation 
and/or to the Feynman-Hellman theorem. Equation (6) is 
also  recovered in evaluations of Kubo's linear response 
formalism [8]  for the driving force by Sham [9] and Schaich 
[ 101. The importance of  using the linear response formalism 
is that starting from a many-body statistical mechanical 
expression one is able to delineate in a systematic way the 
nature of the introduced approximations. 

calculations of the wind  force in red  metals. There are, 
however, rather subtle nuances, for instance in how  self- 
consistency is achieved. 

Equations (6) and (7) are the starting point of  all 
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Sorbello [ 1 I] calculated the wind force for vacancies and 
impurities  for  virtually all free-electron-like metals  within 
the pseudopotential  formalism. The  same  technique was 
used by Genoni  and  Huntington [ 121 to  study  the anisotropy 
of Z* in Zn.  Lou  et al. [ 131 used pseudopotential  models  of 
increasing  sophistication to calculate the anisotropy  of Z* in 
Zn,  Cd,  and Mg. In general, the agreement between these 
theoretical results and experimental  work is reasonable, 
especially in view of the sensitivity of the  computations  to 
the choice  of  form  factor and  the inaccuracy  of some 
experimental data.  Gupta [ 14, 151 evaluated Equation (6) 
within the muffin-tin formalism  for  calculating the wind 
force in noble and transition metals. The results for the 
noble  metals seem satisfactory. In  Nb, values for Z* for 
vacancies and  impurities  are  an  order of magnitude  too 
small.  Brand and Lodder [ 16, 171 studied this system by 
using a finite cluster of muffin-tin potentials. In this  model 
multiple  scattering effects are preserved. Their results are 
satisfactory, although  there  is a marked  dependence  on 
cluster size. The  same  model was  applied to migrating 
hydrogen interstitials in transition  metals (see Section 4). 

In spite  of the reasonable  agreement between theory and 
experiment, the situation is still not completely satisfactory, 
since questions remain  about  the validity of approximations 
made  in  the evaluations of Equation (6). Landauer [5] 
emphasized that certain contributions  are ignored if we 
evaluate Equation (6) in  the Born approximation, as 
discussed in  Section 5. At present, full state-of-the-art 
calculations and  more  accurate experimental data  are still 
highly desirable. 

3. Direct  force 
Bosvieux and Friedel [2] presented the first nontrivial  theory 
of the direct-force contribution  in electromigration. Until 
then  the direct  force was assumed to be given by Z,eE [see 
Equation  (I)]. 

For a free-electron model without current  and  the electric 
field treated as a perturbation, Bosvieux and Friedel amved 
(by using first-order stationary-state perturbation theory) at 
the following conclusions: I )  in the free-electron 
approximation, all ions  (and all electrons)  in a pure metal 
feel the electric field without screening; 2 )  an  impurity  in a 
metal does not feel any supplementary force with respect to 
the metal ions  as a consequence  of  its different charge. This 
can be interpreted  as  meaning  that  any difference in valence 
of an  impurity with respect to  the metal atoms is screened by 
the  conduction electrons and is ineffective for the direct 
force. As a  consequence, there is no direct  force on  an 
interstitial impurity. These  conclusions, drawn  in 1962, were 
the beginning  of  a debate which is still proceeding. Gupta 
and coworkers [ 151 asserted in 1983 that  the direct force is 
zero  for  a  migrating ion in the saddle-point  position. On  the 
other  hand, in 1986 Lou et al. [ 131 used the first term in 
Equation (1)  for the direct force. 

To illustrate the  conceptual difficulty: For a neutral  atom 
in an electric field, it  is well known  that  the applied field at 
the nucleus is exactly compensated by a field due  to  the 
polarization  of the electrons in  bound states. It is also well 
known that  an  impurity  in a  metal is screened by the 
conduction electrons.  However, it is not  at all clear that  the 
screening by conduction electrons is tied to  the  impurity  in 
such  a way that  the electric field at  the site  of an interstitial 
impurity vanishes  completely. Das  and Peierls [ 181 argue 
that if this were true for, say, a proton  in a  metal,  it  would 
also hold  for an electron, and a metal should  not have any 
electric conductivity. 

An argument used by workers  who  advocate the existence 
of the direct force is that eventual  screening  of the electric 
field  by the electrons  should follow from  the expression for 
the electron-impurity interaction  as used by Bosvieux and 
Friedel for the wind force, i.e., Equation (6). It is  obvious 
that complete screening of the direct force cannot  occur  in 
the limit  of weak scattering. The part  of n( i )  that gives a 
nonzero  contribution to the force  is first-order in V or Z .  
Consequently, Fwind is of order Z 2 ,  in  contrast to  the 
screening of Bosvieux and Friedel, which is first-order in Z.  

Along the  same line, the work of Das  and Peierls [ 181, 
using the  Boltzmann  equation for  describing the  interaction 
between an  ion  and a free-electron gas carrying  a current, or 
the work of  Schaich [ 191, based on  the density  matrix 
formalism,  should have yielded the screening  of the direct 
force if it were present. This is not  the case. Screening  shows 
up  in  the final results only  in the scattering  potential  of the 
impurity. 

Recently  Sorbello  [20] succeeded in  deriving  a  tractable 
expression for the direct  force on a strong scatterer in a free- 
electron gas starting from  the linear  response  mechanism. A 
model  calculation  for an s-scatterer shows the possibility of  a 
significant reduction or enhancement of the direct force. 
Unfortunately, the theory  is formulated  in such a way that it 
is not clear (to  the  author) what the physical origin of  this 
behavior is. Sorbello  emphasizes that  the “screening” in  this 
theory is dynamical  and is not present  in  a  static 
polarization  type of calculation like the  one performed by 
Bosvieux and Friedel. This  dynamical aspect is also present 
in Landauer’s camer density modulation  (CDM) effect [5] 
(see Section 5). 

In  the  context of this controversy,  it  is  interesting to 
examine  experimental  work on electromigration;  therefore, 
we consider the results of electromigration measurements of 
H  in V, Nb,  and  Ta. 

4. Electromigration  of H in V, Nb, and Ta 
The hydrides of the group-V  transition  metals are especially 
attractive  for an experimental  study of electromigration. 
Hydrogen  occupies in these  metals the  tetrahedral interstitial 
sites, and  the diffusion coefficient is very large (D - lo-’ 
cm2/s). This makes it possible to perform accurate 
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Table 1 Parameters  obtained  from  least-squares  fits  of  the 
expression Z* = Z, + K/p  to  electromigration  data  for H in V, N b ,  
and  Ta. 
~~ 

z* 
~~~ ~~ ~~ ~~~~ 

K 
W-cm) 

V 
Nb 

1.11 f 0.1 9.9 f 1 
0.44 f 0.1 26 f 2.5 

Ta 1.23 f 0.1 -16 & 1.5 

experiments over a wide temperature range well below the 
melting temperature of the metal. 

From  an electromigration experiment we obtain  the 
effective valence Z* defined in  Equation (1). The 
temperature  dependence of Z* provides information  about 
the various contributions  to  the driving force. In all 
Boltzmann-equation  types  of  theories, the wind  force  is 
proportional  to  the relaxation time of the electrons,  leading 
to pwind = KeE/p(T)  (K is a constant) [see Equation (5)]. We 
expect the  temperature  dependence of Z* to be described by 

Z* = Z, + K/p(T),  (8) 

where 2, is the  temperature-independent direct-force 
contribution. Measured  values  for the effective valence Z* 
for H in V, Nb, and Ta are plotted  against  inverse resistivity 
in Figure 1. The  data  are remarkably well described by 
Equation (8). The  parameters  obtained  from least-squares 
fits of this  relation are given in Table 1. For H in all three 
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understood without  taking  into  account a temperature- 
independent direct-force contribution [ 2  I].  Particularly 
striking are  the Ta results, which would  require the wind 
force to increase with increasing temperature if no direct 
force were assumed. This would be at variance with all 
theoretical  models  of the wind  force in electromigration 
published so far. It is especially interesting, however, that 
although Z,  for H in V is very close to  the value +1 expected 
for a bare proton,  in  Nb  and  Ta sizable deviations from this 
value are found. This  demonstrates  in fact the complexity  of 
the direct-force contribution. 

deviating from Z ,  have  been found by Sorbello  in his theory 
on  the direct force on a strong  scatterer in a free-electron gas 
[20]. The results can also be interpreted as evidence for  the 
existence of electric field inhomogeneities. In  the analysis of 
the experiments, the field is  assumed to  be uniform and 
equal to its space-averaged value. Along this  line we amve  at 
Landauer’s CDM effect, which provides a mechanism for 
field inhomogeneities near lattice defects independent of the 
relaxation  of the electrons. We discuss this  in  the next 
section. 

The wind-force contribution  in VH,, NbH,, and  TaHx 
shows a very interesting  behavior. For H in V and Nb, the 
wind force  is in  the  same direction  as the direct force, 
whereas the opposite is true for H in Ta. Moreover, the 
magnitude of the wind-force contribution  to  the driving 
force is of the  same  order as the direct force. As mentioned 
in Section 2 ,  for free-electron-like metals the wind force is 
often an  order of magnitude larger. This shows that  the role 
of the host  lattice  is very important.  The small  wind force is 
thought  to be due  to  the  compensation of  contributions. 
Lodder and Brand [ 171 found  in calculations  of the wind 
force for H in V, Nb,  Ta,  Cu,  and  Pd a large compensation 
between contributions corresponding to different angular 
momentum  numbers.  Gupta  et al. [ 151 ascribe a low value 
for the wind force for  vacancies  in Nb to cancellations 
between the  contributions of  various  parts  of the  Fermi 
surface. In this spirit  it  is  understandable that  the sign for the 
wind force is not  the  same for all group-V  transition  metals, 
although  they  have a very similar  electronic  structure. 

As mentioned  in  the previous  section, values for Z, 

5. Field  inhomogeneities 
Landauer [ 5 ]  has emphasized that when Equation (6) is 
evaluated  within the Born approximation, two  corrections 
should be taken into  account.  The first is the residual 
resistivity dipole  (RRD) field, which makes a contribution  to 
the wind force. The second, the  camer density modulation 
effect, provides a mechanism for a screening-like 
contribution  to  the direct force. 

Residual resistivity dipole 
The basic idea  behind the  RRD is the following. Consider 
the  introduction of an extra  impurity  in a current-cawing 
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metallic sample. Maintaining the current flow implies that 
the voltage  across the sample, or  the space-averaged  electric 
field,  goes up. It is very unlikely that the increase in field  is 
uniform; it must be  related to  the position of the additional 
scatterer. Landauer studied this extra field in his 1957 paper 
[4]. By using a semiclassical analysis, he found that the 
charge around  the scatterer is distributed in a dipolar way. 
The spatial average of the resulting dipole fields around  the 
impurities is the same as that obtained by the usual approach, 
which does not explicitly consider the spatial variation. 

The dipole field  is non-oscillatory and is, since it is 
proportional to the cross section of the scatterer, of second 
or higher order in the potential. 

(strong) s-scatterer in jellium using  partial-wave-scattering 
theory. In addition to other terms, a contribution is found 
which  is  exactly the dipolar distribution as obtained by 
Landauer if  s-wave scattering is assumed in his  expression. 

In [23] it was stated that when the scattering state IC. is 
written as IC. = $a + IC.,, where IC.o is the unperturbed 
wavefunction, the RRD field corresponds to I 1 2 .  
However,  as pointed out by Sorbello and Dasgupta [24] in 
their reference 42, one should also take into account terms 
corresponding to $,*IC.,. Gupta (251 noted recently that the 
RRD field for an s-scatterer as found by Sorbello [22] is 
entirely due to the $,*IC., contribution. 

The significance  of the RRD for the driving force in 
electromigration must be seen  in relation to  the work of 
Bosvieux and Friedel [2]. These authors used the Born 
approximation and calculated n(i) to the first order in V. As 
mentioned above, the RRD field  is  of second or higher order 
in the potential and gives in the case  of strong scattering a 
significant correction to the wind  force. In later work  (see, 
e.g., Schaich [IO]) it  was noted that there is no need  for an 
order-by-order calculation of the corrections. The scattering 
problem can be  solved  exactly. 

Sorbello [22] has calculated the RRD field  explicitly for a 

Carrier density modulation 
The origin  of the camer density modulation effect [ 5 ,  26, 271 
is the increased (reduced) electron density in the immediate 
vicinity of a lattice defect with an attractive (repulsive) 
potential. Continuity of current then implies a change in 
velocity (or acceleration) of the camers near the impurity. In 
a stationary situation this acceleration must be  caused by a 
local  electric  field. Or, from another point of  view, a change 
in conductivity near a defect implies a local change in 
electric  field. For an attractive potential the CDM field  is in 
the opposite direction from the background field. This 
means that the direct force on a migration impurity is 
reduced. Thus, the CDM effect  provides an alternative 
screening mechanism for the direct force. The CDM effect is 
also important for  resistance measurements. 

Landauer [27] has  derived a qualitative model  for the 
effect  of CDM on both the driving force in electromigration 

and  the electrical conductivity. Sorbello and Dasgupta [24], 
using a density matrix technique, found in the lowest order 
in Z the same CDM effect on  the conductivity. Sorbello’s 
theory [20] on the direct force produces results similar to 
those of CDM, but at the  moment it is not clear how the two 
are related. 

The most serious appeal to the CDM effect has been made 
by Das and Peierls [28] and Landauer [29] in explaining 
what Landauer called the Das-Peierls electromigration 
theorem. By considering the  momentum balance of the 
electrons in the presence  of  field impurities and background 
scattering, Das and Peierls found that the force on an ion 
(including the direct force) is given  by 

E = -n,,(Ap/p)(-e)E, (9) 

where no is the electron density of the pure metal and Ap is 
the change in resistivity  caused by a defect density of one per 
unit volume. The resemblance of Equation (9) to Equation 
( 5 )  for the wind  force  suggests that  the direct force is 
removed by screening, contrary to the conclusions in Section 
4. Das and Peierls and Landauer assert that this “screening” 
is in fact a manifestation of the CDM effect. These authors 
have speculated that  the Das-Peierls electromigration 
theorem might have an extended range  of  validity  because it 
is an exact relation between observable quantities. Plotting 
the results from Figure 1 as a function of Ap( T)/p(  T )  shows 
that the force does not vanish as Ap( T)/p(  T )  --., 0, so the 
electromigration theorem does not give a correct description 
of the experimental data. This calls  for a critical examination 
of the momentum balance of electrons in real  metals. 

6. Conclusions 
Although quantitative calculations of the driving force  in 
electromigration have  been made which are in reasonable 
agreement with the experiments, it is at present not clear 
whether or not all relevant contributions have  been taken 
into account correctly. Fundamental questions are the 
following: 

1. To what extent is the applied field screened by the 
conduction electrons at the site of an impurity in a 
current-carrying sample? 

2. What  is the nature of the field inhomogeneities near a 
lattice defect;  how are they described, and what is their 
relevance  for electromigration? 

Insight into these questions is  of interest for the wide  field  of 
electron transport in solids. 

Electromigration theory is expected to benefit from the 
field  of mesoscopic  physics [30]. Explanations of the 
Aharonov-Bohm  effect and the universal conductance 
fluctuations observed in samples with dimensions in the 
submicron regime are based on the “Landauer formula” [4]. 
This expression relates the transmission of a potential barrier 97 
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