Relative stability
iIn nonuniform
temperature

by N. G. van Kampen

Landauer has suggested that the relative
stability of a particle diffusing in a bistable
potential is affected by an intervening hot layer.
We derive this effect both from thermodynamics
and from the diffusion equation. For this purpose
the proper form of the diffusion equation in a
nonuniform medium is established for the case
of a Brownian particle. If the diffusion takes
place in a ring, the hot layer creates a steady
current.

1. Introduction

Consider the diffusion of a particle in one dimension in the
presence of an external force F(x). First suppose that the
medium is homogeneous and isothermal, so that the
mobility x and the diffusion coefficient D do not depend on
x. Then the probability density P(x, ¢) of the particle obeys
the familiar diffusion or Smoluchowski equation,

PxD _ 1} V(X)P(x, 1) + D

&P(x, )
ot 9. 2 -

1

This equation, or its equivalent Langevin version, has been
used to model a large variety of physical situations.
The stationary solution is easily found to be

Pi(x) = Cexp[—%] R

Cc' = fexp[—%] dx.
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The integral exists when F{x) increases sufficiently rapidly
for x — +, which we shall assume. In order that P* be

identical with the thermal equilibrium distribution P°, one
must have the fluctuation-dissipation, or Einstein, relation

D=Tyu (Boltzmann’s constant = 1). 2)

T, is the temperature of the heat bath (e.g., the phonons),
which is responsible for the diffusion.

Suppose V(x) is bistable, as in Figure 1, so that P° consists
of two peaks concentrated near points @ and ¢. We want the
peaks to be clearly separated, and therefore suppose that the
energy barrier is large: W/ T, > 1. It is then possible to take
the integral over each peak separately:

b
— V) Ty
7r: =C f e °dx,

.
—V(x)/ T
rj=cf &1 Mgy,
b

These are the probabilities for the particle to be in either
well. As the boundary between the peaks I have chosen the
point b where V is maximal; this is of course somewhat
arbitrary, but any point not too far from b gives the same
values up to a correction of relative order exp[W/T,]. It
should be borne in mind that the quantities ;, =_ have
physical meaning only with this margin of precision. Their
ratio has been called the relative stability of the two states a
and c.

For many years Rolf Landauer has been telling us that a
localized inhomogeneity in the temperature between these
two maxima will alter their relative stability [1, 2].
Specifically, he supposed that in some interval (x,, x,)
confined to the slope of the potential between @ and b
(Figure 2), the temperature is raised to 7, > T,. His idea was
that this has the effect of pumping particles from ¢ into c,
s0 that in the stationary nonequilibrium state one has
107
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Particle with energy V(x) interacting with an isothermal bath at 7',.

Particle with energy V(x); in the interval (x|, x,) the bath temperature
isatT,.

Landauer’s words went unheeded until recently both
M. Biittiker and I happened to look more closely at his idea.
In Section 2 I give a phenomenological derivation of the
effect, based on thermodynamics. A more mathematical
derivation, based on the diffusion equation, is given in
Section 3. It is of course necessary to modify Equation (1),
since it can no longer be true that both ¢ and D are
independent of x; see Equation (2). The question of how to
write the diffusion equation if the medium is not
homogeneous has been the subject of some debate in
semiconductor physics [2, 3-5]. There does not seem to be a
universal answer; rather, the correct form of the equation
depends on the physical system considered. For our present
purpose it is sufficient to consider a very simple model,
which is specified in Section 4. It leads to the following
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equation for diffusion in a one-dimensional inhomogeneous
medium whose temperature depends on x:

@% = 36); u(x) [V’(x)P(x, ) + % T(x)P(x, t)]. 3)

In anticipation of this derivation in Section 4, we use
Equation (3) as our starting point in Section 3. It should be
remarked, however, that the phenomenon we are studying
occurs anyway, regardless of the precise form of the diffusion
equation.

An interesting modification is obtained when the diffusion
takes place in a ring. Then the pumping effect of the hot
region in the presence of an external potential gives rise to a
steady current. This is also computed in Section 3.

2. Thermodynamics
First consider the isothermal case of Figure 1. The particle
interacts with a heat bath T, and the total energy E, of the
particle plus bath is constant. If the particle is at some
position x, it has the energy V(x), so that the energy of the
bath is E, — V{(x). Thus the entropy of the bath is

ds, V(x)

So[Eo - V(.X)] = So(Eo) - dT V(.X) = SO(E()) - T
0 o

The probability for this to happen is therefore
Pi(x) = Ce™ "', (4)

This is the familiar derivation of the canonical distribution.
The particle itself has the single degree of freedom Xx, so that
it has no entropy and its phase space is measured by dx;
hence, Equation (4) is actually its probability density in
X-space.

Now let the temperature in an interval (x,, x,) be raised to
T,, as in Figure 2. That means that there is a second heat
bath T, with which the particle interacts whenever it is in
this interval. If the particle enters at x, and leaves at x,, it
has picked up the energy ¥{(x,) — ¥(x,) from the second heat
bath. Hence, the entropy of this heat bath T, has decreased
by the amount

V(xz) - V(_X' 1)
T, ’
On the other hand, the heat bath T}, has gained the same
amount of energy, so that its entropy has increased by
x,) — Nx)
T, ’
Thus, the passage of the particle through the interval (x,, x,)
has the effect of transferring the energy ¥(x,) — V(x,) from

the hot bath to the colder one and thereby increasing the
entropy of the total system by the amount

1) = V)l (- 1)
0 1
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The exponential of this entropy increase is the factor by
which the probability for the particle to be on the right of x,
is enhanced. Hence, in the nonisothermal stationary
situation one has

T, < 11 >]
7r_2 = W—Zexp[[V(xz) - V(Xl)} Fo - T] .

This is the Landauer effect.

It is possible to obtain a more explicit expression for the
relative stability. For this purpose we approximate in the
usual way the curve V(x) near its minima by parabolas and
find

7, =C fexp[— TL {V(a) + ‘A(x — a)ZV’(a)i]dx
0

_c 27T, I
V() ’
£=C 27,"T0 —MeNTy
c V/(c)
Hence
lr—:‘ _ V”(a)
: V//(C)

o) - Mx,) V) = Vx)  Wx) - V(a)]
R T, - T, - T, ’

The square root in this expression represents the ratio of the
widths of both wells. The exponential may be written

L5l [ e

In this form it can be applied to general temperature profiles
T(x).

3. Solution of the diffusion equation

This section is based on the diffusion equation (3), which is
derived in the next section. In the stationary case the
probability flow must vanish:

u(x) [V’(x)Ps(x) + dix T(x)Ps(x)] = 0.

Hence
SO S B I C 0
P =79 e"p[ . T dx]’ @
so that
Po_Ta [ [(Vw ]
P 1o °"p[ L T

The exponent is the same as in Equation (6), so that we
again find the pumping effect. The factor 7' in front of the
exponential in Equation (7) is discussed in Section 5.
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Diffusion in a ring with energy V(x) and temperature distribution 7(x)
along the ring.

An interesting possibility is an arrangement in which the
particles, having been pumped into ¢, can diffuse back into a
along an alternative route that bypasses the hot zone. To put
it differently, consider diffusion in a ring, with a potential
WM(x) along the ring and a varying temperature 7{x); see
Figure 3. We now have to find the stationary solution of
Equation (3) in an interval 0 < x < L with periodic
boundary conditions

dpP

P
ROy =AL), - d

o dx

s
L

where L is the length of the ring. The condition for
stationarity is in this case that the flow is a constant J,
independent of x:

—u(x) [V’(x)Ps(x) + dix T(x)Ps(x)] =J.

Incidentally, this stationarity condition implies trivially that
the flow is periodic in x, so that the second boundary
condition need no longer be taken into account.

The equation can readily be solved. With the abbreviation
T rix)
——= dx’ = &¥(x),
fo o) )
one finds

—(x)

s _ e S _ y ﬂ Mx’)]
Pi(x) = o) [T(x)P 0) JJ(: ) e .

The two integration constants J and P*(0) are determined by
the remaining boundary condition and by the normalization
requirement. The former gives

L
ax' 4

*(L) _ S(O) = —
[e 117(0)P(0) J b 200)

®)
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One sees that the flow vanishes when ®(L) = 0, that is, when
the integral of dV/T around the ring vanishes. In fact, in that
case no net change of entropy occurs when the particle goes
around.

The normalization condition is

T(X) P (x) f T(x) —dr(x)

L >3
dx —B(x) dx’ $(x")

) b 1) ¢

Combination with Equation (8) yields, after some algebra,
the explicit value of the flow:

L
&P -

Lrt dx dx’ '
B(x)—d(x) oy ¥
J(: A T(x) % ) e {1 + 0(x — x'){e 1}]

J=-

0 is the Heaviside step function. This is hardly a transparent
result, but it does show that for given x, 7, and V" a uniquely
determined flow occurs.

4. Derivation of Equation (3)

Our model for diffusion in an inhomogeneous,
nonisothermal medium is a Brownian particle governed by
Kramers’ equation for the joint distribution of position and
velocity [6],
oR(x,v,0) _ _ 4R

ZrrmE=
ot ax + ()

R
+ y(x) 6%) [vR + T(x) 3—1/] ®

In the case of constant damping v and temperature 7, it is
well known [6, 7] how to derive from it, in the limit of large
v, a diffusion equation for the spatial distribution P(x) =
J R(x, v)dv. All we have to do now is to adapt this derivation
to the present case. Actually, it is a straightforward
application of the systematic method for eliminating fast
variables [8], but for the present purpose I do not invoke the
general formalism.

Because v is large, the lowest approximation R must
satisfy

R
[ RO+ T—|=0.
v v
Leaving aside solutions that do not vanish fast enough
for | v|— o, one obtains

ROx, v, 1) = &"7f(x, 1), (10)

with arbitrary f. The next order in 1/y must obey

a e TV =g,

oR® 3RO aR‘°’ a[

Integration over v annihilates the right-hand member; hence

N. G. VAN KAMPEN

one obtains as an integrability condition that the integral
over the left-hand member must be zero. On substituting
Equation (10) one finds that this condition amounts to
dffor=0.

Subsequently one has to solve R™ from Equation (11):

21 0 2pr o
o T 9 T g

2
—v/ZT ’
— VS | = T
[f+2T T+ g f] Y 30

As an ansatz set,

—22T

ROx, v, 1) = [velx, 1) + o'¥x, D]e
The equation is satisfied if ¢ and ¢ are taken to be
T Ty +vf

\0=—67T2ﬁ ¢ = T

They are independent of ¢. The general R" is obtained by
adding an arbitrary solution of the homogeneous equation:
R = [ug(x) + v9(x) + g(x, D] ™",

The equation for the next approximation R? again yields
an integrability condition

This equation can be written

: f " axf .
% Rdv = 3 vR (x, v)dv

- = f [o’d(x) + v (x)le”

V' /2T

It

-_9 V2T [To(x) + 3Tx))
ox

]
|
<
o]
I

[ Tf + V’T”zf]
-

At this point we return to the spatial distribution in order
to collect the results:

P(x, 1) = f R (x, v)dv + f R(x, v, t)ydv + - - -
= V2xTf(x) + O(1/¥).
The equation obtained for R can be translated into

aP al[a

T axy ax

TP + V'P| + O(v7%).
o ox v ] )

This is the desired equation (3); the mobility u(x) is to be
identified with the reciprocal of the damping coefficient y(x).

5. Discussion
The diffusion term (3), which we derived for the Brownian
particle, has neither the form

2

a a i)
Ix D(x) p P(x,t) nor e D(x)P(x, t),
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which were the subject of the debate [2-5]. The three forms
under consideration do not differ in their coefficients of the
second derivative of P, but they differ by terms involving the
first derivative. These terms are of the same type as what is
loosely calied the drift term. Thus Equation (3) may be
written equivalently as

aP 9 a P

T = =~ +uT)P+—-D—,

a  ox (u wT") ax  ox 12
or as

P 0 F

= == (uV’ — w'T)P + —; DP. 1
% ax(“ ') o DP. (13)

In neither case does the drift term have the form of mobility
times force. In Equation (12) one might perhaps interpret
the drift term by saying that V" has to be supplemented by an
additional “thermal potential” 7, but that seems rather
contrived. In Equation (13) not even such a contrived
interpretation is possible. One cannot, of course, tamper
with the definition of the mobility ¢ without violating
Equation (2).

The fact that in Equation (3) the factor 7 comes after the
derivative gave rise to the factor 7' in the stationary
solution (7). This factor exhibits the Soret effect and can
roughly be explained as follows. In a region of high
temperature, the particle moves more rapidly than in a lower
temperature. Hence, taken over a very long time, it spends
on the average less time in the hotter regions than would
appear from phase-space considerations alone. This explains
the appearance of a temperature-dependent factor in the
stationary distribution. This explanation does not specify the
precise form of that factor, however, for which the actual
calculation is needed. Similar considerations led Landauer
[2] to expect in another model the factor T, As these
factors are not related to the phase space, they cannot be
found from a thermodynamic argument such as the one in
Section 2.

Finally, we try to understand the additional drift terms
from a heuristic point of view. Suppose that at some time ¢
the particle is at some point x. At ¢ + Az it will be at x + Ax,
where Ax is a random quantity. One sees immediately from
Equation (13) that for small At

2 - v ) + W),
2
ﬁ% = 2D(x) = 2u(x)T(x).

The latter equation is the familiar one, and in the former the
term —u V" is also familiar. The unexpected addition ' 7T to
the drift can be explained as follows. To arrive at Equations
(13) or (3), we have taken in Equation (9) the limit y — o,
That implies that during At the particle undergoes many
changes of velocity, and Ax is the outcome of many small
random steps. During these steps the particle samples the
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neighborhood of x and thereby feels the variation of u in
that neighborhood; hence the factor u'(x). The size of the
steps is governed by the heat motion; hence the factor T.
A more detailed discussion will be given elsewhere.
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