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Landauer  has  suggested  that  the  relative 
stability  of a  particle  diffusing  in  a  bistable 
potential  is  affected  by  an  intervening  hot  layer. 
We  derive  this  effect  both  from  thermodynamics 
and  from  the  diffusion  equation.  For  this  purpose 
the  proper  form  of  the  diffusion  equation  in a 
nonuniform  medium is  established  for  the case 
of a Brownian  particle.  If  the  diffusion  takes 
place in a ring,  the  hot  layer  creates  a  steady 
current. 

1. Introduction 
Consider the diffusion of a particle  in one  dimension in the 
presence of an external force V(x). First  suppose that  the 
medium is homogeneous and isothermal, so that  the 
mobility g and  the diffusion coefficient D do  not  depend  on 
x. Then  the probability  density ex, t )  of the particle obeys 
the familiar diffusion or Smoluchowski equation, 

a a2P(x, t )  
" t ,  - p - V ( x ) P ( x ,  t )  + D -. 

at ax ax' 

This  equation,  or its  equivalent Langevin version, has been 
used to model a large variety of physical situations. 

The stationary  solution  is easily found  to be 

C-l = Jexp[ -?] dx. 
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The integral exists when V(x) increases sufficiently rapidly 
for x - k ~ ,  which we shall assume. In  order  that Ps be 
identical with the  thermal  equilibrium  distribution P', one 
must have the fluctuation-dissipation, or Einstein,  relation 

D = Tog (Boltzmann's constant = 1). (2) 

To is the  temperature of the heat  bath (e.& the phonons), 
which is responsible for the diffusion. 

Suppose V(x)  is bistable, as  in Figure 1, so that P' consists 
of two  peaks concentrated near  points a and c. We want the 
peaks to  be clearly separated, and therefore  suppose that  the 
energy barrier is large: WITo >> 1. It is then possible to  take 
the integral over  each peak separately: 

T; = c e-w*)lT c Odx, 

These are  the probabilities  for the particle to  be  in either 
well. As the  boundary between the peaks I have  chosen the 
point b where Vis maximal; this is of course  somewhat 
arbitrary, but  any  point  not  too far from b gives the  same 
values up  to a correction  of relative order  exp[ W/To]. It 
should be borne  in  mind  that  the  quantities T;, T: have 
physical meaning  only with this margin  of precision. Their 
ratio has  been called the relative stability of the two  states a 
and c. 

For  many years  Rolf Landauer has been  telling us that a 
localized inhomogeneity  in the  temperature between these 
two maxima will alter their relative stability [ 1, 21. 
Specifically, he supposed that  in  some interval ( x l ,  x2) 
confined to  the slope  of the potential between a and b 
(Figure 2), the  temperature is raised to T,  > To. His  idea was 
that this  has the effect of pumping particles from a into c, 
so that in the stationary nonequilibrium state one has 
7r; < ir;, IF; > 7r;. 107 
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equation for diffusion in a one-dimensional inhomogeneous 
medium whose temperature  depends  on x: 

a b c X 

To 

Landauer's  words  went  unheeded  until recently both 
M. Biittiker and I happened  to look more closely at his idea. 
In Section 2 I give a phenomenological  derivation of the 
effect, based on thermodynamics. A more  mathematical 
derivation, based on  the diffusion equation, is given in 
Section 3. It is of  course necessary to modify Equation (l) ,  
since  it can  no longer be true  that  both 1 and D are 
independent of x; see Equation (2). The question of how to 
write the diffusion equation if the  medium is not 
homogeneous  has been the subject  of some  debate  in 
semiconductor physics [2, 3-51. There does not seem to be a 
universal answer; rather,  the correct  form  of the  equation 
depends  on  the physical system considered. For our present 
purpose  it is sufficient to consider a very simple  model, 
which is specified in  Section 4. It leads to  the following 108 
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In  anticipation of this derivation in Section 4, we use 
Equation (3) as our starting point in  Section 3. It should be 
remarked, however, that  the  phenomenon we are  studying 
occurs  anyway, regardless of the precise form of the diffusion 
equation. 

An interesting  modification  is obtained when the diffusion 
takes place in a ring. Then  the  pumping effect of the  hot 
region in  the presence  of an external potential gives rise to a 
steady current.  This is also computed in  Section 3. 

2. Thermodynamics 
First consider the isothermal case of  Figure 1. The particle 
interacts with a heat  bath To, and  the total energy Eo of the 
particle plus  bath is constant. If the particle  is at  some 
position x, it has  the energy V(x) ,  so that  the energy of the 
bath is Eo - V(x). Thus  the  entropy of the bath is 

dS0 
So[ Eo - V(x)J = So(Eo) - - V(x) = So(Eo) - -. V(x) 

dE0 TO 

The probability  for  this to  happen is therefore 

This is the familiar  derivation  of the  canonical distribution. 
The particle itself has the single degree of  freedom x, so that 
it  has no  entropy  and its  phase  space is measured by dx; 
hence, Equation (4) is actually  its  probability  density in 
x-space. 

T I ,  as  in Figure 2. That  means  that  there is a second  heat 
bath TI with which the particle  interacts  whenever  it  is in 
this  interval. If the particle enters  at x, and leaves at x,, it 
has picked up  the energy V(x,) - V(x,)  from  the second heat 
bath.  Hence, the  entropy of  this  heat  bath TI has decreased 
by the  amount 

Now let the  temperature  in  an interval (x,, x,) be raised to 

On  the  other  hand,  the heat  bath To has  gained the  same 
amount of  energy, so that  its  entropy  has increased by 

W 2 )  - W , )  

TO 

Thus,  the passage of the particle through  the interval (xl, x,) 
has  the effect  of transferring the energy V(x,) - V(x,) from 
the  hot bath to  the colder one  and thereby increasing the 
entropy of the total system by the  amount 
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The exponential of this entropy increase is the factor by 
which the probability for the particle to be on  the right  of x,  
is enhanced. Hence, in the nonisothermal stationary 
situation one has 

This is the Landauer effect. 
It  is  possible to obtain a more explicit expression  for the 

relative  stability. For this purpose we approximate in the 
usual way the curve V(x)  near its minima by parabolas and 
find 

T‘, = C Jexp[- {V(a)  + %(x - ayV’(a)) dx 
TO 1 

Hence 

The square root in this expression represents the ratio of the 
widths  of both wells. The exponential may be written 

exp[- [ 3 dx] = exp[- [ $1 
In this form  it can be applied to general temperature profiles 
T(X). 

3. Solution of the  diffusion  equation 
This section is based on the diffusion equation (3), which  is 
derived  in the next section. In the stationary case the 
probability flow must vanish: 

p(x)  V’(X)P‘(X) + - T(x)P’(x) = 0. [ d 
dx 1 

Hence 

Ps(x) = - ex,[ - dx’] , B 
T(x) -m T ( X 7  

so that 

The exponent is the same as in Equation (6), so that we 
again  find the pumping effect. The factor T” in front of the 
exponential in Equation (7) is discussed  in  Section 5. 
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Diffusion in aring with energy V ( x )  and temperature distribution T(x)  

An interesting possibility is an arrangement in which the 
particles,  having  been pumped into c, can diffuse  back into a 
along an alternative route that bypasses the hot zone. To put 
it differently, consider diffusion in a ring,  with a potential 
V(x) along the ring and a varying temperature T(x); see 
Figure 3. We now  have to find the stationary solution of 
Equation (3) in an interval 0 < x < L with periodic 
boundary conditions 

where L is the length  of the ring. The condition for 
stationarity is in this case that  the flow  is a constant J ,  
independent of x :  

Incidentally, this stationarity condition implies trivially that 
the flow  is periodic in x,  so that the second boundary 
condition need no longer be taken into account. 

The equation can readily be solved.  With the abbreviation 

[ dx’ = @(x), 

one finds 

The two integration constants J and P’(0) are determined by 
the remaining boundary condition and by the normalization 
requirement. The former gives 
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One sees that  the flow vanishes  when @(L)  = 0, that is, when 
the integral of dV/T around  the ring vanishes. In fact, in  that 
case no net  change  of entropy occurs  when the particle goes 
around. 

The normalization condition is 

Combination with Equation (8) yields, after some algebra, 
the explicit value  of the flow: 

# L )  - 1 

0 is the Heaviside  step  function. This is hardly a transparent 
result, but it does show that for given p, T, and V a  uniquely 
determined flow occurs. 

4. Derivation of Equation (3) 
Our model  for diffusion in  an  inhomogeneous, 
nonisothermal medium is a  Brownian  particle governed by 
Kramers' equation for the  joint distribution  of  position and 
velocity [6], 

In the case of constant  damping y and  temperature T, it  is 
well known [6,7] how to derive from it, in  the limit  of large 
y,  a diffusion equation for the spatial  distribution P(x) = 
J R(x, u)du. All  we have to  do now is to  adapt this  derivation 
to  the present case. Actually, it is a  straightforward 
application  of the systematic method for eliminating fast 
variables [SI, but for the present  purpose I do  not invoke the 
general formalism. 

satisfy 
Because y is large, the lowest approximation d o '  must 

Leaving aside solutions that  do  not vanish fast enough 
for I u I + m, one  obtains 

R"'(x, U, t )  = e f ( x ,  r ) ,  

with arbitrary5  The next order  in l/y must obey 

-v2/2T 
(10) 

110 Integration  over v annihilates  the right-hand member; hence 
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one  obtains  as  an integrability condition  that  the integral 
over the left-hand member  must be zero. On substituting 
Equation (10) one finds that  this  condition  amounts  to 
afat = 0. 

Subsequently one has to solve R") from  Equation ( 1  1): 

As an ansatz set, 

R'"(x, u, t )  = [vb(x, t )  + v3+(x, t)le . - 3 / 2 T  

The  equation is satisfied if 4 and + are  taken  to be 

They are  independent oft.  The general R'" is obtained by 
adding  an  arbitrary solution of the  homogeneous  equation: 

R' I )  = [u4(x) + u3+(x) + g(x, t)~e-"~/'~. 

The  equation for the next approximation R'" again yields 
an integrability condition 

This  equation  can be written 

= - a s [v2&(x) + ~ " + ( x ) ] e - " ~ / ~ ~ d v  
ax 

= -- a J ~ [ T + ( x )  + 3T2+(x)J 
ax 

At this  point we return  to  the spatial  distribution in  order 
to collect the results: 

P(x, t )  = J R'O' (x,  u)dv + R'"(x, u, t)du + . . . 
= J E f ( x )  + ~ ( l / y ) .  

The  equation  obtained for R"' can be translated into 

""[ a &TP + V'P ] + O(f2). 
at ax y ax 

- 

This is the desired equation (3); the mobility p(x) is to be 
identified with the reciprocal of the  damping coefficient ?(x). 

5.  Discussion 
The diffusion term (3) ,  which we derived  for the Brownian 
particle, has neither the  form 

a a a2 
ax  ax  ax - D(x) - P(x, t )  nor 7 D(x)P(x, t ) ,  
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which were the subject  of the  debate [2-51. The  three  forms 
under consideration do  not differ in  their coefficients of the 
second  derivative of P, but they differ by terms involving the 
first derivative.  These terms  are of the  same type as what  is 
loosely called the drift term.  Thus  Equation (3) may be 
written  equivalently as 

(pV + pT’)P + - D -, a aP 
at ax ax ax 
” -- 

or  as 

a (pV - p ‘ T ) P +  7 DP. a2 
at ax  ax 
”_ 

In neither case does  the drift term have the  form of mobility 
times force. In  Equation (12) one might perhaps  interpret 
the drift term by saying that V has to be supplemented by an 
additional  “thermal potential” T, but  that seems  rather 
contrived. In  Equation (1 3) not even such a contrived 
interpretation is possible. One  cannot, of  course, tamper 
with the definition  of the mobility p without violating 
Equation ( 2 ) .  

derivative gave rise to  the factor T” in  the stationary 
solution (7). This factor  exhibits the Soret effect and  can 
roughly be explained  as follows. In a region of high 
temperature,  the particle  moves more rapidly than  in a lower 
temperature. Hence,  taken  over  a very long time,  it spends 
on the average less time  in  the  hotter regions than would 
appear from phase-space considerations  alone. This explains 
the  appearance of a temperature-dependent factor  in the 
stationary  distribution. This explanation does  not specify the 
precise form  of that factor, however, for which the actual 
calculation is needed. Similar  considerations  led Landauer 
[2] to expect in another model the factor T”‘*. As these 
factors are  not related to  the phase space, they cannot  be 
found from  a thermodynamic  argument such as  the  one  in 
Section 2. 

Finally, we try to  understand  the  additional drift terms 
from  a  heuristic point of view. Suppose that  at  some  time t 
the particle is at  some  point x. At t + At it will be at x + Ax, 
where A x  is a random  quantity.  One sees immediately from 
Equation ( 13) that for  small At 

The fact that in Equation (3) the factor T comes after the 

” (Ax) - - p ( X ) V ( X )  + p’(x)T(x), At 

” ( ( A x ) 2 )  - 2D(x) = 2p(x)T(x). 
At 

The latter equation is the familiar one,  and  in  the  former  the 
term -pV‘ is also familiar. The unexpected addition p ’ T  to 
the drift can be explained as follows. To  amve  at  Equations 
( 1  3) or (3), we have  taken in  Equation (9) the limit y + m. 

That implies that  during At the particle  undergoes many 
changes  of velocity, and Ax is the  outcome of many small 
random steps. During these  steps the particle  samples the 

neighborhood of x and  thereby feels the variation of p in 
that neighborhood;  hence the factor p’(x).  The size of the 
steps is governed by the heat motion; hence the factor T. 
A more detailed discussion will be given elsewhere. 
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