Information
transport obeying
the continuity
equation

by Tommaso Toffoli

We analyze nontrivial dynamical systems in
which information flows as an additive
conserved quantity—and thus takes on a
strikingly tangible aspect. To arrive at this resulit,
we first give an explicit characterization of
equilibria for a family of lattice gases.

1. Introduction
In many spatially extended dynamical systems governed by
short-range interactions—such as an ordinary fluid—one
encounters additive conserved quantities (e.g., energy,
electric charge). As the system evolves, these quantities
continually redistribute themselves. Though the details of
this shuffle depend on the specific dynamics, the flow of each
quantity obeys a continuity equation: Any amount that
disappears from one place at one moment must reappear
somewhere in the immediate vicinity at the next moment.
In an invertible system, information (or “fine-grained
entropy”) is always conserved.' However, information is not,
in general, additive. During the evolution of a system,
correlations almost invariably arise between initially

! Note that information is a quantity associated with a distribution of states rather
than with an individual state. (The “macroscopic states” or “statistical ensembles”
considered in statistical mechanics are examples of distribution.) For a large system, it
may be meaningful to apply the term “information” to an individual microstate,
treated as a representative of a distribution; this approach is formalized by algorithmic
information theory. Our discussion is consistent with this extended meaning, but does
not rely on it.
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uncorrelated variables. Because of spatial correlations, if the
volume occupied by the system is partitioned into several
pieces and the information from all the individual pieces is
added up, the result is not the total information of the
current macroscopic state—which does not change with time
as the distribution evolves—but an overestimate which may
fluctuate widely with the passage of time.

In other words, information, though conserved in a global
sense, is not localized, and one cannot write for it transport
equations of the kind that are familiar for energy,
momentum, etc.

In this paper we present and analyze a situation where
information flow strictly obeys the continuity equation, and
thus takes on a strikingly tangible aspect. This situation is
not limited to trivial systems; on the contrary, it arises in a
wide class of systems of concrete interest, including some
that support a full-featured hydrodynamics and others that
are known to be computation-universal.

The situation we have in mind is characterized by the
following four conditions:

Small perturbations

from an equilibrium state
of particle-conserving
invertible cellular automata.

ao ge

Though additivity of information may well be a more
widespread phenomenon, the above conditions allow us to
arrive at an exact proof in a number of interesting cases (and
we conjecture that additivity follows in general from these
conditions). In particular, we take advantage of the fact that
a wide class of equilibrium states for systems obeying
conditions (c) and (d) are explicitly computable, as is shown
in the next section.
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Even grid (a) and odd grid (b) in a cellular-automaton
implementation of the HPP lattice gas. The squares represent cells,
the solid lines, 2 X 2 blocks. Each arrow denotes the direction in
which a particle contained in the corresponding cell is moving.

We assume some familiarity with the concepts of
information and correlation, as presented, for instance,
in [1].

If X is an arbitrary set of objects, called “microstates,” a
(probability) distribution over this set is an assignment of a
nonnegative weight P(x) to each microstate x such that the
sum of the weights equals unity. The information of the
distribution P is defined as
s(P) = — % P(x)logP(x). (1

XEX
In the special case where X consists of just two microstates,
0 and 1, the distribution P is completely determined by the
number p = P(0) [since P(1) = 1 — p], and can be identified
(by convention) with that number. In this case, (1) reduces
to the well-known information function

s(p) = —(plogp + plogp) (2

(where p denotes 1 — p). In what follows, we also make use
of the first two derivatives of the information function,
namely

9 _ P
r(p) = P logﬁ, 3)
d’s 1
==, 4
u(p) e 7 4)

2. Explicitly known equilibrium distributions
Many dynamical systems arise as a stylization of a physical
problem, where experience or intuition suggests the existence
of one or more equilibrium states, i.e., time-invariant
distributions of microstates. Usually, however, only some of
the equilibrium properties (say, the energy distribution) can
be explicitly calculated; a complete and explicit

TOMMASO TOFFOLI

characterization of the entire distribution of microstates is
seldom available. The Bernoulli shifts and similar “toy”
systems are given particular stress in the teaching of ergodic
dynamics precisely because such a characterization is known
for them.

We prove that a wide class of equilibrium states can be
completely determined in the case of particle-conserving,
invertible cellular automata—of which invertible lattice gases
are a special case.

As a preliminary, let us contrast the way equilibrium is
reached in two simple, well-understood systems—namely a
deterministic Ising spin system and a lattice gas (both briefly
described below)--which are defined by laws having very
similar formats: In both cases we have a regular array of
binary variables governed by a time-discrete, local, and
uniform dynamics (thus, we are dealing with cellular
automata). Moreover, both systems are deterministic and
invertible (i.e., microscopically reversible). For each of these
systems we intend to study the evolution of the
corresponding microcanonical ensemble, started from a
known initial distribution of microstates.”

In the Ising system we are considering, called Q2R [2, 3],
0 and 1 represent the two possible spin orientations. Using a
well-known technique (cf. [3]), the even and odd
“checkerboard” subarrays are updated on alternating steps.
Each spin changes state if and only if it is in an indifferent
energetic situation with respect to its four nearest neighbors,
i.e., if exactly two of its neighbors are up and two down.

In the lattice gas we are considering, called HPP [3, 4],

1 represents the presence and 0 the absence of a particle.
Using another well-known technique [3, 5], the even and
odd “grid partitions” of the array are updated on alternating
steps. We recall that in a grid partition cells are grouped into
2 x 2 blocks, the four cells of each block representing the
four possible directions of travel, all pointing toward the
center of the block, as illustrated in Figure 1. For instance, a
particle in the upper-left cell of a block [labeled x, in part
(a)] moves diagonally down and right, and is found after one
step in the opposite corner of the block unless a collision
occurs. The grid used on odd steps straddles that used on
even steps, so that at the beginning of the next step the
above particle again appears in the upper-left cell of a block
[labeled x, in part (b)].

Particles travel straight, with one exception: When exactly
two particles coming from opposite directions collide, they
bounce off in the other two directions:

- B 5)
The following table lists (up to a rotation) all possible cases:
H—H H—8

H—HEH ®#—B8

? It should be clear that a microstate is a state of the entire array, not of an individual
cell.
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(a) Initial uniform configuration. Final configuration in (b) Ising spin model and (c) lattice gas.

Note that this interaction is particle-conserving as well as
deterministic and invertible.

The initial distribution we consider—which we shall call
U —is simply the product of identical independent
distributions for each cell, with probability p, = p for cell i to
be in state 1. That is, 1’s are uniformly distributed in space
with an expectation p per site and no spatial correlations.
The expected value for the total number of particles is Np,
where N is the number of sites. The (fine-grained) entropy
for this distribution is § = s(U,) = Ns(p).

A typical configuration of U,—with p = ' and
N = 256 X 256-—is shown in Figure 2(a) (the system is laid
out on a torus; i.e., the left and right edges of the figure
coincide, and so do the top and bottom edges). After a long
time, the spin system will have evolved as in Figure 2(b),
with obvious spatial correlations over a wide range of
distances (“ordering”). On the other hand, the lattice gas will
have evolved as in Figure 2(c), where no spatial correlations
appear to the eye.

Incidentally, the usual explanation for this difference in
behavior is that the clumping of 1’s and 0’s in the spin
system is due to the presence of attractive forces—which are
lacking in the lattice gas. This “explanation” has little
predictive power;’ the following discussion provides a more

3 (a) The term “attractive forces” is hard to rigorously define for discrete-state systems.
(b) There are lattice gases in which attractive forces are definitely present, and in
which, however, this clumping of 0’s and 1’s does not occur. (c) The mechanism by
which attractive forces tend to increase the order of a system is reasonably clear when
the system is in contact with a low-temperature reservoir—and thus the effective
dynamics is dissipative. In fact, when work is performed by the attractive forces,
energy is made available to the thermalizing processes; as the resulting heat is carried
away, the system relaxes to a state of lower energy and lower entropy. On the other
hand, here we have an isolated, invertible system—whose fine-grained entropy is
constant and whose coarse-grained entropy cannot decrease. The less-than-average
disorder contained in the large domains of 0’s and 1’s that appear in the final

confi 101 1S CC d by greater-than-average disorder on the boundaries of
the domain themselves.

IBM J. RES. DEVELOP. VOL. 32 NO. | JANUARY 1988

productive explanation, based on the concept of particle
conservation.

Note that in the lattice-gas case we cannot a priori rule out
the presence of subtle correlations in the equilibrium
distribution. To convince ourselves of this, let us start the
two systems from a spatially nonuniform distribution
[Figure 3(a)] having the same expectation Np as U . After a
long time, the Ising model and the lattice gas will have
evolved as in Figures 3(b) and 3(c), respectively. Visually,
the results are similar to those of Figure 2; in particular, the
distribution of Figure 3(c) is again spatially uniform, with
p, = p. However, in this case we know that there are hidden
correlations in the lattice gas. In fact, since particles are
conserved, the final expectation per site is still p; on the
other hand, since the system is invertible, the fine-grained
entropy is the same as that of Figure 3(a)—which is certainly
less than Ns(p).

We prove that there are no spatial correlations in
Figure 2(c). The entropy at time ¢ can always be written in
the form

correl. ?

N
S'= 3 s(p) — St (7
i=1
where S, ., is whatever correction is necessary to give the
correct entropy S from the entropy of the marginal
distributions p;. Let us explicitly rewrite relation (7) for times
=0 (when U, is given as an initial distribution) and ¢ = 1
(i.e., after one step):

N
S° =3 5(0)) = Soorers
l;l
s' = ,Z. 50;) = S eoret.- (8)
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(a) Initial nonuniform configuration. Final configuration in (b) Ising spin mode! and (c) lattice gas.

0
correl.

At time O, p? =pand S
p: = p because of particle conservation.* Thus,

= () by construction. At time 1,

S° = Np,
S'=Np-8! )

correl.

On the other hand, S? = S' because of invertibility; thence

s =0 (10)

correl.

In other words, after one step the probability at each cell
remains the same and no correlations are introduced. Thus,

Theorem 1 For any p, U, is a time-invariant distribution of
the lattice gas.

Hereinafter, we call separable a distribution that is the
product of its marginal (“cell-by-cell” or “singlet™)
distributions.

In the lattice-gas equilibrium states considered above,
particles are found with equal probability in each of the four
directions of travel. We extend Theorem 1 to macrostates in
which the gas as a whole undergoes a steady drift.

Let us consider a separable distribution U, in which
particles traveling in the four directions (cf. Figure 1) occur
with different probabilities Prs s Py the distribution is
otherwise spatially uniform.

A necessary condition for equilibrium is that for each
direction of travel particles be created and annihilated at the
same rate. For the specific dynamics we are considering,
which is characterized by the reversible “reaction” [cf. (5)]

e, te =e¢ te, (11)

(where e, denotes a particle traveling in the x, direction,
etc.), this constraint is expressed by the balance relation

* Since both the dynamics and the initial distribution are spatially uniform, all the p,!
must be equal.
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0, =0,=0, (12)
where

G, = Py PPy Py s 13
O, = D, Px Py Py (14)

in fact, (13) is the rate for the forward reaction and (14) that
for the reverse reaction in (11). Note that the equilibrium
parameter o is invariant under the exchange of 0’s and 1’s.

An argument strictly analogous to that used for Theorem
1 shows that condition (12) is also sufficient for equilibrium;
i.e., after one step the marginal distributions not only retain
the initial probabilities P Prs Pys and p, , but also remain
uncorrelated. Thus,

Theorem 2 For any p’s satisfying the balance relation (12),
the distribution Uy, is time-invariant.

Thus, a separable distribution is an equilibrium one if and
only if it satisfies the balance relation; moreover, this relation
can be explicitly solved in terms of the four p’s. Therefore we
have a complete knowledge of the separable equilibria. Do
these exhaust the range of possible equilibria?

Clearly there exist nonseparable equilibria; for example,
the distribution containing with equal weights exactly those
configurations where only one particle is present.’ On the
other hand, the family of separable equilibria discussed
above is large enough to contain all the “traditional”
equilibria, i.e., those considered by naive kinetic theory. By
(12), the four p’s can be expressed in terms of the more
familiar-looking variables

* Note that, from a physical viewpoint, this is an extremely degenerate case, since for
these initial conditions the system decomposes into a collection of independent one-
dimensional systems with no interactions at all.
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p=p to to, o, (15)

Jo=—— (16)

_ (17)

That is, the family of equilibrium states described by (12)
can be parametrized by three quantities, namely mass
density and the two components of momentum density.
This is in agreement with the case of an ideal gas, where
energy and momentum are the only additive conserved
quantities and (assuming the ergodic hypothesis) completely
characterize equilibrium,

A balance relation (or set of relations) analogous to (12)
can be explicitly derived for any cellular automaton. If the
marginal distributions of a spatially uniform, separable
distribution obey this relation at a given moment, they will
obey it again after one step of the dynamics—after which
they may have become correlated, so that in general the
argument cannot be iterated. However, as we have seen, if
this relation holds, then relation (10) automatically follows if
the automaton is invertible and particle-conserving, and thus
the argument can be iterated. Therefore

Lemma 3 If a cellular automaton is invertible and particle-
conserving, all of its separable, spatially homogeneous
distributions that obey the balance relations are time-
invariant. These distributions can be explicitly computed
Sfrom the automaton’s local law.

3. Small perturbations from equilibrium
Armed with Lemma 3, we proceed now to study the
evolution of the information associated with small
perturbations from equilibrium.

A remark is in order. Consider an arbitrary distribution
U® of microstates and the corresponding distribution U’
obtained by letting each microstate follow its natural
evolution for a time ¢. For cellular automata, U’ is a
continuous function of U in other words, a small
perturbation in the initial distribution results in a small
perturbation in the final one.

Let U be an equilibrium distribution of an invertible,
particle-conserving cellular automaton, consisting of the
product of independent marginal distributions
p,(i=1,---,N)asin Lemma 3; and consider a variation
3U of this distribution such that the marginal distributions
p,+ 8p, of U+ 8U are also independent. By definition, one
step of the dynamics transforms U into itself. On the other
hand, in general U + §U is transformed into a different
distribution U + 6U’; moreover, the new marginal
distributions p, + 6p; may not be independent.

Because of particle conservation,
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* +\ - px+ p':'A

x — T Yy P_\,i\ P;, "

y +7' - i 7 p';
Y, -

(18)

for variations of any size (i.e., not necessarily small); thus, a

mass-density perturbation, collectively represented by the

8p, (i =1, ---, N), evolves as an additive conserved quantity.
Because of invertibility,

s(U + 8U’) = s(U + 8U). (19)
On the other hand, in general

2 8s;

——2 5, =1, (20)

because of the correlations that may be introduced by the
system’s evolution.

In the next section we show that relation (20) becomes an
equality in the limit as 8p,, - - -, 8p,, — 0; as a consequence,
in this limit the marginal distributions p, + 8p; are spatially
uncorrelated. Thus, in this limit also the information-density
perturbation, collectively represented by the és,, evolves as
an additive conserved quantity.

4. Evolution of mass and information
perturbations

We study in detail the evolution of small perturbations in
the HPP lattice gas introduced in Section 2.

With reference to Figure 1(a), a block represents the
potential locus of interaction between particles at a given
step, and thus can be depicted as a “computing node” with
four input lines and four output lines, as in Figure 4. The
inputs represent the states of the four cells of the block
before the interaction, and the outputs the states of the same
cells after the interaction; at the next step, these outputs are
fed as inputs to the four blocks that, in the new partition,
straddle the given block [Figure 1(b)]. In Figure 4(b), the p’s
represent the probabilities of 1’s on the input lines, and the
p’’s those on the output lines. We use /# and k as indices
ranging over the four directions x,, x_, y,, y_. 33
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Let us consider a spatially uncorrelated distribution
representing a uniformly drifting gas. That is, the occupation
probabilities Prp Pxs Py and p,_ for the four cells that make
up a block may be different, but each of the four
probabilities has the same value in every block; moreover, all
the cell-by-cell marginal distributions are independent.

With respect to the marginal distributions, the operation
of the node of Figure 4 is described as follows:

py, = py, — (o, = 0),

o =p, = (o,—0),

py, =0, + (o, —0),

o, = p, + (o, —0) @n
note that here we are not yet assuming equilibrium, and thus
the p’s are completely arbitrary.

The response of the p”’s to small perturbations of the p’s
(first-order response) is given by the Jacobian matrix

Jmass — [%] (22)
I, ’

of which, for clarity, we explicitly write down two elements:

dp’, d

5;; =1- ;,;): (o, ~ ay), (23)

dp;. d

. T, T e

At equilibrium [cf. (12)] one has

d
_de* (o, — ay) = ou, , 25)
where
1
U, =——= (26)
Ppby

[cf. (4)] and the Jacobian matrix for mass-density
perturbations becomes simply

J™¥ =1+ A, 27)

where I is the identity matrix and

u)(+ ux_ —uy+ —uy_
u, u,  —u, ~u
- Y. Y-
A=[4,]= * * (28)
—ux* —ux_ uy+ uy_
—uX+ —ux_ uy+ uy_

Intuitively, & determines the overall intensity of mass-
perturbation scattering, while A (the normalized scattering
matrix) gives, for each of the four input directions, the
relative amounts of scattering into the four output
directions.
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Matrix A can be written, more compactly, as the outer
product of two vectors:
T

U, 1
u, 1
AT = - ) (29)
—u,, -1
—u -1

Note that in (29) the sum of the elements of the second
vector equals zero—which implies that the sum of mass-
density perturbations is time-invariant. This is no surprise;
in fact, it is an immediate consequence of particle
conservation, and remains true for arbitrary distributions
(e.g., not necessarily equilibrium, homogeneous, or spatially
uncorrelated) and arbitrary perturbations. In other words,
the mass surplus or deficit introduced by a perturbation
always evolves as an additive conserved quantity.

A mass-density perturbation (with respect to the
equilibrium value) at a given cell yields a corresponding
information-density perturbation; the ratio between these
two perturbations is

Sy (30)

[cf. (4)]. We can thus write a Jacobian matrix for the
propagation of information-density perturbations (always in
the context of small perturbations from equilibrium):

. R as,, r
info info- k h ymass
= =| =2 =1+ oB, 1
N I
where
w0
T u)( /rX rX
B = - - . (32)
—uyﬁ/ e 117,
=u, I, ||~

Note that here the elements of the second vector are not
equal in magnitude as in (29); however, their sum still equals
zero, because of (12). Thus, by substantially the same
argument as that leading to Theorem 1, we conclude that the
marginal distributions remain uncorrelated as the perturbed
system evolves:

Theorem 4 In the HPP lattice gas, the information surplus
(or deficit) associated with small, spatially uncorrelated
perturbations of a separable equilibrium distribution is
transported as an additive conserved quantity.

The HPP gas is far from trivial, in that it displays a full-
featured hydrodynamics reminiscent of the Navier-Stokes
equation.6

¢ A closer approximation to this equation is given by a lattice gas similar to HPP in all
respects, but with particles running in six (rather than four) directions [6].
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% Evolution of mass-density for a small perturbation from equilibrium in the HPP gas, shown at times 1 = 16 (a) and 1 = 128 (b).

A theorem analogous to Theorem 4 holds for many other
lattice gases; in particular, for the BBM cellular automaton
[3, 5], which is known to be computation-universal.”

From the above considerations, we advance the following,
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