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- 
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We analyze nontrivial  dynamical  systems  in 
which  information  flows as an  additive 
COnSeNed  quantity-and  thus takes on a 
strikingly  tangible  aspect. To arrive at this  result, 
we  first  give an  explicit  characterization of 
equilibria  for a family  of lattice  gases. 

1. Introduction 
In many spatially extended dynamical systems governed by 
short-range interactions-such as  an  ordinary fluid-one 
encounters additive  conserved quantities (e.g., energy, 
electric charge). As the system evolves, these quantities 
continually  redistribute themselves. Though  the details of 
this shuffle depend  on  the specific dynamics, the flow of  each 
quantity obeys a continuity  equation: Any amount  that 
disappears  from one place at  one  moment  must reappear 
somewhere in  the  immediate vicinity at  the next moment. 

In an invertible  system, information (or “fine-grained 
entropy”) is always conserved.’ However, information is not, 
in  general,  additive. During  the evolution  of a system, 
correlations almost invariably  arise between initially 

’ Note that information is a quantity associated with  a distributlon of states rather 
than  with an individual state. (The “macroscopic states” or “statistical ensembles” 
considered in statistical mechanics are examples of distribution.) For  a  large system, it 
may be meaningful to apply the term “information” to  an individual microstate, 
treated as a  representative of a distribution; this approach is formalized by algorithmic 
information theory. Our discussion is consistent with this extended meaning, but does 
not rely on it. 
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uncorrelated variables. Because of spatial correlations, if the 
volume occupied by the system is partitioned into several 
pieces and  the  information  from all the individual pieces is 
added up, the result  is not  the total information of the 
current macroscopic state-which does  not change with time 
as  the  distribution evolves-but an overestimate which may 
fluctuate widely with the passage of time. 

In  other words, information, though  conserved  in  a global 
sense, is not localized, and  one  cannot write for  it transport 
equations of the kind that  are familiar  for energy, 
momentum, etc. 

In this paper we present and analyze a situation where 
information flow strictly obeys the  continuity  equation,  and 
thus takes on a strikingly tangible aspect. This  situation is 
not limited to trivial systems; on  the contrary, it arises in a 
wide class of  systems  of  concrete  interest,  including some 
that  support a full-featured hydrodynamics and others that 
are known to be computation-universal. 

The situation we have in  mind is characterized by the 
following four conditions: 

a. Small perturbations 
b. from an  equilibrium state 
c. of particle-conserving 
d. invertible  cellular automata. 

Though additivity of information  may well be a more 
widespread phenomenon,  the  above  conditions allow us to 
amve  at  an exact proof  in  a number of interesting cases (and 
we conjecture that additivity follows in general from these 
conditions). In particular, we take advantage  of the fact that 
a wide class of equilibrium states for systems obeying 
conditions (c) and (d) are explicitly computable,  as is shown 
in the next  section. 29 
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Even gr id   (a)   and  odd  gr id   (b)   in  a ce l lu la r -au tomaton  
” implementation of the HPP lattice gas.  The squares represent cells, 

the solid lines, 2 X 2 blocks. Each arrow denotes the direction in 
which a particle contained in the corresponding cell is moving. 

We assume some familiarity with the concepts of 
information and correlation, as presented, for instance, 
in [I]. 

If X is an arbitrary set  of  objects,  called “microstates,” a 
(probability) distribution over this set  is an assignment of a 
nonnegative weight P(x) to each microstate x such that the 
sum of the weights equals unity. The information of the 
distribution P is defined as 

s(P) = - P(x)logP(x). 
x€x 

In the special  case  where X consists of just two microstates, 
0 and 1, the distribution P is completely determined by the 
number p = P(0) [since P( 1) = 1 - p], and can be  identified 
(by convention) with that number. In this case, (1) reduces 
to  the well-known information function 

(where T, denotes 1 - p).  In what  follows, we also make use 
of the first  two derivatives of the information function, 
namely 
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ds 
r ( p )  = - = -log=, P 

dP P 

d2s 1 
u ( p )  = - = ”. 

dp2 PP 

2. Explicitly  known  equilibrium  distributions 
Many dynamical systems arise as a stylization of a physical 
problem, where experience or intuition suggests the existence 
of one  or more equilibrium states, i.e., time-invariant 
distributions of microstates. Usually,  however, only some of 
the equilibrium properties (say, the energy distribution) can 
be explicitly calculated; a complete and explicit 

characterization of the entire distribution of microstates is 
seldom available. The Bernoulli shifts and similar “toy” 
systems are given particular stress  in the teaching of  ergodic 
dynamics precisely  because such a characterization is known 
for them. 

We prove that a wide  class  of equilibrium states can be 
completely determined in the case  of particle-conserving, 
invertible cellular automata-of  which invertible lattice gases 
are a special  case. 

As a preliminary, let us contrast the way equilibrium is 
reached  in two simple, well-understood systems-namely a 
deterministic king spin system and a lattice gas (both briefly 
described be1ow)”which are defined by laws  having very 
similar formats: In both cases we have a regular array of 
binary variables  governed by a time-discrete, local, and 
uniform dynamics (thus, we are dealing with  cellular 
automata). Moreover, both systems are deterministic and 
invertible (i.e.,  microscopically  reversible). For each of these 
systems we intend to study the evolution of the 
corresponding microcanonical ensemble, started from a 
known initial distribution of  microstates.* 

In the Ising  system we are considering, called Q2R [2, 31, 
0 and 1 represent the two possible spin orientations. Using a 
well-known technique (cf. [3]), the even and odd 
“checkerboard” subarrays are updated on alternating steps. 
Each spin changes state if and only if it is in an indifferent 
energetic situation with  respect to its four nearest neighbors, 
Le.,  if exactly  two of its neighbors are up  and two down. 

In the lattice gas  we are considering, called HPP [3, 41, 
1 represents the presence and 0 the absence of a particle. 
Using another well-known technique [3, 51, the even and 
odd  “grid partitions” of the array are updated on alternating 
steps.  We  recall that in a grid partition cells are grouped into 
2 X 2 blocks, the four cells  of  each  block representing the 
four possible directions of  travel,  all pointing toward the 
center of the block, as illustrated in Figure 1. For instance, a 
particle in the upper-left  cell  of a block  [labeled x+ in part 
(a)] moves diagonally down and right, and is found after one 
step in the opposite comer of the block  unless a collision 
occurs. The grid  used on odd steps straddles that used on 
even  steps, so that at the beginning of the next step the 
above particle  again appears in the upper-left cell  of a block 
[labeled x+ in part (b)]. 

Particles travel straight, with one exception: When exactly 
two particles coming from opposite directions collide, they 
bounce off in the other two directions: 

The following table lists (up  to a rotation) all possible  cases: 

* It should be clear  that  a microstate is  a  state of the entire array, not of an individual 
cell. 



Note that this interaction is particle-conserving as well as 
deterministic and invertible. 

The initial distribution we  consider-which  we shall call 
Y-is  simply the product of identical independent 
distributions for each  cell,  with probability p, = p for  cell i to 
be in state I .  That is, 1’s are uniformly distributed in space 
with an expectation p per site and no spatial correlations. 
The expected  value for the total number of particles is N p ,  
where N is the number of  sites. The (fine-grained) entropy 
for this distribution is S = s( Up) = Ns(p). 

N = 256 X 256-is shown in Figure 2(a) (the system is laid 
out on a torus; i.e., the left and right  edges of the figure 
coincide, and so do the  top  and bottom edges).  After a long 
time, the spin  system will have  evolved as in Figure 2(b), 
with obvious spatial correlations over a wide  range  of 
distances (“ordering”). On the other hand, the lattice gas  will 
have  evolved as in Figure 2(c), where no spatial correlations 
appear to the eye. 

Incidentally, the usual explanation for this difference in 
behavior is that  the clumping of 1’s and 0’s in the spin 
system is due to the presence  of attractive forces-which are 
lacking in the lattice gas. This “explanation” has little 
predictive  power;3 the following discussion provides a more 

A typical configuration of  Up-with p = I/s and 

’ (a)  The term “attractive forces’’ is hard to rigorously define for discrete-state systems. 

which, however, this clumping of 0’s and 1’s does  not occur. (c)  The mechanism by 
(b)  There  are lattice gases in which attractive forces are definitely present, and in 

which attractive forces tend to increase the  order of a system is reasonably clear when 
the system is in contact with a low-temperature reservoir-and thus the effective 

energy is made available to the thermalizing processes; as the resulting heat is carried 
dynamics is dissipative. In fact, when work is performed by the  attractive forces, 

away, the system relaxes to a state of lower energy and lower entropy. On the  other 
hand, here we have an isolated, invertible system-whose fine-grained entropy is 
constant  and whose coarse-grained entropy  cannot decrease. The less-than-average 
disorder contained in the large domains of 0 ’s  and 1’s that  appear in the final 
configuration is compensated by greater-than-average disorder on the boundaries of 
the domain themselves. 

productive explanation, based on the concept of particle 
conservation. 

Note that in the lattice-gas  case we cannot a priori rule out 
the presence  of subtle correlations in the equilibrium 
distribution. To convince ourselves of this, let us start the 
two  systems from a spatially nonuniform distribution 
[Figure 3(a)] having the same expectation Np as Up. After a 
long time, the king model and  the lattice gas will have 
evolved  as in Figures 3(b) and 3(c), respectively.  Visually, 
the results are similar to those of  Figure  2;  in particular, the 
distribution of  Figure  3(c)  is  again spatially uniform, with 
p, = p. However, in this case we know that there are hidden 
correlations in the lattice gas. In fact, since particles are 
conserved, the final expectation per site is  still p;  on the 
other hand, since the system  is invertible, the fine-grained 
entropy is the same as that of Figure 3(a)-which is certainly 
less than Ns(p). 

Figure  2(c). The entropy at time t can always be written in 
the form 

We prove that there are no spatial correlations in 

N 

S‘ = c s(P:) - Sfoml. 1 (7) 
I =  I 

where S;,,, is whatever correction is necessary to give the 
correct entropy S‘ from the entropy of the marginal 
distributions p:. Let us explicitly  rewrite relation (7) for times 
t = 0 (when Up is given as an initial distribution) and t = I 
(Le., after one step): 

N 

So = c S(PP) - s:o,l., 

S’ = c sb:) - 

,=I 

N 

1- I 
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At time 0, p p  = p and S~o,l, = 0 by construction. At time 1, 
pf = p because of particle con~ervation.~ Thus, 

So = Np, 

S’ = Np - Stome,. . (9)  

On the other hand, So = S’ because  of invertibility; thence 

SLl.  = 0. (10) 

In other words, after one step the probability at each  cell 
remains the same and  no correlations are introduced. Thus, 

Theorem 1 For any p ,  Up is a  time-invariant  distribution of 
the lattice gas. 
Hereinafter, we call separable a distribution that is the 
product of its marginal (“cell-by-cell” or “singlet”) 
distributions. 

In the lattice-gas equilibrium states considered above, 
particles are found with equal probability in each  of the four 
directions of travel.  We extend Theorem 1 to macrostates in 
which the gas as a whole undergoes a steady drift. 

Let us consider a separable distribution U,,, in which 
particles traveling in the four directions (cf. Figure 1)  occur 
with  different probabilities p,+, . . . , p,; the distribution is 
otherwise spatially uniform. 

A necessary condition for equilibrium is that for  each 
direction of travel particles be created and annihilated at the 
same rate. For the specific dynamics we are considering, 
which  is characterized by the reversible “reaction” [cf. ( 5 ) ]  

4 ex+ + ex- - ey+ + eJL (1  1)  

(where ex+ denotes a particle traveling in the x+ direction, 
etc.), this constraint is expressed by the balance relation 

32 
‘Since both the dynamics and the initial distribution are spatially uniform, al l  the p: 
must be equal. 
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g =(J = g  
X Y ’  

where 

Ux = P,+PX-PY+P, 3 

“ 

cy = i ix+iix-Py+P, ; 

in fact, (1 3) is the rate for the forward reaction and ( 14) that 
for the reverse reaction in (1 1). Note that  the equilibrium 
parameter u is invariant under the exchange of 0’s and 1’s. 

An argument strictly analogous to that used  for Theorem 
1 shows that condition (12) is also sufficient  for equilibrium; 
i.e., after one step the marginal distributions not only retain 
the initial probabilities p,+, p,-, p,, and py- ,  but also remain 
uncorrelated. Thus. 

Theorem 2 For any  p’s satisfying the balance relation (12), 
the distribution U,,, is time-invariant. 

Thus, a separable distribution is an equilibrium one if and 
only if it satisfies the balance relation; moreover, this relation 
can be explicitly  solved in terms of the four p’s. Therefore we 
have a complete knowledge  of the separable equilibria. Do 
these exhaust the range  of  possible equilibria? 

Clearly there exist nonseparable equilibria; for example, 
the distribution containing with equal weights  exactly those 
configurations where only one particle is present5  On the 
other hand,  the family  of separable equilibria discussed 
above is  large enough to contain all the “traditional” 
equilibria, i.e., those considered by naive kinetic theory. By 
(1 2), the four p’s can be expressed in terms of the more 
familiar-looking variables 

’Note that, from a physical viewpoint, this is an extremely degenerate case, since for 
these initial conditions the system decomposes into a collection of independent one- 
dimensional systems with no interactions at al l .  
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P = P, + Px- + P, + Py-9 (15) 

That is, the family  of equilibrium states described by (12) 
can be parametrized by three quantities, namely mass 
density and  the two components of momentum density. 
This is in agreement with the case  of an ideal gas,  where 
energy and  momentum are the only additive conserved 
quantities and (assuming the ergodic  hypothesis) completely 
characterize equilibrium. 

A balance relation (or set  of relations) analogous to (12) 
can be  explicitly derived for any cellular automaton. If the 
marginal distributions of a spatially uniform, separable 
distribution obey this relation at a given moment, they will 
obey it again after one step of the dynamics-after  which 
they  may  have become correlated, so that in general the 
argument cannot be iterated. However,  as we have  seen, if 
this relation holds, then relation (10) automatically follows  if 
the  automaton is invertible and particle-conserving, and  thus 
the argument can be iterated. Therefore 

Lemma 3 I f a  cellular automaton i s  invertible and particle- 
conserving, all of its separable, spatially homogeneous 
distributions that  obey the balance relations are time- 
invariant. These distributions can be explicitly computed 
from  the  automatonS local law. 

3. Small  perturbations from  equilibrium 
Armed  with Lemma 3, we proceed  now to study the 
evolution of the information associated  with small 
perturbations from equilibrium. 

U o  of microstates and the corresponding distribution U‘ 
obtained by letting each microstate follow its natural 
evolution for a time t. For cellular automata, U‘ is a 
continuous function of Uo;  in other words, a small 
perturbation in the initial distribution results in a small 
perturbation in the final one. 

Let U be an equilibrium distribution of an invertible, 
particle-conserving  cellular automaton, consisting of the 
product of independent marginal distributions 
p ,  ( i  = 1, . . . , N )  as in Lemma 3; and consider a variation 
6U of this distribution such that the marginal distributions 
p ,  + dp, of U + 6U are also independent. By definition, one 
step of the dynamics transforms U into itself. On the other 
hand, in  general U + 6U is transformed into a different 
distribution U + 6U’; moreover, the new marginal 
distributions pi + 6p:  may not be independent. 

A remark is in order. Consider an arbitrary distribution 

Because  of particle conservation, 
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Elementary interaction site in the HPP lattice gas. 

N N 

c 6Pj  = c 6P, 
, = I  I= I 

for variations of any size  (i.e., not necessarily small); thus, a 
mass-density perturbation, collectively represented by the 
6p,  (i = 1, . . . , N ) ,  evolves  as an additive conserved quantity. 

Because of invertibility, 

s(U + 6U‘) = s(U + bU). 

On the other hand, in general 

because of the correlations that may  be introduced by the 
system’s evolution. 

In the next  section we show that relation (20) becomes an 
equality in the limit as dp, ,  . . . , dp, + 0; as a consequence, 
in this limit the marginal distributions pi  + 6p:  are spatially 
uncorrelated. Thus, in this limit also the information-density 
perturbation, collectively represented by the 6s,, evolves as 
an additive conserved quantity. 

4. Evolution of mass  and  information 
perturbations 
We study in detail the evolution of  small perturbations in 
the  HPP lattice gas introduced in Section 2. 

With  reference to Figure ](a), a block represents the 
potential locus of interaction between particles at a given 
step, and thus can be depicted as a “computing node” with 
four input lines and four output lines, as in Figure 4. The 
inputs represent the states of the four cells  of the block 
before the interaction, and the  outputs the states of the same 
cells after the interaction; at the next step, these outputs  are 
fed as inputs to the four blocks that, in the new partition, 
straddle the given  block [Figure l(b)]. In Figure qb), the p’s 

represent the probabilities of 1’s on the input lines, and the 
p”s those on  the  output lines.  We use h and k as indices 
ranging over the four directions x,, x-, y+,  y-. 
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k t  US consider a spatially uncorrelated distribution 
representing a uniformly drifting gas. That is, the occupation 
probabilities px+ ,   px - ,   pY+ ,  and pY_  for the four cells that make 
up a block  may be different, but each  of the four 
probabilities has the same value in every  block; moreover, all 
the cell-by-cell marginal distributions are independent. 

With respect to  the marginal distributions, the operation 
of  the node of Figure 4 is  described as follows: 

P:, = Px+ - (a, - UY)> 

P,_ - P ,  - (ax - ay)3 I -  

p ,  ' - - Px+ + (a, - f l y )>  

P;_  = P ,  + (0, - ay); (21) 

note that here we are not yet assuming equilibrium, and  thus 
the p ' s  are completely arbitrary. 

The response of the p"s to small perturbations of the p ' s  
(first-order response) is given  by the Jacobian matrix 

JmaSs = [i] , ' p  h 

of  which,  for clarity, we explicitly  write down two elements: 

At equilibrium [cf. ( 1  2)] one has 

where 

1 
Uh = -: (26) 

PhPh 

[cf. (4)] and  the Jacobian matrix for  mass-density 
perturbations becomes simply 

J""" = I + aA, (27) 

where I is the identity matrix and 

Intuitively, a determines the overall intensity of mass- 
perturbation scattering, while A (the normalized scattering 
matrix) gives,  for each of the four input directions, the 
relative amounts of scattering into  the four output 
directions. 
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Matrix A can be written, more compactly, as the Outer 
product  of  two  vectors: 

r uX+i r 

Note that in (29) the sum of the elements of the second 
vector equals zero-which implies that  the sum of  mass- 
density perturbations is time-invariant. This is no surprise; 
in fact, it is an immediate consequence of particle 
conservation, and remains true for arbitrary distributions 
(e.g., not necessarily equilibrium, homogeneous, or spatially 
uncorrelated) and arbitrary perturbations. In other words, 
the mass surplus or deficit introduced by a perturbation 
always  evolves as an additive conserved quantity. 

equilibrium value) at a given  cell  yields a corresponding 
information-density perturbation; the ratio between  these 
two perturbations is 

A mass-density perturbation (with respect to the 

[cf. (4)]. We can thus write a Jacobian matrix for the 
propagation of information-density perturbations (always in 
the context of small perturbations from equilibrium): 

where 

Note that here the elements of the second vector are not 
equal in magnitude as in (29); however, their sum still equals 
zero,  because of (12). Thus, by substantially the same 
argument as that leading to Theorem 1, we conclude that  the 
marginal distributions remain uncorrelated as the perturbed 
system  evolves: 

Theorem 4 In the HPP lattice gas, the information surplus 
(or deficit) associated with small, spatially uncorrelated 
perturbations of a separable equilibrium distribution is 
transported as an additive conserved quantity. 

The HPP gas  is far from trivial, in  that it displays a full- 
featured hydrodynamics reminiscent of the Navier-Stokes 
equation.6 

A closer approximation to  this equation is given by  a lattice gas similar to HPP in all 
respects,  but  with particles running  in  six  (rather  than four) directions [6]. 
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A theorem analogous to Theorem 4 holds for many other 
lattice gases;  in particular, for the BBM cellular automaton 
[3, 51, which is known to be ~omputation-universa1.~ 

From the above considerations, we advance the following. 

Conjecture 5 In all  invertible,  particle-conserving  cellular 
automata, the  information associated with  small 
perturbations of a separable  equilibrium distribution is  an 
additive constant  of  the motion. 

5. Conclusions 
We have exhibited nontrivial systems in which information 
is transported as an additive conserved quantity. An 
important property of these  systems  is that the  time 
evolution of near-equilibrium distributions can be explicitly 
computed using modest resources; in fact, the  amount of 
computation is proportional to the number N of  cells (rather 
than to the number of microstates. which  increases 
exponentially with N ) .  Thus, one has direct computational 
access to the dynamics of distributions as well as to that of 
microstates. For example, Figure 5 shows  two  stages in the 
evolution of a localized perturbation in the HPP gas  (with 
px+ = 0.933, p, = 0.500, and p, = p, = 0.789); this figure 
plots the deviations of the p’s from their equilibrium values. 
The corresponding deviations of the s’s are proportional to 
those of the p’s-with different proportionality coefficients 
for the four directions of travel, as  given by (30)”and yield 
a qualitatively similar plot. 

’ This gas is not momentumsonserving, and consequently the family of equilibria is 
spanned by a single real  parameter p = px+ = px- = p = p,. In addition, there are 
some degenerate equilibrium distributions, which we%sregard. 
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