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Residual 
resistivity  dipoles, 
electromigration, 
and  electronic 
conduction 
in metallic 
microstructures 

by R. S. Sorbello 
C. S. Chu 

For an impurity  in  a  bulk metal, the connection 
between electromigration and electric  fields 
associated with  dc  conductivity is understood in 
terms of Landauer’s  residual  resistivity  dipole. 
This  connection is examined, and appropriate 
generalizations are made for an impurity in a 
two-dimensional  electron gas and for an 
impurity near a metal surface. The residual 
resistivity dipole field decays less rapidly  with 
distance in  a  two-dimensional gas than  in  bulk, 
thus  resulting in a larger voltage  drop  across an 
impurity  in  the  system  of  lower  dimensionality. 

1. Introduction 
When a single impurity is introduced  in bulk  metal, the 
resistivity of the sample is increased. Conventional theories 
of electronic conduction ignore the spatial  variation of the 
microscopic electric field and  current  in  the vicinity of the 
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impurity.  Presumably, the justification  for  ignoring  these 
microscopic  spatial  variations is that we are interested in 
macroscopic systems with random  distributions of 
impurities.  Microscopic  spatial  fluctuations are expected, on 
average, to cancel out. It thus  appears reasonable to perform 
calculations based on  the existence of a uniform electric 
field. The actual situation is more complicated and  more 
interesting, and was elucidated by Landauer  in his classic 
I957 paper [ I ] .  According to  Landauer,  the increased 
resistivity due  to  an  impurity is associated with a 
microscopic dipolar source of electric field and  current [ 1-31. 
This is the residual resistivity dipole (RRD). 

Analyses of  electronic conduction based upon  the RRD 
picture  have not yielded new answers  for the residual 
resistivity [ 1,2]. However, if one is interested in  the local 
field in  the vicinity of an  impurity,  the RRD picture is 
essential. The local field acts  as a driving force on  an  ion  in a 
solid, and  thus  the RRD is  conceptually important for an 
understanding  of  electromigration [4, 51, which is the 
phenomenon of atomic  transport in the presence of electron 
current. In addition, it now  appears possible to measure 
directly the voltage drop across a defect in a microstructure, 
thereby  actually  probing RRD fields [ 6 ] .  The  experiments 
have thus far  probed local voltage drops across a single 
defect only  in the weak-localization regime where quantum 
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interference effects play an  important role [ 7 ] .  In general, we 
believe that knowledge of microscopic fields and  currents is 
essential in the  understanding of electron transport  and 
electromigration  in metallic microstructures. Here 
Landauer’s approach provides  crucial insight. 

cases of  interest  for metallic microstructures,  namely to  the 
case of an  impurity  in a  two-dimensional  electron gas, and 
to  the case of an  impurity near the surface of a  metal. We 
first examine  the case of an  impurity  in a  bulk  metal, where 
the usual Landauer analysis applies. In an effort to  make 
some aspects  of  Landauer’s  theory more “user-friendly” to 
workers comfortable with more traditional methods, we 
describe a  transport-equation method  rather  than  the 
original Landauer method  for  evaluating the long-range 
RRD field. The  transport  equation  method is, in fact, 
mentioned by Landauer [ 2 ] .  

In  this  paper we extend the  Landauer RRD picture to two 

2. Impurity in bulk metal 
We consider  a single impurity  in  a  bulk  metal sample 
characterized by a  uniform  background  scattering time T 

which gives rise to  the usual bulk resistivity po = m/ne2T. 
The electrons  have density n, mass m, and charge -e, and 
are considered  in  a  jellium  model. In  the absence of the 
impurity,  the electron  distribution  for  a  current-carrying 
sample is a shifted Fermi  sphere. The part  of the distribution 
which is linear  in the uniform  macroscopic  electric field Eo is 
given by 

where S i  = h&/m is the electron velocity, tk is the electron 
energy h2k2/2m, and tF is the  Fermi energy. The electron 
charge current  camed by gf is given by j, = &,/p,. 

An impurity is now placed in  the electron gas. Consider 
the scattering taking place within  a  spherical region of  radius 
ro centered at  the  impurity.  Take ro << 4 where P = hk,T/m is 
the mean free path (k ,  is the  Fermi wavevector). The 
electron  scattering  states 1c/; have the  asymptotic (k,r >> 1 )  
form 

wheref(0) is the scattering amplitude  and Q is the crystal 
volume. The corresponding  electron  density due  to  the 
electron current, or “electron  wind,” is [3 ,  81 

an,(?) = & gz I 444 I *. ( 3 )  
k 

The electrostatic  potential, a@(?), arises from an,(?) and 
the induced screening charge, 6n,( i), which attempts  to 
locally neutralize fin,(?). Within a  Thomas-Fermi 
approximation, self-consistent screening gives [ 1, 31 

where dn/dE is the electron  density  of  states at  the  Fermi 
level. 

It is straightforward to evaluate 6Q in  the  asymptotic 
region using Equations ( l ) - ( 4 ) .  The result is the  RRD 
potential 

Sa(;) = --, pcoss 
r2 

( 5 )  

where cos0 = i . go and  the dipole moment p is given by 

3xh10S0 
p = -  

4kie  ’ 

Here I, is the particle current density  far from  the  impurity 
(Io = 1 j ,  I /e), and So is the scattering transport cross  section 
given by 

So = J If(0) I *( 1 - cos0)dQ. (7)  

Expressions (5) and (6) apply  in the  quantum-mechanical 
asymptotic regime !>> r >> k i ’ .  

The electromigration  wind force equals the  momentum 
transfer  per  second to  the  impurity  due  to collisions with the 
electrons. We can  determine  this from the asymptotic form 
of the radial current density .I,. The wind force, Fw, becomes 

,- 

where 

A positive value of Fw indicates  a force in  the direction 
opposite to Eo, i.e., along the direction of the electron  wind. 
In using Equations (8) and (9), we are  to  take  the asymptotic 
form (2) .  The result is 

4kie 
3x 

F, = - p. (10) 

When r is of the  order of t o r  greater, the  RRD field can 
be found by solving the  transport  equation, with the  current 
.I, acting as a point source [ 2 ] .  The  dynamic electron 
distribution g, satisfies the  transport  equation 

where & = ( 1 / 4 ~ )  J dQgi  is the local average to which the 
electrons relax. The source term has the  form 

Si(?) = S ( i ) S ( t ,  - tF)S(I;) 

with 
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The source term is contrived so that  it corresponds to a 
particle current J,($ emitted from the scatterer. 

The solution of Equation ( 1  1) is facilitated by the 
substitution 

gi = gl + G(k, i )6 (ek  - e,) 

and subsequent Fourier transformation taking exp(i4. i )  
spatial variation. After some algebra one obtains an 
expression  for G(k, 4) which can be Fourier-transformed 
analytically to obtain G(k, i). The resulting electron density 
an,( F )  follows upon performing the sum of gi over R. The 
result is 

Since the factor in parentheses equals ednldE, we deduce 
from Equations (4)  and (14) that 6@(F) is  given  by the 
expression (5). Thus, the RRD retains its dipolar field 
pattern in the presence of background scattering, i.e.,  when r 
is comparable to, or greater than, t. We emphasize, along 
with Landauer [ 1,2], that 6@( i )  effects are properly 
accounted for via Equation (4). 6@( i) should not be placed as 
a driving field in the Boltzmann equation (1 1). 

between  two  large,  parallel mathematical surfaces  of area A 
separated by a distance L, where L,  <<A”’. The average of 
6@ over one surface has magnitude 2?rp/A. Thus, the average 
macroscopic  field  between the surfaces, s, equals 4rp/AL,. 
The resulting resistivity change, s / J , ,  becomes 

Consider the resistivity change, 6p, for an impurity 

6 p  = - 4TP 
J, AL,’ 

which  agrees  with the result of Landauer’s analysis [ 1,2] for 
the resistivity per impurity for a slab consisting of a dilute 
concentration of random impurities. [The polarization field 
in that case equals 4*(N/ALx)p  for  N impurities in a volume 
AL,.] 

Comparison of Equations ( 10) and ( 15)  yields a 
relationship between  force and resistivity, namely 

A relationship between the total resistivity change and the 
total force is expected on  the grounds of momentum 
conservation arguments [9]. Here, however, we are 
considering only electron-wind contributions. 

3. Impurity  in a 2D electron gas 
The analysis  of the previous section can be extended to the 
case of a 2D electron gas. The current-carrying distribution 
is  now a shifted Fermi circle, and has the form given in 
Equation (I ) .  The asymptotic form of the wavefunction, in 
cylindrical coordinates, is 

where the “volume” fl is now the surface area of the  2D 
system. The calculation proceeds as before,  where in 
Equation (4) dnldE is  now the  2D density of states mlrh’. 
The RRD potential becomes, in place  of the expression (5 ) ,  

6@(i) = - -, PCOS 4 

where cos@ = i . Eo and 

(18) 
P 

p = - Z$,. 
k,e 
2h 

Here Io is the 2D particle current density (currentllength), 
and So is the transport cross  section: 

To determine the wind  force on  the impurity, we use the 
2D forms of Equations (8) and (9). The calculation yields 

F, = e k h  (21) 

which  is the analog of Equation (10). 

solution of the transport equation (1  1)  now  yields 
For the region  where p is  of the order of /or greater, the 

6n,(p’) = - -, me pcos@ 
rh2 p 

which leads to the same 6@ as Equation (1 8) when the 
screening relation (4) is used. 

An extra resistivity 6p is measured for an impurity 
between  two  parallel lines of  length L, separated by a 
distance L,, where L, >> L,. Averaging 6@ over the lines to 
find an average macroscopic field E, and using 6 p  = z / J o ,  
where Jo is the  2D electron charge current density, we obtain 

6p = - 2XP (23) 
JOL,L,‘ 

This is equivalent to the resistivity per impurity for a 
random, dilute concentration of  N impurities in a 2D sheet 
of length L, and width L,, where L, >> L,. (The polarization 
field equals 2?rNp/L,L,  for a sheet of 2D RRDs.) 

4. An impurity near a  surface 
Consider an impurity inside a metal at a distance b from a 
flat surface, which we model by an infinite barrier potential. 
A current flows parallel to the surface. Far from the 
impurity, the current density jo and  the electric field I?, are 
uniform, with I?, = p o l o  as in the analysis  of  Section  2. The 
presence  of the surface introduces novel features in the RRD 
analysis. 

When the impurity is farther from the surface than several 
electron wavelengths (k,b >> I), the scattered waves 
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emanating from the impurity are essentially the same as in 
the bulk case. This is  also true for the momentum transfer, 
and consequently for F,. The bulk limit obtains because 
scattered waves  leaving the impurity and subsequently 
reflecting  from the surface do not return to the impurity in 
sufficient intensity when k,b >> 1. Although F, reduces to its 
bulk value, 6@(3 does not. For example, consider an 
observation point, i, well away from the impurity ( r  >> b). 
The scattered waves directly from the impurity and the 
waves  reflected from the surface after being scattered by the 
impurity amve  at i with  essentially equal intensity. 
Therefore, the RRD strength is  twice the bulk value ( 6 )  
when r >> b >> 4‘. 

When the impurity is  very far from the surface ( b  > f), 
the problem is  very simple. We  need  only consider a point 
RRD source at the impurity, and solve the transport 
equation subject to the boundary condition that at the 
surface there is no perpendicular component of current. 
Equivalently, the electric field -as@ at the surface must be 
parallel to the surface. The solution can be obtained by 
placing an image RRD outside the surface  with both RRDs 
aligned  parallel.  Clearly, 6@ is  again double strength in the 
far  region  where r >> 26. 

the  quantum scattering interference between the impurity 
and  the surface  is  essential. The scattered waves can be 
found by solving an equivalent image-scattering problem in 
which there is an incident wave [exp(i&. i )  - exp(i&*. J)], 
where & and &* are image  wavevectors. This wave  is 
repeatedly scattered by the impurity potential and its image. 
After $Ai) is found, the general method of  Section 1 may  be 
followed. 6@ exhibits non-dipolar angular dependence due to 
the directional dependence of the interference pattern when 
! > r >> k;’. However,  for r >> !, the leading term again has 
the dipolar form ( 9 ,  except that p is replaced by some 
effective dipole moment which depends sensitively on b. 

interest in the case  of a localized  s-wave impurity potential 
near a surface.  We found that for r >> /(but b arbitrary) the 
effective RRD moment is given  by 

When the impurity is very close to the surface (k,  b - I), 

We performed model calculations for various quantities of 

[ ;“‘:5”] H, 
pea = 2p I - - - 

where p is the bulk RRD moment (6) ,  j ,  is the spherical 
Bessel function, and 

Here 6, is the impurity phase  shift and hr’ is the spherical 
Hankel function. Note that far from the surface peff + 2p. 
Multiple scattering interference effects are contained in H. 

The corresponding force  is  given by 
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which  is  valid  for  all  values  of b. Note that the 
proportionality constant between F, and the RRD strength 
peff  is half the value  which appears in the bulk expression 
(10). 

The resistivity change for an impurity midway  between 
parallel surfaces of area A separated by a distance L, has the 
form 

2rPea 
6p = - 

J, AL, ‘ (27) 

In obtaining Equation (27),  we assumed that A‘I2 >> L, >> b, 
and that the surfaces are entirely within the metal. The 
importance of electrode geometry and boundary conditions 
has been emphasized by Landauer [IO]. If noninvasive point 
probes rather than electrodes were  used, one could, in 
principle, measure the RRD potential -peff cosO/? directly. 

5. Conclusion 
The RRD is the source of the long-range microscopic field 
associated  with electron scattering by impurities in metals. 
The residual  resistivity, 6p, and the electromigration wind 
force, F,, are directly related to the strength of the RRD, 
which thus provides a link between 6p and F,. These 
relationships are generalizable to systems consisting of 
impurities near surfaces and interfaces. For the case  of an 
impurity in a bulk 3D system or in a 2 D  system, the 
potential field is dipolar at distances beyond  several electron 
wavelengths from an impurity. Because the field  of a 2D 
dipole falls off more slowly  with distance than  that of a 3 D  
dipole, the voltage drop across an impurity is  larger in a 2D 
electron gas, assuming that  the voltage probes are equally 
spaced in the two  cases. For the case  of an impurity in a 
metal at a distance b from a specular surface, the potential is 
dipolar at distances r >> t. Closer in, however, the potential is 
not dipolar. The lack  of an RRD field  when r < !, even 
though r >> b, is due  to  the antenna-like directional effect  of 
the impurity plus image-scattering potential. 

Finally, we point out  that we have not considered local 
field contributions arising from the polarization of electrons 
brought in by the impurity in the presence  of the electric 
field I?,. Such effects enter the so-called “direct force” in 
electromigration theory [ 1 I ]  and have  been  described by 
Landauer [ 121 in terms of camer density modulation. 
Formally, such effects are of order I/k$ times the electron- 
wind  effects considered here, and can thus be neglected  for 
good conductors. 
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