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Residual
resistivity dipoles,
electromigration,
and electronic
conduction

in metallic
microstructures

by R. S. Sorbello
C.S. Chu

For an impurity in a bulk metal, the connection
between electromigration and electric fields
associated with dc conductivity is understood in
terms of Landauer’s residual resistivity dipole.
This connection is examined, and appropriate
generalizations are made for an impurity in a
two-dimensional electron gas and for an
impurity near a metal surface. The residual
resistivity dipole field decays less rapidly with
distance in a two-dimensional gas than in bulk,
thus resulting in a larger voltage drop across an
impurity in the system of lower dimensionality.

1. Introduction

When a single impurity is introduced in bulk metal, the
resistivity of the sample is increased. Conventional theories
of electronic conduction ignore the spatial variation of the
microscopic electric field and current in the vicinity of the
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impurity. Presumably, the justification for ignoring these
microscopic spatial variations is that we are interested in
macroscopic systems with random distributions of
impurities, Microscopic spatial fluctuations are expected, on
average, to cancel out. It thus appears reasonable to perform
calculations based on the existence of a uniform electric
field. The actual situation is more complicated and more
interesting, and was elucidated by Landauer in his classic
1957 paper [1]. According to Landauer, the increased
resistivity due to an impurity is associated with a
microscopic dipolar source of electric field and current [1-3].
This is the residual resistivity dipole (RRD).

Analyses of electronic conduction based upon the RRD
picture have not yielded new answers for the residual
resistivity [1, 2]. However, if one is interested in the local
field in the vicinity of an impurity, the RRD picture is
essential. The local field acts as a driving force on an ion in a
solid, and thus the RRD is conceptually important for an
understanding of electromigration [4, 5], which is the
phenomenon of atomic transport in the presence of electron
current. In addition, it now appears possible to measure
directly the voltage drop across a defect in a microstructure,
thereby actually probing RRD fields [6]. The experiments
have thus far probed local voltage drops across a single
defect only in the weak-localization regime where quantum
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interference effects play an important role [7]. In general, we
believe that knowledge of microscopic fields and currents is
essential in the understanding of electron transport and
electromigration in metallic microstructures. Here
Landauer’s approach provides crucial insight.

In this paper we extend the Landauer RRD picture to two
cases of interest for metallic microstructures, namely to the
case of an impurity in a two-dimensional electron gas, and
to the case of an impurity near the surface of a metal. We
first examine the case of an impurity in a bulk metal, where
the usual Landauer analysis applies. In an effort to make
some aspects of Landauer’s theory more “user-friendly” to
workers comfortable with more traditional methods, we
describe a transport-equation method rather than the
original Landauer method for evaluating the long-range
RRD field. The transport equation method is, in fact,
mentioned by Landauer [2].

2. Impurity in bulk metal

We consider a single impurity in a bulk metal sample
characterized by a uniform background scattering time
which gives rise to the usual bulk resistivity p, = m/ne’r.
The electrons have density #, mass m, and charge —e, and
are considered in a jellium model. In the absence of the
impurity, the electron distribution for a current-carrying
sample is a shifted Fermi sphere. The part of the distribution
which is linear in the uniform macroscopic electric field £, is
given by

gr = —red;- Egle, — ¢, )

where v; = hk/m is the electron velocity, ¢, is the electron
energy h2k2/2m, and . is the Fermi energy. The electron
charge current carried by g} is given by J, = E,/p,.

An impurity is now placed in the electron gas. Consider
the scattering taking place within a spherical region of radius
r, centered at the impurity. Take r, <« ¢ where ¢ = hk.7/m is
the mean free path (k. is the Fermi wavevector). The
electron scattering states y; have the asymptotic (k.r > 1)
form

1 k-t ikr
\ﬁ,;,(f)~(—2,—/2[ek +f(—f) ek], 2

where f{#) is the scattering amplitude and Q is the crystal
volume. The corresponding electron density due to the
electron current, or “electron wind,” is [3, 8]

n (P =T gilvdP)’. 3)
k

The electrostatic potential, §®(F), arises from én_(F) and
the induced screening charge, 67,(7), which attempts to
locally neutralize 6n (7). Within a Thomas-Fermi
approximation, self-consistent screening gives [1, 3]

SB(F) = —é (dn/dE)'sn (F), 4)
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where dn/dFE is the electron density of states at the Fermi
level.

It is straightforward to evaluate 6% in the asymptotic
region using Equations (1)-(4). The result is the RRD
potential
pcosf

PR &)
;

89(F) = ~

where cosf = F- Eo and the dipole moment p is given by
3wl S,
p= .
dkie

(6

Here I is the particle current density far from the impurity
(I, =1J,1/e), and S is the scattering transport cross section
given by

SO = f |f(0)|2(1 - COSQ)dQ. 7N

Expressions (5) and (6) apply in the quantum-mechanical
asymptotic regime /3> r > k'

The electromigration wind force equals the momentum
transfer per second to the impurity due to collisions with the
electrons. We can determine this from the asymptotic form
of the radial current density J.. The wind force, F,, becomes

F, = hk, f J(PF - Erde;, (8)
where

. h | R R k-7
J(r) = % g‘i; [Re{7 Vi (F) Py \&,;(r)} - r]. )

A positive value of F,, indicates a force in the direction
opposite to EO, i.e., along the direction of the electron wind.
In using Equations (8) and (9), we are to take the asymptotic
form (2). The result is

4ice

= . 10
F, 3 P (10)

When r is of the order of / or greater, the RRD field can
be found by solving the transport equation, with the current
J, acting as a point source [2]. The dynamic electron
distribution g; satisfies the transport equation
(g — &)
=485, Ay

€)= —

17,; . V'rg,; + 17,; . eEO(S(Ek -

where g; = (1/4r) [ d.g; is the local average to which the
electrons relax. The source term has the form

SyP) = 8(Mdle, — e)s(k) (12)
with

A _ 47r3h2 o 2
s(k) = mk, J(F)F ;=}2. (13)
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The source term is contrived so that it corresponds to a
particle current J (/) emitted from the scatterer.

The solution of Equation (11) is facilitated by the
substitution

g = &} + Gk, Pble, ~ &)

and subsequent Fourier transformation taking exp(iG - 7)
spatial variation. After some algebra one obtains an
expression for G(k, §) which can be Fourier-transformed
analytically to obtain G(k, 7). The resulting electron density
n,(7) follows upon performing the sum of g; over k. The
result is

. mkze\ pcosd
an (F) = <:Z%>” - (14)

Since the factor in parentheses equals edn/dE, we deduce
from Equations (4) and (14) that &(F) is given by the
expression (5). Thus, the RRD retains its dipolar field
pattern in the presence of background scattering, i.c., when r
is comparable to, or greater than, /. We emphasize, along
with Landauer [1, 2], that §®(F) effects are properly
accounted for via Equation (4). 6®(F) should not be placed as
a driving field in the Boltzmann equation (11).

Consider the resistivity change, ép, for an impurity
between two large, parallel mathematical surfaces of area 4
separated by a distance L, where L, <« 4", The average of
&® over one surface has magnitude 27p/A4. Thus, the average
macroscopic field between the surfaces, 6E, equals 4xp/AL,.
The resulting resistivity change, E/Jo, becomes

4mp

= 1
%= L (15)

which agrees with the result of Landauer’s analysis [1, 2] for
the resistivity per impurity for a slab consisting of a dilute
concentration of random impurities. [The polarization field
in that case equals 4x(N/AL )p for N impurities in a volume
AL_]

Comparison of Equations (10) and (15) yields a
relationship between force and resistivity, namely

3t F

w

o = e T AL (16)

A relationship between the total resistivity change and the
total force is expected on the grounds of momentum
conservation arguments [9]. Here, however, we are
considering only electron-wind contributions.

3. Impurity in a 2D electron gas

The analysis of the previous section can be extended to the
case of a 2D electron gas. The current-carrying distribution
is now a shifted Fermi circle, and has the form given in
Equation (1). The asymptotic form of the wavefunction, in
cylindrical coordinates, is
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ikp
f(e)é } (17)

- 1 k-G
Vi) — =7 [e + 2o
Q' pn/z

where the “volume”  is now the surface area of the 2D
system. The calculation proceeds as before, where in
Equation (4) dn/dE is now the 2D density of states m/1rh2.
The RRD potential becomes, in place of the expression (5),

59(7) = —’%”, (18)

where cos¢ = 7- E; and

2h
- 19
p > 1,5, (19)

Here I, is the 2D particle current density (current/length),
and S, is the transport cross section:

2x
So = J(: 1) 1°(1 — cosg)de. (20)

To determine the wind force on the impurity, we use the
2D forms of Equations (8) and (9). The calculation yields

F, = ek}p, (21)

which is the analog of Equation (10).
For the region where p is of the order of /or greater, the
solution of the transport equation (11) now yields
.. me pcos¢ :
o) = 75 =2, 22)
wh" P
which leads to the same & as Equation (18) when the
screening relation (4) is used.

An extra resistivity dp is measured for an impurity
between two parallel lines of length L separated by a
distance L,, where L, >> L . Averaging & over the lines to
find an average macroscopic field 6E, and using 8p = 8E/J,,
where J, is the 2D electron charge current density, we obtain

27p

L/ 2y 23
JLL, @)

op

This is equivalent to the resistivity per impurity for a
random, dilute concentration of N impurities in a 2D sheet
of length L, and width L,, where L, >> L . (The polarization
field equals 2xNp/L L, for a sheet of 2D RRDs.)

4. An impurity near a surface
Consider an impurity inside a metal at a distance b from a
flat surface, which we model by an infinite barrier potential.
A current flows parallel to the surface. Far from the e
impurity, the current density J, and the electric field £, are
uniform, with £, = p,J, as in the analysis of Section 2. The
presence of the surface introduces novel features in the RRD
analysis.

When the impurity is farther from the surface than several
electron wavelengths (kb >> 1), the scattered waves
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emanating from the impurity are essentially the same as in
the bulk case. This is also true for the momentum transfer,
and consequently for F,. The bulk limit obtains because
scattered waves leaving the impurity and subsequently
reflecting from the surface do not return to the impurity in
sufficient intensity when kb > 1. Although F,, reduces to its
bulk value, 5&(7) does not. For example, consider an
observation point, 7, well away from the impurity (r > b).
The scattered waves directly from the impurity and the
waves reflected from the surface after being scattered by the
impurity arrive at 7 with essentially equal intensity.
Therefore, the RRD strength is twice the bulk value (6)
when r>> b> k.

When the impurity is very far from the surface (b > /),
the problem is very simple. We need only consider a point
RRD source at the impurity, and solve the transport
equation subject to the boundary condition that at the
surface there is no perpendicular component of current.
Equivalently, the electric field —V5® at the surface must be
parallel to the surface. The solution can be obtained by
placing an image RRD outside the surface with both RRDs
aligned parallel. Clearly, 6® is again double strength in the
far region where r >> 2b.

When the impurity is very close to the surface (kb ~ 1),
the quantum scattering interference between the impurity
and the surface is essential. The scattered waves can be
found by solving an equivalent image-scattering problem in
which there is an incident wave [exp(ik - #) — exp(ik* - 7)),
where £ and £* are image wavevectors. This wave is
repeatedly scattered by the impurity potential and its image.
After y(7) is found, the general method of Section 1 may be
followed. 6® exhibits non-dipolar angular dependence due to
the directional dependence of the interference pattern when
>r> k;'. However, for r > ¢, the leading term again has
the dipolar form (5), except that p is replaced by some
effective dipole moment which depends sensitively on &.

We performed model calculations for various quantities of
interest in the case of a localized s-wave impurity potential
near a surface. We found that for > /(but b arbitrary) the
effective RRD moment is given by

_ éjl(Zka)
2 kb ’

P =2 [ ! 24

where p is the bulk RRD moment (6), j, is the spherical
Bessel function, and

1 elbo

=——Im —— o . (25)

sind, L1 + ie™sindyhy (2k,b)
Here §, is the impurity phase shift and hi,” is the spherical
Hankel function. Note that far from the surface p ; — 2p.
Multiple scattering interference effects are contained in H.

The corresponding force is given by

2ce

w = —Er—peﬂ"

(26)
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which is valid for all values of b. Note that the
proportionality constant between F,, and the RRD strength
D« 18 half the value which appears in the bulk expression
(10).

The resistivity change for an impurity midway between
parallel surfaces of area A separated by a distance L, has the

form
27D
op = .
P T AL, @7
In obtaining Equation (27), we assumed that 4" 2> L >b,

and that the surfaces are entirely within the metal. The
importance of electrode geometry and boundary conditions
has been emphasized by Landauer [10). If noninvasive point
probes rather than electrodes were used, one could, in
principle, measure the RRD potential —pe,,cos()/r2 directly.

5. Conclusion

The RRD is the source of the long-range microscopic field
associated with electron scattering by impurities in metals.
The residual resistivity, dp, and the electromigration wind
force, F,, are directly related to the strength of the RRD,
which thus provides a link between ép and F,. These
relationships are generalizable to systems consisting of
impurities near surfaces and interfaces. For the case of an
impurity in a bulk 3D system or in a 2D system, the
potential field is dipolar at distances beyond several electron
wavelengths from an impurity. Because the field of a 2D
dipole falls off more slowly with distance than that of a 3D
dipole, the voltage drop across an impurity is larger in a 2D
electron gas, assuming that the voltage probes are equally
spaced in the two cases. For the case of an impurity in a
metal at a distance b from a specular surface, the potential is
dipolar at distances r > /. Closer in, however, the potential is
not dipolar. The lack of an RRD field when r < £ even
though r > b, is due to the antenna-like directional effect of
the impurity plus image-scattering potential.

Finally, we point out that we have not considered local
field contributions arising from the polarization of electrons
brought in by the impurity in the presence of the electric
field E,. Such effects enter the so-called “direct force” in
electromigration theory [11] and have been described by
Landauer [12] in terms of carrier density modulation.
Formally, such effects are of order 1/k./times the electron-
wind effects considered here, and can thus be neglected for
good conductors.
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