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A theory  for  the  boundary  layer  near  the  critical 
trajectory  for  the  extremely  underdamped 
Brownian  motion  in a  metastable  potential  is 
presented.  The  probability  distribution  function 
in  phase  space  near this  critical  trajectory,  the 
average  escape  energy, and  the  correction 
terms  for  the  zero-friction-limit  escape  rate are 
calculated. 

Introduction 
The decay of locally stable states due  to fluctuations plays a 
major role in such different  fields  as  physics, electronics, 
chemistry, and biology. The simplest example is the one- 
dimensional Brownian motion of a classical particle, either 
in a single metastable well or in one well  of a bistable 
potential (see Figure 1). In his pioneering work Kramers [ 11 
treated the Brownian-motion problem and, in particular, he 
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calculated the escape rate out of a potential well.  After 
earlier investigations by Chandrasekhar [2], Brinkman [3], 
and Landauer and Swanson [4], Langer [ 5 ]  extended 
Kramers' one-dimensional treatment to multiple 
dimensions. In the last twenty years the problem of the 
escape from a metastable potential or  the transition to  the 
other well in a double-well potential has inspired many 
investigators. For a recent review on  the escape problem, 
both classical and quantum-mechanical, we refer to Hanggi 
[6 ] .  Further reviews on  the escape problem can be found in 
Fonseca et al. (71, in Landauer [8], and in the monographs 

In this investigation we confine  ourselves to the classical 
[9-131. 

one-dimensional Brownian-motion problem, and in 
particular treat the extremely underdamped motion. We 
determine the escape rate by calculating the lowest nonzero 
eigenvalue of the corresponding Fokker-Planck equation. 
For barrier heights  which are large compared to the thermal 
energy, the lowest nonzero eigenvalue is very  well separated 
from the higher  ones. Thus, after a small time the decay rate 
is  given  by a pure exponential function the decay constant of 
which is given  by the lowest nonzero eigenvalue. For zero 
friction, the energy  is a constant of motion. For the 
extremely underdamped motion, the energy  changes very 
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(a) Example of a metastable potential according to (3); (b) a quartic 
1 double-well potential. Both potentials agree for x 5 0; for x > 0 I the metastable potential in (a) is continued by an inverted parabola. 

slowly in  time. On a time scale in which the particle  changes 
its energy, it  performs many oscillations  inside the well. 
Then  one  can average the trajectories, and  the distribution 
function depends  only  on  the energy variable. As seen in 
Figure 2, there is a critical energy Eo and a corresponding 
critical trajectory in phase space. Above this critical 
trajectory  particles leave the well at  the  top of the  maximum 
of the potential,  whereas no particle enters  the well in the 
metastable  potential case, or particles of  “opposite sign” flow 
into it  from the  other well in the bistable potential case. 
Thus  one  obtains a  strong  space  dependence  of the 
distribution function above the critical trajectory. For 
continuity reasons this must  also be true  in a boundary layer 
near the critical trajectory. 

dependent probability  distribution function  near  the critical 
trajectory. As it turns  out,  the width of  this boundary layer is 
of the  order of the  square  root of the  damping  constant. At 
the lowest order  the lowest nonzero eigenvalue is 
proportional to  the friction constant  and is the  same for 
metastable and double-well potentials, if the potential  curves 
coincide for x S 0 and  in  the vicinity of the potential top. As 
an effect of the  boundary layer an  additional dependence  of 
the eigenvalue on  the friction constant y of  power 3/2 is 
obtained, i.e., 

The focus of this  paper is on  the space- and energy- 

- 
= U y  -  by^" = y(U - K&). (1) 

The  constants u and b can be expressed in  terms of the 
specific form  of the potential; see, for instance, Equation 
(44). For  the metastable  potential of Figure l(a), which is 
“half”  the double-well potential  in  Figure  I(b), the  constants 

(a) The metastable potential (3) and (b) some of the trajectories in 1 phase space. The dotted region is the boundary-layer region where 
4 the  probability  density is different  from  zero.  The  range of the 

variable u is also shown. 

u and b are  thus  the same. The factor K ,  however, is different 
for the two  potential forms. It is later  shown  how K can be 
calculated  for the metastable  potential. In  this case the factor 
K is about 1.7 times larger than for the double-well potential. 
This  means  that  on increasing y, the decay rate  for  the 
metastable  potential  becomes  smaller compared with the 
double-well potential. For larger damping  constants  and  the 
potentials  in  Figure 1, the decay rate for the double-well 
potential  is twice the decay rate for the metastable  potential. 
The  ratio 2: 1 occurs because one  has  transitions  from  the left 
to  the right well and vice versa, compared  to  only  one 
transition out of the well in the metastable case. For small 
damping  constants  the different K-values in (1) for  the two 
potentials  already  show the beginning of the transition to 113 
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this 2: 1 ratio of the eigenvalues. The expression (1) for the 
decay rate was given by Biittiker et al. [ 141, Biittiker and 
Landauer [ 15, 161, Voigtlaender and Risken [ 171, and 
Risken and Voigtlaender [ 181. Also, Mel’nikov [ 191 and 
Mel’nikov and Meshkov  [20] have, among  other results, 
obtained such  a  dependence. For a  tilted  periodic-potential 
problem,  a  boundary-layer  theory must also be applied, 
leading to a  drift velocity ( u )  = (l/y)(ii + bJG) [21]  similar 
to  the second form of (1). For a  detailed review on  the decay 
rates  for  small  friction constants  and  further references, the 
reader is referred to Biittiker [22]. 

In this paper we first explain the basic equations  and  the 
approximations made. In the next  section, the  boundary- 
layer theory is presented.  Finally, we briefly discuss the 
method for obtaining decay rates. 

Basic  equations 
The starting equation for describing the one-dimensional 
Brownian motion of particles  in the potential f l x )  is the 
following Fokker-Planck equation (FPE)  for the  distribution 
function W(x, u, t )  in position-velocity space: 

a w i a  ” a 
at - 1- -& u + - [ yu  +f’(x)] + 70 &I ( 2 )  

In (2) y is the friction constant  and 0 = kT is the average 
thermal energy. [ f (x) ,  0, y, and, later, all energies have  been 
divided by the mass.] The derivative of the  potentialflx) 
(i.e., the negative force) is denoted by a  prime. The theory to 
be presented is valid for any  smooth metastable  potential 
(Le., one without  cusps or steps) with  a quadratic x 
dependence near its minimum  and  maximum. As an 
example we use the metastable  potential 

f(x) = -- x + - x for x 5 0; d2 2 d4 4 

2 4 

f ( x )  = -- x- for x 2 0; d2 7 

2 (3) 

see Figure l(a). It is just  “one  half” of the  quartic double- 
well potential. For small y the energy 

E = u2/2 + f(x) (4) 

is a slow variable. We therefore use the energy as  one 
variable [9]. By keeping the space coordinate  as  the second 
variable, the  FPE ( 2 )  is  transformed to 

+ yu(x, E) - u(x, E) 1 + 0 - w, , aE a ( :E) ( 5 )  

where W, is the  distribution W(x, f u ,  t )  expressed in terms 
of x, E, and t ,  with u given by (6). The  k signs refer  to  the 
regions u > 0 and u < 0 in phase  space, and u(x, E )  is the 

114 velocity 
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For small y the particles  mainly  move  along the 
trajectories E = const; see Figure 2. For energies well below 
the critical energy they make  many oscillations  inside the 
well in a time interval 1/7,  and W thus becomes 
independent of  the  position.  Taking the  time integral  over 
one period 

* 
we obtain for W(x,  E, t)av = W(E, t )  the  equation 

T(E) - = y - Z(E) 1 + 0 - W, 
a w  a 
at aE ( :E) * 

where the action integral I(E) and  the period  of oscillation 
T(E) are given by [x,, x, are  the  turning points; see Figure 
2(4l 

I(E) = 2 s dxu(x, E),  
XI@) 

X,(€) 

XI(€) 

T(E) = 2 dx/u(x, E). 
x ~ ( E )  

For  the potential (3), I(E) and T(E) can be expressed in 
terms of the complete  elliptic  integrals  of the first and second 
kind; see for instance [ 181. [Notice, however, that I and 7‘ 
defined in [ 181 are twice the values given by (9).] The 
averaging procedure just described is justified if the energy 
loss AF due  to  the friction in a round-trip  time is small 
compared  to  the  thermal energy; i.e., 

As discussed before, the distribution function  must  depend 
on x in a boundary layer near the critical trajectory E = E,. 
As it  later turns  out,  the energy width of the  boundary is 
proportional  to 6; see (1 7), (1 8). Thus, for  small y this 
width also  becomes  small, and we may  put u(x, E )  = 
~ ( x ,  E,) in  (5) for calculating the  boundary layer to  the 
lowest order. Because the distribution varies very rapidly in 
E in  this  boundary region, we neglect the first derivative with 
E in favor of the second one. [If the first derivative is not 
neglected, an  additional  term of the  form [6/(20)]a W/ac 
appears on  the right-hand  side  of (19).] Furthermore, if  we 
consider  a time scale for the  distribution of the  order of the 
inverse decay rate (-l/y),  the  time derivative need not  be 
taken into  account, because  in the  boundary layer of 
thickness J; a quasi-stationary  distribution is established in 
a  much shorter time.  Therefore  (5)  reduces in  the  boundary 
region to 
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I(E,,) = 4d:’2/(3d4) 

&(X) = 7r[ 1 * 3’2J1 - d4x2/(2d,)] X 5 0, 

= n[ 1 f 1 5 3d4x2/(4d2)] X 2 0. 

Because of 

du,/dx = f27rv(x, Eo)/I(E0), 

the boundary-layer equation ( 1  1) transforms to 

a w rQI(E,,) a2 w 
au 2~ aE2 ‘ 

Boundary-layer  solution 
For solving (1 1) we introduce  the transformed  space 
coordinate 

U ( X )  = u-(x) = 27r - U+(X) u < o .  (12) 

For  the loop  near the critical trajectory, the variable u runs 
from 0 to 2 ~ ;  see Figure 2. For  the potential  (3) we have 

(13) 

Here we no longer need the k sign because u and E describe 
the particle  in the phase space in  an  unique way. For 
subsequent  purposes it is convenient  to  introduce  the 
geometric  mean between the energy loss due  to 
friction (10) and  the  thermal energy 0 divided by x ,  i.e., 

6 = JYQI(E,,)/P << 0. (17) 

Introducing, furthermore, a  dimensionless energy E by 

E = ( E  - Eo)/&, (18) 

( 16) takes the form 

aw 1a2w 
au 2 ac2 ‘ 
”” - 

The  distribution  function W, if it is expressed in  the 
variables u and E, does  not  depend  on  the special form of the 
potentialf(x). 

e Solution for E 5 0 
Below the critical trajectory the solution W( u, E )  must be 
periodic in u with  period 27r. If  W(u, E )  depends  on u, it 
must decay for large negative values  of E .  The general 
solution which satisfies these  requirements is given by the 
expansion 

W(u, E )  = 

wOIK J - c + 1 z ,exp[Jm(l  + in / ln l )e  + inu] , (20) 
en* \ 

where K and z, are  constants  to be determined from the 
boundary  condition (23). The  constant wo follows from  the 
normalization  of the eigenfunction. 

Solution for E 2 0 
Above the critical trajectory no particles are entering the 
well; i.e., W(u, E )  is zero for u < 0. If u is interpreted as time, 
then ( 19) is a  heat-conduction equation.  The  solutions  to 
(1 9), with boundary  conditions given by either W(u, 0) or 
the derivative  of Wwith respect to E ,  W,(u, 0), read [23] as 
follows: 

(0 < u < 2*), (21) 

(0 < u < 27r). (22) 

The variable u should be restricted to its values inside the 
well. Equation (2 1) guarantees that  the  function W is 
continuous  at E = 0, whereas (22) guarantees the  continuity 
of the derivative  of  W with respect to E at E = 0. 

(22) itself be continuous  at E = 0, i.e., 
Thus, using (22) we must require that  the  function W(u, E )  

From this equation  the  unknown coefficients K ,  z, can be 
determined.  The expansion  (20)  for E = 0 converges slowly 
and is therefore not well suited for direct  evaluation. To 
overcome this difficulty we write (20)  for E = 0 in  the  form 

where {(-!/2, a)  are  the generalized {-functions [24] 

From (24), (25) the coefficients z, are expressed in  terms of 
&. A dependence  of the coefficients z, proportional  to n” 
and n”’2 has already been found  in [IS]. The  form (24), (25) 
guarantees that  the  function  Wand all its  derivatives are 
finite  for u + 27r - 0. For even P, (25) can be reduced to 
Bernoulli polynomials. For P = 0 we have the “sawtooth” 
function ((0,  a )  = 1/2 - a (0 < a < 1). For  odd !, (25) can 
be expanded  according to 

{(-!/2, a)  = a”2 + (1 + a)”2 + Atkak (0 5 a S I ) ,  
iu 

k=O 

A / k  = (P/2)(!/2 - 1)(f/2 - 2) . . . (f/2 - k + 1) 

X [{(f/2 - k) - I]/k!, (26) 

where {(s) is the  ordinary {“function [24]. The derivative  of 
W(u, E )  with respect to E at E = 0 can also be expressed in 
terms of generalized {-functions, 115 
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The distribution W(u,  E)/w, as a function of u for fixed E = -2 ,  1 - 1.5, . . . , 3  (from top to bottom, solid lines) and E = *O. 1 (broken 

4 h I 

E 

g 
t The distribution W(u,  E)/% as a function of E for the fixed u values 0,  1 d100, T ,  2 ~ .  The  Milne  extrapolation  length E ~ , ~  (30) is also 
. indicated. 

as  may easily be seen by comparison with (20), (25). By 
116 inserting (24) and (27) into (23) and using (26), we can 

calculate the integrals  analytically. Matching  the expressions 
at L discrete x- or U-values,  we obtain  an  inhomogeneous 
system of linear  equations for the  unknowns K and PI, which 
can be solved for K and  the first L - 1 coefficients PI. The 
results for some of the lowest coefficients are given by 

The analytic expression in (28a) was obtained by Mel’nikov 
[ 191 and Mel’nikov and Meshkov  [20]  using a Wiener-Hopf 
technique. (In [ 181 the value K = 1.46 was reported.) With 
these coefficients the  distribution W/wo near  the critical 
trajectory  is  obtained. [Because of the factors in (25) the 
influence  of higher ,6 coefficients decreases rapidly.] For 
c < 0 we summed  up  the  terms (20), whereas  for E 2 0 the 
best way for  calculating W is seemingly to use (21). To 
circumvent  the singularities  of the  integrand  in (21), the 
integral is transformed to 

X W(uy(2cIJZ + y ) / ( c / J Z  + y)’, O)&. (29) 

For the K-term and for the first term (P = 0) of the expansion 
(24), W( u, e )  can be expressed in  terms of the  error  function. 

In Figure 3 W(u, E)/w,  is shown as a function of u keeping 
c fixed, whereas in Figure 4 W(u, C ) / W ,  is  shown  as a 
function of c with u fixed. As may clearly be seen, the 
function  becomes independent of u and therefore also of x 
for large negative E, i.e., inside the well. In Figure 4 the 
constant slope of W/w0 for large negative E is clearly visible. 
Continuing this slope, we reach the c-axis at 

Here  the  number cHil is similar to  the Milne  extrapolation 
length  in the kinetic  boundary-layer  theory  for the Fokker- 
Planck equation with an absorbing wall (see for  instance 
[25, 261). The results for the boundary-layer  distribution are 
similar to those  for the double-well potential investigated in 

For 2 2T we use W ( ~ T ,  E )  as  the initial condition for 
( 19) and  obtain 

For u >> 2~ we have  approximately 

W(u, E )  = J B / [ ~ ( u  - 2~)]exp(-:/[2(u - ~T)]}w,. (32) 

[Because of (22), (23), and (26), the integral J W ( ~ T ,  e)& 
turns  out  to be TW,.] 
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Mean energy above the critical trajectory 
An interesting quantity previously discussed by Buttiker and 
Landauer  [IS], Mel’nikov and Meshkov  [20], and Buttiker 
[22]  is the  mean energy above the critical trajectory. In  terms 
of the energy E it is given by 

(Ed) = E, + 6 ( C a b ) ,  

(Cub(@) = i- C W U ,  e)dc /[ W u ,  c)dc. (33) 

In Figure 5 (cab)  is shown as a function of u (valid for  every 
smooth metastable  potential) and  as a function of the length 
s, measured  along the critical trajectory in phase space, for 
the potential (3). At u = 2a  the particles leave the metastable 
potential with an average energy 

(Ea,,) = E, + 6 ~ .  (34) 

[Because of (21),  (22),  (24),  and  (25),  the integrals in  (33)  can 
be evaluated exactly for u = 2a.1 Comparing  this result with 
that of  Buttiker and  Landauer  [IS], we obtain exact 
agreement in  the small  friction  limit by using for their 
ad hoc value (Y 

aBHL = T / K ~  = 1.4731 . . . . (35) 

For the double-well potential Mel’nikov and Meshkov 
obtained  the value K~~ = (2 - dz) K = 0.85545586538 . . . . 
The boundary-layer  theory  for the periodic  potential  leads to 
the  same value as for the double-well potential. Some  time 
ago two of us obtained  the value K~~ = 0.859  [21] (less than 
0.5% off the correct value), whereas  in [ 13, 17, 181 the value 
0.8554 was given for the double-well potential. 

Eigenvalues and eigenfunctions 
The eigenvalues and eigenfunctions are  determined by (8) 
with appropriate  boundary conditions. The separation 
ansatz 

@(E, t )  = &(E)e-A‘  (36) 

leads to  the eigenvalue equation 

(37) 

This eigenvalue equation is the  same  as for the double-well 
potential in [ 181.  As was explained  in that reference, at  the 
bottom of the potential one has the  boundary  condition 

@&’(&J + ( 1  + V7)&(Erni”) = 0. (38) 

We now  have to  match &(E) with the  boundary 
solution (20). Below the critical energy (for instance, 
for E < E, - 26), we have 

&(E) = WO[K - ( E  - E,)/61. (39) 

If  we take for &(E) the  boundary  condition  at E = E,, 

&(E,) = -K6&’(Eo), (40) 

2 

1.5 

A 

v 2 I 

0.5 

0 
0 

0.5 
I I 

i The mean average  energy (cab)  above the critical  trajectory as a 
8 function of u (full line) and as a function of the length of the trajectory 
2 in phase  space  divided  by smax = 4.31 . . .  . Here 
i the differential of the  length  along  the  trajectory  is  defined by 
+: ds = d w .  The first result is valid for arbitrary smooth 
i, metastable potentials, the latter one for the potential (3). 

~~~~ 

&(E) matches the right-hand  side  of (39) for energies well 
below the critical energy E, [on  the scale of the 
eigenfunction &(E)]. For y + 0 we get 6 = 0 and  (40) 
reduces to  the  boundary  condition for the zero-friction limit 

&(E,) = 0. (41) 

Because 6 is small compared  to 0 [&(E) changes on  the scale 
of 01, we can  take  care of the right-hand  side  of (40) by 
perturbation expansion. As was shown in [ 181, the 
eigenvalue X/y can  then be expressed in  terms of ~6 by 

X/Y = (X/Y) 1 . 7 3  ( 1  - K W ,  (42) 

with 

The eigenfunctions &‘(E) are  the eigenfunctions  for the 
zero-friction limit. By inserting 6 we have thus  amved  at  the 
expression ( I ) ,  with 

a = ( ~ / y )  I ?-.,,; b = U K B ~ ~ Z ( E , ) / ( ? ~ O ) .  (44) 

Generally the eigenfunction &‘(E), the eigenvalue (X/y)7”.o, 
and B must be determined by solving the eigenvalue 117 
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equation (37) numerically with the  boundary  condition (4  I ) .  
Alternatively, we may solve (37) with the  boundary 
condition (40). The eigenvalues and eigenfunctions  have 
been  calculated for the  quartic double-well potential (see 
Figures 5-7 in [ 181). Because of the different K values, 
however, the friction scale & in  Figure 5 of [ 181 has to be 
multiplied by K ~ ~ / K  = 0.58 . . . and  the friction constant 
y = 0.1 in  Figure 7 of [ 181 should be replaced by 
y = O.~(K,,,/K)* = 0.034 . . . for the metastable  potential (3). 

0 Weak-noise limit 
In the weak-noise limit we can solve (37) analytically for the 
lowest eigenvalue [ 181. It turns  out  that  in  this limit B = 1 ,  
and we finally obtain 

(45) 

For  the model  potential ( 3 )  the eigenvalue (45) specializes to 

This form has already  been obtained  in [ 171. 

Landauer [ 151, with (Y given by (35) and with the result of 
Mel'nikov and Meshkov [20] in the small-damping  limit. 
Thus, for  small  friction the boundary-layer  theory  presented 
here  leads to  the  same results for the  mean escape energy 
and for the decay rate as  predicted by Biittiker and  Landauer 
[ 14-  161, provided  their (Y parameter is  chosen  according to 

The expression (45) agrees with the result of Biittiker and 

(35). 

This paper  is  dedicated to Dr.  Rolf Landauer  on  the 
occasion of his sixtieth birthday. 
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