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Boundary-layer
theory for the
extremely
underdamped
Brownian motion
In a metastable
potential

by H. Risken
K. Vogel
H. D. Vollmer

A theory for the boundary layer near the critical
trajectory for the extremely underdamped
Brownian motion in a metastable potential is
presented. The probability distribution function
in phase space near this critical trajectory, the
average escape energy, and the correction
terms for the zero-friction-limit escape rate are
calculated.

Introduction

The decay of locally stable states due to fluctuations plays a
major role in such different fields as physics, electronics,
chemistry, and biology. The simplest example is the one-
dimensional Brownian motion of a classical particle, either
in a single metastable well or in one well of a bistable
potential (see Figure 1). In his pioneering work Kramers [1]
treated the Brownian-motion problem and, in particular, he
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calculated the escape rate out of a potential well. After
earlier investigations by Chandrasekhar [2], Brinkman [3],
and Landauer and Swanson [4], Langer [5] extended
Kramers’ one-dimensional treatment to multiple
dimensions. In the last twenty years the problem of the
escape from a metastable potential or the transition to the
other well in a double-well potential has inspired many
investigators. For a recent review on the escape problem,
both classical and quantum-mechanical, we refer to Hanggi
{6]. Further reviews on the escape problem can be found in
Fonseca et al. [7], in Landauer [8], and in the monographs
[9-13].

In this investigation we confine ourselves to the classical
one-dimensional Brownian-motion problem, and in
particular treat the extremely underdamped motion. We
determine the escape rate by calculating the lowest nonzero
eigenvalue of the corresponding Fokker-Planck equation.
For barrier heights which are large compared to the thermal
energy, the lowest nonzero eigenvalue is very well separated
from the higher ones. Thus, after a small time the decay rate
is given by a pure exponential function the decay constant of
which is given by the lowest nonzero eigenvalue. For zero
friction, the energy is a constant of motion. For the
extremely underdamped motion, the energy changes very
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§ (a) Example of a metastable potential according to (3); (b) a quartic
5 double-well potential. Both potentials agree for x < 0; forx > 0
¢ the metastable potential in (a) is continued by an inverted parabola.

slowly in time. On a time scale in which the particle changes
its energy, it performs many oscillations inside the well.
Then one can average the trajectories, and the distribution
function depends only on the energy variable. As seen in
Figure 2, there is a critical energy E, and a corresponding
critical trajectory in phase space. Above this critical
trajectory particles leave the well at the top of the maximum
of the potential, whereas no particle enters the well in the
metastable potential case, or particles of “opposite sign” flow
into it from the other well in the bistable potential case.
Thus one obtains a strong space dependence of the
distribution function above the critical trajectory. For
continuity reasons this must also be true in a boundary layer
near the critical trajectory.

The focus of this paper is on the space- and energy-
dependent probability distribution function near the critical
trajectory. As it turns out, the width of this boundary layer is
of the order of the square root of the damping constant. At
the lowest order the lowest nonzero eigenvalue is
proportional to the friction constant and is the same for
metastable and double-well potentials, if the potential curves
coincide for x = 0 and in the vicinity of the potential top. As
an effect of the boundary layer an additional dependence of
the eigenvalue on the friction constant v of power 3/2 is
obtained, i.e.,

= ay — kby*"* = y(a - Kb\/;). 1)

The constants a and b can be expressed in terms of the
specific form of the potential; see, for instance, Equation
(44). For the metastable potential of Figure 1(a), which is
“half” the double-well potential in Figure 1(b), the constants
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(a) The metastable potential (3) and (b) some of the trajectories in
phase space. The dotted region is the boundary-layer region where
the probability density is different from zero. The range of the
variable u is also shown.
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!
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a and b are thus the same. The factor x, however, is different
for the two potential forms. It is later shown how « can be
calculated for the metastable potential. In this case the factor
« 1s about 1.7 times larger than for the double-well potential.
This means that on increasing v, the decay rate for the
metastable potential becomes smaller compared with the
double-well potential. For larger damping constants and the
potentials in Figure 1, the decay rate for the double-well
potential is twice the decay rate for the metastable potential.
The ratio 2:1 occurs because one has transitions from the left
to the right well and vice versa, compared to only one
transition out of the well in the metastable case. For small
damping constants the different «-values in (1) for the two
potentials already show the beginning of the transition to
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this 2:1 ratio of the eigenvalues. The expression (1) for the
decay rate was given by Biittiker et al. [14], Biittiker and
Landauer [15, 16), Voigtlaender and Risken [17], and
Risken and Voigtlaender [18]. Also, Mel’nikov [19] and
Mel'nikov and Meshkov [20] have, among other results,
obtained such a dependence. For a tilted periodic-potential
problem, a boundary-layer theory must also be applied,
leading to a drift velocity (v) = (1/yXa + 5«/;) [21] similar
to the second form of (1). For a detailed review on the decay
rates for small friction constants and further references, the
reader is referred to Biittiker [22].

In this paper we first explain the basic equations and the
approximations made. In the next section, the boundary-
layer theory is presented. Finally, we briefly discuss the
method for obtaining decay rates.

Basic equations
The starting equation for describing the one-dimensional
Brownian motion of particles in the potential f{x) is the
following Fokker-Planck equation (FPE) for the distribution
function W(x, v, t) in position-velocity space:

3 2
aw | 9 ] ) } -

vl RS Bl e

o T 2)

In (2) v 1s the friction constant and ©® = kT is the average
thermal energy. [f(x), ©, v, and, later, all energies have been
divided by the mass.] The derivative of the potential f{x)
(i.e., the negative force) is denoted by a prime. The theory to
be presented is valid for any smooth metastable potential
(i.e., one without cusps or steps) with a quadratic x
dependence near its minimum and maximum. As an
example we use the metastable potential

f(x)=—%x2+%x4forx§0;

flx) = —5‘;—2 X’ forx = 0; (3)

see Figure 1(a). It is just “one half” of the quartic double-
well potential. For small v the energy

E=v/2 + f%) “

is a slow variable. We therefore use the energy as one
variable [9]. By keeping the space coordinate as the second
variable, the FPE (2) is transformed to

f a
“w, =% ] — W,
% W. = F vlx E)ax

+ yu(x, E) % v(x, E) <1 +0 %) We, (5

where W, is the distribution W(x, +v, f) expressed in terms
of x, E, and ¢, with v given by (6). The + signs refer to the
regions v > 0 and v < 0 in phase space, and v(x, E) is the
velocity
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ux, E) = V2[E - f(x)]. (6)

For small vy the particles mainly move along the
trajectories E = const; see Figure 2. For energies well below
the critical energy they make many oscillations inside the
well in a time interval 1/, and W thus becomes
independent of the position. Taking the time integral over
one period

f"‘dt=f“’v(;{x5)’ )

we obtain for W(x, E, 1),, = W(E, t) the equation

W 9 9\ ~
E)y—=vy— —
E) 3 vaEI(E)<1+@8E>W, (3)
where the action integral I(E) and the period of oscillation
T(E) are given by [x,, x, are the turning points; see Figure

2(a)]

xI(E)
IE) =2 f dxv(x, F),

x(E)

)

NE)=2 f dx/v(x, E). )]
xpE)

For the potential (3), I(F) and T(E) can be expressed in

terms of the complete elliptic integrals of the first and second

kind; see for instance [18]. [Notice, however, that I and T

defined in [18] are twice the values given by (9).] The

averaging procedure just described is justified if the energy

loss AF due to the friction in a round-trip time is small

compared to the thermal energy; i.e.,

xi(E)
AF =2y f v(x, EYdx = vI(E) < O. (10)
xAE)

As discussed before, the distribution function must depend
on x in a boundary layer near the critical trajectory E = E,.
As it later turns out, the energy width of the boundary is
proportional to «/;; see (17), (18). Thus, for small v this
width also becomes small, and we may put v(x, E) =
v(x, E,) in (5) for calculating the boundary layer to the
lowest order. Because the distribution varies very rapidly in
E in this boundary region, we neglect the first derivative with
E in favor of the second one. [If the first derivative is not
neglected, an additional term of the form [6/(20))dW/de
appears on the right-hand side of (19).] Furthermore, if we
consider a time scale for the distribution of the order of the
inverse decay rate (~1/v), the time derivative need not be
taken into account, because in the boundary layer of
thickness ~/§ a quasi-stationary distribution is established in
a much shorter time. Therefore (5) reduces in the boundary
region to

oW, W,
C  E) —=.
ax YOu(x. o) P) E2

(1
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Boundary-layer solution
For solving (11) we introduce the transformed space
coordinate

2n fx
xX)=u(X)=7+ —= x’, E)dx’ > 0,
) SX) = IE) xy(Eg) o o v

wx) = u(x) =2r - u(x) v<0. (12)

For the loop near the critical trajectory, the variable u runs
from 0 to 2=; see Figure 2. For the potential (3) we have

HEy) = 4d,°/(3d,) (13)

us(x) = «[1 237 = g @2d))  x=0,

= x[l £ 1 * 3d,x*/(4d,)] xz0. (14)
Because of
du./dx = £27v(x, E)/I(E,), (15)
the boundary-layer equation (11) transforms to
aw _ yOIE) &' )

du 27 QE>

Here we no longer need the + sign because u and E describe
the particle in the phase space in an unique way. For
subsequent purposes it is convenient to introduce the
geometric mean between the energy loss due to

friction (10) and the thermal energy 0 divided by =, i.e.,

3 = VyBI(Ey)/m < 0. (7
Introducing, furthermore, a dimensionless energy ¢ by

e =(E — E,)/s, (18)
(16) takes the form

oW 13w

ou 2 a” (19)

The distribution function W, if it is expressed in the
variables u and ¢, does not depend on the special form of the
potential f(x).

e Solution for e £ 0

Below the critical trajectory the solution W(u, ¢) must be
periodic in u with period 2. If W(u, ¢) depends on , it
must decay for large negative values of e. The general
solution which satisfies these requirements is given by the
expansion

Wu, ¢) =

wo{x —e+ Y znexp[s/M(l + inf|nl)e + inu]}, 20)
on#0

where « and z, are constants to be determined from the

boundary condition (23). The constant w, follows from the

normalization of the eigenfunction.
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o Solution for e Z 0

Above the critical trajectory no particles are entering the
well; i.e., W(u, ¢) is zero for u < 0. If u is interpreted as time,
then (19) is a heat-conduction equation. The solutions to
(19), with boundary conditions given by either W(u, 0) or
the derivative of W with respect to e, W (u, 0), read [23] as

follows:
“ eexpl—¢/[2u — )}
Wu, ) = W
(w ) f e e Ok
O<u<2r), (21)
“expl=c/2(u — O}
144 =- Wit 0)d
(1, ©) f O (&, O)dt
O <u<2nm). (22)

The variable u should be restricted to its values inside the
well. Equation (21) guarantees that the function Wis
continuous at ¢ = 0, whereas (22) guarantees the continuity
of the derivative of W with respect to e at ¢ = 0.

Thus, using (22) we must require that the function W(x, ¢)
(22) itself be continuous at ¢ = 0, i.e.,

W0 "
o V2m(u —§)

From this equation the unknown coefficients «, z, can be
determined. The expansion (20) for ¢ = 0 converges slowly
and is therefore not well suited for direct evaluation. To
overcome this difficulty we write (20) for ¢ = 0 in the form

Wu, 0) = - (23)

- S
Wy, 0) = w, {K + EB Bzi’( > 2W>}, (24)
where {(—//2, ) are the generalized {-functions [24]
_ 2T + #/2) & sinQnza — fx/4
(=t12, ) = =5 =7 .E. r’l',‘;ﬂ ) ©5)

From (24), (25) the coefficients z, are expressed in terms of
8. A dependence of the coefficients z, proportional to n!
and 7~ has already been found in [18]. The form (24), (25)
guarantees that the function W and all its derivatives are
finite for u — 27 — 0. For even ¢, (25) can be reduced to
Bernoulli polynomials. For / = 0 we have the “sawtooth”
function (0, @) = 1/2 — a (0 < o < 1). For odd ¢, (25) can
be expanded according to

S22, )=+ (1 + )2+ T Aud
k=0

O=sas1),

A= (/202 = N2 = 2) - (¢/2 -k + 1)

X [£(¢/2 = k) = 1)/kY, (26)

where {(s) is the ordinary {-function [24]. The derivative of
WA (u, ) with respect to ¢ at ¢ = 0 can also be expressed in

terms of generalized {-functions, 115
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W(u, £)

§ The distribution W(u, e)/w, as a function of u for fixed e = —2,
% —1.5, ..+, 3 (from top to bottom, solid lines) and ¢ = 0.1 (broken
1 lines).

4l
“ I Loe |
{ Mil
‘;’g u=m I >
2} ! :
w=gr !
| 100 A\ ! u =2
AN
u=0 N i
0 L ! PN
-2 0 2 4

The distribution W(u, £)/w as a function of ¢ for the fixed u values 0,
7/100, 7, 2a. The Milne extrapolation length £, (30) is also
indicated.

W(u, 0) =

LS T+ =1 u
W"[ b+ ,Eoﬂ’r(l/zw/z)f( > ’21r>]’ @n

as may easily be seen by comparison with (20), (25). By
inserting (24) and (27) into (23) and using (26), we can
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calculate the integrals analytically. Matching the expressions
at L discrete x- or u-values, we obtain an inhomogeneous
system of linear equations for the unknowns « and 8,, which
can be solved for « and the first L — | coefficients 3,. The
results for some of the lowest coeflicients are given by

k= —{(1/2) = 1.4603545088 - - . (28a)
B, =—0.08167 --- B, =0.0563 -.. B, =0.0503 ---. (28b)

The analytic expression in (28a) was obtained by Mel'nikov
[19] and Mel’'nikov and Meshkov [20] using a Wiener-Hopf
technique. (In [18] the value « = 1.46 was reported.) With
these coefficients the distribution W/w, near the critical
trajectory is obtained. {Because of the factors in (25) the
influence of higher 8 coefficients decreases rapidly.] For

¢ < 0 we summed up the terms (20), whereas for ¢ 2 0 the
best way for calculating W is seemingly to use (21). To
circumvent the singularities of the integrand in (21), the
integral is transformed to

Wiu, e)/wy = (2/v7) J; expi—(e/v2u + )’}

X Wuy(2e/N2u + /e/¥2u + y¥, 0)dy.  (29)

For the «-term and for the first term (/= 0) of the expansion
(24), W(u, ¢) can be expressed in terms of the error function.

In Figure 3 W(u, ¢)/w, is shown as a function of u keeping
¢ fixed, whereas in Figure 4 W(u, ¢)/w, is shown as a
function of ¢ with u fixed. As may clearly be seen, the
function becomes independent of u and therefore also of x
for large negative ¢, i.e., inside the well. In Figure 4 the
constant slope of W/w, for large negative e is clearly visible.
Continuing this slope, we reach the e-axis at

v = K. 30)

Here the number e, is similar to the Milne extrapolation
length in the kinetic boundary-layer theory for the Fokker—
Planck equation with an absorbing wall (see for instance
[25, 26]). The results for the boundary-layer distribution are
similar to those for the double-well potential investigated in
[18].

For u Z 2x we use W2, ¢) as the initial condition for
(19) and obtain

W(u, ¢)
" expi—(c — ¢')’/[2(u ~ 271}
= W(Q2r, ¢)de’. 31
fo V2(u — 27) (2, ) 31

For u > 27 we have approximately
Wy, &) = vr/[2(u = 2m))exp{—c/[2(u — 2m)}iw,. (32)

[Because of (22), (23), and (26), the integral | W(2, £)de
turns out to be 7w}
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o Mean energy above the critical trajectory

An interesting quantity previously discussed by Bittiker and
Landauer [15], Mel’nikov and Meshkov [20], and Biittiker
[22] is the mean energy above the critical trajectory. In terms
of the energy ¢ it is given by

(E,)=E,+ 6y,

(e (1)) =J(: eWu, e)dt/Jo‘ W(u, e)de. (33)

In Figure 5 (e,,) is shown as a function of u (valid for every
smooth metastable potential) and as a function of the length
s, measured along the critical trajectory in phase space, for
the potential (3). At u = 2= the particles leave the metastable
potential with an average energy

(E,) = E, + d. (34)

[Because of (21), (22), (24), and (25), the integrals in (33) can
be evaluated exactly for ¥ = 2#.] Comparing this result with
that of Bittiker and Landauer [15], we obtain exact
agreement in the small friction limit by using for their

ad hoc value a

agy = ®/K = 14731 .. (35)

For the double-well potential Mel’'nikov and Meshkov
obtained the value gy, = (2 — V2) k = 0.85545586538 - - - .
The boundary-layer theory for the periodic potential leads to
the same value as for the double-well potential. Some time
ago two of us obtained the value «,, = 0.859 [21] (less than
0.5% off the correct value), whereas in [13, 17, 18] the value
0.8554 was given for the double-well potential.

Eigenvalues and eigenfunctions

The eigenvalues and eigenfunctions are determined by (8)
with appropriate boundary conditions. The separation
ansatz

WE, 1) = $(E)e™ (36)
leads to the eigenvalue equation

d d A
{E I(E) <1 +0 d_E> + Y T(E)} o(E) = 0. 37

This eigenvalue equation is the same as for the double-well
potential in [18]. As was explained in that reference, at the
bottom of the potential one has the boundary condition

00" (Epyp) + (I + M)$(E ) = 0. (3%

We now have to match ¢(£) with the boundary
solution (20). Below the critical energy (for instance,
for E < E, — 26), we have

H(E) = wlk — (E — E)/é]. (39)
If we take for ¢(E) the boundary condition at E = E,
HEY) = —xdd’(Ey), (40)
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The mean average energy (e,,) above the critical trajectory as a
function of u (full line) and as a function of the length of the trajectory
in phase space divided by s, = /2d,/d, »4.31 --. . Here
the differential of the length along the trajectory is defined by
ds = /dx2+dv¥d,. The first result is valid for arbitrary smooth
metastable potentials, the latter one for the potential (3).

¢(E) matches the right-hand side of (39) for energies well
below the critical energy E, [on the scale of the
eigenfunction ¢(E)]. For v — 0 we get 6 = 0 and (40)
reduces to the boundary condition for the zero-friction limit

HE;) = 0. 41

Because 4 is small compared to © [¢(E) changes on the scale
of 8], we can take care of the right-hand side of (40) by
perturbation expansion. As was shown in [18], the
eigenvalue A/y can then be expressed in terms of x4 by

MY = (MY)|rmg (1 — «0B), (42)

with
de’ ’
nefofSg)] |
E=E,

E, .
T(E)exp{—(E, — E)/0}[¢°(E))dE

N/ Y0

(43)

The eigenfunctions ¢°(E) are the eigenfunctions for the
zero-friction limit. By inserting & we have thus arrived at the

expression (1), with
a=(MY)rep; b= axBJYyIKE,)/(x0). (44)

Generally the eigenfunction #*(E), the eigenvalue (A\/v),—q,
and B must be determined by solving the eigenvalue
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equation (37) numerically with the boundary condition (41).
Alternatively, we may solve (37) with the boundary
condition (40). The eigenvalues and eigenfunctions have
been calculated for the quartic double-well potential (see
Figures 5-7 in [18]). Because of the different x values,
however, the friction scale v in Figure 5 of [18] has to be
multiplied by «py/x = 0.58 - - - and the friction constant

v = 0.1 in Figure 7 of [18] should be replaced by

¥ = O.l(KDw/K)z = 0.034 - .. for the metastable potential (3).

o Weak-noise limit

In the weak-noise limit we can solve (37) analytically for the
lowest eigenvalue [18]. It turns out that in this limit B =1,
and we finally obtain

_ KB 3 \/M}
)\_AYG)T(E )exp{ (E, Emin)/@)}{l K o [

min

(45)
For the model potential (3) the eigenvalue (45) specializes to

2V2d; J\ d;
exp

R e & IR g TE=rT ST

This form has already been obtained in [17].

The expression {45) agrees with the result of Biittiker and
Landauer [15], with « given by (35) and with the result of
Mel’nikov and Meshkov [20] in the small-damping limit.
Thus, for small friction the boundary-layer theory presented
here leads to the same results for the mean escape energy
and for the decay rate as predicted by Bittiker and Landauer
[14-16], provided their « parameter is chosen according to
(35).

This paper is dedicated to Dr. Rolf Landauer on the
occasion of his sixtieth birthday.
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