
Symmetry 
and  transport 
in  disordered 
systems 

by John Pendry 

The  transfer  matrix  for  a  disordered  system 
enables  averages of integer  powers of  the 
resistance  to be found, RN; application of  the 
symmetric  group generalizes this  formula  to 
fractional  and  negative N, providing a  powerful 
tool  for  the  study  of  transport.  Consequences  for 
fluctuations  in  resistance, l / f  noise,  and 
frequency  response are discussed,  as  well  as  a 
new sort of state, of fractal dimension 1/2, 
which is responsible  for  transport  in localized 
systems. 

The  transfer  matrix 
One of the simpler  problems in diffraction theory is the 
evolution  of a set of waves as they pass through a succession 
of screens, scattering  only in  the forward  direction. The 
evolution is handled by a succession of matrix 
multiplications. I f  al+ represents the wavefield between the 
jth  and ( j  + 1)th screens, we have 

L c+ = n t,++, 
/ = I  

where we assume  nondissipative  disordered  screens which 
scatter one set of plane waves into  another.  The vectors a+ 
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represent the complex amplitudes of  these waves. There is a 
direct and simple  relationship between a: and 3 which 
results because the wave never returns  to layers  from which 
it  has previously scattered. When we introduce back- 
scattering, waves repeatedly return  to  the  same layer. It is 
this effect which gives rise to  the richness of phenomena 
concerning  Anderson  localization [ I ]  in strongly disordered 
systems. Under  conditions of current conservation, Equation 
(1) can never give rise to electrical resistance because there is 
no  mechanism for preventing  electrons from  continuing in a 
forward  direction. In that sense it is a sterile equation 
containing very little new physics beyond the case of an 
ordered  system. 

Adding  backscattering to (1) gives rise to  two  equations, 

al = t, a,-l + t, a, , 

a,-1 = t, aj-, + tj aj . 

+ ++ + +- - 

- -+ + " - 

For convenience I now specialize to  the 1 D case, where we 
have  only  forward and backward waves. This already 
contains a wealth of complexity and  can be generalized to 
the 3D case. 

These equations  are used as  the starting point  for nearly 
all numerical  work on disordered systems [2, 31 and for 
diffraction from disordered surfaces [4]. The  additional 
structure  introduced by the t+- and t-+ terms  can be 
appreciated  from the formal  solution to  Equation (2): 
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with the  starting  condition 

T:' = t:+, ( 5 4  

T:- = t:-. (5b) 

Evidently Tl+  is a highly nonlinear  function of any given I,. 
This causes problems: If  we want to average Equation ( I )  we 
can do this easily, provided only  that  the t, are  independent 
( e g ,  as  in  a random alloy); in  contrast  Equations (4) are 
highly nonlinear  functions of the t,. These functions  are  not 
even explicit functions, and averaging can only be done by 
expanding  the expressions in power series in  the t,-i.e., the 
usual perturbation expansions are  unproductive  in providing 
any understanding  of the localization problem. 

numerical  calculations,  when we wish to  make  some analytic 
manipulation such as  taking  an average, it is not of much 
use. However, a powerful reformulation  of the problem can 
be made by introducing  an object called the transfer matrix. 
This will regain for us the  structural simplicity of ( I )  but 
with a twist that  introduces  the implicit  complexity  of the 
localization problem. 

The idea of  a  transfer matrix was first introduced  into 
localization theory by Landauer  [5,6] in  his now-classic 
papers on  the subject. 

So, although  the formal  solution (3) is useful for 

Equations  (2)  can be rearranged to express aJ+" in  terms of 

r 1 

Equations (10) and ( 1  1)  have the  same linear structure  as 
Equation ( I ) ,  which enables averages to  be  taken with 
beautiful simplicity provided  only that  the MJ are 
independent.  For example, we can  from (1  1) calculate the 
average 

L r 1  

just  as  Equations (1) allow us to calculate 

= -  - (c)-) = n (t,++)-I = [(tJ+')-IlL. 
J= I 

Here  the analogy  stops,  because the slightly more complex 
form  of the transfer matrix, (9), ( 1  l),  does  not allow us to 
find a linear expression for TL by a  simple  rearrangement  of 
terms. This inability to average the transmission coefficient 
means  that it contains a special and rich structure which we 
have to work much  harder  to find. The rest of this paper is 
devoted to searching  for  a  generalization  of the transfer 
matrix which will enable  us to average T or I T 1' with the 
same facility with which (12) gives the average of I/T. 

' J - 1  . 
+/-. 

[I - 2 ; ;  [;I = [ t;+ 

0 tJ" -t, 
" 

2. Generalization of the  transfer  matrix 
The transfer  matrix  of Equation (9) can give us I/T and R/T 
for an arbitrary  sequence  of  scatterers  in  a  form that  can 
readily be averaged. It would be useful to  be able to calculate 
1/ I TI2 by the  same procedure; that would  enable us to 
calculate the average resistance, since 

or 

where we have used time-reversal  invariance to identify 

t = t ,  , t - t ,  , 

r, = r , r: = t-+. (8b) 

The transfer matrix is defined to  be 

++ * - -- ( 8 4  

+- 

r 1 

as discussed in [7]. 

function  of M,, x(M,), such that if 
In mathematical  terms we wish to define  a  matrix 

L 

ML = II M,, 
J= I 

then 
L 

x(MJ = n X W , ) .  
J= I 

and here we can express 

These  two equations  constitute  the  fundamental  theorem for 
the generalized transfer  matrix x .  

The simplest  example of a generalized transfer  matrix is a 
4 X 4 matrix whose elements comprise  all possible painvise 
products  of the  elements of M,: 138 

JOHN I 

where 
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l / t2 ,  r/t2, r*/tt*, I/tt* 

rlt2, r2/t2, rr*ftt*, rftt* 

r*/tt*, rr*/tt*, r*2/t*2, r*/t*t* 

.lltt*, r/tt*, r*/t*t*, l/t*2 I 
It can be verified that x2(M) obeys the  fundamental 
theorem; hence we can write 

L 

= fl 
j =  I 

which enables us to calculate 

always has a real eigenvalue > 1 and we retrieve the result 
that  the resistance of a 1 D sample diverges exponentially 
with the length. We could  also follow Landauer  and  make a 
slightly more complex  definition  of the resistance in terms of 

again giving exponential divergence with L but with a 
different pre-factor; averages of higher powers of I/TL have 
been  considered by several authors [ I ,  8- IO]. 

There is a more formal way of  describing in  terms of 
M: It is the direct product of M with itself, 

= M @ M = @ ~ ,  (22) 

and  can be thought of as a matrix whose subscripts are 
described by two labels: 

Expressed in this  form, x(') obviously satisfies the 
fundamental  theorem. 

We can generalize to X(" )  for any positive integer N in  the 
following way: 

X(")  = @" (24) 

or 

k,k' 
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The  elements of x(") contain all possible Nth-order  integer 
powers of I/T,  I/T*,  RIT, and R*/T*. 

There is an analogy we can  draw with a system of N 
interacting particles. If instead  of a single particle, several 
particles were diffracting at  once,  the total  wavefunction  of 
the system between the  sth  and (s + I)th scatterers  would be 
the  product of  those  for the individual particles. In fact, it 
would be the direct product 
+:"' = (a)"" (26) 

or 

+ s ; J . .  k = aJ x . . . ak, (27) 

and  the evolution  of +(") is described by 
L 

+2"' = n x ,  +s . (N) ( N )  (28) 
s= 1 

For any noninteracting system the transfer matrix  can be 
decomposed into a direct product of those for  the individual 
particles. - - 

If we now average to give X(") ,  and X ( " )  is the  sum over 
many direct  products, this  quantity  can  no longer be 
decomposed into a single direct  product. It  corresponds  to a 
set of N particles  interacting in a special way: They can only 
exchange momentum,  not energy. We have made a 
transformation  in  the  nature of our problem. Before 
averaging, the X ~ ) S  corresponded to a nonMeracting  but 
disordered  system;  after averaging, all the x ( ~ ) s  become 
identical, and we have an ordered but interacting system. In 
fact this transformation is a bonus because of the very 
simple form of the interaction. 

discuss here, this  transformation  to  an interacting but 
translationally invariant system has some  important 
consequences. For example, the result that all  states are 
localized in 2D can  be deduced from  the conservation  of 
total momentum perpendicular to  the direction  of 
propagation [ 10-121. 

In principle we might  imagine that we have solved the 
problem at  this stage, because we have a formalism  with 
which any power  of I f  I T, I can be averaged. This  amounts 
to calculating all the  moments of the probability 
distribution, P, of the resistance. This implies that we know 
P itself. Two difficulties stand  in  the way of implementing 
this scheme. First, the complexity  of the  structure of 
rises rapidly with N Its dimensions increase as 2N and, worse 
still, the range of the eigenvalues becomes  extreme.  Second, 
there is a practical difficulty in reconstructing P(R)  even if 
we know the  moments.  The usual formula for P ( R )  proceeds 
in terms of the  Fourier  transform 

In the 2D and 3D cases, which we do  not have  space to 
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where 

m, = im P(R)R”dR. 

Provided that  the series in (29) converges, we can  in 
principle find P(R) directly. Unfortunately, the  moments of 
P(R) diverge more rapidly than n! 

There  are  three routes open  to us. We could simplify x N  
sufficiently to calculate m, analytically and  then guess the 
form  that P(R) must take;  alternatively we could attempt  to 
calculate m, as  an analytic function of n, then set n = - 1 ,  
-2, etc. This would give us the  moments of I TI and, since 
I TI 5 1 ,  would give a  convergent expression for P( I TI ’). 

Finally, we might be able to find a way of expressing 
itself as  an analytic function of N, then set N = - 1 ,  -2, etc. 
to calculate 1/R. At first sight this appears  to be a hopeless 
task, since the  dimensions of are 2N and  dimensions  are 
manifestly integer quantities. We shall show  how this tricky 
point has been overcome with the help of some  group 
theory. 

3. Direct  products and the symmetric  group 
The  mapping of disorder into  order is reminiscent of the 
replica trick in  spin glasses. It is also suggestive of another 
aspect  of  interacting systems: the  symmetry of the particles 
under exchange. Even though we start  from a single electron, 
the replicas of the electron are  not themselves  electrons and 
their symmetry is for the  moment unspecified. 

Consider an  arbitrary direct product of N matrices 

D = A @ B @ C . . .  . 

The case of is different, 

x ( N ) = M @ M @  . . . ,  

in that all the matrices  in the  product  are identical. For D to 
have the  same  structure, we must have 

A = B = C =  . . . .  (33) 

Hence, when (33) holds, D is symmetrical under exchange  of 
A, B, C . . . amongst themselves. always has this 
symmetry. It is analogous to a Hamiltonian matrix 
describing N identical  particles which can  be exchanged 
without  altering the  Hamiltonian.  That  does  not tell us what 
sort of particles we have: They could be bosons,  fermions, or 
any  one of the  intermediate types  of symmetry described by 
the  Young tableaux  for the exchange of N objects. 

What we can say is that will factorize  according to  the 
irreducible  representations  of the  symmetric group. 

Now we want  to discover the  symmetry of the particles in 
the system [7, 13, 151. Looking back to  Equation (12), we 
recall that 
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Hence,  taking the Nth-order  direct product of this 
equation with itself, 

l/T: = (NI n x:~)IN), 

where 

L 

J= 1 
(34) 

v, (NI = [I,0lmN, IN) = [ir. (35) 

The vectors ( N  1 and 1 N) are totally symmetric in the 
exchange of their N components; therefore we are interested 
in the totally symmetric projection of x:). We write 

k k ’  

and  note  that  the subscripts i . . . k take  the values 0 or 1 .  
The completely symmetric Bose state is described by, say, 
the  number of i . . . k taking  the value 0 irrespective of 
order.  Therefore there  are N + 1 “states” of the system. 

We adopt  an index 

O < m < N  (37) 

which counts  the  number of zeros  in the subscripts; then we 
have  for the symmetrized components [7] 

where 

,n m! c, = 
p! (m - p)! 

’ 

In the symmetrized notation,  Equation (34) becomes 

This  formula is a major  step forward. It reduces the 
dimensions of x from 2N for to ( N  + 1) for x:). Of 
greater importance, all the irrelevant junk corresponding to 
the  other factors of is thrown  out of the problem, 
leaving a formula  that is analytically  tractable. We can find 
the  moments of 1 /1  TI as analytic functions of N when the 
disorder  is weak, when the disorder is very strong, and for 
certain other special cases. These results are discussed 
separately. 

Perhaps the greatest bonus is that x:) can be further 
generalized so that  it is itself an analytic function of N. We 
can  then  continue in  N to calculate  such quantities  as 
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which gives the density of states  (imaginary part)  and  the 
inverse localization length (real part). 

elements of x?). Equations (33) and (34) contain  Neither in 
an  exponent  or  as  an  argument in 

There is no problem in analytically continuing  the 

N-m (N - m)! cm?-p = 
(N - m - m' + p)!(m' - p)! '  

By writing 

(N - m)! = r ( N  - m + 1) = lm xN""e-"dx, (43) 

we can analytically continue  in N. Provided that m and p 
remain as integers, N " " ~ m . - p  even continues  to negative 
integer values of N because the singularities in r cancel. 

There  remains  the difficulty that  the  dimensions of x:) 
still depend  on N as ( N  + 1) .  We  circumvent this difficulty as 
follows. Suppose we ignore the  bounds  on  the subscripts m 
and m ' and simply substitute  in  the  formula for x:,, all 
integer positive values of m and m'. The result is an infinite 
matrix which has the form 

(44) 

L 1 

For positive integer N, 

A = x:), B = 0, (45) 

where x r )  is an ( N  + 1 )  X ( N  + 1 )  matrix. Thus, 

and we can still write for N = positive integer 

3 = (F), (47) 
m=O.m'=O 

This  equation is much  more  amenable  to analytic 
continuation:  The  dimensions of 2 are always infinite and 
the matrix elements  contain  only analytic functions of N. 
The proposal is that (47) be adapted  to calculate l/T; even 
when N is not  an integer. 

To make  calculations 2y) must be truncated  to a finite 
matrix and (47) evaluated in  the  limit of large dimensions. 
This process is a rather convergent one  and extensive checks 
have been made  that  the answers obtained agree with the 
direct simulations  to within the expected  accuracy  of  those 
simulations. 

Thus we have succeeded in our aim of finding a 
generalized transfer  matrix, ir), which is defined for  any 
positive, negative, or fractional N, and  can be used to 
average any power  of 1/T. A further twist to  the story 
enables any power  of 1/1 TI to be averaged, and  the reader 
is referred to [ 141 for details. 

This scheme  has  been demonstrated for the 1D case. In 
higher dimensions we can find a generalization  of the  same 
methodology. There is, however, a difference: The 
symmetric  particles we introduce  in 1 D are bosons, but  in 
higher dimensions they  have a different symmetry, one 
corresponding to a Young tableau  of  rectangular  form. Some 
intuitive results are available in 2D and 3D [ 11, 121 but  the 
full group-theoretical scheme is in  the process of being 
written  up. 

4. Probability  distributions  in 1D conductors 
Having outlined our formalism, we move on  to describe 
more of the results that  can be obtained. 

Localized systems are characterized by extreme 
fluctuations  of the  conductance  from  one sample to  another; 
therefore the probability  distribution P,(G = 1/R) of the 
conductance is an  important  and nontrivial quantity.  Our 
theory  sheds new light on  PI( G). Here  are  some results 
without proof. 

If we consider In G,, the fluctuations are less extreme  than 
in G, itself. In  the limit  of a specimen  of  long  length, 
Po(lnG,) converges to a normal  distribution  in  the sense that 
all the  moments  tend  to those of this  distribution,  in 
agreement with the conclusions  of many others. However, 
this is a rather weak statement because we are interested in 
P,( G,) as well as P,. The two are related by 

Pl(G,) = - = - 
dN d N  d InG, - Po(lnG,) 
dG, d InG, dG, GL . 

The problem  here is that whereas Po(ln G,) may be relatively 
well behaved and convergent as a function of L, dividing by 
G, disturbs  this  convergence. There  are  some samples  for 
which G, is very small and  the convergence  of Po may  not 
be fast enough  to  ensure  that  PI( G,) is log normal.  In fact, 
only for weak disorder is P, a log-normal  distribution. 

For strong  disorder this is not so, and  the  moments of 
1/G, can easily be calculated in  some special cases. They 
show that  the  distribution P, does  not  in general  converge to 
a log-normal  distribution but  depends  in detail on  the 
statistics of the local disorder in  the sample. 

One interesting  aspect of PI( G) is its  behavior  for large 
values of G. It can be shown [ 141 that  the  moments of PI are 
approximated by 

(49) 

in the limit  of large L. The factorization of the L dependence 
in c, and  the N dependence  in  the  remainder of the 
expression tells us that  the  moments of G, are  dominated by 
a very few specimens with relatively large values  of G, of 
order unity. The  distribution Pl(G,) near G, = 1 has a shape 
that is independent of L. In fact,  for large GL 

Pl(G,) = const G,"2, 1 > GL >> Q. (50) 141 
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At small G, this distribution merges into what appears as 
essentially a delta function at the origin as far as the 
moments of G, are concerned. This illustrates the point that 
a distribution that accurately reproduces the  moments of G, 
need not reproduce those of  In G, or of I/G,. 

We can develop further this theme of the conductivity 
being almost always  very small, but occasionally  rising to be 
of order unity. It corresponds well to the picture of 
resonances proposed by  Azbel [ 15,  161. He  shows that when 
the Fermi energy  is degenerate with a resonant state inside 
the system, the transmission coefficient  has a sharp peak 
whose  width is the width of the resonance and whose  height 
depends on how close the resonant state is to the center of 
the specimen. 

This picture correctly predicts the existence  of sharp peaks 
in G, as a function of Fermi energy.  However, the theory 
predicts that  the widths of these peaks should be  of the order 

AE = exp(-ar2~/4) (51) 

in units of the bandwidth where 6’ is a parameter describing 
the disorder. A more rigorous argument based on  the 
analytic theory outlined in the previous sections [ 171 shows 
that in fact the width of peaks  is 

AE = 2 6 --e~p(-L”~6’~/1.816). 3 /2  I dE 
dk ( 5 2 )  

This turns  out  to be a very  large discrepancy. The width aE 
dictates the maximum rate at which  signals can be sent 
through the specimen. For typical  values  of 6‘ and L, ( 5  I )  
estimates a maximum signaling rate of Hz, whereas 
the more rigorous estimate from (52) is IO6 Hz, as  shown 
in [ 171. 

The resolution of this paradox [ 181 has to do with the 
statistics of rare events. If there is a localized state at the 
center of the sample degenerate with the Fermi energy, 
electrons need only tunnel halfway  across the sample at a 
time. This probability of  degeneracy is small, but the 
enhancement of conductivity is so great that it  is  still 
important in the average. Consider now the probability of 
two  localized states equally spaced  across the sample and 
degenerate in energy: That is  even smaller, but in general the 
contribution of the conductivity will be  even more massively 
enhanced than in the case  of a single state, because electrons 
now  need  only tunnel across 1/3 of the sample at a time. It 
can easily  be  shown that  the contribution to the average G, 
goes on rising until the probability of  finding n degenerate 
states just gets too small. Maximum contributions occur 
when 

n = 6 ‘ ~ ’ ’ ~ .  (53) 

Then the electron must jump a distance of only L/(S’L’/2) 
and, given the exponential decay  of the wavefunction, the 
tunneling rate, once the states are found to be degenerate, 
will  be  of the order 142 
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which to logarithmic accuracy correctly reproduces the L1l2 
dependence in (53). 

Thus our new theory has uncovered a new sort of state 
that dominates transport in ID: In fact, it constitutes a 
whole band of  (6’L’I2) states, and since it is  localized on 
(c~’L’/~) sites, it has fractal dimension of 1/2. We argue that 
this sort of state also dominates transport across strongly 
localized 3D specimens. It is easy to show that a necklace  of 
nearly degenerate states stretching along a surface normal 
from one surface to the next  is the  optimum means of 
transport. These states will be  extremely improbable; 
therefore the conduction across a localized 3D sheet  of 
material flows almost exclusively down a few  highly 
conducting filaments decorated by the necklace states and 
having a radius of approximately the localization length. 

Finally there is the problem of Ilfnoise induced by 
disordered surfaces [ 19-23]. Imagine a highly disordered 
layer  of material such as silica in contact with a metallic 
conductor. It has  been  realized that traps in the silica can 
modify the thermal noise in the metallic material. It happens 
like  this: Imagine a pulse  of electrons in the metal induced 
by thermal fluctuations. This pulse  may hit the silica surface 
and will  be reflected by the highly disordered, essentially 
insulating, sample. Most  of the time the pulse will  be 
reflected almost instantaneously, but if its energy coincides 
with a localized state in the silica, it will  be trapped for 
something like the lifetime of the state. The net  charge 
trapped fluctuates with time in a way only partly dictated by 
the thermal noise spectrum. The main influence on  the time 
scale of fluctuations in the trapped charge is the distribution 
of  lifetimes  of the localized  states. If u(E) is the density of 
trapped states, their widths can be inferred from the 
correlation function 

u( E)u( E + h f )  . ( 5 5 )  

We also have the result that u(E) is related to the phase, 0, 
of the transmission coefficient of the silica  layer. In terms of 
our  ID model, 

u(E) = ” 
I d o  
K dE’ 

which can be  expressed as 

hence 

u(E)u(E’ = E + h f )  

1 
1r2 dNdEdNdE’ 
” - d4 Im l/tNIm l/tN 
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i.e.,  we have re-expressed the correlation coefficient as a 
product of powers of I/t. We have  shown [23] that 

494E + hf) = 1/1 hfl, (59) 

and this  form  of the correlation coefficient is exactly what is 
required if the power spectrum of noise in  the  traps is to 
have the I/f form.  In fact, Equation (59) is not valid for 
arbitrarily  small values off;  the theory  indicates a cutoff 
frequency which depends  on  the thickness  of the silica layer: 

The cutoff occurs because the longest-lived traps  are  in  the 
centre of the specimen, and  their lifetime depends 
exponentially on  the thickness. 

Conclusion 
We have  shown that  the transfer  matrix combined with 
some  group theory is a powerful tool  for investigating the 
statistics of transport in  disordered  materials. The probability 
distributions take  extreme  and surprising  forms, but  the 
theory can  produce results of the accuracy  required even to 
average powers of the conductance. Time-dependent 
phenomena  can be treated and  the frequency  response of 
systems calculated, as well as  the  spectrum of  fluctuations  of 
trapped charge, which is l/f in  form. Our discussion  has 
been confined to ID calculations, which are a good  model 
for strongly localized systems in higher dimensions. Work is 
in progress on generalizing theoretical  approval to 2D and 
3D and will be published  shortly. 
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