Symmetry
and transport
in disordered
systems

by John Pendry

The transfer matrix for a disordered system
enables averages of integer powers of the
resistance to be found, R"; application of the
symmetric group generalizes this formula to
fractional and negative N, providing a powerful
tool for the study of transport. Consequences for
fluctuations in resistance, 1/f noise, and
frequency response are discussed, as well as a
new sort of state, of fractal dimension 1/2,
which is responsible for transport in localized
systems.

The transfer matrix

One of the simpler problems in diffraction theory is the
evolution of a set of waves as they pass through a succession
of screens, scattering only in the forward direction. The
evolution is handled by a succession of matrix
multiplications. If af represents the wavefield between the
jth and (j + 1)th screens, we have

a, = T, "ag, (1a)
L
T =¢, (1b)

J=1

where we assume nondissipative disordered screens which
scatter one set of plane waves into another. The vectors a*
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represent the complex amplitudes of these waves. There is a
direct and simple relationship between a; and a; which
results because the wave never returns to layers from which
it has previously scattered. When we introduce back-
scattering, waves repeatedly return to the same layer. It is
this effect which gives rise to the richness of phenomena
concerning Anderson localization [1] in strongly disordered
systems. Under conditions of current conservation, Equation
(1) can never give rise to electrical resistance because there is
no mechanism for preventing electrons from continuing in a
forward direction. In that sense it is a sterile equation
containing very little new physics beyond the case of an
ordered system.

Adding backscattering to (1) gives rise to two equations,

+ ++ + +— -
a, =t"a_ +¢t a, (2a)
o e+ o

a_ =t'a_ +ta. (2b)

For convenience I now specialize to the 1D case, where we
have only forward and backward waves. This already
contains a wealth of complexity and can be generalized to
the 3D case.

These equations are used as the starting point for nearly
all numerical work on disordered systems [2, 3] and for
diffraction from disordered surfaces [4]. The additional
structure introduced by the /'~ and ' terms can be
appreciated from the formal solution to Equation (2):

+ + +
a, = 1, 4, (3

where T, is calculated recursively,

"= - T ' TS, (4a)
T =0+ TS0 - To) ', (4b)
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with the starting condition

T =1", (5a)
T, =1t. (5b)
Evidently 77" is a highly nonlinear function of any given .
This causes problems: If we want to average Equation (1) we
can do this easily, provided only that the ¢, are independent
(e.g., as in a random alloy); in contrast Equations (4) are
highly nonlinear functions of the ¢, These functions are not
even explicit functions, and averaging can only be done by
expanding the expressions in power series in the ,—i.e., the
usual perturbation expansions are unproductive in providing
any understanding of the localization problem.

So, although the formal solution (3) is useful for
numerical calculations, when we wish to make some analytic
manipulation such as taking an average, it is not of much
use. However, a powerful reformulation of the problem can
be made by introducing an object called the transfer matrix.
This will regain for us the structural simplicity of (1) but
with a twist that introduces the implicit complexity of the
localization problem.

The idea of a transfer matrix was first introduced into
localization theory by Landauer [5, 6] in his now-classic
papers on the subject.

Equations (2) can be rearranged to express af/ " in terms of
/-,

a’:
+- ++ +
1 -y W a1y 0f |a., ©)
6 ¢ 1 |a -1, 1| {a.,
or
+ I +
a; /¢, rj/lj a,,
j— = * ] * * - | O
a; er 7, 1/t; a;,
where we have used time-reversal invariance to identify
g+t * _
l/ - tj s t! - tj ’ (8a)
- * _ o+
r=r, rr=1. (8b)
The transfer matrix is defined to be
11, rJt.
M/ = * % : J* ? ©)
s 1/t
and here we can express
+
a; _ /T, RJT, a(i ’ 10)
a; RYTY, T} a,
where
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T, R,/T,| ¢
=M., (11)
RYTY, YT*| =

Equations (10) and (11) have the same linear structure as
Equation (1), which enables averages to be taken with
beautiful simplicity provided only that the M, are
independent. For example, we can from (11) calculate the
average

=~

T, = [1,0]] M,-[(‘)]

J

= [1,0M)" [(‘)] (12)

just as Equations (1) allow us to calculate

L

(I =y =1 (13)

<.

Here the analogy stops, because the slightly more complex
form of the transfer matrix, (9), (11), does not allow us to
find a linear expression for T, by a simple rearrangement of
terms. This inability to average the transmission coefficient
means that it contains a special and rich structure which we
have to work much harder to find. The rest of this paper is
devoted to searching for a generalization of the transfer
matrix which will enable us to average 7 or | T|* with the
same facility with which (12) gives the average of 1/7.

2. Generalization of the transfer matrix

The transfer matrix of Equation (9) can give us 1/T and R/T
for an arbitrary sequence of scatterers in a form that can
readily be averaged. It would be useful to be able to calculate
1/ T|2 by the same procedure; that would enable us to
calculate the average resistance, since

1

o ="~
L €2|T|2’ (14)

L

as discussed in [7].
In mathematical terms we wish to define a matrix
function of M, x(M), such that if

L
M, =1I M, (15)
then
L
x(M,) = H x(M). (16)

These two equations constitute the fundamental theorem for
the generalized transfer matrix x.

The simplest example of a generalized transfer matrix is a
4 X 4 matrix whose elements comprise all possible pairwise
products of the elements of M:

IBM J. RES. DEVELOP. VOL. 32 NO. | JANUARY 1988




2

1/t, e, r*ju*, 1/tt*
r/t, PIe, rrra*, rit
X = .an
rt, otk e, e et
1/1t*, r/ie*, rHee, 1

It can be verified that xz(M) obeys the fundamental
theorem; hence we can write

Xy = H X, (18)
=1
which ]enables us to calculate
L POT
T, =1,0,00 1" |9 (19)
J=t _1_
-
= 11,0,0,0™" | 20)
1.4

x always has a real eigenvalue >1 and we retrieve the result
that the resistance of a 1D sample diverges exponentially
with the length. We could also follow Landauer and make a
slightly more complex definition of the resistance in terms of

0

IR IT7IT 1 =10,1,0,0G7)" |9, 1)
0
again giving exponential divergence with L but with a
different pre-factor; averages of higher powers of 1/7, have
been considered by several authors [1, 8-10].

There is a more formal way of describing x in terms of
M: It is the direct product of M with itself,

xX?=M®M =M=, (22)
and can be thought of as a matrix whose subscripts are
described by two labels:

I i’
() (7) = e, @)

Expressed in this form, x? obviously satisfies the
fundamental theorem.

We can generalize to x™ for any positive integer N in the
following way:

X" =M (24)
or
V=M, xM,x--- M (25)
i, i’ v kk’

I

Kk’
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The elements of x’ contain all possible Nth-order integer
powers of 1/T, 1/T*, R/T, and R*/T*.

There is an analogy we can draw with a system of N
interacting particles. If instead of a single particle, several
particles were diffracting at once, the total wavefunction of
the system between the sth and (s + 1)th scatterers would be
the product of those for the individual particles. In fact, it
would be the direct product

W(XN) = (a)®N (26)
or
Ve =X o2y, 27
and the evolution of ¢’ is described by
L
= . e8)

s=1
For any noninteracting system the transfer matrix can be
decomposed into a direct product of those for the individual
particles. _ —

If we now average to give x(N), and x(N) is the sum over
many direct products, this quantity can no longer be
decomposed into a single direct product. It corresponds to a
set of N particles interacting in a special way: They can only
exchange momentum, not energy. We have made a
transformation in the nature of our problem. Before
averaging, the x;N)s corresponded to a noninteracting but
disordered system; after averaging, all the x™s become
identical, and we have an ordered but interacting system. In
fact this transformation is a bonus because of the very
simple form of the interaction.

In the 2D and 3D cases, which we do not have space to
discuss here, this transformation to an interacting but
translationally invariant system has some important
consequences. For example, the result that all states are
localized in 2D can be deduced from the conservation of
total momentum perpendicular to the direction of
propagation [10-12].

In principle we might imagine that we have solved the
problem at this stage, because we have a formalism with
which any power of 1/| T, | ? can be averaged. This amounts
to calculating all the moments of the probability
distribution, P, of the resistance. This implies that we know
P itself. Two difficulties stand in the way of implementing
this scheme. First, the complexity of the structure of x*"’
rises rapidly with N: Its dimensions increase as 2" and, worse
still, the range of the eigenvalues becomes extreme. Second,
there is a practical difficulty in reconstructing P(R) even if
we know the moments. The usual formula for P(R) proceeds
in terms of the Fourier transform

S (ikRY"
Eo ‘L P(R) =~ dR
(k)

o M

f P(RYdR =
0

(29)

m

Il
[N}

ns
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where
m, = f P(R)R"dR. (30)
0

Provided that the series in (29) converges, we can in
principle find P(R) directly. Unfortunately, the moments of
P(R) diverge more rapidly than !

There are three routes open to us. We could simplify xN
sufficiently to calculate m, analytically and then guess the
form that P(R) must take; alternatively we could attempt to
calculate m, as an analytic function of n, then set n = —1,
—2, etc. This would give us the moments of | T'| ? and, since
| T| £ 1, would give a convergent expression for P(] T'| 2).

Finally, we might be able to find a way of expressing x™
itself as an analytic function of N, then set N = —1, —2, etc.
to calculate 1/R. At first sight this appears to be a hopeless
task, since the dimensions of X(N) are 2" and dimensions are
manifestly integer quantities. We shall show how this tricky
point has been overcome with the help of some group
theory.

3. Direct products and the symmetric group
The mapping of disorder into order is reminiscent of the
replica trick in spin glasses. It is also suggestive of another
aspect of interacting systems: the symmetry of the particles
under exchange. Even though we start from a single electron,
the replicas of the electron are not themselves electrons and
their symmetry is for the moment unspecified.

Consider an arbitrary direct product of N matrices

D=A®B®C.... 31
The case of x*" is different,
YV=MOIM® .-, (32)

in that all the matrices in the product are identical. For D to
have the same structure, we must have

A=B=C=..., (33)

Hence, when (33) holds, D is symmetrical under exchange of
A, B, C ... amongst themselves. x** always has this
symmetry. It is analogous to a Hamiltonian matrix
describing N identical particles which can be exchanged
without altering the Hamiltonian. That does not tell us what
sort of particles we have: They could be bosons, fermions, or
any one of the intermediate types of symmetry described by
the Young tableaux for the exchange of NV objects.

What we can say is that x™ will factorize according to the
irreducible representations of the symmetric group.

Now we want to discover the symmetry of the particles in
the system [7, 13, 15]. Looking back to Equation (12), we
recall that

- 1
/T, = 1,00 IT M, [0].

=1
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Hence, taking the Nth-order direct product of this
equation with itself,

L

YT = (NI TT x™IN), (34)
where

N
x" =M (N| =[1,0]*, [N) =[(‘)] : (35)

The vectors (N| and | N) are totally symmetric in the
exchange of their N components; therefore we are interested
in the totally symmetric projection of x"*" xg'/). We write

N
Xt‘,.") =M, XM, X .-

i

M., (36)

kK

and note that the subscripts { - - - k take the values 0 or 1.

The completely symmetric Bose state is described by, say,

the number of i - - - k taking the value O irrespective of

order. Therefore there are N + 1 “states” of the system.
We adopt an index

O<m<N 37)

which counts the number of zeros in the subscripts; then we
have for the symmetrized components [7]

min(m,m’) ,
O Ve = B "CSTC V¥ )
=0
X tm+m’—p—N’ (38)
where
me ___m
» pl(m - p)t’ (39)
In the symmetrized notation, Equation (34) becomes
— Lo L
Ty = (T X0 - (@) . 40)
j=1 m=0.m"=0 00

This formula is a major step forward. It reduces the
dimensions of x from 2" for x*” to (N + 1) for x¥. Of
greater importance, all the irrelevant junk corresponding to
the other factors of x' is thrown out of the problem,
leaving a formula that is analytically tractable. We can find
the moments of 1/] T'|* as analytic functions of N when the
disorder is weak, when the disorder is very strong, and for
certain other special cases. These results are discussed
separately.

Perhaps the greatest bonus is that x‘sN’ can be further
generalized so that it is itself an analytic function of N. We
can then continue in N to calculate such quantities as

).
., dN Xs0

00

) C2))

N=0

InT, = 5—’! v
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which gives the density of states (imaginary part) and the
inverse localization length (real part).

There is no problem in analytically continuing the
elements of xgv). Equations (33) and (34) contain N either in

an exponent or as an argument in

(N —m)!

N—-m
C . _ = . 42
" (N—m—m' + pl(m’ - p) 42
By writing
N=-ml=T(N-m+ 1) = f XN dx, (43)
0

we can analytically continue in V. Provided that m and p
remain as integers, N""Cm,_p even continues to negative
integer values of N because the singularities in T' cancel.

There remains the difficulty that the dimensions of x
still depend on N as (N + 1). We circumvent this difficulty as
follows. Suppose we ignore the bounds on the subscripts m
and m’ and simply substitute in the formula for x5, all
integer positive values of m and m’. The result is an infinite
matrix which has the form

" A B
Xs = (44)
D C
For positive integer N,
A=x"B=0, (45)
where xgv) is an (N + 1) X (N + 1) matrix. Thus,
. [t | o0
Xs ) = ——{—— , (46)
D’ C’
and we can still write for N = positive integer
—_ L
yry =) (47)

m=0,m’=0
This equation is much more amenable to analytic
continuation: The dimensions of x are always infinite and
the matrix elements contain only analytic functions of N,
The proposal is that (47) be adapted to calculate 1/ Tf even
when N is not an integer.

To make calculations x4’ must be truncated to a finite
matrix and (47) evaluated in the limit of large dimensions.
This process is a rather convergent one and extensive checks
have been made that the answers obtained agree with the
direct simulations to within the expected accuracy of those
simulations.

Thus we have succeeded in our aim of finding a
generalized transfer matrix, X2, which is defined for any
positive, negative, or fractional N, and can be used to
average any power of 1/T. A further twist to the story
enables any power of 1/| T| ’ to be averaged, and the reader

is referred to [14] for details.
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This scheme has been demonstrated for the 1D case. In
higher dimensions we can find a generalization of the same
methodology. There is, however, a difference: The
symmetric particles we introduce in 1D are bosons, but in
higher dimensions they have a different symmetry, one
corresponding to a Young tableau of rectangular form. Some
intuitive results are available in 2D and 3D [11, 12] but the
full group-theoretical scheme is in the process of being
written up.

4. Probability distributions in 1D conductors
Having outlined our formalism, we move on to describe
more of the results that can be obtained.

Localized systems are characterized by extreme
fluctuations of the conductance from one sample to another;
therefore the probability distribution P (G = 1/R) of the
conductance is an important and nontrivial quantity. Our
theory sheds new light on P,(G). Here are some results
without proof.

If we consider InG,, the fluctuations are less extreme than
in G, itself. In the limit of a specimen of long length,

P, (InG,) converges to a normal distribution in the sense that
all the moments tend to those of this distribution, in
agreement with the conclusions of many others. However,
this is a rather weak statement because we are interested in
P(G,) as well as P,. The two are related by

dN _ _dN dInG, _P(InG)

PAGD =56 = 7mG, “do, G,

(48)
The problem here is that whereas Py(In G,) may be relatively
well behaved and convergent as a function of L, dividing by
G, disturbs this convergence. There are some samples for
which G, is very small and the convergence of P, may not
be fast enough to ensure that P,(G,) is log normal. In fact,
only for weak disorder is P, a log-normal distribution.

For strong disorder this is not so, and the moments of
1/G, can easily be calculated in some special cases. They
show that the distribution P, does not in general converge to
a log-normal distribution but depends in detail on the
statistics of the local disorder in the sample.

One interesting aspect of P,(G) is its behavior for large
values of G. It can be shown [14] that the moments of P, are
approximated by

TN = 1/2)T%(1)
T’(1/2)T*(N)

in the limit of large L. The factorization of the L dependence
in G, and the N dependence in the remainder of the
expression telis us that the moments of G, are dominated by
a very few specimens with relatively large values of G, of
order unity. The distribution P,(G,) near G, = 1 has a shape
that is independent of L. In fact, for large G,

1
f P(G,)G} dG, = G, , (49)
0

P(G,) = const G;%, 1>G, > Q. (50) 141
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At small G, this distribution merges into what appears as
essentially a delta function at the origin as far as the
moments of G, are concerned. This illustrates the point that
a distribution that accurately reproduces the moments of G,
need not reproduce those of In G, or of 1/G;.

We can develop further this theme of the conductivity
being almost always very small, but occasionally rising to be
of order unity. It corresponds well to the picture of
resonances proposed by Azbel [15, 16]. He shows that when
the Fermi energy is degenerate with a resonant state inside
the system, the transmission coefficient has a sharp peak
whose width is the width of the resonance and whose height
depends on how close the resonant state is to the center of
the specimen.

This picture correctly predicts the existence of sharp peaks
in G, as a function of Fermi energy. However, the theory
predicts that the widths of these peaks should be of the order

AE = exp(—6'°L/4) 51)

in units of the bandwidth where é’ is a parameter describing
the disorder. A more rigorous argument based on the
analytic theory outlined in the previous sections [17] shows
that in fact the width of peaks is

AE = 2% Z—Iiexp(—L"Za'W/l.sls). (52)

This turns out to be a very large discrepancy. The width AE
dictates the maximum rate at which signals can be sent
through the specimen. For typical values of 6" and L, (51)
estimates a maximum signaling rate of 10°° Hz, whereas
the more rigorous estimate from (52) is 10° Hz, as shown

in [17].

The resolution of this paradox [18] has to do with the
statistics of rare events. If there is a localized state at the
center of the sample degenerate with the Fermi energy,
electrons need only tunnel halfway across the sample at a
time. This probability of degeneracy is small, but the
enhancement of conductivity is so great that it is still
important in the average. Consider now the probability of
two localized states equally spaced across the sample and
degenerate in energy: That is even smaller, but in general the
contribution of the conductivity will be even more massively
enhanced than in the case of a single state, because electrons
now need only tunnel across 1/3 of the sample at a time. It
can easily be shown that the contribution to the average G,
goes on rising until the probability of finding n degenerate
states just gets too small. Maximum contributions occur
when

n= &L (53)

Then the electron must jump a distance of only L/(3’L"?)

and, given the exponential decay of the wavefunction, the
tunneling rate, once the states are found to be degenerate,
will be of the order
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8"°L ,
exp(—m> = exp(— L', (54)

which to logarithmic accuracy correctly reproduces the L'?

dependence in (53).

Thus our new theory has uncovered a new sort of state
that dominates transport in 1D: In fact, it constitutes a
whole band of (8’ L" 2) states, and since it is localized on
(6'L”2) sites, it has fractal dimension of 1/2. We argue that
this sort of state also dominates transport across strongly
localized 3D specimens. It is easy to show that a necklace of
nearly degenerate states stretching along a surface normal
from one surface to the next is the optimum means of
transport. These states will be extremely improbable;
therefore the conduction across a localized 3D sheet of
material flows almost exclusively down a few highly
conducting filaments decorated by the necklace states and
having a radius of approximately the localization length.

Finally there is the problem of 1/f noise induced by
disordered surfaces [19-23]. Imagine a highly disordered
layer of material such as silica in contact with a metallic
conductor. It has been realized that traps in the silica can
modify the thermal noise in the metallic material. It happens
like this: Imagine a pulse of electrons in the metal induced
by thermal fluctuations. This pulse may hit the silica surface
and will be reflected by the highly disordered, essentially
insulating, sample. Most of the time the pulse will be
reflected almost instantaneously, but if its energy coincides
with a localized state in the silica, it will be trapped for
something like the lifetime of the state. The net charge
trapped fluctuates with time in a way only partly dictated by
the thermal noise spectrum. The main influence on the time
scale of fluctuations in the trapped charge is the distribution
of lifetimes of the localized states. If o(E) is the density of
trapped states, their widths can be inferred from the
correlation function

o(E)o(E + hf). (55)

We also have the result that ¢(E) is related to the phase, 0,
of the transmission coefficient of the silica layer. In terms of
our 1D model,

1d6

o(E) = dE (56)

which can be expressed as

1 4 1
o(E) = ;Mlmt—,v N , 57)

=0
hence

AE)(E' = E + If)

1 d*
)

—— Im 1/ Im 1"
2 dNdEaN'gE: "/ Tm /e

= (58)
N=0
N'=0
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i.e., we have re-expressed the correlation coefficient as a
product of powers of 1/t. We have shown [23] that

o(E)o(E + hf) = 1/] hfl, (59)

and this form of the correlation coefficient is exactly what is
required if the power spectrum of noise in the traps is to
have the 1/fform. In fact, Equation (59) is not valid for
arbitrarily small values of f; the theory indicates a cutoff
frequency which depends on the thickness of the silica layer:

—5°L\ dE
| Wfin] = wza'zexp< > ) = (60)
The cutoff occurs because the longest-lived traps are in the

centre of the specimen, and their lifetime depends
exponentially on the thickness.

Conclusion

We have shown that the transfer matrix combined with
some group theory is a powerful tool for investigating the
statistics of transport in disordered materials. The probability
distributions take extreme and surprising forms, but the
theory can produce results of the accuracy required even to
average powers of the conductance. Time-dependent
phenomena can be treated and the frequency response of
systems calculated, as well as the spectrum of fluctuations of
trapped charge, which is 1/fin form. Our discussion has
been confined to 1D calculations, which are a good model
for strongly localized systems in higher dimensions. Work is
in progress on generalizing theoretical approval to 2D and
3D and will be published shortly.
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