144

Correlated
discrete transfer
of single
electrons

In ultrasmall
tunnel junctions

by K. K. Likharev

Recent theoretical and experimental studies
have revealed a new family of effects taking
place in very small tunnel junctions at low
temperatures. The effects have a common
origin, the correlated discrete tunneling of single
electrons and/or Cooper pairs resulting from
their electrostatic (“Coulomb”) interaction. This
paper presents a brief review of the single-
electron part of the family, including discussion
of the background physics, methods of
theoretical description of the new effects,
experimental results, and possible applications
of the new effects in analog and digital
electronics.

1. Introduction

Soon after our meeting at the Tunneling at Low
Temperatures Conference in Leuven, Belgium (August
1985), where the basic concepts of what we now call “Single-
Electronics” had been reported for the first time, Rolf
Landauer sent me a copy of his paper [1] published in 1962,
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with the following note: “Written at a time when I did not
yet understand the role of €'/2C. Nevertheless, not really
wrong.”

Not only was this paper quite correct for its purpose, it
was also one of the cornerstones of our present-day
understanding of the dynamics of and fluctuations in tunnel
junctions. In what follows we show that the equations of
Reference [1] can be used as a basis for analysis of the
correlated single-electron tunneling, provided that minor
changes reflecting the electrical charging effects are made.
This modification was absolutely unimportant for the
relatively large tunnel junctions available in the sixties, and
can be neglected even for most devices studied nowadays.
However, for extremely small (submicron) junctions cooled
to very low (helium) temperatures, the modification becomes
necessary and reveals a new physical picture of electron
tunneling.

Some roots of this picture can be traced to the same year,
1962, in which Landauer’s paper appeared. Experimenting
with metallic granular thin films, Neugebauer and Webb [2]
found that the dc conductance of the films was suppressed
very substantiaily at low temperatures. They identified the
suppression mechanism as electric charging of the grains by
discrete electrons tunneling from the neighboring grains
through the separating energy barriers, a concept we now
discuss in more detail.

It is well known that electron transfer through a thin
energy barrier is a discrete event leading to a change of the
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charge of the junction electrodes by *e. In theory, this
discreteness is expressed by the celebrated tunnel
Hamiltonian [3]

Hi=H,+H, H =73 T,cc, H=H, (1

kyoky
presenting a sum of the independent contributions from
transfers of single electrons from states (k) inside one
electrode to states (k,) inside the other one. In background
electronics, the most recognized consequence of the
discreteness is the shot noise arising in tunnel junctions at
bias voltages V exceeding k,T/e. In fact, according to the
Schottky formula

Sw) = L el, 2)
27

the fluctuations of the current I are proportional to the

charge unit e transferred during a single tunneling event.

In large-area junctions the discreteness hardly leads to any
other effects. In a junction with a very small area S and
hence a very small capacitance C between the electrodes, the
electrostatic (“Coulomb”) energy £, = €'/2C associated with
its recharging by a single electron.can become comparable to
the scale k,T of the masking thermal fluctuations. For
example, for a typical granular thin film (d ~30 nm) the
grain capacitance C is less than 107" F, so that the relation
Eq,>> kT can be satisfied at helium temperatures. In this
situation, transfer of a single electron from one grain to
another with a smaller value of C becomes highly
improbable, at least at low-driving electric fields.

Despite experimental work with granular thin films (see,
e.g., the recent Reference [4] and references therein), a
quantitative description of the “Coulomb blockade of
tunneling” in these structures apparently has not yet been
developed because of their random structure. A simpler
picture of the effect can be presented for other granular
structures first studied by Zeller and Giaever [5] (see also
experiments [6, 7]). The structure presents a set of separated
metallic grains embedded into a tunnel barrier between two
metallic electrodes. Here the Coulomb blockade leads to
suppression of the tunnel current at voltages below the
threshold value ¥, ~ e/C (see Section 4). For these
structures, a quite complete physical understanding of the
discrete tunneling was achieved [5] and a quantitative theory
was developed [8].

The authors of these reknowned works did not, however,
pay attention to the remarkable possibilities arising in
systems where the discrete transfer of charge through energy
barriers coexists with its (quasi)continuous transfer along the
usual metallic conductors. Though the first notice of this
possibility appeared only recently (1985) [9], it has already
resulted in the rapid development of theory for the new
effects [10-16], several suggestions concerning their practical
applications [10, 15, 17], and, very recently, their first
experimental observations [18-20].
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i Notation for a small tunnel junction presented in this paper (left) and
2 an equivalent circuit of the current-biased junction (right).

Because of this rapid progress, the only survey available
(included as a supplementary chapter 16 to the monograph
[21]) is already far from being complete. The present paper
is an attempt to give a brief but up-to-date review of the
field.

2. Single junction: Theoretical background

We demonstrate methods of description of coherent single-
electron tunneling using the simplest example: a single
current-biased tunnel junction. Taking into account a
possible nonvanishing conductance of the current source (for
the sake of generality of the treatment), one arrives at the
circuit shown in Figure 1. Its analysis can be started with the
following Hamiltonian:

H=3(Q) + H; + H k] + H,ik,} + Hlkg} — I, 3)

where H; is expressed by Equation (1), while
o f
Q=55 e=J Ve, V=00C

I'= 1) — Lkl 4)

The operator Q of the electric charge of the junction can
be expressed via the same creation and annihilation
operators as H:

0= _g <2 XIED) c;(lck2> + const., (5
ky ky

so that A and Q do not commute. One can readily prove
that the following commutation relations are valid for an
arbitrary function F(Q):

H.F(Q) = FQ + ¢)H. (6)

The Hamiltonians H,, H,, and H describe the energy of the
internal degrees of freedom {k }, {k,}, and {kg} of the two
electrodes of the junction and of the “shunt” G,
respectively. The last term in Equation (3) describes the
interaction of the junction with the current 7 (Figure 1).
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—e2 0 +en2 0

[10], reprinted with permission.

As long as the tunnel barrier transparency and the current
I are not too large, they can be considered as perturbations,
and one can write an explicit time-evolution equation for the
density matrix p(Q, Q’, 1) traced over the sets {k }, {k,}, and
{ks}—see [10] for details. Now let the following limitation be
satisfied as well:

Gy, Gy < Ry, Ry =hjae’ = 6.45 kq. 0

Physically this condition means that the typical energy 2G/C
(G = max[G, G;]) of the quantum fluctuations in our
system is much less than the charging energy scale £, In
this “classical” limit all off-diagonal elements of the density
matrix vanish, and its diagonal elements are proportional to
the classical probability density ¢(Q, t) obeying a very simple
“master” equation [9, 10]

do do
a—t = —1,(1) 30

Fr(Q)=TQ - &)o(Q — &) + T(Q + )o(Q + )
= [T(Q) + I (Qe(Q),  (8b)

+ F, + Iy, (8a)

G
FS=—§i(CkTa—a

C a0\ 3Q+0Q)- | 9

The rates T'* of tunneling of a single electron increasing
(+) or decreasing (—) the initial charge Q can be expressed as
follows:

T=(Q) = i 1<Aji> [l - exp(— 23;>] , (10)
B

where I(V) is the dc I-V curve of the same junction biased
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Change of the charging energy & of a small junction resulting from
tunneling of a single electron, for two values of its initial charge Q.
Solid-line arrow shows the only energy-advantageous event. From

by a dc voltage V, while (—AF*) is the change of the free
energy due to the tunneling event; in our present case

AT = 3(Q) - HQ £ &) = ig (Q * e/2). (11

Note that Equations (8) (with /, = F = 0) correspond
exactly to the basic equation (3.1) of Landauer’s paper [1]!
This is not very surprising, because the subject of that paper
was the same discrete single-electron tunneling as here. The
only new feature, which appeared in 1985, is a small shift
(xe/2) of the arguments in Equation (11) arising from a
strict account of the charging effects. We show, however, that
this minor difference can lead to some major new results.

3. Single junction: The SET oscillations

Consider the simplest case of an unshunted tunnel junction
(Gy=0, Fg=0,I=1,). Let the initial charge O be localized
near some point Q, inside the range

e e
—2<Q<+§. (12)

Then, if the temperature is low enough,

2

T<T, T,= 2;C,
B

(13)

one can readily be convinced that all components of F;
vanish, so that no tunneling happens! This is the “Coulomb
blockade of tunneling” [10], already mentioned in the
Introduction. In our present simple case, the physical origin
of this effect is especially clear (Figure 2): Within the range
of Equation (12) the tunneling of even a single electron
would lead to an increase of the charging energy Q2/2C, and
thus, in the low-temperature limit of Equation (13), such an
event is virtually impossible.

According to Equation (8a), the narrow probability
“packet” describing the initial distribution of Q will move
with a small velocity

Q, = 10) (14

toward an edge of the range (12)-—see Figure 3(a). After the
edge is reached (say, Q, > ¢/2), the rate I' (Q) becomes
nonvanishing and the last term of Equation (8b) leads to a
rapid (At ~ 7, = C/G;) decay of the packet. Simultaneously
a new packet grows up at the point Q5 = 0, — e, near the
left edge but inside the Coulomb blockade range [Figure
3(b)]. It is evident that this process describes just the
tunneling of a single electron through the junction (see the
middle column in Figure 3).

Now, all terms in F; vanish again, the new probability
packet moves through the range (12) according to Equation
(14) [Figure 3(c)], and then the whole process repeats
periodically, with the average frequency

Sy =Tle (15)
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Charge @ and voltage V' = Q/C of the junction therefore
perform relaxation-type oscillations with the same
frequency. The physics of these “single-electron tunneling”
(SET) oscillations [9] is very clear from Figure 3: Due to the
Coulomb blockade of tunneling, the electric charge supplied
by the bias current /(#) accumulates on the junction until its
threshold value ¢/2 is reached. Then a single electron is
transferred; due to a very small capacitance C of the
junction, this event results in a considerable change of the
junction voltage (AV = ¢/C). In the low-temperature limit
[Equation (13)] this change is larger than a swing k,T/e of
the thermal fluctuations, and thus affects essentially possible
tunneling of the other electrons (more exactly, reduces
drastically the probability of these secondary events). Thus, a
time correlation of the tunneling events is established; in the
present case the correlation takes the form of the coherent
SET oscillations with the frequency (15) [22]. This particular
process is reminiscent of water dripping from a leaking
tap—see the right-hand column in Figure 3.

The whole picture presented above depends crucially upon
whether the electric charge Q measured in units of e can
really take fractional values, in particular those less than
unity. In order to answer this question, one should
remember that Q is essentially the surface charge of the
junction electrodes forming the capacitor C. Of course, the
tunneling, as a discrete process, can change Qe only by
integer numbers, as expressed by Equation (10b). However,
the current flow I through the usual metallic conductors is a
continuous process, and thus can change Q by any amount,
at least on the scale of e. In order to understand it, let us
consider a minor shift Ax of the current carriers inside
current leads connected to the junction. This shift results in
a proportional increase AQ of the surface charge Q. The
carrier motion in the usual (long) conductors is virtually not
quantized, and hence Q, = [Id! is not quantized. (More
exactly, quantization of the motion leads to a quantization
scale of Q much less than e [23].) Below we see that recent
experiments confirm the concept of the possible coexistence
of discrete and continuous charge transfer in one system.

The oversimplified picture of the SET oscillations
presented above is valid only in the limit of low dc bias
current I, low temperatures 7 [Equation (13)], low
conductance G [Equation (9)], and vanishing conductance
G;. At the present time, quite a complete understanding of
the role of the listed factors has been reached; we give only a
brief summary of these results.

Increasing the bias current / beyond ~0.1¢/7, leads to a
gradual suppression of the amplitude of the SET oscillations
(Figure 4); at larger currents the only trace of the Coulomb
blockade is an offset of linear asymptotes of the dc I-V curve
by e/C [9, 10]. Increasing the temperature beyond 7,
[Equation (13)] [13, 14] and G, beyond R;l [11, 16] gives
qualitatively the same effect [24]. Note that the very fact of
coherent (monochromatic) oscillations and the fundamental
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Time evolution of the probability density a(Q, ) in process of the
SET oscillation (left column), a scheme of the corresponding
single-electron transfer (middle), and its drip analogy (right). From
[10], reprinted with permission.

relation (15) are not affected by these factors. On the
contrary, a nonvanishing metallic (“shunt”) conductance G
[Figure 5(a)] leads to a broadening of the oscillation
linewidth [Figure 5(b)].

One should also mention a series of works [10-16]
analyzing the dynamics of a similar system with a
considerable Josephson coupling of the electrodes. In this
case, the SET oscillations can coexist with the “Bloch”
oscillations [25] of the frequency

Jo = 1)2e. (16)

Note, however, that the Bloch oscillations are not just a
replica of the SET oscillations, despite their possible similar
interpretation as “dipping” of the Cooper pairs [21, 25]. The
reason is that in contrast to the single electrons, the Cooper
pairs form a coherent superconducting condensate inside
each electrode, so that their transfer constitutes a quantum
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The SET oscillations in an unshunted tunnel junction with

normal-metal electrodes in the low-temperature limit: (a) dc /-V 0 L L ! ! :
curve. (b) Oscillation waveforms for several points of the curve. 0 0.1 0.2
From {9, 10], reprinted with permission. i

®

The SET oscillations in an externally shunted junction (normal
metals, low temperatures): (a) dc /~V curves for several values of Gg.
(b) Frequency spectra of the junction voltage for /; = 0.le/7... From
[14], reprinted with permission.
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Table 1 Estimates of the main parameters of the single-electron tunneling junctions (after [15, 17]).

+

Level of Junction Junction Temperature Voltage scale Current scale Time scale
Jabrication area S capacitance* C  limit T, e Vi =R C
V== I =— TooT
technology v2C t R
T
(nm’) (aF) (K) (mV) (nA) (ps)
State-of-the-art junctions [28] 100 x 100 300 3 0.25 2.5 30
Record junctions [19] 30 x 30 30 30 2.5 25 3
Nanolithography limits [29, 30] 10 x 10 3 300 25 250 0.3

* Estimated as (.5, where Cy = 3 X 107 F/cm?, a typical value for the soft metal oxide barriers.
T Ry is accepted 10 equal 100 k€2, a value compatible with Equation (7).

process rather than the nearly classical process of the SET
oscillations. This difference results in several important
peculiarities of the Bloch oscillations [10-16].

To end our survey of theoretical results, we should
mention an analysis of the single-electron tunneling in the
zero-bias limit [12]. The main result of the analysis is that an
arbitrarily small nonvanishing metallic conductance G (say,
that of a measuring instrument) results in a qualitative
change of the tunnel junction statistics and therefore a
difference of its impedance and fluctuation properties from
those calculated earlier [26, 27] disregarding the
conductance.

Turning to the experimental situation, one should note
that the main problem in the observation of the SET
oscillations is fulfillment of Equation (13). First of all, the
junction itself should be very small and/or the temperature
should be rather low—see Table 1. Another problem is that
the capacitance C apparently includes a contribution C, of
the leads attached to the junction; in a common junction
geometry this contribution is much larger than the values
given in Table 1. A possible way to get rid of C| is to place a
large resistance R > R, fixing the bias current in the very
near vicinity of the junction; in this case the capacitance of
the more distant leads is not essential [25].

Recently, Bittiker and Landauer made a very interesting
conjecture [31]. The theory described above does not take
into account details of the electron transfer through the
barrier, including the nonvanishing time 7, of the tunneling
and the time 7 of the restoration of electroneutrality inside
the electrode after this event. For typical junctions available
at present, the shortest time scale of our theory, 7 (see
Table 1), is much larger than both 7, and 7 (~ 107" s), so
that the model described above seems quite adequate for a
small junction by itself. However, general principles of
relativity require the tunneling event to be independent of
environmental details located beyond the “horizon” radius
r= c(r,+ 7,) of order 10~ cm. Biittiker and Landauer
supposed that for this reason the farther parts of the leads
would not contribute to C, . If this conjecture is true, C; is
restricted to a value of order 10™"° F, quite acceptable for the
first experiments with the SET oscillations.

IBM J. RES. DEVELOP. VOL. 32 NO. | JANUARY 1988

Nevertheless, two reported attempts to observe this effect
in structures comprising few junctions gave negative results
[19, 32] (no cutoff resistance Ry was used in these
experiments). The only claims of possible observations of the
SET (or Bloch) oscillations came from two groups
experimenting with granular superconducting thin films
[33, 34]. Irradiating the films with microwaves, the authors
of those works have observed the appearance of the “voltage
steps” in the dc I-V curves, separated by equal current
intervals Al « f. Such behavior, with Al equal to either ef or
2¢f, really does follow from the theory of the SET and Bloch
oscillations—see, e.g., Figure 6 [10] (like the well-known
Josephson-Shapiro current steps, these voltage steps are due
to the phase-locking of the SET oscillations by the external
microwave signal and its harmonics). However, the constant
n = Al/efin the experiments [33] was as high as ~10°,
Probably this behavior is due to some complex dynamics of
the granular film resulting from the single-electron
tunneling. It seems appropriate to remind the reader that
relaxation oscillations with the index n’ = V/¢, fare
routinely generated in complex Josephson-junction
structures (see, e.g., [35]).

Somewhat more convincing evidence of the coherent
oscillations with frequency expressed by Equation (15) or
(16) has come from similar experiments by Yoshihiro and
coworkers [34]; here up to 60 voltage steps with n = 12 have
been observed. The rms deviation of # from the above value,
averaged over the ensemble of the steps, was as small as
~1% for several different values of f~ 10 GHz.

Nevertheless, an urgent need for new experiments,
preferably with single junctions (including those without the
Josephson coupling) is evident.

4. Two junctions: Sub-electron-charge control of
the dc current

A more certain confirmation of the basic ideas of the
correlated single-electron tunneling was obtained just
recently [18-20] from experiments with a slightly more
complex system comprising two small tunnel junctions
connected in series [Figure 7(a)]. Its analysis [5, 8, 15] can

be started with the Hamiltonian which is a generalization of 149
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1. F; is a sum of contributions describing two junctions.
2. Equation (11} is generalized as follows:

ey | AFE=3F(n,n)— I = 1,n)  j=3-1 (19)

0.041 where / is the number of the junction whose tunneling

rate is being considered.

‘ Equations (10) and (19) show that in the low-temperature
limit (13) (with the replacement C — Cy), the tunneling is
completely blocked as soon as AJ; are negative for both
Junctions. According to Equation (18), the corresponding
region has a very simple shape [Figure 7(b)]. One can see
that the Coulomb blockade can be lifted by injection of the
charge Q, = e(n + ') into the middle electrode.

Let us start with the case Q, = const. (i.e., I, = 0). In this
case a nonvanishing current can flow through both of the

—_ L | | . L
-0.2 0 02 04

Al =ef Vi(eiC)

1 en, ¢ ®cC,G,

dc I-V curves of the small junction (normal metals, low
temperatures, no shunting) irradiated by microwaves of frequency f
=0.027; ! for several values of the microwave current amplitude A.
Note shifts of the origin. From [10], reprinted with permission.

et

Equation (3),

3

H=3(n,n)+ H, + H,+ ¥ Hfk}, (n
i=1

where the free energy 7 can be presented as

3 _< 2! + C‘>V+ t
(n,, ny) = 2C, eln, G, n, c, const.,

eln, — n,) + Q,, Q, flodt,
C, + G, (18)

Q

Cy

®

The tunnel Hamiltonians H-, and H, can be presented
similarly to Equation (1); H; describes the electrodes, and »,,
are the numbers of electrons already transferred through the
Jjunctions [Figure 7(a)).

Carrying out calculations similar to those of Section 2, one
arrives again at Equations (8) and (10), with F; = 0 and the
following changes:

A system allowing control of the dc current / by subelectron changes
of the electron charge Q, = I 1,dt: (a) Equivalent circuit. (b)
Threshold curves limiting the region of the Coutomb blockade. From
{10], reprinted with permission.
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junctions outside the Coulomb blockade range, but no
coherent SET oscillations take place in the system! The
reason is that the system is voltage-biased rather than
current-biased, so that a single electron-tunneling event does
not change 7 and does not affect the consequent tunneling
events in the same junction. However, tunneling events in
two junctions are mutually correlated: As soon as an
electron enters the middle electrode through one of the
junctions, it acquires a large probability rate T for leaving
the electrode almost immediately through the other junction.

This mutual correlation results in a strong influence of Q,
on the tunneling dynamics, even outside the Coulomb
blockade range. Figure 8 shows a typical family of the dc
I-V curves for several values of Q,. (As Q, increases further,
the picture is reproduced e-periodically.) One can see a very
characteristic staircase pattern superimposed over the
background Coulomb-blockade curve [cf. Figure 4(a)].

Each step of the staircase corresponds to a change of the
average charge of the middle electrode by e. Generally the
staircase has two periods, AV, = ¢/C, and AV, = ¢/C,; in the
simplest case, G, < G, only one period, AV = ¢/C,, is
developed.

This behavior was observed clearly in recent experiments.
In order to obtain a system equivalent to that shown in
Figure 7(a) (with /, = 0), Kuzmin and Likharev [18] have
used a granular system very similar to that studied in the
early experiments [5--7]. However, the authors of [18] have
contrived to isolate completely all grains inside the barrier
except (supposedly, the largest) one, and study this single
object rather than the whole ensemble of grains with random
parameters. This single grain was connected with the
junction electrodes by the tunnel junctions, with
C,=C,=3x 107" Fand G,> G, ~ 10° @', 5o that
(at helium temperatures) both conditions (7) and (13) were
satisfied. Figure 9 shows the dc /-V curve of one of the
samples together with its first derivative. One can see
oscillations with a very constant period AV [36]). The phase
of these oscillations was stable at helium temperatures but
could be shifted to a new value by heating the junction to
room temperatures for few minutes [Figure 10(a)].
Comparison with calculations using Equations (8), (10), (18),
and (19) [Figure 10(b)] allows one to interpret these shifts as
changes of the parameter Q,.

Within the simplest models of the tunnel barrier, this
parameter (in the absence of /) is fixed by capacitances
C,, C, and the work functions ¢, of the electrodes [5, 8, 15]:

0, = €'[C(®, — ¥,) — C(¥, — ¢)]. (20

However, it is physically evident that even a small
(atomic-scale) shift of a single charged impurity inside one of
the tunnel barriers of the structure should lead to a
considerable change of (J,. Hence, the results described
above show that Q, is perfectly stable at helium

temperatures (although the early experiments [6] hint at a
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1, (e/2RCE)/divA

VitelCy)

.
dc -V curves of the circuit shown in Figure 7(a) for several values of
the injected charge (G, << G,, C| = 2C,, T = 0.1T,, normal-metal
electrodes).

e 9

Voltage V (4 mV/div.)
dvidl (arb. units)

Sample M 147.B
T=42K
1/6/1987

Current f (2 nA/div.)

The dc voltage V and differential resistance R | = dV/dl of a system
comprising an In grain embedded between two Pb-alloy electrodes,
as functions of the dc bias current / passed between the electrodes. A
hysteresis of the I-V curve and general slopes of the R (V)
dependences are due to some imperfections of the electronics used in
the measurements. From [ 18], reprinted with permission.
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(@)

dV/dI(arb. units)
H

2 2
0 1 1 1 3 1 3 1 I 1
Voltage V (4 mV/div.)
Oyle = 0.1, etc.

2 0.25
2 | ®
+
£ 1
5§ [
S

O Il 1 L

-6 -4

Differential resistance as a function of the dc voltage V: (a) Results of
three sequential experiments with the same structure as in Figure
9, specimens allowed to reach 300 K between successive
measurements. (b) Results of calculations for the S-I-N-I-S structure
with experimental values T =4.2K, C, = 3.2 x 1077 F, G,<<
G,, A(T) =1.2 meV, the fitted value C,/C, = 1, and for several
values of Q. From [18], reprinted with permission.

possibility of a very slow relaxation of Q, even in these
conditions), but relaxes rapidly to an equilibrium value at
room temperatures. It has been demonstrated [18] that this
value can be reproduced with an accuracy better than ~0.1e.

A possibility for controlling Q, at helium temperatures
was demonstrated in the experiment by Fulton and Dolan
[19], who used a unique thin-film microstructure [Figure
11(a)] with tunnel junctions as small as ~10™"" cm’. The
capacitance C, was very small (~10™ C 1.2), but it
nevertheless allowed one to change Q, by changing the
voltage U [in this structure, Q, = C,U + const.; see Equation
(28) below]. Figure 11(b) shows a family of the experimental
dc I-V curves for five successive values of U, shifting ¢, by
increments of ~e/6. Although the system differs slightly from
that used to calculate the plots of Figure 8 (in particular,
superconductivity of the electrodes provided an additional
energy-gap structure in the experiment), the similarity of
these results is apparent.

To end our discussion of the system shown in Figure 7(a),
we should note that a nonvanishing current /; should induce
there the SET oscillations with the frequency
f; = I/e. If a sufficient Josephson coupling of the electrodes
is provided, the SET/Bloch oscillations coexist with the usual
Josephson oscillations, with the frequency f; = (2¢/h)7.
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Mutual phase-locking of these oscillations leads to
quantization of the ratio ¥/, in units of R, similar to that
arising at the quantized Hall effect. These predictions [37]
are still to be confirmed experimentally.

5. Multijunction structures

Analysis of more complex systems of small tunnel junctions
is aided by the fact that Equation (19) admits a ready
generalization. It can be proved using the simple quantum-
mechanical Golden Rule approach [21]. [This approach is,
of course, less strict than the direct quantum-statistical
methods used for the simpler systems; in particular, the
limitation (7) could be hardly obtained in this way. Within
this limit, however, both of the methods yield similar
results.]

O
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50

—25
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The experiment by Fulton and Dolan: (a) Equivalent circuit of
their tunnel structure. (b) dc /-V curves for five sequential values
of U, changing Q, by ~e/6 each time. From [19], reprinted

;
!
%
i with permission.
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Consider an arbitrary structure comprising N small
Jjunctions with the free energy J(n,, - - -, n, - - -, n,) where
n, is the number of electrons passed through the kth
junction. According to the Golden Rule, the rate I'; of the
event n, — n, = 1 can be written as

27
rp=r 2{ | He, I ¢ AEN1 = AED]

X o{[Hny, ooy My, - e, my) + E]

-[Fn, -n.x1, .-, n)+ E}, (21

where E is the energy of the internal degrees of freedom of
the system, indices i and f denote initial and final states of
the degrees, and f(E) is the Fermi function. But according to
the standard theory of tunneling (see, e.g., [3]), a current I
flowing through the same junction biased by a dc voltage V
can be expressed in a similar way:

IVy=I'(V) - I(V),
2
I5(V) = e = 3 | Hy |} fE)
if

X [I — AEYBLE, — (FeV + E)).  (22)

Combining Equations (21) and (22), one arrives at
Equation (10), with

Ajf _ j(nl’ cey My e, nN)

-3, -, nx1, -, n) (23)

The energy J can be readily calculated for even relatively
complex structures because for this purpose all the junctions
can be replaced by just their capacitances C,.

On the other hand, synthesis of scientifically interesting
and/or practically promising structures is facilitated by a
deep (although incomplete) analogy between the coherent
single-electron tunneling in small junctions and the
macroscopic quantum effects in “large” superconducting
Jjunctions. More exactly, the two groups of the effects are
related by the following electromagnetic duality
transformations [15, 21]:

Qo ¢ (in particular, e & ¢,),

Vel

Ce L,

R G (in particular, Ry < Ry, (24)

series connection « parallel connection.

For example, these transformations relate the SET
oscillations to the Josephson oscillations, and the system
analyzed in Section 4 [Figure 7(a)] to the dc SQUID. The
reader has a chance to see that these analogies are really
prominent.

As an example of application of the duality [Equation
(24)] to multijunction systems, Figure 12 shows the
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“Coulomb” analog of the long Josephson junction (more
exactly, of its discrete version—see Chapter 8 of [21]). Listed
below are the basic properties of this array, qualitatively
similar to those of its Josephson-junction analog.

In a long array, single-electron “solitons” and
“antisolitons” with the electrical charges +¢ and the “size”
(expressed in number of junctions)

2[ h(l C°>]—l 25
n = 2 larccos +2C (25)

can exist. In order to insert a train of the solitons into the
junction from one of its edges, the corresponding driving
voltage (either V| or V) should exceed the threshold value

e Cy {CS Co}m)_l]
V“zq,["(”zc* s . (26)

If V; = V, = V, this insertion leads to a static soliton array
which can be either commensurate or incommensurate with
the junction array. The site-filling factor as a function of V'
shows a typical devil’s-staircase pattern very similar to that
observed in other systems (see, e.g., [38]). At V] # V7, the
arising longitudinal electric field can induce a viscous flow of
the soliton array along the junction array, qualitatively
similar to the quantized flux flow in overdamped long
Josephson junctions and type-II superconductors.

Unfortunately, because of lack of space we must leave a
detailed discussion of this and some other interesting systems
for further publications.

6. Possible applications

Virtually all suggested applications of the coherent single-
electron transfer require the very low probability p of
undesired tunneling events during the time r of operation.
According to Equations (10) and (11) this probability can be
roughly estimated as

E T
T Q T 0
p~ - exp{ kBT} = - exp{ T}' 27)
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Two types of single-electron transistors: (a) Capacitive SET; (b)
resistive SET. Shown are invertor/amplifier stages and control
characteristics of the stages for several values of the supply voltage
E. The other parameters are C, = 2C, R, = R, = 10R, T = 10 *T,.
From [15], reprinted with permission.
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For typical values p ~ 107°°, » ~ 10° s, and T~ 107" s, one
obtains the following estimate of the upper operation
temperature: T = 7,/100. Table 1 shows that even using
very advanced lithography one cannot hope to raise T well
above the helium level. This is why it is reasonable to discuss
only the applications promising some unique capabilities.

Quantum metrology  Voltage steps arising in the dc I-V
curve of a microwave-irradiated small tunnel junction
(Figure 6) can be used for design of a fundamental standard
of the dc current [9, 10, 25] quite similar in structure to the
dc voltage standard based on the Josephson effect. This
direct way can be easier than an alternative one using a
combination of the Josephson effect and the quantized Hall
effect. Moreover, if both ways were realized in one
laboratory, a “quantum metrology triangle” [25] could be
closed, enabling one to find possible solid-state or quantum-
electrodynamical corrections to the corresponding
fundamental relations among frequency, current, and
voltage.

Supersensitive electrometry  The two-junction device
described in Section 4 [Figure 7(a)] can be used to measure
extremely small (subelectron) variations of the “external”
electric charge Q, injected into its middle electrode. In the
first experiments [18] a charge resolution better than at least
3% 107 e/Hz" ? has been registered; presumably the
resolution in the experiments of [19] was even better [Figure
11(b)] although no estimate has been given by the authors.
Calculations [15] (neglecting the 1/f noise contribution)
predict the resolution limit of order 107 ¢/Hz' for a
junction area S = 3 X 10 % cm®. In any case, the resolution
can be much better than that of the commercially available
electrometers (2102 e/Hz” 2; see, e.g., [39)).

A foreseeable practical problem here is an extremely small
input conductance (C, ~ C; = C, + C,) of the device limited
by the operation temperature—see Equation (13). A similar
problem in their magnetic analogs (the SQUIDs) was solved
by using the superconducting dc transformers, which
apparently have no analog in electrostatics [this is one of the
manifestations of incompleteness of the analogy expressed by
Equation (24)]. If this problem can be solved or avoided in
some way, the supersensitive electrometer could become a
new unique tool in science and technology.

Digital microelectronics  When reproducible fabrication of
large arrays of small tunnel junctions becomes a reality,
coherent single-electron tunneling could enable one to design
at least two new types of digital VLSI circuits.

The circuitry of the first type could employ “single-
electron transistors” (SETs) [10, 15, 17] based on the
two-junction system studied in Section 4. Figure 13 shows
two possible structures of this type, the “capacitive SET” (a)
and the “resistive SET” (b), used in the simplest
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amplifier/invertor stages. In order to describe the dynamics
of the C-SET, the replacements [15]

C,— G, + (G, CZ—>CZ+CO,

Q0 — 0, +CU (28)

should be made in all formulas of Section 4. The R-SET can
be analyzed using the original equations of Section 4
supplemented by the additional relations [15]

Qo= (U= ()R, (V) =(Q)+ )Gy, (29)

where (V,) is the ensemble average of the voltage across
junction 2.

Figure 13 shows the typical results of such analysis of the
SETs, their control characteristics. One can see that the
voltage gain K, = | dV/oU| can be larger than unity in both
circuits. In the C-SET, K, cannot be larger than C,/C,, while
in the R-SET the gain can be quite large. Another advantage
of the R-SET is its well-defined threshold U, = ¢/2Cy, while
that of the C-SET includes the parameter Q,, which is
dependent on the relaxation inside the barrier (Section 4).
On the other hand, an evident advantage of the C-SET is its
small input admittance, which vanishes at low frequencies,
while in the R-SET this parameter is close to R, # 0. A
preliminary analysis shows, nevertheless, that both types of
single-electron transistor can be used to compose logic and
memory circuits very similar in design to those produced
using the semiconductor FETs.

The second type of digital circuitry can use single
electrons, Coulomb-biocked inside small metallic electrodes,
to represent digital bits. The electrons can be passed from
one electrode to the other by their discrete transfer through
small tunnel junctions. Such a transfer induces a short pulse
of current with the area

fldtSezo.IG #A X ps (30)

in the electrodes; the pulses can be used for processing the
information. For example, Figure 14(a) shows the simplest
stage capable of reproduction/regeneration of the pulses. A
one-dimensional array of such stages forms a neuristor-type
line which can provide transfer of a single-electron soliton
(presenting a single bit) with a constant velocity.

Design of more complex logic/memory circuits of this
“single-electron logic” family [17] is facilitated by the fact
that the duality transformations (24) relate these circuits to
those of the recently developed [40, 41] and tested [42]
RSFQ logic family based on the Josephson effect. Figure
14(b) shows a simple logic/memory stage using the RSFQ
ideas. In the absence of input pulses (4, B, T), the
information is stored in the form of an extra charge
Q = #¢/2 of its middle electrode. The information can be
read out by the clock pulse 7 [of the standard form (30)],
which also restores the cell into its “0” state (Q = —e/2). The
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(@)

i The simplest logic circuits of the single-electron logic family:
! (a) Buffer/amplifier; (b) timed-OR gate. From [17], reprinted
. with permission.

first of the pulses (4, B) induces transfer of a single electron
through the left junction, changing the state of the cell to
“1.” The second pulse (if it comes) produces no effect, so
that the circuit performs the timed-OR function. Other logic
functions can also be readily performed [47].

General discussion  Although the applied field of “Single-
Electronics™ [21] is still in a very early state of development,
some general features of this new generation of the electronic
circuits are already clear [15]. Their obvious drawbacks
include the following;

e The need for advanced lithography, with a feature size of
the order of 30 nm or less (see Table 1).

e High impedance (| Z| ~ R > R, = 6 kQ), much larger
than that of the present-day superconducting microstrip
lines (these lines are seemingly the only way to carry
picosecond pulses with small attenuation and distortion).
This matching problem can be at least partly solved by
using the increase of the kinetic inductance of the lines,
which decreases in proportion to their cross-sectional area.

K. K. LIKHAREV
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A list of advantages of the single-electronic devices is
nevertheless impressive:

e Major parameters of the devices are not dependent on the
junction resistance, i.e., on transparency of the tunnel
barriers. This feature promises margins for the barrier
thickness and composition that are much wider than those
for, say, the Josephson-junction devices.

e The parameters are not affected by magnetic flux trapped

in superconducting electrodes and ground plane, again

contrasting well with the Josephson-junction circuits.

The devices can combine high operation speeds with

extremely low power consumption (see Table 1).

Moreover, most useful characteristics are improved as the

Jjunction size decreases. The size of the junction is not

limited by the underlying physics until extremely small

dimensions, of the order of one nanometer (determined by
the sum of the barrier thickness and the doubled Debye
screening length of the electrodes), have been reached.

Thus the single-electronic circuits are capable of an

extremely large-scale integration, hardly attainable even by

advanced nanolithography [29, 30].

The last fact is reminiscent of an intriguing possibility of
using single molecules as the basic elements of the electronic
circuits. In this “molecular electronic device” field (see, e.g.,
[43, 44]) several plausible ways to store and transfer the
digital information have been suggested. However, the only
way considered for rapid processing of the information was
resonant tunneling (see [43, pp. 51, 121]) requiring an exact
trimming of the tunnel barriers and quantum wells
employed. Such accuracy would not be necessary if the
single-electron transfer were used. For example, a molecular
analog of the R-SET [Figure 13(b)] could be composed of
just three electroactive (conducting) macromolecules
separated by two gaps transparent for the electron tunneling,
with wide margins for their transparencies.

Realization of the molecular single-electron circuits by
self-assembly methods would be a great step into the future.
Of course, this possibility (if feasible at all) would require a
lot of effort.

7. Conclusion

The coexistence of two types of electric conduction, the
continuous current flow in metals or semiconductors, and
the discrete single-electron transfer through the tunnel
barriers, makes possible a new group of effects in structures
with very small tunnel junctions at low temperatures (see
Table 1). The main feature of all these effects is a high
degree of time correlation between single-electron tunneling
events, either the successive tunnelings in the same junction,
or the near-simultaneous tunnelings in different junctions, or
both. The effects present several new possibilities for applied
electronics, including a new type of microwave generation,
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control of a nonvanishing dc current by subelectron electric
charges, and processing of digital information bits in the
form of single electrons.

Several effects of the new group have been observed
experimentally, and there is hardly any doubt at present of
the correctness of the basic concepts of their theory. Some
important problems, however, do remain in the theory:

1. It is not yet clear what constitutes the conditions of the
coherent single-electron transfer through non-tunnel-type
“weak links” [45], i.e., the metallic-conducting
microshorts connecting two bulk metals. One possible
guess is that the volume of the weak link should contain
not more than one electron, i.e., na’ s 1, where # is the
conduction-electron concentration.

2. Experimental realization of the coherent SET oscillations
could be greatly facilitated by placing an element with
metallic resistance Ry > R, = wh/2¢ very close to the
tunnel junction (see Section 3). However, R, is also a
resistance scale of the metal-nonmetal transition due to
localization (see, e.g., [46]). One may wonder whether this
transition imposes a fundamental ban on the realization
of such a resistor while retaining the continuous character
of its conductivity.

3. Finally, there exists no detailed theory of the discrete
tunneling event itself, including an important sequential
stage of the charge relaxation inside the electrodes (i.e., of
the restoration of their internal electroneutrality). In such
a theory, not only the time 7, of tunneling itself [31] but
also the time 7, (see Section 3) should appear in a natural
way. This theory would in particular resolve the problem
of the relativistic cutoff of the capacitance C, raised by
Biittiker and Landauer [31].
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