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Recent  theoretical  and  experimental  studies 
have  revealed  a new  family  of  effects  taking 
place in  very  small  tunnel  junctions  at  low 
temperatures.  The  effects  have  a common 
origin,  the  correlated  discrete  tunneling of  single 
electrons  and/or  Cooper  pairs  resulting  from 
their  electrostatic  (“Coulomb”)  interaction.  This 
paper  presents  a  brief  review of  the  single- 
electron  part of  the  family,  including  discussion 
of  the  background  physics,  methods  of 
theoretical  description of the  new  effects, 
experimental  results,  and  possible  applications 
of  the  new  effects  in  analog  and  digital 
electronics. 

1. Introduction 
Soon  after our meeting at  the  Tunneling  at Low 
Temperatures Conference in Leuven, Belgium (August 
1985), where the basic concepts of  what we now call “Single- 
Electronics” had been  reported  for the first time, Rolf 
Landauer  sent  me a copy of his paper [ 11 published in 1962, 
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with the following note:  “Written at a time when I did  not 
yet understand  the role of e2/2C. Nevertheless, not really 
wrong.” 

Not  only was this  paper  quite correct for its  purpose, it 
was also one of the  cornerstones of our present-day 
understanding of the  dynamics of and fluctuations in  tunnel 
junctions. In what follows we show that  the  equations of 
Reference [ I ]  can be used as  a basis for  analysis of the 
correlated single-electron tunneling, provided that  minor 
changes reflecting the electrical charging effects are made. 
This modification was absolutely unimportant for the 
relatively large tunnel  junctions available  in the sixties, and 
can be neglected even  for  most devices studied  nowadays. 
However, for extremely  small (submicron)  junctions cooled 
to very low (helium) temperatures,  the modification  becomes 
necessary and reveals a  new physical picture  of electron 
tunneling. 

Some  roots of this picture can be traced to  the  same year, 
1962, in which Landauer’s paper appeared.  Experimenting 
with metallic granular  thin films, Neugebauer and Webb [2] 
found  that  the  dc  conductance of the films was suppressed 
very substantially at low temperatures. They identified the 
suppression mechanism as electric charging  of the grains by 
discrete electrons tunneling  from  the neighboring  grains 
through the separating  energy  barriers, a concept we now 
discuss in more detail. 

It is well known that electron  transfer through a thin 
energy barrier is a  discrete event leading to a  change  of the 
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charge  of the  junction electrodes by +e. In theory,  this 
discreteness is expressed by the celebrated tunnel 
Hamiltonian [3] 

HT = H+ + H-,  H+ = Tk,k2ik2ck,? H- = H:, (1) 
kl& 

presenting  a sum of the  independent  contributions  from 
transfers of single electrons from states ( k , )  inside one 
electrode to states (k,) inside the  other  one.  In background 
electronics, the most recognized consequence of the 
discreteness is the  shot noise arising  in tunnel  junctions  at 
bias voltages V exceeding kBT/e.  In fact,  according to  the 
Schottky formula 

S,(w) = - el,  
1 

2* 

the fluctuations of the  current I are  proportional  to  the 
charge unit e transferred during a single tunneling event. 

In large-area junctions  the discreteness hardly  leads to  any 
other effects.  In a junction with a very small area S a n d  
hence  a very small  capacitance C between the electrodes, the 
electrostatic (“Coulomb”) energy Eo = e2/2C associated with 
its recharging by a single electron can become comparable  to 
the scale k,T of the masking thermal fluctuations. For 
example,  for  a  typical granular  thin film ( d  -30 nm)  the 
grain capacitance C i s  less than 10”’ F, so that  the relation 
EQ >> k,T can be satisfied at helium  temperatures. In this 
situation, transfer  of  a single electron from  one grain to 
another with a  smaller value of C becomes highly 
improbable, at least at low-driving electric fields. 

e.g., the recent  Reference [4] and references therein),  a 
quantitative description of the  “Coulomb blockade of 
tunneling”  in these  structures apparently has not yet been 
developed because of their random structure. A simpler 
picture  of the effect can be presented  for other  granular 
structures first studied by Zeller and Giaever [5] (see also 
experiments [6, 71). The  structure presents  a set of separated 
metallic grains embedded  into a tunnel  bamer between two 
metallic electrodes. Here  the  Coulomb blockade  leads to 
suppression of the  tunnel  current  at voltages below the 
threshold value V, - e / C  (see Section 4). For these 
structures,  a quite  complete physical understanding of the 
discrete tunneling was achieved [5] and a quantitative theory 
was developed [8]. 

The  authors of  these  reknowned works did  not, however, 
pay attention  to  the remarkable possibilities arising in 
systems where the discrete transfer of charge through energy 
barriers coexists with its (quasi)continuous transfer  along the 
usual metallic conductors. Though  the first notice  of  this 
possibility appeared only recently (1985) [9], it  has  already 
resulted in the rapid development of theory  for the new 
effects [ 10- 161, several suggestions concerning  their practical 
applications [lo, 15, 171, and, very recently, their first 
experimental  observations [ 18-20], 

Despite  experimental work with granular  thin films (see, 

Notation for a small tunnel junction presented  in  this  paper (left) and 
an equivalent circuit of the  current-biased junction (right). 

Because of this rapid progress, the  only survey available 
(included  as  a supplementary  chapter I6 to  the  monograph 
[21]) is already  far  from being complete. The present paper 
is an  attempt  to give a brief but up-to-date review of the 
field. 

2. Single junction: Theoretical background 
We demonstrate  methods of  description of coherent single- 
electron tunneling using the simplest  example:  a single 
current-biased tunnel  junction.  Taking  into  account a 
possible nonvanishing conductance of the  current source (for 
the sake of generality of the  treatment),  one  amves  at  the 
circuit  shown in Figure 1. Its analysis can be started with the 
following Hamiltonian: 

H = 3(Q) + HT + H,lk,I + H2WJ + H,(k,l - Id, (3) 

where HT is expressed by Equation (l) ,  while 

I = Io(t) - I s {ks ] .  (4) 

The  operator Q of the electric charge of the  junction  can 
be expressed via the  same creation and  annihilation 
operators as HT: 

so that HT and Q do  not  commute.  One  can readily prove 
that  the following commutation relations are valid for an 
arbitrary  function F(Q): 

H,F( Q) = F(Q * e)H,. (6) 

The  Hamiltonians H I ,  H,, and Hs describe the energy of the 
internal degrees of  freedom ( k ,  j, (k,J, and (k,] of the two 
electrodes of the  junction  and  of  the  “shunt” G,, 
respectively. The last term  in  Equation (3) describes the 
interaction of the  junction with the  current I (Figure 1). 145 
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;: Change of the charging energy S o f a  small junction resulting from 
tunneling of a single electron, for two values of its initial charge (2. 
Solid-line arrow shows the only energy-advantageous event. From 

j [ I O ] ,  reprinted with permission. 

As long as  the  tunnel barrier  transparency and  the  current 
I are  not  too large, they can be considered  as perturbations, 
and  one  can write an explicit time-evolution equation for the 
density  matrix p(Q, Q’, t) traced  over the sets {k,},  {k2},  and 
{k,}--see [IO] for details. Now let the following limitation be 
satisfied as well: 

C,,  C, << R i ‘  , R, = h/4e2 = 6.45 kQ. (7) 

Physically this condition  means  that  the typical energy hG/C 
(C = max[Gs, G,]) of the  quantum fluctuations  in our 
system is much less than  the charging energy scale Eo. In 
this “classical” limit all off-diagonal elements of the density 
matrix  vanish, and its  diagonal elements  are  proportional  to 
the classical probability  density u(Q, t )  obeying  a very simple 
“master” equation [9, IO] 

au  aU 
at aQ 
” - -lo(t) - + FT + F,, ( 8 4  

Gs a an 
C aQ  aQ 

Fs = - - (Ck,T - + uQ). 

The rates of tunneling of  a single electron  increasing 
(+) or decreasing (-) the initial  charge Q can be expressed as 
follows: 

P ( Q )  = I(?) [ 1 - ex,(- G)] , 
- I  

e 

146 where I( V )  is the  dc I- V curve  of the  same  junction biased 

by a dc voltage V, while (-A3*) is the change  of the free 
energy due  to  the  tunneling event;  in our present case 

A3’ = 3(Q) - 3(Q + e) = +- (Q f e/2). 
e 
C (1 1) 

Note that  Equations (8)  (with Io = F, = 0) correspond 
exactly to  the basic equation (3.1) of Landauer’s paper  [I]! 
This is not very surprising, because the subject of that  paper 
was the same discrete single-electron tunneling as here. The 
only new feature, which appeared in 1985, is a  small shift 
(ke/2) of the  arguments in Equation ( 1  1) arising  from  a 
strict account of the charging effects. We show, however, that 
this minor difference can lead to  some  major new results. 

3. Single junction: The SET  oscillations 
Consider the simplest case of an  unshunted  tunnel  junction 
(C, = 0, F, = 0, I = Io). Let the initial  charge  Q be localized 
near some point Q,, inside the range 

Then, if the  temperature is low enough, 

T<< To, T =- 
e’ 

O -  2k,C’ (13) 

one  can readily be convinced that all components of FT 
vanish, so that  no  tunneling happens! This is the  “Coulomb 
blockade of tunneling” [IO], already mentioned in the 
Introduction. In our present  simple case, the physical origin 
of this effect is especially clear (Figure 2): Within the range 
of Equation (12) the  tunneling of even a single electron 
would lead to  an increase  of the charging energy Q2/2C,  and 
thus,  in the low-temperature limit of Equation ( I  3), such an 
event is virtually impossible. 

“packet” describing the initial  distribution of Q will move 
with a  small velocity 

According to  Equation @a), the  narrow probability 

Qo = 44 (14) 

toward an edge of the range ( 12)”see Figure 3(a). After the 
edge is reached (say, Q,, > e/2), the  rate I”(Q) bedomes 
nonvanishing and  the last term of Equation  (8b) leads to a 
rapid (At  - T,  = C/G,) decay of the packet.  Simultaneously 
a new packet grows up  at  the  point Qd = Qo - e, near the 
left edge but inside the  Coulomb blockade range [Figure 
3(b)]. It is evident that  this process describes just  the 
tunneling of  a single electron through  the  junction (see the 
middle column in Figure 3). 

Now, all terms in FT vanish  again, the new probability 
packet moves through  the range ( 12) according to  Equation 
(14) [Figure 3(c)], and  then  the whole process repeats 
periodically, with the average frequency 

fs = Tie. (15) 
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Charge Q and voltage V = Q/C of the  junction therefore 
perform  relaxation-type  oscillations with the  same 
frequency. The physics of these “single-electron tunneling” 
(SET) oscillations [9] is very clear  from Figure 3: Due  to  the 
Coulomb blockade  of  tunneling, the electric charge  supplied 
by the bias current I&) accumulates  on  the  junction until  its 
threshold value e/2 is reached. Then a single electron  is 
transferred; due  to a very small  capacitance C of the 
junction, this  event results in  a  considerable  change  of the 
junction voltage ( A V =  e/C). In the low-temperature  limit 
[Equation ( 1  3)] this change is larger than a swing k,T/e of 
the  thermal fluctuations, and  thus affects essentially possible 
tunneling of the  other electrons (more exactly, reduces 
drastically the probability of these  secondary events). Thus, a 
time correlation  of the  tunneling events is established; in the 
present case the correlation  takes the form of the coherent 
SET oscillations with the frequency ( 1  5 )  [22]. This particular 
process is reminiscent  of water dripping from  a leaking 
tap-see the right-hand column  in Figure 3. 

whether the electric charge Q measured in  units of e can 
really take fractional values, in  particular  those less than 
unity. In order  to answer  this question,  one should 
remember  that Q is essentially the surface charge of the 
junction electrodes  forming the capacitor C. Of course, the 
tunneling,  as  a discrete process, can change Qe only by 
integer numbers,  as expressed by Equation  (lob). However, 
the  current flow I through  the usual metallic conductors is a 
continuous process, and  thus  can change Q by any  amount, 
at least on  the scale of e. In order  to  understand it, let us 
consider  a minor shift Ax of the  current  camers inside 
current leads connected  to  the  junction.  This shift results in 
a  proportional  increase AQ of the surface charge Q. The 
carrier motion in the usual (long) conductors is virtually not 
quantized,  and hence Q ,  = Jldt is not  quantized.  (More 
exactly, quantization of the  motion leads to a quantization 
scale of Q much less than e [23].) Below we see that recent 
experiments  confirm the concept of the possible coexistence 
of discrete and  continuous charge  transfer  in one system. 

The oversimplified picture  of the  SET oscillations 
presented  above is valid only in  the limit  of low dc bias 
current I ,  low temperatures T [Equation ( 1  3)], low 
conductance G, [Equation (9)], and vanishing conductance 
Gs. At the present time,  quite a  complete  understanding of 
the role of the listed factors has been reached; we give only  a 
brief summary of  these results. 

The whole picture  presented  above depends crucially upon 

Increasing the bias current I beyond -0.1 e/TT leads to a 
gradual  suppression of the  amplitude of the  SET oscillations 
(Figure 4); at larger currents  the only  trace  of the  Coulomb 
blockade is an offset of linear asymptotes of the  dc I- V curve 
by e/C [9, IO]. Increasing the  temperature beyond To 
[Equation ( 13)] [ 13, 141 and G, beyond RG’ [ 1 1, 161 gives 
qualitatively the  same effect [24]. Note  that  the very fact of 
coherent (monochromatic) oscillations and  the  fundamental 

;Iq-----“! r, b 
I 

l 
\ 
\ 

+ e/2 

e 
2 
” 0 L Q  

2 

J 

: Time evolution of the probability density u(Q. t )  in process of the 
> SET oscillation  (left  column),  a  scheme of the  corresponding 

single-electron transfer (middle), and its drip analogy (right). From 
:. [ IO] ,  reprinted with permission. 

relation ( I  5 )  are  not affected by these factors. On  the 
contrary,  a  nonvanishing metallic (“shunt”)  conductance Gs 
[Figure 5(a)] leads to a  broadening of the oscillation 
linewidth [Figure 5(b)]. 

One should also mention a series of works [ 10- 161 
analyzing the  dynamics of  a  similar system with a 
considerable  Josephson  coupling of the electrodes. In this 
case, the  SET oscillations can coexist with the “Bloch” 
oscillations [25] of the frequency 

Note, however, that  the Bloch oscillations are  not  just a 
replica of the  SET oscillations, despite their possible similar 
interpretation  as  “dipping”  of the  Cooper pairs [21, 251. The 
reason is that in  contrast to  the single electrons, the Cooper 
pairs form a coherent superconducting condensate inside 
each electrode, so that their  transfer  constitutes a quantum 147 
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Table 1 Estimates of the main parameters of the single-electron tunneling junctions (after [ 15, 171). 

Level of Junction  Junction  Temperature  Voltane  scale  Current  scale‘ Time scale 
fabrication 
technology 

( n d  (aF) (K) (mv) (nA) (PSI 

State-of-the-art junctions [28] 100 x 100 300  3 0.25 2.5 30 
30 X 30 Record junctions [ 191 30 30 2.5 25 3 

Nanolithography limits [29, 301 10 x 10 3 300 25 250 0.3 

Estimated as COS’, where Co = 3 x IO“ FIcm’. a typical value for the soft metal oxide barrien 
t R,  is accepted to equal 1 0 0  kl2. a value compatible with Equation (7). 

process rather  than  the nearly classical process of the SET 
oscillations. This difference results in several important 
peculiarities of the Bloch oscillations [ 10- 161. 

To  end  our survey of  theoretical results, we should 
mention  an analysis of the single-electron tunneling  in  the 
zero-bias limit [ 121. The  main result of the analysis is that  an 
arbitrarily  small  nonvanishing metallic conductance G, (say, 
that of  a  measuring instrument) results in  a  qualitative 
change of the  tunnel  junction statistics and therefore  a 
difference of  its impedance  and fluctuation  properties from 
those  calculated  earlier  [26, 271 disregarding the 
conductance. 

Turning  to  the experimental situation,  one should note 
that  the main  problem  in the observation of the  SET 
oscillations is fulfillment of Equation ( 1  3). First of all, the 
junction itself should be very small and/or  the  temperature 
should be rather low-see Table 1.  Another problem is that 
the capacitance C apparently  includes  a contribution C, of 
the leads  attached to  the  junction; in  a common  junction 
geometry this  contribution is much larger than  the values 
given in  Table 1. A possible way to get rid of C, is to place a 
large resistance Rs >> R, fixing the bias current in the very 
near vicinity of the  junction; in this case the capacitance of 
the  more  distant leads is not essential [25]. 

Recently, Buttiker and  Landauer  made a very interesting 
conjecture [31]. The theory described above does  not take 
into  account details  of the electron  transfer through  the 
barrier,  including the nonvanishing time T~ of the  tunneling 
and  the  time T~ of the restoration of electroneutrality  inside 
the electrode  after  this  event. For typical junctions available 
at present, the shortest time scale of our theory, T~ (see 
Table I ) ,  is much larger than both T~ and T~ (-10-14 s), so 
that  the model described above seems quite  adequate for  a 
small junction by itself. However, general principles  of 
relativity require the  tunneling event to be independent of 
environmental details  located  beyond the  “horizon” radius 
r = C ( T ~  + TJ of order  cm. Buttiker and  Landauer 
supposed that for  this  reason the farther parts of the leads 
would not  contribute  to CL. If this conjecture is true, C, is 
restricted to a value of order F, quite acceptable for the 
first experiments with the  SET oscillations. 

Nevertheless, two  reported attempts  to observe this effect 
in  structures  comprising few junctions gave negative results 
[ 19, 321 (no cutoff resistance R, was used in  these 
experiments). The only  claims of possible observations of the 
SET (or Bloch) oscillations came from  two  groups 
experimenting with granular superconducting thin films 
[33 ,  341. Irradiating the films with microwaves, the  authors 
of those works have observed the  appearance of the “voltage 
steps”  in the  dc I- V curves,  separated by equal  current 
intervals AI a J: Such behavior, with AZ equal to either ef or 
2el; really does follow from the theory  of the  SET  and Bloch 
oscillations-see, e.g., Figure 6 [ 101 (like the well-known 
Josephson-Shapiro current steps, these voltage steps are  due 
to  the phase-locking of the SET  oscillations by the external 
microwave signal and its  harmonics).  However, the  constant 
n = AZ/efin the  experiments [33] was as high as -IO5. 
Probably this behavior is due  to  some complex dynamics of 
the  granular film resulting  from the single-electron 
tunneling. It seems appropriate  to  remind  the reader that 
relaxation  oscillations with the index n’ = V/bofare 
routinely  generated  in  complex  Josephson-junction 
structures (see, e.g., [35]). 

Somewhat more convincing  evidence  of the  coherent 
oscillations with frequency expressed by Equation ( 1  5 )  or 
(16)  has come from  similar  experiments by Yoshihiro and 
coworkers [34]; here up  to  60 voltage steps with n = 12 have 
been observed. The  rms deviation of n from  the above value, 
averaged over the ensemble  of the steps, was as  small as - 1 % for several different values off- 10 GHz. 

Nevertheless, an urgent  need for new experiments, 
preferably with single junctions (including  those  without the 
Josephson  coupling) is evident. 

4. Two junctions: Sub-electron-charge control of 
the  dc  current 
A more certain  confirmation  of the basic ideas of the 
correlated single-electron tunneling was obtained  just 
recently [ 18-20] from  experiments with a slightly more 
complex system comprising  two  small tunnel  junctions 
connected  in series [Figure 7(a)]. Its analysis [5 ,  8, 151 can 
be started with the  Hamiltonian which is a generalization of 
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Equation ( 3 ) ,  
3 

= 3(nl,  n2) + HTl + H72 + (17) 
I =  I  

where the free energy 3 can  be presented as 

Q' 3(n1,  n,) = - - e 
2cx 

n 

Q = e(nl - n,) + Q,,, Q = J I,dt, 

c, = c, + e,. (18) 

The  tunnel  Hamiltonians HTI and HT2 can be presented 
similarly to  Equation (1); H, describes the electrodes, and nl,' 
are  the  numbers of  electrons  already  transferred  through the 
junctions [Figure 7(a)]. 

arrives  again at  Equations (8) and  (lo), with F, = 0 and  the 
Carrying out calculations  similar to those  of Section 2, one 

150 following changes: 

K. K LIKHAREV 

I .  FT is a sum of contributions describing  two junctions. 
2.  Equation (1  1) is generalized as follows: 

A3.  = 3(ni, nj) - 3(n, f 1, n,) j = 3 - i, (19) 

where i is the  number of the  junction whose tunneling 
rate is being  considered. 

Equations ( I O )  and (19)  show that in the low-temperature 
limit ( 1  3) (with the replacement C + Cx), the  tunneling is 
completely blocked as  soon  as A 3 .  are negative for both 
junctions. According to  Equation (1 8), the corresponding 
region has  a very simple shape [Figure 7(b)]. One  can see 
that  the  Coulomb blockade can be lifted by injection  of the 
charge Qo = e(n + l/2) into  the middle  electrode. 

Let us start with the case Q, = const. (i.e., Zo = 0). In  this 
case a  nonvanishing current  can flow through both  of the 
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junctions outside the  Coulomb blockade range, but  no 
coherent SET oscillations take place in the system! The 
reason is that  the system is voltage-biased rather  than 
current-biased, so that a single electron-tunneling  event does 
not change V and  does  not affect the  consequent  tunneling 
events in the  same  junction. However, tunneling events in 
two junctions  are mutually correlated: As soon as  an 
electron enters  the middle  electrode  through one of the 
junctions, it  acquires  a large probability  rate r for leaving 
the electrode almost immediately  through the  other  junction. 

This  mutual correlation results in  a  strong  influence  of Q, 
on  the  tunneling dynamics, even outside the  Coulomb 
blockade range. Figure 8 shows  a typical family of the  dc 
I- V curves for several values of Q,. (As Qo increases  further, 
the picture is reproduced e-periodically.) One  can see a very 
characteristic staircase pattern  superimposed  over the 
background  Coulomb-blockade  curve [cf. Figure 4(a)]. 

Each step of the staircase corresponds to a  change of the 
average charge of the middle  electrode by e. Generally the 
staircase has  two periods, AV, = e/C, and AV, = e/C,; in the 
simplest case, G, << G,, only one period, AV = e/C,, is 
developed. 

In order  to  obtain a system equivalent to  that shown  in 
Figure 7(a) (with Io = 0), Kuzmin  and Likharev [ 181 have 
used a granular system very similar to  that studied  in the 
early experiments [5-71. However, the  authors of [ 181 have 
contrived to isolate completely all grains  inside the  bamer 
except (supposedly, the largest) one,  and  study this single 
object rather  than  the whole ensemble  of  grains with random 
parameters. This single grain was connected with the 
junction electrodes by the  tunnel  junctions, with 
C, = C, = 3 X IO-’’ F and G, >> GI - Q - ’ ,  so that 
(at  helium  temperatures) both  conditions (7) and ( 1  3) were 
satisfied. Figure 9 shows the  dc I- V curve of one of the 
samples  together with its first derivative. One  can see 
oscillations with a very constant period AV [36]. The phase 
of  these  oscillations was stable at helium temperatures  but 
could be shifted to a new value by heating the  junction  to 
room temperatures for few minutes [Figure 10(a)]. 
Comparison with calculations using Equations (8), (lo), (18), 
and ( 1  9 )  [Figure lO(b)] allows one  to interpret  these shifts as 
changes of the  parameter Q,. 

Within the simplest models  of the  tunnel barrier,  this 
parameter  (in  the absence  of I,) is fixed  by capacitances 
C,, C, and  the work functions 9, of the electrodes  [5, 8, 151: 

This behavior was observed clearly in  recent  experiments. 

However, it is physically evident that even a  small 
(atomic-scale) shift of  a single charged impurity inside one of 
the  tunnel  bamers of the  structure should lead to a 
considerable  change of Q,. Hence, the results described 
above show that Qo is perfectly stable at helium 
temperatures (although the early experiments [6] hint  at a 
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the measurements. From [ 181, reprinted with permission. 
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Voltage V (4 mV/div.) 

Q,/e = 0.1, e tc .7  

0 ~ " " " " " ' ~  
-6  -4 - 2  0 2 4 6 

Differential resistance as  a function of the dc voltage V: (a) Results of 
three sequential experiments with the  same structure as in Figure 
9,   specimens  allowed  to  reach 300 K between  successive 
measurements. (b) Results of calculations for  the S-I-N-I-S structure 
with experimental values T =4.2 K,  C, = 3.2 X lo-''  F, GI<< 
G,, A(T) = 1.2 meV, the fitted value C2/C, = 1,  and  for several 
values of Q,. From [18], reprinted with permission. 

possibility of  a very slow relaxation of Q, even in  these 
conditions), but relaxes rapidly to  an equilibrium  value at 
room temperatures. It has  been demonstrated [ 181 that  this 
value can be reproduced with an accuracy  better than -0.1 e. 

A possibility for  controlling Q, at helium temperatures 
was demonstrated  in  the  experiment by Fulton  and Dolan 
[ 191, who used a unique thin-film microstructure [Figure 
ll(a)] with tunnel  junctions  as small as -10"' cm2.  The 
capacitance C, was very small C,,J but it 
nevertheless allowed one  to change Qo by changing the 
voltage U [in  this  structure, Q, = CoU + const.; see Equation 
(28 )  below]. Figure l l (b )  shows  a family of the experimental 
dc I- V curves  for five successive values of U, shifting Q by 
increments of 4 6 .  Although the system differs slightly from 
that used to calculate the plots  of  Figure 8 (in  particular, 
superconductivity  of the electrodes  provided an  additional 
energy-gap structure in the experiment), the similarity of 
these results is apparent. 

To  end  our discussion of the system shown in Figure 7(a), 
we should note  that a  nonvanishing current I, should induce 
there  the SET oscillations with the frequency 
f, = &/e. If a sufficient Josephson  coupling of the electrodes 
is provided, the SET/Bloch oscillations coexist with the usual 
Josephson oscillations, with the  frequencyd = ( 2 e / h ) p .  

K. K. LIKHAREV 

Mutual phase-locking of these  oscillations  leads to 
quantization of the  ratio p/Io in units of R,, similar to  that 
arising at  the  quantized Hall effect. These  predictions  [37] 
are still to  be confirmed  experimentally. 

5. Multijunction  structures 
Analysis of more complex  systems of small tunnel  junctions 
is aided by the fact that  Equation (19) admits a ready 
generalization. It can  be proved using the simple quantum- 
mechanical Golden  Rule  approach [21]. [This  approach is, 
of course, less strict than  the direct  quantum-statistical 
methods used for the simpler systems; in particular, the 
limitation (7) could be hardly obtained  in  this way. Within 
this  limit, however, both  of the  methods yield similar 
results.] 

1 The  experiment by Fulton  and  Dolan:  (a)  Equivalent  circuit  of 
$ their tunnel structure. (b) dc I-V curves for  five sequential values 
g of U, changing Q, by " e / 6  each  time.  From [ 191,  reprinted 1 .  . .  
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Consider an  arbitrary  structure comprising N small 
junctions with the free energy 3 ( n , ,  . . . , nk, . . , n,) where 
nk is the  number  of electrons passed through  the  kth 
junction. According to  the  Golden Rule, the  rate r: of the 
event nk ”-f nk k 1 can be written as 

where E is the energy of the  internal degrees of  freedom  of 
the system,  indices  i and f denote initial and final states  of 
the degrees, andf(E) is the  Fermi function.  But  according to 
the  standard theory  of tunneling (see, eg., [3]), a current I 
flowing through  the  same  junction biased by a dc voltage V 
can be expressed in a similar way: 

I( v) = I+( V )  - I-( V) ,  

I * ( V  = e c lffTkl :ff(Ei) 
h i . f  

x [ I  - f(Ef)]6(Ei - (+eV + Ef)). (22) 

Combining  Equations (21) and (22), one arrives at 
Equation (IO), with 

A3: = 3(n1,  . . ., n,, . . ., n,) 

The energy 3 can  be readily calculated for even relatively 
complex structures because for this purpose all the  junctions 
can be replaced by just their  capacitances C,. 

On  the  other  hand, synthesis of scientifically interesting 
and/or practically promising structures is facilitated by a 
deep (although  incomplete)  analogy between the  coherent 
single-electron tunneling in  small junctions  and  the 
macroscopic quantum effects in “large” superconducting 
junctions.  More exactly, the two  groups of the effects are 
related by the following electromagnetic  duality 
transformations [ 15, 211: 

Q o 6 (in particular, e o &), 

v o  I ,  

c o  L, 

R o G (in  particular, R, u RG’), (24) 

series connection o parallel connection. 
For example,  these transformations relate the  SET 

oscillations to  the Josephson oscillations, and  the system 
analyzed  in  Section 4 [Figure 7(a)] to  the  dc  SQUID.  The 
reader has a chance  to see that these  analogies are really 
prominent. 

As an example  of  application  of the duality [Equation 
(24)] to  multijunction systems, Figure 12 shows the 

1 2  N - 1  N 

“Coulomb”  analog of the long  Josephson junction  (more 
exactly, of  its discrete version-see Chapter 8 of [2 I]). Listed 
below are  the basic properties  of  this array, qualitatively 
similar to those  of  its  Josephson-junction analog. 

In a  long  array, single-electron “solitons” and 
“antisolitons” with the electrical charges f e  and  the “size” 
(expressed in number of junctions) 

- I  

n = 2 [ arccosh( I + s)] 
can exist. In order  to insert  a train of the solitons into  the 
junction  from  one of  its edges, the corresponding  driving 
voltage (either VL or V,) should exceed the threshold value 

v,=- e [ 1 -  ( I + - +  :l {422 - + -  :}”’)‘I. (26) 
2cll 

If V, = V, = V,  this insertion  leads to a  static  soliton array 
which can be either  commensurate or incommensurate with 
the  junction array. The site-filling factor  as  a function of V 
shows a typical devil’s-staircase pattern very similar to  that 
observed in other systems (see, e.g., [38]). At VL # V, the 
arising longitudinal  electric field can  induce a viscous flow of 
the soliton array along the  junction array,  qualitatively 
similar to  the  quantized flux flow in overdamped long 
Josephson junctions  and type-I1 superconductors. 

Unfortunately, because of  lack  of  space we must leave a 
detailed discussion of  this and  some  other interesting systems 
for further publications. 

6. Possible  applications 
Virtually all suggested applications of the  coherent single- 
electron  transfer  require the very low probability p of 
undesired tunneling events during  the  time 7 of operation. 
According to  Equations ( I O )  and (1  1)  this  probability can be 
roughly estimated as 
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2’o 7 
I 

I I 

f Two  types of single-electron transistors: (a) Capacitive  SET; (b) 
resistive  SET.  Shown are invertoriamplifier  stages  and  control 

1 characteristics of the stages for several values of the supply voltage 
1 E.TheotherparametersareC, = 2C,R, = R, = IOR, T = 10-2T,. 

From [ 151, reprinted with permission. f 
154 

K. K. LIKHAREV 

For typical values p - 7 - IO5 s, and T~ - IO-” s, one 
obtains  the following estimate of the  upper operation 
temperature: T = To/ 100. Table 1 shows that even using 
very advanced  lithography one  cannot hope to raise T well 
above the helium level. This is why it is reasonable to discuss 
only the applications  promising some  unique capabilities. 

Quuntum metrology Voltage steps  arising  in the  dc I- V 
curve of a  microwave-irradiated  small tunnel  junction 
(Figure 6) can be used for design of  a fundamental  standard 
of the  dc  current [9, IO, 251 quite similar  in structure  to  the 
dc voltage standard based on  the Josephson effect. This 
direct way can be easier than  an alternative one using a 
combination of the Josephson  effect and  the  quantized Hall 
effect. Moreover, if both ways were realized in one 
laboratory,  a “quantum metrology triangle”  [25]  could be 
closed, enabling one  to find possible solid-state or quantum- 
electrodynamical  corrections to  the corresponding 
fundamental relations among frequency, current,  and 
voltage. 

Supersensitive electrometry The two-junction device 
described in  Section 4 [Figure 7(a)] can be used to measure 
extremely small  (subelectron)  variations  of the “external” 
electric charge Qo injected into its  middle electrode. In the 
first experiments [ 181 a  charge  resolution  better than  at least 
3 X IO-* e/Ilz”2 has  been registered; presumably the 
resolution  in the  experiments of [ 191 was even better  [Figure 
1 1 (b)] although no  estimate has been given by the  authors. 
Calculations [ 151 (neglecting the  Ilfnoise  contribution) 
predict the resolution  limit of order e/Hz’/’ for  a 
junction  area 3 = 3 x cm2. In any case, the resolution 
can be much better than  that of the commercially  available 
electrometers @ I O 2  e/Hz’12; see, e.g., [39]). 

A foreseeable practical problem  here  is an extremely  small 
input  conductance (C, - C, = C, + C,) of the device limited 
by the  operation temperature-see Equation ( 13). A similar 
problem  in  their  magnetic  analogs (the SQUIDS) was solved 
by using the superconducting dc transformers, which 
apparently have no analog  in  electrostatics  [this is one of the 
manifestations  of  incompleteness of the analogy expressed by 
Equation (24)]. If this  problem can be solved or avoided  in 
some way, the supersensitive  electrometer  could  become  a 
new unique tool  in science and technology. 

Digital microelectronics When reproducible  fabrication  of 
large arrays  of  small tunnel  junctions becomes  a reality, 
coherent single-electron tunneling could enable  one  to design 
at least two new types of digital VLSI circuits. 

The circuitry  of the first type could  employ “single- 
electron  transistors” (SETS) [ 10, 15, 171 based on  the 
two-junction system studied in Section 4. Figure 13 shows 
two possible structures of this type, the “capacitive SET” (a) 
and  the “resistive SET” (b), used in the simplest 
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amplifier/invertor stages. In  order  to describe the  dynamics 
of the C-SET, the replacements [ 151 

e, 4 c, + c,, e, 4 c, + e,, 
Qo 4 Qo + Cou (28) 

should be made in all formulas of Section 4. The R-SET can 
be analyzed using the original equations of  Section 4 
supplemented by the  additional relations [ 151 

where ( V 2 )  is the ensemble average of the voltage across 
junction 2. 

Figure 13 shows the typical results of  such analysis of the 
SETS, their control characteristics. One  can see that  the 
voltage gain K ,  = I a V/aU I can be larger than  unity  in  both 
circuits. In the C-SET, K ,  cannot be larger than C,/C,, while 
in the R-SET the gain  can be quite large. Another advantage 
of the R-SET is its well-defined threshold Ut = e/2Cx, while 
that of the C-SET includes the  parameter Qo, which is 
dependent  on  the relaxation  inside the  bamer (Section 4). 
On  the  other  hand,  an evident  advantage  of the C-SET  is its 
small input  admittance, which vanishes at low frequencies, 
while in the R-SET this  parameter is close to R,’ # 0. A 
preliminary  analysis shows, nevertheless, that  both types of 
single-electron transistor can be used to  compose logic and 
memory circuits very similar in design to those produced 
using the  semiconductor FETs. 

electrons,  Coulomb-blocked  inside  small  metallic electrodes, 
to represent digital bits. The electrons can  be passed from 
one electrode to  the  other by their discrete  transfer through 
small tunnel  junctions. Such a transfer induces a short pulse 
of current with the  area 

The second type of digital circuitry can use single 

in the electrodes; the pulses can be used for processing the 
information.  For example, Figure 14(a) shows the simplest 
stage capable  of reproduction/regeneration of the pulses. A 
one-dimensional array of such stages forms a neuristor-type 
line which can provide  transfer  of  a single-electron soliton 
(presenting  a single bit) with a constant velocity. 

Design of more complex  logic/memory  circuits of this 
“single-electron logic” family [ 171 is facilitated by the fact 
that  the duality transformations (24) relate  these  circuits to 
those of the recently developed [40, 411 and tested [42] 
RSFQ logic family based on  the Josephson effect. Figure 
14(b) shows a simple  logic/memory stage using the  RSFQ 
ideas. In the absence  of input pulses (A, B, T ) ,  the 
information is stored  in the  form of an  extra charge 
Q = +e/2 of  its  middle electrode. The  information  can  be 
read out by the clock pulse T [of the  standard form (30)], 
which also restores the cell into its “0” state (Q =: -e/2). The 
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j The  simplest  logic  circuits  of  the  single-electron  logic  family: 
{ (a)  Buffedamplifier; (b) timed-OR  gate.  From [17], reprinted 
1 with permission. 2 
B 

first of the pulses (A,  B )  induces transfer  of  a single electron 
through the left junction, changing the  state of the cell to 
“ 1 .” The second pulse (if it  comes)  produces no effect, so 
that  the circuit  performs the timed-OR function.  Other logic 
functions  can also be readily performed [47]. 

General discussion Although the applied field of “Single- 
Electronics” [2 I ]  is still in a very early state of  development, 
some general features  of this new generation  of the electronic 
circuits are already clear [ 151. Their obvious  drawbacks 
include the following: 

The need for  advanced  lithography, with a  feature size of 
the  order of 30 nm or less (see Table 1). 
High impedance (I Z (  - R, >> R, = 6 kR), much larger 
than  that of the present-day superconducting microstrip 
lines (these lines are seemingly the  only way to carry 
picosecond pulses with small attenuation  and distortion). 
This  matching problem can be at least partly solved by 
using the increase  of the kinetic inductance of the lines, 
which decreases in  proportion  to their cross-sectional area. 
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A list of advantages of the single-electronic devices is 
nevertheless impressive: 

Major  parameters of the devices are  not  dependent  on  the 
junction resistance, Le., on transparency of the  tunnel 
barriers. This feature  promises  margins  for the barrier 
thickness and composition that  are  much wider than those 
for, say, the  Josephson-jmction devices. 
The  parameters  are  not affected by magnetic flux trapped 
in  superconducting  electrodes and  ground plane, again 
contrasting well with the  Josephson-junction circuits. 
The devices can  combine high operation  speeds with 
extremely low power consumption (see Table 1 ) .  
Moreover,  most useful characteristics are  improved as the 
junction size decreases. The size of the  junction is not 
limited by the underlying physics until  extremely  small 
dimensions,  of the  order of one  nanometer  (determined by 
the  sum of the barrier  thickness and  the  doubled Debye 
screening length of the electrodes), have been reached. 
Thus  the single-electronic circuits are capable of an 
extremely large-scale integration,  hardly attainable even by 
advanced  nanolithography [29, 301. 

The last fact is reminiscent of an intriguing possibility of 
using single molecules as  the basic elements of the electronic 
circuits. In this  “molecular  electronic  device” field (see, e.g., 
[43,44]) several plausible ways to store and transfer the 
digital information have  been suggested. However, the only 
way considered  for  rapid processing of the  information was 
resonant tunneling (see [43, pp. 5 1 ,  12 1 1 )  requiring an exact 
trimming of the  tunnel barriers and  quantum wells 
employed.  Such  accuracy  would not be necessary if the 
single-electron transfer were used. For example,  a  molecular 
analog of the R-SET [Figure 13(b)] could be composed of 
just  three electroactive  (conducting)  macromolecules 
separated by two gaps transparent for the electron tunneling, 
with wide margins  for  their  transparencies. 

Realization of the molecular single-electron circuits by 
self-assembly methods would be a  great  step into  the  future. 
Of  course, this possibility (if feasible at all) would  require  a 
lot  of effort. 

7. Conclusion 
The coexistence of two  types  of  electric conduction,  the 
continuous  current flow in  metals or semiconductors, and 
the discrete single-electron transfer through  the  tunnel 
bamers, makes possible a new group of effects in structures 
with very small tunnel  junctions  at low temperatures (see 
Table 1 ) .  The  main feature  of all these effects is a high 
degree of time correlation between single-electron tunneling 
events,  either the successive tunnelings in the  same  junction, 
or the near-simultaneous tunnelings  in different junctions, or 
both. The effects present several new possibilities for  applied 
electronics,  including  a new type of microwave  generation, 

control of a  nonvanishing dc  current by subelectron  electric 
charges, and processing of digital information bits in  the 
form of single electrons. 

Several effects of the new group have  been observed 
experimentally, and  there is  hardly any  doubt  at present  of 
the correctness  of the basic concepts of their theory. Some 
important problems, however, do remain  in  the theory: 

1. It is not yet clear what  constitutes the  conditions of the 
coherent single-electron transfer through non-tunnel-type 
“weak links” [45], i.e., the metallic-conducting 
microshorts  connecting  two  bulk metals. One possible 
guess is that  the  volume of the weak link  should contain 
not  more  than  one electron, i.e., nu3 5 I ,  where n is the 
conduction-electron concentration. 

2. Experimental  realization  of the  coherent SET  oscillations 
could be greatly facilitated by placing an  element with 
metallic resistance Rs >> R,  = rh/2e2 very close to  the 
tunnel  junction (see Section 3). However, R, is also a 
resistance scale of the  metal-nonmetal transition due  to 
localization (see, e.g., [46]). One  may  wonder whether  this 
transition  imposes  a fundamental  ban  on  the realization 
of such  a resistor while retaining the  continuous character 
of its  conductivity. 

tunneling event itself, including an  important sequential 
stage of the charge  relaxation  inside the electrodes (i.e., of 
the restoration of their  internal electroneutrality). In such 
a  theory, not only the  time T,, of tunneling itself [3 I ]  but 
also the  time T~ (see Section 3) should appear in  a natural 
way. This theory  would  in  particular resolve the problem 
of the relativistic cutoff of the capacitance C, raised by 
Biittiker and  Landauer [31]. 

3. Finally, there exists no detailed  theory of the discrete 
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