Quantum noise
and quantum
Langevin
equations

by C. W. Gardiner

The quantum Langevin equation of Ford, Kac,
and Mazur is rederived and shown to be
equivalent to an adjoint equation. This latter can
be handled by means of van Kampen’s cumulant
expansion to yield derivations of the
quasiclassical Langevin equation, stochastic
electrodynamics, quantum optical, and quantum
Brownian motion master equations (under
appropriate conditions). The result of Benguria
and Kac—that the quantum Langevin equation
yields the Boltzmann distribution over energy
levels in thermodynamic equilibrium—is also
verified.

1. Introduction

The successful invention of the “Langevin equation” by
Langevin as long ago as 1908 [1] and the subsequent
development of the physics and mathematics of the
Langevin equation since then [2-3] into a very useful
representation of a variety of noise-related problems has led
many authors to propose quantum-mechanical versions [4].
There is no general consensus, however, on what constitutes
the “quantum Langevin equation”—as always in quantum
mechanics, the subtlety of operator equations leads to a

©Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 32 NO. | JANUARY (988

number of interpretations. The classical Langevin equation
coexists with the Fokker-Planck equation: There is an exact
equivalence between these two formulations of classical
noise theory, but in quantum noise theory there is at present
no such duality. True, quantum Langevin equations do
exist, but are solved by direct methods, and solutions are
only possible in very simple situations. The quantum
equivalent of the Fokker-Planck equation is the quantum-
mechanical master equation, but it is not normally derived
from a quantum Langevin equation, and the precise
equivalence—though there clearly is some equivalence—has
remained obscure.

In this paper I intend to show how such an equivalence
may be set up, in at least the most commonly studied kind
of quantum noise system: a system with a few degrees of
freedom, coupled to a bath of harmonic oscillators.

2. Derivation of the quantum Langevin equation
The model consists of some unspecified system having a
small number of degrees of freedom and coupled to a “heat
bath” consisting of a large number of harmonic oscillators
with a wide range of frequencies. The bath operators are
called p(w) and ¢g(w), and the system operators Z. The
Hamiltonian for the interacting system and bath is

H=H, + % f du{[pHw) — k(@XT + w'glw)). 5}
0

Here X is a particular system operator and «(w) is a smooth

function of . For simplicity a continuum of frequencies has

been assumed from the beginning. It should be noted that by

introducing Fourier-transform variables 127
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A(t, x) = V2/x f dwg(w, )cos(wx/c),
0

2)
k(x) = V2 f dwk(w)cos(wx/c),
0
one may write a Lagrangian for (1),
L=LZ)+ % I dxtd(t, x)° = 8, A, 01}
d A ,
+X J(: xX(x)A(2, x) 3)

which is the Lagrangian for a point system interacting with a
one-sided one-dimensional electromagnetic field (essentially
a transmission line) by means of a coupling function «(x),
which will be significant only near x = 0 if x(w) is sufficiently
smooth. The technique for turning the equations of motion
arising from (1) into quantum Langevin equations is almost
standard {5]—solve for the field A(¢, x) in terms of initial
conditions at time ¢, in the remote past, and substitute into
the equations of motion for the system operators. The
resulting equation of motion, in the limit that «(w) is actually
a constant, i.e.,

k(@) =2flm,  k(x) = 2Vfeb(x), @
is
V=2 Hy, Y1452 I UX - 27,0, Y1) )
i i . — .
= 5 [Hay Y1+ 25 /X ~ 2Vfed, 0, X, Y1L, 6)

and here Y is an arbitrary system operator, while

1 o0
A, () = (2mo) 2 f dolg(w, ty)cosw(t — 1))
0
+ o ' pw, t)sina(t — 1)), )]
X= % [H,, Y], (8)

and the last equation is obvious from (6). At first glance (5)
and (6) appear to be inequivalent, but in the derivation it
becomes clear that they are equivalent if the system and the
bath represent independent degrees of freedom; i.e., if for all
Y(2)

[Y(D), g(w, D] = [Y(1), pw, D] = 0. 9
To obtain the more usual form of quantum Langevin

equation, consider the case where

2

D
H, ==—+Vx),
S 2m (10)

X =x,

where p and x obey canonical commutation relations. One
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soon derives

X = p/m,

p=—V(x)—fp/m+E(z),} (an
where

E(t) = 2Vfed, (0). (12)
One also has the commutation relation

(4,0, 4,0 = % % 8~ 1), (13)

and, if the bath density matrix is thermal with temperature T
at time #,, then

([E(), Et"),)
= fl'[f dwwcoth(hw/2kT)cosw(t ~ '), (14)
T Yo

where the average is over the bath density matrix. The
quantum-mechanical Langevin equation (11), with E(¢)
specified by (12)-(14), represents a generally accepted
concept of what a quantum-mechanical Langevin equation
should be. This equation has quite a lengthy history.
Senitzky [6] was apparently the first to propose it, and it was
rather rigorously derived from the same kind of basis as |
have presented by Ullersma [7] and by Ford, Kac, and
Mazur [8]. The most recent significant contribution to its
development was by Benguria and Kac [9]. These authors
were able to show that the quantum Gaussian nature of E(f)
and the relations (13) and (14) would guarantee that, in the
low-friction limit, the system density matrix approached the
appropriate Boltzmann distribution over energy levels for a
restricted class of potentials chosen for their mathematical
tractability. Their method and result are correct, but perhaps
a little remote from the way such problems are usually
tackled in practice.

The most thorough bibliographical analysis of this subject
has been undertaken by Dekker [10] in the more limited
context of the damped harmonic oscillator. Caldeira and
Leggett [11] have also summarized the history, and make the
comment that “the general question of the validity of the
‘quantum Langevin equation’ outside the especial case of the
harmonic oscillator is a very open one.”

The aim of this paper is to settle the “open questions™ of
the validity of the quantum Langevin equation by showing
that it leads directly to a large number of well-attested
results, in particular in the field of quantum optics but in
other fields as well.

3. Preservation of commutation relations

One of the perennial questions which arise in quantum
damping and noise equations is the question of the
preservation of commutation relations. Quantum mechanics
only allows a unitary evolution of Heisenberg operators, so
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the form of the equal-time commutation relations of the
operators Y() must be invariant in time. The most obvious
example of this fact is that of the canonical commutation
relations [x(¢), p(£)] = ih, but the requirement is in fact far
more general. It was very early realized that a damping
equation without noise would lead to the decay of the
canonical commutation relations, and the solution to this
phenomenon was proved by the choice of an operator noise
with the correct commutation relations. [The choice (13),
now considered correct, was not arrived at without some
controversy.] Nevertheless, to my knowledge the only
explicit proofs of the result are for the very simple case of the
harmonic oscillator, and so far no general proof has been
given. In this section I shall prove the result in general.

An intermediate step in the derivation of the quantum
Langevin equation (5), (6) is the equation of motion

Y= [H Y]

>~

+ Z—Ifl_j(: du(lY, p(w) — k(W)X 1,, k(w)X] (15)

which can be written

Y= é [Hsys - ’[ dw<x(w)p(w)X - % K(w)X2>’ Y]

provided p(w, {) commutes with all Y(¢). This is, of course,
true, because p(w, £) and Y(¢) represent canonical operators
for different degrees of freedom, and their equal-time
commutator must vanish. Thus the equation of motion for
all operators Y is unitary, and hence all commutation
relations between different Y are preserved.

However, as a proof this begs the question. The original
Hamiltonian (1) obviously defines a unitary evolution, and
thus, by construction, commutation relations must be
preserved. What we really want to prove is the following: Let
us suppose we are given

(16)

1. The quantum Langevin equation in the form (6), in
which A, (¢) is an operator function satisfying the
commutation relation (13).

2. The initial-condition commutation relation

[4,.0), Y(£)] = 0. 17)

Condition (17) is physically reasonable. It corresponds to a
situation in which the system and the noise are uncoupled
until time ¢, and therefore the system operators at that time
are independent of the noise. [Alternatively, from the point
of view of the Hamiltonian (1), the noise is defined in terms
of the bath operators at time ¢,, which commute with the
system operators at the same time.]

Given these two conditions, can it be proven that the (1)
which arise as solutions of the quantum Langevin equation
with initial conditions at ¢, continue to satisfy the condition
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of preservation of commutation relations? The method of
proof depends on reconstructing the p(w, f) from the noise
and the initial conditions on the Y(¢), and hence showing
that evolution in the form (16) is unitary. In order to avoid
ambiguities it is necessary to use a «(w) which is not
constant, so that «(x) is not the singular delta function of (4),
but some close approximation to it. The proof is valid for
k(x) as close to a delta function as we please, however.
Under these circumstances, the quantum Langevin

equation takes the form

. i
Y= 7 (H,,, Y] - I

X [X, [Y, £ - f St = tH)X@)Hdy - fit — zO)X(tO)] }

X [[X, Y), &0 - f fe = )X@dr ~ fie - lo)X(lo)] ,

(18)

in which
=i f * duxte) Jhar2

X [—a(w)(t)e ™™ + a(w) (1) ] (19)
and
f) = j(: ) dwr(w)* cos(w!), 20
and under these conditions
(50, ) = i 2 1= 0, ey
Now we need the relation
Jow dox(w)p(w, 1) = &(t) — j’: X(t) % S = tHdt, (22)

which can be proved by solving the equations of motion for
p(w, 1), g(w, t) arising from the Hamiltonian (1). We can
derive the quantum Langevin equation by substituting
Equation (22) into (16).

Now turn this round the other way. Assume that we have
the quantum Langevin equation and £(¢): Let us define
5 dex(w)p(w, £) by (22). If this expression is to commute
with Y(¢), then from (22) we can see that this is equivalent to
the requirement

' d
[Y(z), 8§ - I X(t') ‘—z,;f(t - t’)dt’] =0, 23)
0

Let us prove a slightly stronger result. Assume that for all s

and all usuch thatr =z u = ¢, 129
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[Y(u), &s) — f ar’x(’) %f(s - t’)] =0 (24)

for all system operators Y{(). Then we want to show that

t+dt

[Y(l + db), £(s) —

0

ar’xg’) %f(s - t')} = 0. (25)

That is, if the relation (25) is true in the interval t = u = Lo
then it is also true just outside the upper end of the interval,
and consequently is true for all 7 = £,. Now (25) is equivalent
to

[Y‘(n, i - [ dxe) < s - z')]

= [¥0, X1 & /(s = 0. 26)

We substitute for Y(¢) using (18) and do a partial integration,
which brings the left-hand side of (26) into the form

i
[; (Hyeo Y]
. 4 d
—ﬁ[x,[xs(z)— f dt’X(t’)Ef(t—t’)—f(O)X(t)U,

&) ~ f dr X(t’) d%f(s - t’)]- @7

Because (25) is true for all system operators, we can reduce
27 to

i

' d
5 [X, [Y, [s(z) - J,; dar' X’ Ef(l —-t'),

Ks) - f dt’X(t’);l%f(s—t')]”- (28)

The innermost commutator is very simple—using (24), it
expands to

(&0, &(5)]

—f dt’f ar'f (e — 1) (s — "X, X(t")

- f dar” f a’'f'(¢ — ) f (s — "X, Xt")

+ f dr’ f ar’f (e — U)f(s = X", X"l 29)

The integrands are all the same, and the domains of
integration of the first two integrals add up to that of the
third, so the last three terms all cancel out, leaving only the
first, which is a nonoperator quantity given by (21).
Simplifying, we find that (28) is equal to the right-hand side
of (26), which is what we wanted to prove.

Thus, assuming (24) for ¢ = u = ¢, implies the truth of
(24) for all ¢. Setting u = ¢, we see that (24) becomes in that
case simply [£(s), Y{(z,)] = 0, which is true by hypothesis.
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In summary, the quantum Langevin equation and
[£(s), Y(£,)] = O lead to the conclusion that [ dwk(w)p(w, £)
always commutes with all system operators, and hence that
the quantum Langevin is expressible in terms of a
commutator, which represents a unitary evolution and thus
preserves the commutation relations.

4. The adjoint equation

In classical physics, the derivation of a Fokker-Planck
equation equivalent to the classical version of the Langevin
equations (11) can be done directly via stochastic differential
equation theory, using the fact that classically E(¢) is delta-
correlated:

(E(MEE")) = 2fkTxd(t — t'). (30)

However, we know that physically the noise is not delta-
correlated but merely has a short correlation time. In this
case, the equation for a distribution function P(x, p, t) as a
function of time is Kubo’s stochastic Liouville equation
3,11, 12]
w__a(r

= £ p> + 9 (V'(x) + fp/m — E®)P), (3D
m ap

a ox
which is exactly equivalent to the equations (11) provided
the fluctuating E(¢) is not too singular. In the limit that E(7)
approaches white noise, one can show that the average of
P(x, p, 1) over E(t) obeys a Fokker-Planck equation. In order
to carry out this kind of program quantum-mechanically we
need an analog of the stochastic Liouville equation. The
derivation of this analogous equation does not come from
the equations in the form (11), but rather from the equations
in the form (6), which are linear equations for an arbitrary
operator Y. [In fact, the same is true classically—the
stochastic Liouville equation is derivable from the equation
for an arbitrary function Y(x, p) of x and p rather than from
the equations for x and p themselves.] We assume that the
bath and system are initially independent; hence the density
operator in the Heisenberg picture is p., ® pp. Now let ¥(7)
be an arbitrary system operator in the Heisenberg picture,
and Y a Schrodinger-picture representation of the same
operator. Then we can consistently define a quantity u(f) by

TrS{Y(t)pSys ® pg} = Tr{Yu()lpg, (32)

if the quality is true for all operators (i.c., a complete set)
Y and Y{(¢). From (32), we get

TrE(O)Y()p,, ® o} = ENTrd Y#(l)}pg,} 33)
Tr{Y(DE(t)pgy, ® pp} = Trf Yu(}E(D)ps,

and noting that

Tr{ Yoy, ® g} = Tr{Yi(0)}pg, (34)
we derive from (5) the adjoint equation

1) = (Hyy 0] + 55 LK = B, WO X, (9)
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which is what we want. Clearly, the Schrédinger-picture-
system density matrix is given by

ps(t) = Trg{u(tpg} = (u(®)).

Thus, u(?) is a kind of quantum stochastic density matrix in
which the quantity u(?) is a function of the operator quantity
E(1), the impressed quantum noise.

(36)

5. A commuting representation of quantum noise
Rather miraculously, the operator nature of E(f) can be
almost completely eliminated. From (35) we can see that
E{(z) only arises as an anticommutator. If we define an
operator o) by

a(Du(t) = 5 [EQ), ), (37)
then, in fact,
a()alt’) = at")alt), (38)

a fact that arises from the c-number nature of the
commutator (27). The multiplication a(f)a(¢’) is defined by
(37) as associative, so that a(¢) is in fact equivalent to a
c-number random function. The actual statistics of a(?)
depend on the density matrix of the bath: In the case where
this is thermal, (a(f)a(t’)) is given by the right-hand side of
(14).

This means that we can write the adjoint equation in the
form

(t) = Aglt) + A,adO)ul2),

where 4, and A4, are linear operators in the system space and
are defined by

(39

Aglt) = 5 (H w01 + 55 1L 10,1, X, “

Al = 51X, O]

We can now look at the adjoint equation from a number of
points of view. It can be used directly in some simple
situations, for example, a two-level atom interacting with a
one-dimensional electromagnetic field. It is even possible to
use ordinary stochastic methods to simulate this adjoint
equation numerically. By doing this, it is possible to analyze
the influence of an incoming squeezed-light field coming
from a degenerate parametric amplifier. The detailed results
will be published elsewhere.'

It is also possible to employ a number of approximation
methods, the subject of the remainder of this paper.

6. The Wigner function and the quasiclassical
Langevin equation

The Wigner function is one of many quasiprobabilities
which enable one to represent quantum mechanics in a form

'A. S. Parkins and C. W. Gardiner, “Finite Bandwidth Effects in the Inhibition of
Atomic Phase Delays by Squeezed Light,” to be published.
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rather closer to classical physics. One can define a c-number
distribution function over all canonical variables such that
the quantum-mechanical averages of symmetrically ordered
products of quantum operators are given by the classical
averages over the corresponding variables with respect to this
c-number distribution function, known as the Wigner
function. It can be shown that the Wigner function need not,
however, be positive, and that not all normalizable functions
are admissible as Wigner functions.

Suppose the Wigner function corresponding to u(?) is
W(x, p, 1). Then, for example, the symmetrized average of xp
is given by

Tr, b5 (4 + pou()} = f dx f dpxpWix, p, ). (41)
The equation of motion for the Wigner function, in the case

where H,, is (12), is derived by the substitution

ih d
pult) — <17 iy 5{) Wix, p, 1),

ih o

w)p — <p + > 5() Wix, p, D),
i | (42)
ih 8

xu(t) — <x + 5 5}) Wix, p, D),

whx — (x - % %) Wix, p, )

into the adjoint equation. The result is

Q’/_V_ —ig ﬁ_ ’ _
at {6xm+6p[V(x)+fp/m a(t)]}W

© . 2n 2n+1
ih d
+ —_—
{n§1 <2 > aX2n+l
There are a number of situations in which the second line
vanishes or is negligible:

V2n+l(x)} W (43)

. f VMx)=Ax+ Bx?% i.e., we are dealing with a harmonic
oscillator, a linear potential, or a free particle.

2. Ifh—0.

3. If f— oo: the large-friction case. In this case a(f) also
becomes larger, and this represents the dominant noise
term. The last line in (43) is a kind of noise, which is
independent of fand is then presumably negligible in this
limit. (This argument certainly lacks rigor, but can
probably be made rigorous.)

In all these cases, we are left with a conventional stochastic
Liouville equation for the Wigner function, equivalent to the
classical Langevin equation

(44)

X = p/m,
p=-V'(x) - fp/m + aft), } 131
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in which, however, the noise spectrum is given by the right-
hand side of (14). This equation has been called the
quasiclassical Langevin equation by Schmid [13]. It has been
used by Koch, van Harlingen, and Clarke [14] to analyze
(significantly, in the high-friction limit) their experiments on
quantum noise, and has been used extensively in
superconductivity theory. It is therefore respectable, but its
validity is limited. In fact, there does exist a body of
knowledge called “stochastic electrodynamics,” in which
various authors [15] have built up a theory in which a
classical particle interacts with a random EM field whose
statistics are chosen to give a Planck spectrum—and this
describes precisely the nature of (44). Exact agreement
between stochastic electrodynamics and quantum theory is
found for assemblies of harmonic oscillators and for free
particles. From my point of view this is not surprising—but
the terms in the second line of (43) will make their presence
felt in all other cases, and stochastic electrodynamics cannot
be a valid representation of reality for general situations. (In
fact, a three-dimensional version of this theory gives SED
exactly in the harmonic limit.)

7. Master equations

The adjoint equation in the form (39), (40) immediately
brings to mind van Kampen’s cuamulant expansion for linear
stochastic differential equations [3, 12]. In the limit of short
correlation time, an equation can be derived for

ps(?) = (u(?)), in the form

ps(t) = Aops(t)

+ f drA,e" 4,6 (Dl — 7))p40), (45)
()

which is valid in the case where || 4, || [| «[ 7, is small. Here 7,
is the correlation time of a(?), and || 4, and || «| are
measures of the “size” of these two operators. The relevant
correlation time is the thermal correlation time 7., which is
given by the asymptotic form of the correlation function (14)
of E(1), that is,

4=k T 27kT |t = t'
EwEe) ~ L exp(— e '>, (46)
giving a thermal correlation time
10 = h/2=kT 47)

as first noted by Ullersma [7]. The value of || aj is given by
the square root of the coefficient of the exponential in the
asymptotic form, i.e.,

lal = 2xkTfh. (48)

To estimate the size of the operator 4, is then all that
remains. If we are dealing with a particle in a potential well,
as in Equation (10), then the operator 4, is given by

4 =212 (49)
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If we are near thermal equilibrium, the p dependence of u(f)
is exp(~p*/2mkT), so we can estimate

EA R &
Putting these together gives a condition for the validity of
(45),

hfim <« kT, 1)
which is equivalent to

T K T, (52)
where

75 is the damping constant of the system = m/f.
7 is the thermal correlation time of E(2). (53)

These are admittedly rather crude estimates, but should
suffice for our purposes. The condition (52) is in the end
rather reasonable—it simply requires that the correlation
time of the noise be much less than the typical time scale of
the damped motion of the system. Two cases can now be
distinguished.

8. The quantum optical case
We resolve operators in (9) into eigenoperators of H,

ys?

namely

X=3 X+ X0, (54)
where

[H,, X;] = the, X;. (55)

(This is always possible if the eigenvectors of H, , form a
complete set.) If we now consider the case when all the w,,
are much larger than f(as is always the case in quantum
optics), then we can omit the f~dependent term in A4,

[as defined in (40)] in the terms *'" in (45), and thus make
the replacement

etAorX: — e:;iwmrX—;:neonr. (56)

Using the correlation function (14), one finds, after some
labor, the conventional quantum optical master equation

6D = =1 (H,p o5

TW,,

2 F@n) + Delw,)losX, = X pg, X]

= 2 57 Nap(@,VlosX , = X pg, X]

' " dun) (o 1 .-
+3 2P | 2 (70 + it 42 - 4 1
] ® dox(w)’ 1 P
ks f w‘:‘—‘_“’fﬂ-(mw)q)ups, Xy 4 XL, X1,

(57
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where NM(w) = [exp(w/kT) — 1]7". [Strictly, we can only
derive from the quantum Langevin equation (6) an equation
like (57) in which «(w) = 2f/x. However, similar analysis in
the case where «(w) is frequency-dependent leads to a friction
term of the kind [*_ f(t — ¢')X(¢")dt’, and a corresponding
noise term which in turn leads to (57)]. Only the second two
terms in (57) represent damping. The first term is of course
the systematic motion, while the two final terms are a
combination of Lamb shift and Stark shift terms.

This kind of master equation is capable of describing
almost all phenomena which can be experienced in quantum
optics, although it is not often written down in precisely the
form I have given. As used in quantum optics, it is basically
due to Louisell [16]. Usually the rotating wave
approximation is also made; it involves the following:

1. Define an interaction picture system density operator by

o) = exp <é Hsyst>ps(t) exp <-é Hsyst>. (58)
Note that the interaction picture master equation no
longer has a term corresponding to the first line in (57),
and use the relation (55) to commute exp(xi/hH )
with X This leaves certain terms with factors like
expli(w,, — w,)t]—a very rapid time variation on the time
scale of atomic decays, which allows us to negiect them
completely.

2. The Lamb and Stark shift terms are dropped, since they
are very small, leaving the interaction picture master

equation in the form

h=2 S @) + ke, QX 0, X, = 0 XX,
- XX p)
+ § % Nw, ¥, QX o X, ~ 0 X X0,
- X Xro). (59

In this form, the master equation describes transitions in
an atomic system in a radiation field. Adaptations to
include small additional nonlinearities and driving fields
are commonly made by adding terms as follows.

& Driving fields—Inputs and outputs

It is very common to consider a situation where a laser beam
is incident on an atom. This means that the heat bath (in
this case the electromagnetic field) is no longer characterized
as having thermal statistics, but has as well some coherent
excitation in a small range of modes. It is helpful to go back
to the transmission line model of Section 2, given by the
Lagrangian (3), and to view this as a one-dimensional model
of electrodynamics. After some standard wave equation
theory, it is possible to show that the field A(z, x) is given

(in the limit that 7, — ) by
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A, x) = A, (t + x/c) + A, (t — x/c)

1 00
-3 f dre(r)X(t — |7 = x/c|), (60)
and it is clear that the three terms correspond to incoming,
reflected, and radiated fields. By solving the equations in
terms of a final condition ¢, in the remote future, one can
similarly construct an “out” field in terms of which

AL, x) = At + x/c) + A (t — x[0)
+ % f drx(t)X(t + |7 ~ x/cl), 61)

and it is not difficult to see that in the region where «(x) is
zero, i.e., away from the region of interaction between field

and system,

A(L, X) = At + x/c) + At = x/c) (62)
and

A, ()= A0 + % f dri(er)X(t — 7). (63)

From all this we see that the damping-noise interpretation
also has an “input-output” interpretation. The quantum
Langevin equations (5) and (6) can also be interpreted as
corresponding to a system driven by the incoming “in” field,
and losing energy via radiation damping into the “out” field.

From this point of view, the inclusion of a coherent
driving field is no problem, since we need only specify the
“in” field. One simply makes the requirement

(4i,(0)) = a, (), (64)
which gives the mean time-dependent excitation. The
statistics of any fluctuations can be specified by setting
E() = 2Vfeld,, () — a,0), (65)

and specifying the relevant correlation functions of E(¢). For
example, a coherent driving field superimposed on a thermal
background is obtained by taking the correlation function
(14) for E(?) as defined by (65). The quantum-mechanical
Langevin equation corresponding to (6) becomes

2ife
h

i .
57 UX = B, X, Y1L,

i
;1- [Hsys’ Y] -
+

4, (OIX, Y]
(66)

and the master equations (57), (59) acquire an extra term,

2ivfe
f

a,,(O[X, o). (67)

This corresponds to simply adding to the system

Hamiltonian a corresponding driving term. 133
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o Small anharmonicity

It is common in quantum optics to consider the system as
consisting of a single mode of the electromagnetic field
inside a cavity, which communicates with the
electromagnetic bath and driving modes through an almost-
perfect mirror. The system would then be a perfect harmonic
oscillator; however, one also introduces some kind of weak
nonlinearity via a nonlinear medium within the cavity. It is
thus possible to write

Hy,=H,+H, (68)

sys

where H , is very small compared to Hsys How does this
affect the analy51s? Typically the effects of H_, are of the
same order of magnitude as the damping, so /{; can be
neglected in all the procedures leading to (57), (59). In

particular this means that

1. X, are eigenoperators of H.
2. w,, are the transition frequencies of H.

This means that the relevant interaction picture is defined in
terms of H,, so that (57) is modified simply by adding a term

— UHy o) (69)

Notice that there is an interesting transition region between
small nonlinearity, which has this effect, and large
nonlinearity, which modifies the whole master equation by
modifying the relevant energy levels.

e Stationary solution— Boltzmann distribution

If we neglect the Stark and Lamb shift terms in the master

equation (57), the stationary solution is obviously the

Boltzmann distribution, for the equations (57) necessarily

imply that

exp(—H,,/kT)X7, 70)
= exp(thw, /kT)X exp(—H, /kT),

sys

from which, using the definition of N in (57), it is obvious
that the corresponding terms in the two summations cancel
each other. A general and correct inclusion of the effects of
the Lamb and Stark shifts is more tricky, but cannot alter
this conclusion in the lowest order. We comment now on
the result of Benguria and Kac [9] that the Boltzmann
distribution solution for the stationary state requires
quantum Gaussian statistics for £(¢) in the case (as here)
where [E(t,), E(t,)] is a c-number. My admittedly much less
rigorous but certainly far more physically transparent result
does not seem to require Gaussian statistics, since only the
correlation functions are involved. This is much the same as
in the classical case, for there the proof that there is a white-
noise limit of a non-white-noise stochastic Liouville equation
that does not require a Gaussian physical noise.
Nevertheless, the resultant Fokker-Planck equation is
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exactly equivalent to a white-noise stochastic differential
equation with Gaussian noise.

9. The quantum Brownian motion case

It may be that A is very small; that is, exp(4,f) does not
differ significantly from 1 over a correlation time of a(?). In
that case we can drop the exponential terms in (57), and
there is no longer any need to introduce X, operators. The
master equation becomes

P [H sys? ps] + 55 2h [[fX ps].p X]

JkT

+ 57 [1X pgl X] 1

which is a form that has been proposed by many authors
[17]. It can also be viewed as a high-temperature limit of the
quantum optical master equation.

The assumption that leads to (71) requires that all
eigenfrequencies w,, be much less than the correlation time
of E(#), which is easily shown to be equivalent to

hw,, < kT. (72)

Notice that this condition and the condition (51) for the
validity of the method are independent. This means that
both weak and strong damping can be treated by this
equation, unlike the quantum optical master equation,
which requires weak damping.

e The small hz case
If we consider the function

Pu, z) =

we find that the master equation can be written as a quite
simple partial differential equation,

oP i & i 1 )
6t_1m3uaz h<V<u+2hZ

et

If 4z is considered small, we can approximate

(u+3 hzlplu — 3 hz) (73)

— fkTz 2} (74)

Vu + 5 hz) — Viu — 5 hz) = hzV'(u). (75)
In this case, one can compute the stationary solution to be

14
P(u, z) = exp{— —k(%) - kazz}. (76)

Notice that this gives an almost diagonal intensity matrix at
any finite temperature, since the exponential fall-off away
from the diagonal takes place on a distance scale of the order
of AV2mkT. It is interesting to note that this is quite
different from the usual dependence on Planck’s constant
which arises from the WKB approximation applied to a
system without noise and damping.
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Of course this result is really a purely classical result, in
the sense that the corresponding Wigner function is just the
classical canonical distribution and does not involve Planck’s
constant. We must go to higher orders to see genuine
quantum effects.

e Higher-order corrections
By taking (75) to the next order in Planck’s constant, we
arrive at the equation

2 2

aP = JL a_ — — h_ "
a5 lm 3002 iV (u)z 12 Vo (wyz®
fz 21
5 + fkTz [ a7

This equation can be solved by approximation methods. As
an example, consider the high friction limit, f/— . One can
use the standard adiabatic elimination techniques [3] to find
an equation for

P = Pu, 0) = (u|lp|u),

that is, for the probability distribution. The equation derived
by this method is

(78)

P m » Vi) | kT a] _
N A Nl v —
3 fla (1 +mf ()][ mauP
W om o "

T 2430 ad 4 (u)P)}> (79
This equation is a quantum-corrected version of the
corrected Smoluchowski equation [3]. In the case of a
sinusoidal potential
W) = Vycos(aw), (80)
the stationary solution is approximately given by
P, = exp(-U(w)/kT), (81)
with

4 2
ea |4 [V,
Uu) = V,ycos(at) [1 - {5 <k—;> cos” (at)
2
Vo
<kT>cos(au) [4 (kT) - l)H (82)

and
e = H)24, (83)

When a Josephson-junction model is used, the parameters
are

Vo =1,2e, a = 2e/hC,

T=10"deg K, 1I,=10 pA, (84)
fim = (RCY™, M=,

R =200, C=47x10"F
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which gives

exSX 107, V,=15x10% (85)

Substituted into the result for the effective potential (82), this
gives a noticeable correction to the simple Boltzmann result,
which might perhaps be observable. The full analysis of the
predictions of this master equation are still in progress, and
will be published elsewhere.’

o Damping of quantum coherence

Savage and Walls [18] have used the quantum Brownian
master equation to study the free particle and the harmonic
oscillator, and have shown that the effect of damping as
introduced by this equation very rapidly reduces the density
matrix corresponding to a macroscopic superposition of
quantum states to a diagonal density matrix corresponding
to a mixed state. No precise comparison has been made
between their results and experiment. It should be noted that
their comparison between electron diffraction and the
predictions of their calculations is flawed by a numerical
error—in fact, redoing their arithmetic, I find that the
observed diffraction patterns, which are not absolutely sharp,
could well be predicted by quite reasonable values of the
parameters.

10. Conclusions

What has been achieved here? First, we have a full link-up
between the master equation and the quantum Langevin
methods in quantum noise theory. Of particular utility is the
new form of the adjoint equation (39). This provides, via the
acknowledgement that «(¢) is essentially a c-number
quantity, a link with the methods of classical stochastics. A
second achievement is the recognition that stochastic
electrodynamics arises from the truncation (43). Thus the
successes of SED are bound up in the special nature of the
problems tackled. What would SED do wrongly? This
becomes clear when we realize that not including the last
terms amounts to treating the system classically. By
following van Kampen’s methods with this truncated form
we would not find the frequencies w,, turning up (the
transition frequencies), but would find rather that the
relevant frequencies were the classical frequencies. Only for
the harmonic oscillator do classical and quantum
frequencies coincide.

A third result is the elucidation of the quasiclassical
Langevin equation as having the same status as SED, except
that it may be valid in a high friction limit. Finally, we
emphasize that the methods are more than merely elegant
formalism. By using the adjoint equation, one can compute
correlations between noise and system variables—a result of
some importance if the noise source is a squeezed light beam

2C. W. Gardiner and M. L. Steyn-Ross, “Quantum Corrections to the Kramers
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[19]. Simulations are also possible. All the methods are valid
for such nonthermal heat baths—only the details of the
particular bath correlation functions need changing. Finally,
to my knowledge, this is the first time that the possibility of
seriously analyzing the quantum Brownian motion master
equation for situations which are neither harmonic nor free
has been proposed.
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