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The  quantum  Langevin  equation of Ford,  Kac, 
and Marur is rederived  and shown  to be 
equivalent  to an adjoint  equation.  This latter  can 
be  handled by  means of van  Kampen’s  cumulant 
expansion  to  yield  derivations of the 
quasiclassical  Langevin  equation,  stochastic 
electrodynamics,  quantum  optical,  and  quantum 
Brownian  motion  master  equations  (under 
appropriate  conditions).  The  result of Benguria 
and  Kac-that  the  quantum  Langevin  equation 
yields  the  Boltzmann  distribution  over  energy 
levels  in thermodynamic  equilibrium-is  also 
verified. 

1. Introduction 
The successful invention of the “Langevin equation” by 
Langevin as  long ago as 1908 [ I ]  and  the subsequent 
development of the physics and  mathematics of the 
Langevin equation since then [2-31 into a very useful 
representation  of  a variety of noise-related problems  has led 
many  authors  to propose quantum-mechanical versions [4]. 
There is no  general  consensus, however, on what  constitutes 
the  “quantum Langevin equation”-as always in  quantum 
mechanics, the subtlety of operator  equations leads to a 
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number of  interpretations. The classical Langevin equation 
coexists with the Fokker-Planck equation:  There is an exact 
equivalence between these  two formulations of classical 
noise theory, but in quantum noise theory there is at present 
no such  duality. True,  quantum Langevin equations do 
exist, but  are solved by direct  methods, and solutions are 
only possible in very simple  situations. The  quantum 
equivalent  of the Fokker-Planck equation is the  quantum- 
mechanical master  equation,  but it is not normally  derived 
from a quantum Langevin equation,  and  the precise 
equivalence-though there clearly is some equivalence-has 
remained obscure. 

In this  paper I intend  to show  how  such an equivalence 
may be set up, in  at least the most commonly studied  kind 
of quantum noise system: a system with a few degrees of 
freedom,  coupled to a bath of harmonic oscillators. 

2. Derivation of the  quantum  Langevin  equation 
The model consists of some unspecified system having  a 
small number of degrees of freedom and coupled to a  “heat 
bath” consisting  of  a large number of harmonic oscillators 
with a wide range of frequencies. The bath  operators are 
called p(w) and q(w), and  the system operators 2. The 
Hamiltonian for the interacting system and  bath is 

H = Hs,, + - dw{[p(w)  - K(w)XJ’ + w24(w)’) .  ; l- (1) 

Here X is a  particular system operator  and K ( W )  is a smooth 
function  of w. For simplicity a continuum of frequencies  has 
been assumed from  the beginning. It should be noted that by 
introducing Fourier-transform variables 127 
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one may  write a Lagrangian for ( I ) ,  

L = L,,,(Z) + lffi dx(k(t, X? - C ~ [ ~ , A ( Z ,  X)]’) 

which is the Lagrangian for a point system interacting with a 
one-sided one-dimensional electromagnetic field  (essentially 
a transmission line) by means of a coupling function K(x), 
which will be  significant only near x = 0 if K ( O )  is sufficiently 
smooth. The technique for turning the equations of motion 
arising from ( 1 )  into quantum Langevin equations is almost 
standard [5]-solve for the field A(t, x) in terms of initial 
conditions at time to in the remote past, and substitute into 
the equations of motion for  the system operators. The 
resulting equation of motion, in the limit that K ( W )  is actually 
a constant, i.e., 

and here Y is an arbitrary system operator, while 

Ai&) = (2n -~) -~  1 dw(q(w, t,)cos~(t - to) 

+ w ” ~ ( w ,  to)sinw(t - to)), 

1 -  

x = - [H,,, YI, 
. i  

h 

and  the last equation is obvious from (6). At  first  glance ( 5 )  
and (6) appear to be inequivalent, but in the derivation it 
becomes clear that they are equivalent if the system and the 
bath represent independent degrees  of freedom; i.e.,  if for  all 
Y(t) 

[Y(t), d w ,  0 1  = [Y(t), P(w,  111 = 0. (9) 

To obtain the more usual form of quantum Langevin 
equation, consider the case  where 

128 where p and x obey canonical commutation relations. One 
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soon derives 

x = p/m, 

p = - V(x) - fp/m + E(t), 

where 

One also  has the  commutation relation 

and, if the bath density matrix is thermal with temperature T 
at time to, then 

([E(t) ,  W ) I + )  

= Yl f f i  n- dwwcoth(hw/2kT)cosw(t - t’), (14) 

where the average  is over the bath density matrix. The 
quantum-mechanical Langevin equation (1 I), with E(t) 
specified  by ( 12)-( 14), represents a generally  accepted 
concept of  what a quantum-mechanical Langevin equation 
should be. This equation has quite a lengthy  history. 
Senitzky [6] was apparently the first to propose it, and  it was 
rather rigorously  derived from the same kind of  basis as I 
have presented by Ullersma [7] and by Ford, Kac, and 
Mazur [8]. The most recent significant contribution to its 
development was  by Benguria and Kac [9]. These authors 
were able to show that the  quantum Gaussian nature of E(t) 
and  the relations ( 1  3) and ( 1  4) would guarantee that, in the 
low-friction limit, the system density matrix approached the 
appropriate Boltzmann distribution over energy  levels  for a 
restricted  class  of potentials chosen  for their mathematical 
tractability. Their method and result are correct, but perhaps 
a little remote from the way such problems are usually 
tackled in practice. 

has been undertaken by Dekker [ 101 in the more limited 
context of the damped harmonic oscillator. Caldeira and 
Leggett [ 1 1 ] have also summarized the history, and make the 
comment  that  “the general question of the validity  of the 
‘quantum Langevin equation’ outside the especial  case  of the 
harmonic oscillator is a very open one.” 

The aim of this paper is to settle the “open questions” of 
the validity of the  quantum Langevin equation by showing 
that it leads directly to a large number of  well-attested 
results, in particular in the field of quantum optics but in 
other fields  as  well. 

The most thorough bibliographical analysis  of this subject 

3. Preservation of commutation relations 
One of the perennial questions which arise in quantum 
damping and noise equations is the question of the 
preservation of commutation relations. Quantum mechanics 
only  allows a unitary evolution of Heisenberg operators, so 
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the  form of the equal-time commutation relations  of the 
operators Y(t) must be invariant in time.  The  most obvious 
example of this fact is that  of  the canonical commutation 
relations [x@), fit)] = ih, but  the  requirement is in fact far 
more general. It was very early realized that a damping 
equation  without noise would lead to  the decay  of the 
canonical commutation relations, and  the solution to  this 
phenomenon was proved by the choice  of an operator noise 
with the correct commutation relations. [The choice (1 3),  
now  considered  correct, was not arrived at without some 
controversy.] Nevertheless, to  my knowledge the only 
explicit proofs  of the result are  for  the very simple case of the 
harmonic oscillator, and so far no general proof has been 
given. In this section I shall prove the result in general. 

An intermediate  step  in  the derivation  of the  quantum 
Langevin equation (5), (6) is the  equation of motion 

which can  be written 

provided p(w ,  t )  commutes with all Y(t). This is, of  course, 
true, because p(w ,  t )  and Y(t) represent  canonical operators 
for different degrees of  freedom, and their  equal-time 
commutator  must vanish. Thus  the  equation of motion for 
all operators Y is unitary, and hence all commutation 
relations between different Yare preserved. 

However,  as a proof  this begs the question. The original 
Hamiltonian  (1) obviously defines a unitary evolution, and 
thus, by construction,  commutation relations must be 
preserved. What we really want  to prove is the following: Let 
us suppose we are given 

1. The  quantum Langevin equation in the  form (6), in 
which Ai,(t)  is an  operator  function satisfying the 
commutation relation (1 3). 

2. The initial-condition commutation relation 

Condition ( 17) is physically reasonable. It corresponds to a 
situation in which the system and  the noise are uncoupled 
until time to, and therefore the system operators  at  that  time 
are  independent of the noise. [Alternatively, from  the  point 
of view of the  Hamiltonian  (l),  the noise is defined in  terms 
of the bath operators  at  time to, which commute with the 
system operators at  the  same time.] 

Given  these  two conditions,  can it be proven that  the Y(t) 
which arise as  solutions of the  quantum Langevin equation 
with initial conditions  at to continue  to satisfy the  condition 

of  preservation  of commutation relations? The  method of 
proof depends  on reconstructing the p(w ,  t )  from  the noise 
and  the initial conditions  on  the Y(t), and hence  showing 
that evolution in  the  form (16)  is  unitary. In  order  to avoid 
ambiguities it is necessary to use a K(W) which is not 
constant, so that K(X) is not  the singular  delta function of (4), 
but  some close approximation  to it. The proof is valid for 
.(X) as close to a delta function as we please, however. 

Under these  circumstances, the  quantum Langevin 
equation  takes  the  form 

. i  i 
2h y = h w,,, YI - - 

X X, Y, [( t )  - f(t - t')X(t')dt' -f(t - to)X(to) [ [  I' I,] 

'0  I+ 
i i 

2h = h [Hsys, Yl - - 

x [ [ X  Yl, E(t) - J'fU - t')J?(t')dt' - f(t - to)X(to) , 

(18) 
in which 

[( t )  = i im dwK(u) 4- 

X [-a(w)(to)e-iu"-b' + a(w)~(tO)ei"'"'~'] 

and 

f(t) = im dwK(wfCOS(wt), 

and  under these conditions 

[[(t), [(t')] = ih -f(t - t ').  

Now we need the relation 

d 
dt 

which can be proved by solving the  equations of motion for 
p(w,  r) ,  q(w, t )  arising from  the  Hamiltonian (1). We can 
derive the  quantum Langevin equation by substituting 
Equation (22)  into (16). 

the  quantum Langevin equation  and [(t): Let us define 
l r  dwK(w)p(w, t )  by (22).  If this expression is to  commute 
with Y(t), then  from (22)  we can see that  this is  equivalent to 
the  requirement 

Now turn  this  round  the  other way. Assume that we have 

Let us  prove a slightly stronger result. Assume that for all s 
and all u such that t z u 2 to, 129 
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[Vu), Hs) - s’ dt‘X(t‘) 
‘0 

for all system operators Y(t). Then we want to show that 
r+dr [ Y(t + dt), ((s) - s dt’X(t’) 

‘0 

That is, if the relation (25) is true in the interval t 2 u 2 to, 

then it is also true  just outside the  upper  end of the interval, 
and consequently is true for all t 2 to. Now (25) is equivalent 
to 

^ I  

LY( t ) ,  [(s) - J ’ dt‘X(t’) 
‘0 

= [ Y(O> X(0l f ( s  - 0 .  
d 

(26) 

We substitute  for Y(t) using (1 8) and  do a  partial  integration, 
which brings the left-hand  side  of  (26) into  the  form 

Because (25) is true for all system operators, we can reduce 
(27) to 

[(s) - s‘ dt‘X(t‘) 
‘0 

The  innermost  commutator is very simple-using (24),  it 
expands  to 

[E(t), W l  

- s‘ dt’ s‘’ dt”f’(t - t’)f’(s - t”)[X(t’), X(t”)] 
‘0  ‘0 

- s‘ dt“ s’” dt’f’(t - t’)f’(s - t”)[X(t’), X(t”)] 
‘0 ‘0 

+ s‘ dt‘ s‘ dt”j’(t - t’)f’(s - t”)[X(t’) ,  X(t”)].  (29) 
‘0 ‘0 

The integrands are all the same, and  the  domains of 
integration of the first two  integrals add  up  to  that of the 
third, so the last three  terms all cancel out, leaving only the 
first, which is a nonoperator  quantity given by (21). 
Simplifying, we find that (28) is equal  to  the right-hand  side 
of (26), which is what we wanted to prove. 

Thus, assuming  (24)  for t 2 u 2 to implies the  truth of 
(24) for all t. Setting u = to, we see that (24)  becomes in  that 

130 case simply [[(s), Y(t0)] = 0, which is true by hypothesis. 

In summary,  the  quantum Langevin equation  and 
[((s), Y(t,,)] = 0 lead to  the conclusion that J,” dwK(w)p(w, t )  
always commutes with all system operators, and hence that 
the  quantum Langevin is expressible in  terms of  a 
commutator, which represents  a unitary evolution and  thus 
preserves the  commutation relations. 

4. The  adjoint  equation 
In classical physics, the derivation of a  Fokker-Planck 
equation equivalent to  the classical version of the Langevin 
equations (1  1) can be done directly via stochastic differential 
equation theory, using the fact that classically E(t) is  delta- 
correlated: 

(E(t)E(t’)) = 2fkTT6(t - t’). (30) 

However, we know that physically the noise is not delta- 
correlated but merely has  a short correlation time.  In this 
case, the  equation for a  distribution function ox, p ,  t )  as a 
function of time is Kubo’s  stochastic Liouville equation 
[3, 11, 121 

which is exactly equivalent to  the  equations (1  1) provided 
the fluctuating E(t) is not  too singular. In  the limit that E(t) 
approaches white noise, one  can show that  the average of 
P(x, p ,  t )  over E(t) obeys a  Fokker-Planck equation.  In  order 
to carry out  this kind of program quantum-mechanically we 
need an  analog of the stochastic Liouville equation.  The 
derivation of this  analogous equation  does  not  come  from 
the  equations in the form ( 1  l),  but  rather  from  the  equations 
in the  form (6), which are linear equations for an arbitrary 
operator Y. [In  fact, the  same is true classically-the 
stochastic Liouville equation is derivable from  the  equation 
for an  arbitrary  function Y(x, p )  of x and p rather  than  from 
the  equations for x and p themselves.] We assume  that  the 
bath and system are initially independent; hence the density 
operator in  the Heisenberg picture is psys @ pB. Now let Y(t) 
be an  arbitrary system operator in the Heisenberg  picture, 
and Y a  Schrijdinger-picture  representation  of the  same 
operator. Then we can consistently  define a quantity p(t)  by 

Trs{ Y(f)Psyr @ PB) = Trsl Ydt)lpB> (32) 

if the  quality is true for all operators (Le., a  complete set) 
Y and Y(t). From (32), we get 

Trs{E(t)Y(t)p,y, @ = E(t)Trs{ YP(f))PB9 

TrsIY(t)E(f)PSys @ Pa) = Trs{ YdfL(t)jE(t)pB> I (33) 

and  noting  that 

we derive  from ( 5 )  the adjoint equation 

(34) 

(35) 
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which is what we want. Clearly, the Schriidinger-picture- 
system density  matrix is given by 

P&t) = TrB{P(l)PBj E ( d l ) ) .  (36) 

Thus, ~ ( t )  is a kind of quantum stochastic  density  matrix  in 
which the  quantity p(t) is a function of the  operator  quantity 
E(t), the impressed quantum noise. 

5. A commuting  representation of  quantum noise 
Rather miraculously, the  operator  nature of E(t) can be 
almost  completely  eliminated. From (35) we can see that 
E(t) only arises as  an  anticommutator. If we define an 
operator a(t) by 

a( t )P( t )  = W, PW,, (37) 

then, in fact, 

a(t)a(t') = a(t')a(t), (38) 

a fact that arises from  the  c-number  nature of the 
commutator (27). The multiplication c.(t)a(t') is defined by 
(37) as associative, so that a(t) is in fact equivalent to a 
c-number  random function. The  actual statistics  of a(t) 
depend  on  the density  matrix  of the bath: In  the case where 
this is thermal, (a(t)a(t '))  is given by the right-hand  side of 
( 14). 

This  means  that we can write the  adjoint  equation  in  the 
form 

i ( t )  = A& + A , 4 t ) P U ) ,  (39) 

where A, and A ,  are linear operators  in  the system space and 
are defined by 

A,PW = ; [ff,,,, P(0l + 5 r r f x  P(t),l? XI, 
i I 1 (40) 

A,p(t)  = ; [x, PWI. 
I 

We can now look at  the  adjoint  equation  from a number of 
points of view. It can  be used directly in some simple 
situations, for example, a two-level atom interacting with a 
one-dimensional  electromagnetic field. It is even possible to 
use ordinary stochastic methods  to  simulate this adjoint 
equation numerically. By doing  this,  it  is possible to analyze 
the influence  of an  incoming squeezed-light field coming 
from a degenerate parametric amplifier. The detailed results 
will be published elsewhere.' 

It is also possible to employ a number of approximation 
methods, the subject  of the  remainder of this  paper. 

6. The  Wigner  function  and  the  quasiclassical 
Langevin  equation 
The Wigner function is one of many quasiprobabilities 
which enable one to represent quantum mechanics in a form 

Atomic Phase Delays by Squeezed Light," to be published. 
' A. S. Parkins  and C. W. Gardiner, "Finite Bandwidth  Effects  in  the Inhibition of 

rather closer to classical physics. One  can define a c-number 
distribution function over all canonical variables such that 
the  quantum-mechanical averages of  symmetrically  ordered 
products  of quantum operators are given by the classical 
averages over the corresponding variables with respect to this 
c-number  distribution  function, known as  the Wigner 
function. It  can be shown that  the Wigner function need  not, 
however, be positive, and  that  not all normalizable functions 
are admissible as Wigner  functions. 

W(x, p ,  t). Then, for  example, the symmetrized average of xp 
is given by 

Suppose the Wigner function corresponding to p(t)  is 

TrSYS(: @P + Px)P(t)l = J- dx 1; dPXPW(X> P> 0 .  (41) 
-m 

The  equation of motion for the Wigner function,  in  the case 
where H,,, is ( 12), is derived by the substitution 

into  the  adjoint  equation.  The result is 

(43) 

There  are a number of situations  in which the second line 
vanishes or is negligible: 

1. If V(x) = Ax + Bx2; i.e., we are dealing with a harmonic 

2. I fh"f0 .  
3. Iff- m: the large-friction case. In  this case a(t) also 

becomes larger, and  this represents the  dominant noise 
term.  The last line  in (43) is a kind  of noise, which is 
independent  offand is then presumably negligible in this 
limit. (This  argument certainly  lacks rigor, but  can 
probably be made rigorous.) 

oscillator, a linear  potential, or a free particle. 

In all these cases, we are left with a conventional stochastic 
Liouville equation for the Wigner  function,  equivalent to  the 
classical Langevin equation 

x = p/m, 

p = - V'(x)  - fP/m + a@), (44) 
131 
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in  which,  however, the noise spectrum is given  by the right- 
hand side of (14). This equation has been  called the 
quasiclassical  Langevin equation by Schmid [ 131. It  has  been 
used  by Koch, van Harlingen, and Clarke [ 141 to analyze 
(significantly, in the high-friction limit) their experiments on 
quantum noise, and has  been  used  extensively in 
superconductivity theory. It is therefore respectable, but its 
validity  is limited. In fact, there does exist a body  of 
knowledge  called “stochastic electrodynamics,” in which 
various authors [ 151 have built up a theory in which a 
classical particle interacts with a random EM  field  whose 
statistics are chosen to give a Planck  spectrum-and this 
describes  precisely the nature of (44). Exact agreement 
between stochastic electrodynamics and  quantum theory is 
found for  assemblies of harmonic oscillators and for  free 
particles. From my point of  view this is not surprising-but 
the terms in the second line of (43) will make their presence 
felt  in  all other cases, and stochastic electrodynamics cannot 
be a valid representation of  reality  for  general situations. (In 
fact, a three-dimensional version  of this theory gives SED 
exactly  in the harmonic limit.) 

7. Master  equations 
The adjoint equation in the form (39), (40) immediately 
brings to mind van Kampen’s cumulant expansion for linear 
stochastic differential equations [3, 121. In the limit of short 
correlation time, an equation can be derived for 
ps(t) = ( ~ ( f ) ) ,  in the form 

P&) = A,PS(t) 

+ drA,eAO‘A,e-Aor(a(t)(y(t - r))ps(t), (45) 

which  is  valid  in the case  where 11 A ,  11 11 a 11 7, is small. Here 7, 
is the correlation time of a@), and II A ,  II and II a II are 
measures of the “size” of these two operators. The relevant 
correlation time is the thermal correlation time rr, which  is 
given  by the asymptotic form of the correlation function ( 14) 
of E(t),  that is, 

4f7r2k2T2 27rkT It - 2 ’ 1  
(E(t)E(t’)) - -~ h ex(- ),  (46) 

giving a thermal correlation time 

rr = h/27rkT (47) 

as first noted by Ullersma [7]. The value  of 11 a 11 is  given  by 
the square root of the coefficient of the exponential in the 
asymptotic form, i.e., 

llall = 2 7 r k T m  (48) 

To estimate the size  of the operator A ,  is then all that 
remains. If  we are dealing with a particle in a potential well, 
as in Equation (IO), then the operator A ,  is given  by 

i l a  
132 

A ,  = - [x, ] 4 -- - 2h 2 ap* (49) 
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If  we are near thermal equilibrium, the p dependence of ~ ( t )  
is exp(-p2/2mkT), so we can estimate 

1 l l z l l  =m 
Putting these together gives a condition for the validity  of 
(451, 

hfm << kT, (51) 

which  is equivalent to 

?7. << TD, 

where 

rD is the damping constant of the system = m / j  

rT is the thermal correlation time of E(t). (53) 

These are admittedly rather crude estimates, but should 
suffice  for our purposes. The condition (52) is in the  end 
rather reasonable-it simply requires that  the correlation 
time of the noise be much less than  the typical time scale of 
the damped motion of the system. Two cases can now be 
distinguished. 

8. The  quantum  optical case 
We resolve operators in (9)  into eigenoperators of HsYs, 
namely 

x= c c x ‘ ,  + x 2  (54) 
m 

where 

[Hsys, X;] = +hwmXz. ( 5 5 )  

(This is always  possible if the eigenvectors of H,,, form a 
complete set.) If  we  now consider the case  when  all the 0, 
are much larger than f (as is  always the case in quantum 
optics), then we can omit thef-dependent term in A, 
[as defined  in (40)] in the terms euoT in (45), and  thus make 
the replacement 

e * A ~ r ~ +  m e*lu,,,r PmeiAoT. (56) 

Using the correlation function (14), one finds, after some 
labor, the conventional quantum optical master equation 

is(r) = -x w,,, pSl 
i 
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where R(w) = [exp(w/kT) - I]”.  [Strictly, we can only 
derive  from the  quantum Langevin equation ( 6 )  an  equation 
like (57)  in which K ( W )  = 2 8 ~ .  However, similar analysis in 
the case where K ( W )  is frequency-dependent  leads to a friction 
term  of  the kind JLmf(t  - t’)X(t’)dt’ ,  and a corresponding 
noise term which in  turn leads to (57)] .  Only the second two 
terms  in (57)  represent  damping. The first term is of  course 
the systematic motion, while the two final terms  are a 
combination of Lamb shift and Stark shift terms. 

almost all phenomena which can be experienced  in quantum 
optics, although  it  is not often  written down  in precisely the 
form I have given. As used in  quantum optics,  it  is basically 
due  to Louise11 [ 161. Usually the rotating wave 
approximation is also made;  it involves the following: 

1. Define an interaction picture system density operator by 

This kind  of  master equation is  capable of describing 

p,(t)  = exp (f ~ , t ) P ~ ( t )  exp (- f H ~ ~ J ) .  ( 5 8 )  

Note  that  the interaction  picture  master equation  no 
longer  has a term corresponding to  the first line  in (57),  
and use the relation (55) to  commute exp(+i/hHsy,t) 
with X:. This leaves certain terms with factors like 
exp[i(w, - w,)t]-a very rapid time variation on  the  time 
scale of atomic decays, which allows us to neglect them 
completely. 

2. The  Lamb  and  Stark shift terms  are  dropped, since they 
are very small, leaving the interaction  picture  master 
equation in the  form 

KW, - 
P I  = c 2h [Nu,) + 11K(Wm)2(2x,P,x; - p,x;x, 

m 

- X:X,P,) 

+ c - N W , ) K ( W , ) 2 ( 2 x : P , x ,  - P,X,x; 
TU, - 

m 2’ 

- X,X:PI). (59) 

In  this  form,  the  master  equation describes  transitions in 
an  atomic system in a radiation field. Adaptations  to 
include  small additional nonlinearities and driving fields 
are  commonly  made by adding  terms  as follows. 

Drivingjelds-Inputs  and outputs 
It is very common  to consider a situation where a laser beam 
is incident on  an  atom.  This  means  that  the heat bath (in 
this case the electromagnetic field) is no longer  characterized 
as  having thermal statistics, but  has  as well some coherent 
excitation  in a small range of modes. It is helpful to go back 
to  the transmission  line  model  of  Section 2, given by the 
Lagrangian (3), and  to view this  as a one-dimensional  model 
of  electrodynamics. After some  standard wave equation 
theory, it is possible to show that  the field A(t, x) is given 
(in the limit that to + 01) by 
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A(t, x) = A,”(t + x/c) + Ai& - x/c) 

- ’ dTK(T)x(t - I T  - x/cl), 
2 -m 

(60) 

and it is clear that  the  three  terms correspond to incoming, 
reflected, and radiated fields. By solving the  equations  in 
terms of a j n a f  condition t ,  in  the  remote  future,  one  can 
similarly construct  an  “out” field in terms of which 

A(t, x) = A,& + x/c) + A,”# - x/c) 

+ ’ Jm dTK(T)X(t + 17 - X/Cl), (6 1) 
2 -m 

and it is not difficult to see that  in  the region where K ( X )  is 
zero, i.e., away from  the region of  interaction between field 
and system, 

A(t ,  x) = Ai& + x/c) + A,& - x/c) (62)  

and 

From all this we see that  the damping-noise interpretation 
also has an “input-output’’ interpretation.  The  quantum 
Langevin equations ( 5 )  and ( 6 )  can also be interpreted as 
corresponding to a system driven by the  incoming  “in” field, 
and losing energy via radiation damping  into  the  “out” field. 

From  this  point of view, the inclusion of a coherent 
driving field is no problem,  since we need  only specify the 
“in” field. One simply  makes the  requirement 

(.4,&)) = ain(t), (64)  

which gives the  mean time-dependent  excitation. The 
statistics of any fluctuations can be specified by setting 

E(t) = 24(k i , ( t )  - Ui,(t)), (65)  

and specifying the relevant  correlation functions of E(t). For 
example, a coherent driving field superimposed on a thermal 
background is obtained by taking  the correlation function 
(14)  for E([)  as defined by (65).  The  quantum-mechanical 
Langevin equation corresponding to ( 6 )  becomes 

. I  24 
y = [H,,, YI - 7 U,.(t)[X, Yl 

1 
+ - E(0, [X, Yll+, (66)  

and  the  master  equations (57),  (59)  acquire  an extra term, 

This corresponds to simply adding  to  the system 
Hamiltonian a corresponding  driving term. 
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Small anharmonicity 
It is common in quantum optics to consider the system as 
consisting of  a single mode of the electromagnetic field 
inside  a cavity, which communicates with the 
electromagnetic  bath and driving  modes through  an  almost- 
perfect mirror.  The system would then be a perfect harmonic 
oscillator; however, one also introduces  some kind of weak 
nonlinearity via a nonlinear  medium within the cavity. It is 
thus possible to write 

Hs,, = Ho + H,,, (68 )  

where HnI is very small compared  to H,,,. How  does this 
affect the analysis? Typically the effects of HnI are of the 
same  order of magnitude as the  damping, so H,, can be 
neglected in all the procedures  leading to (57), (59). In 
particular this  means  that 

1. X, are eigenoperators of H,. 
2. w, are  the transition  frequencies  of H,. 

This  means  that  the relevant interaction picture is defined in 
terms of H,, so that (57) is modified simply by adding a term 

Notice that  there is an interesting  transition region between 
small  nonlinearity, which has  this effect, and large 
nonlinearity, which modifies the whole master  equation by 
modifying the relevant energy levels. 

Stationary solution-Boltzmann distribution 
If  we neglect the Stark and  Lamb shift terms  in  the master 
equation (57), the  stationary solution is obviously the 
Boltzmann  distribution,  for the  equations (57) necessarily 
imply that 

from which, using the definition of m in (57), it is obvious 
that  the corresponding terms in the two summations cancel 
each other. A general and correct  inclusion of the effects of 
the  Lamb  and Stark  shifts is more tricky, but  cannot alter 
this  conclusion  in the lowest order. We comment now on 
the result of Benguria and  Kac [9] that  the Boltzmann 
distribution  solution  for the  stationary state  requires 
quantum Gaussian  statistics  for E(t) in  the case (as here) 
where [E(t,), E(t2)]  is a c-number. My admittedly much less 
rigorous but certainly  far more physically transparent result 
does not seem to require  Gaussian statistics, since  only the 
correlation functions  are involved. This is much  the  same  as 
in the classical case, for there  the proof that  there is  a white- 
noise limit  of  a  non-white-noise  stochastic Liouville equation 
that does not require  a  Gaussian physical noise. 
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exactly equivalent to a white-noise stochastic differential 
equation with Gaussian noise. 

9. The quantum  Brownian  motion case 
It may be that A ,  is very small; that is, exp(d,t)  does not 
differ significantly from 1 over  a  correlation time of a(t). In 
that case we can drop  the exponential terms in (57), and 
there is no longer any need to  introduce X: operators. The 
master equation becomes 

which is a  form that has  been  proposed by many  authors 
[ 171. It can also be viewed as a high-temperature  limit  of the 
quantum optical  master equation. 

eigenfrequencies w, be much less than  the correlation time 
of E(t),  which is easily shown to be equivalent to 

The  assumption  that leads to (71)  requires that all 

hw, << kT. (72) 

Notice that  this  condition  and  the  condition (5 1) for the 
validity of the method are  independent.  This  means  that 
both weak and strong damping  can  be treated by this 
equation, unlike the  quantum optical master  equation, 
which requires weak damping. 

The small hz case 
If  we consider the function 

P(u, z)  = ( u  + f hzlplu - ; hz)  (73) 

we find that  the master equation  can be written  as  a quite 
simple  partial differential equation, 

- V ( u - - h z  : )) - - - - fkTz21 : aaz P. (74) 

If hz is considered  small, we can  approximate 

V(u + ; hz)  - V(u - ; hz)  = hzV'(u). (75) 

In this case, one can  compute  the stationary  solution to be 

2'1 I 
Notice that this gives an  almost diagonal  intensity  matrix at 
any finite temperature, since the exponential fall-off away 
from the diagonal  takes place on a  distance scale of the  order 
of hJ2mkT. It is interesting to  note  that  this is quite 
different from the usual dependence on Planck's constant 
which arises from  the WKB approximation applied to a 
system without noise and damping. 
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Of course this result is really a purely classical result, in 
the sense that  the corresponding Wigner function is just  the 
classical canonical  distribution and  does  not involve Planck's 
constant. We must go to higher orders to see genuine 
quantum effects. 

Higher-order corrections 
By taking (75) to  the next order in Planck's constant, we 
arrive at  the  equation 

(77) 

This  equation can be solved by approximation methods. As 
an example,  consider the high friction  limit, f + 03. One  can 
use the  standard adiabatic elimination techniques [3] to find 
an  equation for 

P = f l u ,  0 )  = ( u l p l u ) ,  (78) 

that is, for the probability distribution.  The  equation derived 
by this  method is 

(79) 

This  equation is a quantum-corrected version of the 
corrected Smoluchowski equation [3].  In the case of a 
sinusoidal  potential 

V(u) = vocos(cyu), (80) 

the stationary  solution is approximately given by 

Fs = exp(-U(u)/kr), (81) 

with 

U(u) = v,coS(cyu) [ 1 - $ {; (~)2cos ' (au)  

- 3(g)cos(au) - [4 ($Y - * ) I ]  
and 

t = h2/24. 

When  a  Josephson-junction  model is used, the  parameters 
are 

Vo = Io/2e, cy = ZeJhC, 
T = IO-' deg K, Io = I O  PA, 

f lm  = (Re)-', M =  e, 
R = 200 Q ,  c = 4.7 X lo-" F, 

which gives 

= 5 X IO", vo = 1 . 5  X lo4. ( 8 5 )  

Substituted into  the result for the effective potential (82), this 
gives a  noticeable  correction to  the simple  Boltzmann result, 
which might  perhaps be observable. The full analysis of the 
predictions  of  this master  equation  are still in progress, and 
will  be published elsewhere.2 

Damping of quantum coherence 
Savage and Walls [ 181 have used the  quantum Brownian 
master equation  to  study  the free particle and  the  harmonic 
oscillator, and have  shown that  the effect of damping as 
introduced by this  equation very rapidly reduces the density 
matrix  corresponding to a  macroscopic  superposition  of 
quantum states to a diagonal  density  matrix  corresponding 
to a mixed state. No precise comparison has been made 
between their results and experiment. It should be noted  that 
their comparison between electron diffraction and  the 
predictions  of  their  calculations is flawed by a numerical 
error-in fact, redoing  their arithmetic, I find that  the 
observed diffraction patterns, which are  not absolutely sharp, 
could well be predicted by quite reasonable values of the 
parameters. 

10. Conclusions 
What has  been  achieved here? First, we have a full link-up 
between the  master  equation  and  the  quantum Langevin 
methods in quantum noise theory.  Of  particular utility is the 
new form  of the  adjoint  equation (39). This provides, via the 
acknowledgement that a(t) is essentially a c-number 
quantity, a  link with the  methods of classical stochastics. A 
second  achievement is the recognition that stochastic 
electrodynamics arises from  the  truncation (43). Thus  the 
successes of SED are  bound  up in the special nature of the 
problems tackled. What would SED do wrongly? This 
becomes clear when we realize that  not including the last 
terms  amounts  to treating  the system classically. By 
following van Kampen's  methods with this truncated  form 
we would not find the frequencies w, turning  up  (the 
transition frequencies), but would find rather  that  the 
relevant  frequencies were the classical frequencies. Only  for 
the  harmonic oscillator do classical and  quantum 
frequencies coincide. 

A third result is the elucidation of the quasiclassical 
Langevin equation  as having the  same  status  as SED, except 
that it may be valid in  a high friction  limit. Finally, we 
emphasize that  the  methods  are  more  than merely elegant 
formalism. By using the  adjoint  equation,  one  can  compute 
correlations between noise and system variables-a result of 
some  importance if the noise source is a  squeezed light beam 

2C. W. Gardiner and M. L. Steyn-Ross, "Quantum Corrections to the Kramers 
Problem," to be publlshed. 135 

IBM J RES. DEVELOP. VOL. 32 NO. I JANUARY 1988 C. W. GARDINER 



[ 191. Simulations  are also possible. All the  methods  are valid 
for  such nonthermal heat baths-only the details  of the 
particular  bath  correlation functions need changing. Finally, 
to my knowledge, this is the first time  that  the possibility of 
seriously analyzing the  quantum Brownian motion  master 
equation for situations which are neither harmonic  nor free 
has been proposed. 
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