Tunneling times
and a quantum
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The problem of measuring tunneling times by
means of a quantum clock is found to lead to
difficulties which are thought to arise because
the Hamiltonian of the coupled system does not
separate into particle and clock parts.

Introduction

In 1980 Peres [1] described the use of a quantum clock to
measure time intervals, and gave several examples. Among
these was the application of the clock to measure the velocity
of a free particle moving according to the Schrodinger
equation, by using the clock to measure the time required
for the particle to move through a given section of an axis
chosen in the direction of propagation. It was emphasized
that there was no need to measure two times, the time of
entry and the time of leaving the chosen sector, but simply
the change in time as observed on a clock which is stopped
when the particle is outside the section, but which runs when
it is within the section. In 1986 Davies [2] used a similar
method to determine the velocity of a relativistic particle,
using the Dirac and Klein-Gordon equations for the
motion.

There has been a good deal of interest recently in the time
taken for particles to travel through barriers [3], and it has
therefore been of interest to examine some examples of this
kind using the idea of a quantum clock. It has further
seemed particularly appropriate to describe our work on this
occasion, for the analysis has thrown up problems that we
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have not been able to resolve satisfactorily, and since
Rolf Landauer shares an interest in transmission times, his
interest and advice would be much appreciated.

The quantum clock

The basic idea is to measure the time interval between two
events, by observations on a quantum clock which only runs
for the time between two events. Thus, if the clock is set to
read zero at t = — and is then read at 1 = 4+, it can be
expected to show a nonzero value, with the difference being
the time interval between the two events. It is assumed, for
no observations are made, that before and after these events
the clock is stopped. The events, using a one-dimensional
model, are the arrival at x, and the departure at x, (x, < X,).
A simple prescription for the clock is that it consists of a
large total spin, S, which produces an effective potential

on the particle by means of a contribution to the
Hamiltonian of

P(x)2zhS/(2S + D,

where P(x) is zero outside (x,, x,) and unity within it. The
Hamiltonian of particle plus clock therefore takes the form

2
7 P(x)2xhS,
VO a5

2m
where V(x) is chosen as needed. In most cases it can be
expected to describe a sequence of rectangular barriers, with
a region of zero potential to the left. 7 is a parameter yet to
be chosen.

The next step is to decide how the clock is to be used, and
for this purpose it is useful to introduce an orthonormal set
of clock states, defined thus:

s
1 Y exp{-2xiNM/(2S + 1)} | M),

|N7) = o
TSy R Al

with N taking the values 0, 1,2, ---, 28, 99
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If the kinetic energy term in the total Hamiltonian is
neglected, the remaining two terms commute, even when
P(x) is unity. Then any given clock state, at ¢ = 0, say | 0),
becomes

—it | P(x)2xS,h
exp[T{(zs ¥ ) H 0
at time ¢. If P(x) is zero, it does not change, and the clock is
regarded as stopped. When P(x) is unity, the states | N7)
have the property that if | Or) is the state at ¢ = 0, it becomes
| 17) when ¢ = 7, | 27) when ¢ = 27, and so on. Whenever the
particle is in (x,, x,) the clock runs; otherwise it is stopped.
It can be read at any time by examining the probability that
it is in one of the states | N7), which is conveniently done by
determining the expectation value of the projection operator
| N7) (N7 |, that is, of

1 . {—27riN(M - M

@s+1D,2.° 25+ 1) }'M”M"'

The role of the parameter 7 can now be appreciated, for it
determines the resolving power of the clock. It may also be
noted that even with the kinetic energy in the total
Hamiltonian there is no interference between the clock and
the particle provided the particle is outside (x,, x,). If it is
within this range there is interference, and it would seem
desirable that this be as small as possible.

The free particle

The case of the free particle has been studied previously, but
it is useful to review its treatment briefly. The first step is to
find the plane-wave-type solutions when the clock is initially
in the state | M'). The motion of the particle then becomes
that of a particle moving in a potential which is zero
everywhere except in the segment (x,, x,), where it is

2nhM
2SS+ D’

It is assumed that the energy of the particle is much greater
than this. Then an incident plane wave is partially reflected
off the potential discontinuity and partially transmitted. For
such a low barrier the amplitude of the reflected wave is very
small, and the main effect, to order M, is to alter the phase
of the transmitted wave by an amount proportional to

M(x, ~ x,). The solution for the case when the initial state
of the clock is | O7) then readily follows, by superposition.
Each | M) component of | Or) has its phase changed by an
amount proportional to M, so the resultant state coincides
with one of the | N7) set if the time of passage is an integral
multiple of 7. Under these circumstances, the time of
passage is uniquely determined and is that which
corresponds to the particle having its usual group velocity. If
the time does not correspond to an integral number of 7’s,
then there is a distribution over the expectation values of the
projection operators of the various | Nr) states, and there is
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an uncertainty in the time of order . A remarkable feature
of this work is that the time of passage is determined without
the need for a wave packet.

General formalism of the time

We now turn to the problem of a wave packet approaching a
series of rectangular barriers. The first step is to solve the
problem for an incident plane wave. If the various sections,
each of which has a constant potential, are labeled
sequentially from the left, the solution in region I will be of
the form

ei(k.x—wl) + R(k)ei(—k_x—wl)
with
nk’

hw = ,

2m

that is, an incident plane wave of unit amplitude and a
reflected wave in which the reflection coefficient depends on
k and on the nature of the various regions II, III, etc.
Successive regions have transmitted and reflected parts
(though in many the appropriate k values are imaginary,
corresponding to evanescent waves), except the final one,
which has no reflected component. The solutions in all
regions are determined by the boundary conditions at the
various interfaces.

A wave-packet solution, which corresponds, at ¢ = 0, to
having the wave packet entirely in region I, can be found as
follows. Suppose the packet is ¢(x) at ¢ = 0. The Fourier
transform of ¢(x), denoted by ¥(k), is

1 " —ikx
Olky=—=— P(x)e " dx,
V27 Y-e
where the range of integration can be restricted to region I.
Then
L7 e
P(x)=—< | P(k)e dk.
Vor Y-

The wave-packet solution in region I is then
l f +ikx —ikxy —iwt

—= | e(k)e™™ + R(k)e "le “dk,

V2r Yo [

with
Wk’

hw = m

The solutions in regions II, I, etc. can similarly be written
down once the plane-wave solutions are known. The only
further point which needs comment is that the integration
over k is now regarded as a contour integral taken over a
complex k along a contour which runs from k = —o to

k = +o. The point here is that it is necessary to ensure that
at ¢ = 0 there are no pulses in regions I, I1I, etc. This can be
achieved by choosing the contour to be such that it can be
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deformed into the large upper semicircle without crossing
any poles of ¥(k) and R(k).

If now the clock is coupled in, and it can in principle be
coupled to any of the regions I, I1, etc., or within a small
part of any of them, the motion can be solved by first
assuming that the clock is in | M) at ¢ = 0. This produces a
modified barrier somewhere, and R(k) and the similar
expressions in the other regions become M-dependent. If the
clock at 1 = 0 is in | Or), the solution is a superposition. In
region I it is

1 1

OST” 7o L T e(k)e™ + R, (k)e ™1™ | M)dk.
T M

The probability that the clock is in | N7) at time ¢ is
composed of parts from each of the segments, the part from
region I being

—2wiNM

2 e 28+1)
M

1 1f
as+1pm) &

2
. f e(l)[e'™ + R, (k)e ™ e “dk | ,
C

where the integration over x is to be confined to region L

Since the integrand is a square modulus, the clock can be
expected to give a nonzero expectation value, so it will have
measured something wherever it is placed. The problem is to
know where to place it to measure the time to pass through,
say, one of the regions.

There are various aspects of the problem. In principle the
contributions of all the regions should be added, but on
physical grounds it can be expected that in general an
incident pulse will largely be reflected, so it should be a
reasonable approximation to consider only the part coming
from region I. But this consists of an incident and a reflected
part, and after sufficient time the incident part should have
disappeared, so only the parts containing R,, need be
retained. In the free-particle problem the part analogous to
the R,, of the present problem is the wave (or wave packet)
which is transmitted. Here it is the part which is reflected,
and from a variety of different possible barrier structures we
have been unable to convince ourselves that R,, takes the
form of a simple phase change which is linear in M. If it
were of the form ™ ", the expectation value would peak
when

2= NM AM
+ —

“es+nt T 0

or

_@s+ 1

N
T 27

One model which has been examined in detail is that of a
single barrier of height V situated between x = 0 and x = a,
with P(x) only nonzero over the same range. A given | M)
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state then raises the barrier by 2xM#%/(2S + 1)r and
(K + IO - )

R, (k) = — ,
ulh) (K — ik)* — &K + ik)’

where

b = K _ HK 2 Mh
“Tom 2m QS+ D

If R, (k) is written as a series in exp(—2Ka), using

R, (k)
2 2 82
_ KAk e_m)[l g o UK }
(K ~ ik) (K — ik)

the leading term, —(K* + KK — iky, describes the direct
reflection from the first face of the barrier, the term in
exp(—2Ka) describes the wave which has traveled to the
second face of the barrier and back again before emerging,
and so on. But the leading term is already M-dependent,
even though the directly reflected wave has not entered the
barrier, and so should not have activated the clock!

The explanation would seem to be that the coupling to the
clock has already disturbed both systems sufficiently for the
clock to produce a reading even if the wave packet has not
entered the region to which it is connected. In the case of the
free particle, the reflected wave is neglected in comparison
with the transmitted wave, for it is much smaller. Here it is
the main part.

Another problem which has been examined is that of a
potential barrier of height V" which extends from x = 0 to
x = o, The clock is then coupled to a finite region of
positive x. Again a similar result is obtained, and the
conclusion seems to be that we have so far failed to find a
satisfactory way of coupling a quantum-mechanical clock to
a barrier so that it can be used to measure the time to cross a
particular region.

This observation, if it proves to be generally true, raises
again the question of what is meant by a tunneling time,
and, in turn, what is meant by /9t in the Schrodinger
equation [1].
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