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The  problem of measuring  tunneling  times  by 
means of a quantum  clock is found  to lead to 
difficulties  which are thought  to arise  because 
the  Hamiltonian of the  coupled  system  does  not 
separate  into  particle  and  clock  parts. 

Introduction 
In 1980 Peres [ I ]  described the use of a quantum clock to 
measure time intervals, and gave several examples. Among 
these was the application  of the clock to measure the velocity 
of a free particle  moving  according to  the Schrodinger 
equation, by using the clock to measure the  time required 
for the particle to  move  through a given section  of an axis 
chosen in  the direction of propagation. It was emphasized 
that  there was no need to measure  two  times, the  time of 
entry  and  the  time of leaving the chosen  sector, but simply 
the change in  time  as observed on a clock which is  stopped 
when the particle is outside the section, but which runs when 
it is within the section. In 1986 Davies [2]  used a similar 
method  to  determine  the velocity of a relativistic particle, 
using the  Dirac  and Klein-Gordon equations for the 
motion. 

There has  been a good deal  of  interest recently in  the  time 
taken  for  particles to travel through barriers [3], and it  has 
therefore been of  interest to  examine  some examples  of this 
kind using the idea  of a quantum clock. It  has  further 
seemed  particularly appropriate  to describe our work on this 
occasion, for the analysis has thrown  up problems that we 
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have not been able  to resolve satisfactorily, and since 
Rolf Landauer shares an interest  in  transmission  times, his 
interest and advice  would be much appreciated. 

The  quantum  clock 
The basic idea  is to measure the  time interval between two 
events, by observations on a quantum clock  which only  runs 
for the  time between two events. Thus, if the clock is set to 
read zero at t = --oo and is then read at t = +-oo, it  can be 
expected to show a nonzero value,  with the difference being 
the  time interval between the  two events. It is assumed,  for 
no observations are  made,  that before and after  these  events 
the clock is  stopped. The events, using a one-dimensional 
model, are  the  amval  at x l  and  the  departure  at x, (x, < x2), 
A simple  prescription  for the clock is that it consists of a 
large total  spin, S, which produces an effective potential 
on  the particle by means of a contribution  to  the 
Hamiltonian of 

P(x)2Thsz/(2S + 1). , 

where P ( x )  is  zero outside ( x l ,  x2) and  unity within it. The 
Hamiltonian of particle plus clock  therefore takes  the  form 

- + V ( x )  + 
2 m   ( 2 s  + 1). ' 
P2 P( x)27rhSz 

where V(x)  is chosen  as  needed. In most cases it can be 
expected to describe a sequence  of  rectangular bamers, with 
a region of zero  potential to  the left. T is a parameter yet to 
be chosen. 

The next step is to decide  how the clock is to be used, and 
for this purpose it is useful to  introduce an  orthonormal set 
of clock states,  defined  thus: 

1 S 

IN.) = exp (-2aiNM/(2S + I ) ]  IM) , 
( 2 s  + 1 Y 2  " - S  

with N taking the values 0, 1, 2, . . . , 2 s .  
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If the kinetic energy term in the total Hamiltonian is 
neglected, the remaining two terms commute, even  when 
P ( x )  is unity. Then any given  clock state, at t = 0, say IO ) ,  
becomes 

at time t. If P ( x )  is zero, it does not change, and  the clock  is 
regarded as stopped. When P(x) is unity, the states I NT) 
have the property that if  107)  is the state at t = 0, it becomes 
I I T )  when t = T, 127)  when t = 27, and so on. Whenever the 
particle is in (xl, x2) the clock runs; otherwise it is stopped. 
It can be read at any time by examining the probability that 
it is in one of the states I Nr), which is conveniently done by 
determining the expectation value of the projection operator 
I NT) ( NT I, that is,  of 

The role of the parameter T can now  be appreciated, for  it 
determines the resolving  power  of the clock. It may  also be 
noted that even  with the kinetic energy in the total 
Hamiltonian there is no interference between the clock and 
the particle provided the particle is outside (xl, x2). If it is 
within this range there is interference, and it  would  seem 
desirable that this be as small as possible. 

The  free  particle 
The case of the free particle has been studied previously, but 
it  is  useful to review its treatment briefly. The first step is to 
find the plane-wave-type solutions when the clock is initially 
in the state I M ) .  The motion of the particle then becomes 
that of a particle moving in a potential which  is  zero 
everywhere  except  in the segment (xl, x*), where  it  is 

2nhM 
( 2 s  + 1)T’  

It  is assumed that the energy  of the particle is much greater 
than this. Then an incident plane wave is partially reflected 
off the potential discontinuity and partially transmitted. For 
such a low bamer the amplitude of the reflected  wave  is  very 
small, and the main effect, to order M, is to alter the phase 
of the transmitted wave  by an  amount proportional to 
M(x2 - x,). The solution for the case  when the initial state 
of the clock  is I Or) then readily  follows,  by superposition. 
Each I M )  component of I Or) has its phase changed by an 
amount proportional to M, so the resultant state coincides 
with one of the I NT) set if the time of  passage  is an integral 
multiple of T. Under these circumstances, the time of 
passage  is uniquely determined and is that which 
corresponds to the particle having its usual group velocity. If 
the time does not correspond to an integral number of T’S, 

then there is a distribution over the expectation values  of the 
100 projection operators of the various I NT) states, and there is 

an uncertainty in the time of order T. A remarkable feature 
of this work is that  the  time of  passage  is determined without 
the need  for a wave packet. 

General  formalism  of  the  time 
We  now turn  to the problem of a wave packet approaching a 
series  of rectangular bamers.  The first step is to solve the 
problem for an incident plane wave.  If the various sections, 
each of which has a constant potential, are labeled 
sequentially from the left, the solution in region I will be of 
the form 

h2k2 hw = - 
2m ’ 

that is, an incident plane wave  of unit amplitude and  a 
reflected  wave  in  which the reflection  coefficient depends on 
k and  on  the nature of the various regions 11,111, etc. 
Successive  regions  have transmitted and reflected parts 
(though in many the appropriate k values are imaginary, 
corresponding to evanescent waves),  except the final one, 
which  has no reflected component. The solutions in all 
regions are determined by the boundary conditions at the 
various interfaces. 

A wave-packet solution, which corresponds, at t = 0, to 
having the wave packet entirely in region I ,  can be found as 
follows. Suppose the packet is ‘P(x) at t = 0. The Fourier 
transform of ‘P(x), denoted by ‘P( k) ,  is 

‘P( k )  = - ‘P(x)e”krdx, 

where the range  of integration can be restricted to region I. 
Then 

Jz l J =  -- 

nrn 

The wave-packet solution in region I is then 
n 

1 ‘P( k ) [  e+’& + R( k)dfkx]e””‘dk, 

with 

h2k2 hw = -. 
2m 

The solutions in  regions 11, Ill, etc. can similarly be written 
down once the plane-wave solutions are known. The only 
further point which  needs comment is that  the integration 
over k is  now  regarded as a  contour integral taken over a 
complex k along a  contour which runs from k = -m to 
k = +m. The point here is that it  is  necessary to ensure that 
at t = 0 there are  no pulses in regions 11, 111, etc. This can be 
achieved by choosing the  contour  to be such that it can be 
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deformed  into  the large upper semicircle without crossing 
any poles of ‘P( k )  and R( k) .  

If now the clock is  coupled in,  and it can in  principle be 
coupled to  any of the regions I, 11, etc., or within a small 
part of any of them,  the  motion  can be solved by first 
assuming that  the clock is in I M )  at t = 0. This produces a 
modified barrier  somewhere, and R( k )  and  the similar 
expressions in the  other regions become  “dependent. If the 
clock at t = 0 is in I OT), the solution is a superposition. In 
region I it is 

1 
( 2 s  + 1)”2 7 k  L , (6( k ) [  erkx + R,( k)e”h]e”wf I M ) d k .  

The probability that  the clock is in I NT) at  time t is 
composed  of  parts  from each of the segments, the  part  from 
region I being 

. s ‘P( k ) [  e+ikx + RM( k)e”kx]e-iw‘dk I 23  

where the integration  over x is to be confined to region I.  
Since the integrand is a square modulus,  the clock can be 

expected to give a nonzero expectation  value, so it will have 
measured something wherever it is placed. The problem  is to 
know where to place it to measure the  time  to pass through, 
say, one of the regions. 

There  are various aspects of the problem. In principle the 
contributions of  all the regions should be added,  but  on 
physical grounds it can be expected that in general an 
incident pulse will largely be reflected, so it  should be a 
reasonable approximation  to consider  only the  part  coming 
from region I. But this consists of an incident and a reflected 
part, and after sufficient time  the incident  part should have 
disappeared, so only the  parts  containing R ,  need be 
retained. In  the free-particle problem the  part analogous to 
the R ,  of the present  problem is the wave (or wave packet) 
which is transmitted.  Here it is the part which is reflected, 
and  from a variety of different possible bamer structures we 
have been unable  to convince ourselves that R ,  takes the 
form  of a simple  phase  change which is linear  in M. If it 
were of the  form e“”, the expectation value would peak 
when 

27rNM AM -~ 
( 2 S +  1)  7 

+ - = o  

or 

NT = 
(2s + 1 ) X  

27r . 

One model which has been examined  in detail is that of a 
single bamer of height V situated between x = 0 and x = a, 
with P ( x )  only nonzero over the  same range. A given I M )  

state then raises the  bamer by 27rMh/(2S + 1). and 

R,(k) = - 
(K’ + k 2 ) ( l  - e-’K“] 

(K - ik)’ - e-2Ka(K + ik)2 ’ 

where 

h’k2 -h’K2 hw=-=- + v +  27rMh 
2 m   2 m   ( 2 s  + 1)T’ 

If R,( k )  is written as a series in exp(-2Ku),  using 

R,(k) 

- “ cK2 + k 2 )  e-2Ka)[ + e-2Ka (K + ik)’ + . 
(K - iky  (’ - (K - ik)’ 

the leading term, -( K2 + k2)/( K - ik)’, describes the direct 
reflection from  the first face of the barrier, the  term  in 
exp(-2Ku)  describes the wave which has traveled to  the 
second face of the  bamer  and back  again before emerging, 
and so on. But the leading term is  already  “dependent, 
even though the directly reflected wave has not  entered  the 
bamer,  and so should not have  activated the clock! 

clock has  already  disturbed both systems sufficiently for the 
clock to  produce a reading  even if the wave packet has  not 
entered  the region to which it  is  connected. In the case of the 
free particle, the reflected wave is neglected in  comparison 
with the  transmitted wave, for  it  is much smaller. Here  it is 
the  main part. 

Another problem which has been examined is that of a 
potential bamer of height V which extends from x = 0 to 
x = m. The clock is then coupled to a finite region of 
positive x. Again a similar  result  is  obtained, and  the 
conclusion  seems to be that we have so far failed to find a 
satisfactory way of  coupling a quantum-mechanical clock to 
a barrier so that it can be used to measure the  time  to cross a 
particular region. 

again the question  of  what is meant by a tunneling  time, 
and, in turn, what is meant by a/at in  the Schrijdinger 
equation [ 1 1 .  

The  explanation would  seem to be that  the coupling to  the 

This observation, if it proves to be generally true, raises 
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