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Following  an  introduction  to  the  early  history  of 
the  theories of the  density of electronic states in 
one-dimensional  structures,  pioneered,  among 
others,  by R. Landauer  and J. C. Helland,  a 
particular  model,  that of a  multistep  random 
potential,  is  discussed.  It  is shown that 
Kolmogorov-type  equations can be obtained for 
the  probability  distribution  of  the phase of the 
wave  function,  and,  by  solving  these  equations, 
the  density of states may be calculated. An 
analogy  with  the  classical  rotator  in  a  random 
force  field  is  worked  out,  and  helps  in  visualizing 
the  results. 

1. Introduction 
In  historical  perspective,  it  now  seems quite natural that 
once the calculation of the electronic density of states in 
periodic potentials was mastered, theoreticians turned their 
attention to the density of electronic states in nonperiodic, 
disordered structures. 

To cope  with the complexity of nature, simple model 
systems were studied. Among  these, a one-dimensional array 
of potentials localized at random positions was the first one 
investigated. This was done by H. M. James and 
A. S. Ginzbarg [ 11 in  1953. The complications of this first 
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analytical study revealed the need to apply numerical 
methods to obtain concrete and transparent results. 

In  1954  R. Landauer and J. C. Helland [2] published  for 
the first time their results  for the density of states in random 
potentials obtained by an ingenious numerical simulation, 
thereby  helping to lay the groundwork for the understanding 
of nonperiodic structures. 

development of this subject: This has  been done  in books  [3] 
and reviews  [4]. Rather, I would  like to present a small 
contribution to the theory  which is interesting from the 
point of  view  of the mathematical techniques used and also 
because it points out a relationship between the problem at 
hand and a problem of  classical  mechanics, that of the 
randomly driven rotator. In view  of this relationship, I use 
the notation t instead of x for the coordinate, since the 
spatial coordinate of the random potential corresponds to 
the time coordinate of the rotator. 

When a particle of mass rn, restricted to move in one 

It  is  not my purpose here to describe the further 

dimension in the interval 0 c t c L, is subject to a potential 
U(t), the Schrodinger equation for its wave function is 

h2 d2$ 
2m dt' 
"- + [U(t) - E] $ = 0. 

According to Sturm's  oscillation theorem, a real solution 
$,(t) of ( I ) ,  obeying $,(O) = $,(L) = 0 with  energy- 
eigenvalue E,,,, has rn zeros in the interval (0, L), provided 
the eigenvalues are subscripted in increasing order. The 
integrated  density of states VE) is  defined as the number 
of eigenvalues  between "Q, and E. Therefore, if 47 
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E, E <  E,+,, 

W E )  = m. ( 2 )  

It  follows that if a real solution $(t; E )  of (1) for a given E is 
found, the number of its zeros within ( 0 , L )  equals the 
integrated density of states V E ) .  

This fact provides the most powerful method to determine 
the average density of states for random potentials in one 
dimension, as was demonstrated by Frisch and Lloyd  [5] and 
by Borland [6]. 

2. The  phase  evolution 
It is practical to introduce 

V(t) = 2rnK2V(t) k = h-' (2mE)"', (3) 

and  a new function, Wt) ,  henceforth referred to as the phase, 
defined by 

tan@(t) = (d$/dt)/k$. (4) 

Elimination of $(t)  from (1)  yields a first-order nonlinear 
differential equation for the phase 

O = -k[l - p(t)~os'@(t)], ( 5 )  

with 

6 = d@/dt and P(t)  = V(t)/k'. (6) 

Equation ( 5 )  shows  how the phase  of the wave function 
varies along the t-axis. In particular, if the potential is zero, 
the phase vanes linearly, as expected of a wave function of 
the form $(t) = coskt. If the potential is a nonzero constant, 
Equation (5) is easily  solved, and this solution is used later in 
Equation (10). For a general potential, Equation (5) cannot 
be  explicitly  solved, but as we shall see, the knowledge of the 
differential equation ( 5 )  suffices  for the calculation of the 
average density of states of an ensemble of random 
potentials. 

To find the number of  zeros  of $(t; E )  note that if  for 
some to: = 0, d$/dt # 0, it follows from Equation (4) that 
the phase is 

O(t,,) = - + n r  n = integer. 

Therefore, the average (over a long interval L )  density of 
states per unit length is equal to the average number of times 
O(t )  passes through ?r/2 (mod*) per unit length. Reflection 
shows that instead of  observing a single random potential, 
we may  observe a large ensemble of N random potentials 
created by some probabilistic law. If  we then follow the 
evolution along the t-axis  of the phase  of the wave function 
with  energy E in each of these potentials, the average density 
of states V E )  will  be equal to the average  number-divided 
by  N-of wave functions whose  phases  pass through lr/2 
(mod*) in any unit interval of the t-axis. (This assertion of 
ergodicity can be  rigorously proven in the case  here 

lr 

2 (7) 
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3. The  random  potential 
We choose a one-dimensional random potential which 
simulates a potential produced by a random distribution 
of  different ionic species as follows:  If in the interval 
At = t, - f , - ,  the potential has the value V,, then in the 
interval At = ti+, - ti it may have the value V,, and the 
probability of this change is given  by a fixed number prim. In 
particular, we set V, - V,,- I = V for  all n, and suppose that 
the stochastic matrix (p,,,) is such that  it admits only the 
transitions V, + V, and V, + V,,*,, hence (p,,,,,)  is 
tridiagonal. Thus we have the relations 

Pn,n+1 + P,I  + Pr2.n-I = 1. (8) 

We further assume that there is a highest and lowest value 
of the potential, corresponding to n = M and n = -M. The 
potential thus changes according to  a Markov process  which 
in probability theory is  called a "one-dimensional random 
walk with  reflecting bamers,"  the bamers being VM and V+,. 

This random potential excludes arbitrarily large jumps of 
V(t) between arbitrarily close points. Such jumps are  a very 
unrealistic feature of  white-noise-type potentials treated in 
the literature. 

Note that for L >> At the Markov process  becomes 
stationary. This  and Equation (8) imply the detailed balance 
relation between the concentration c, of  segments  of length 
At with potential V, (Le., ionic species  of type n)  and  the 
stochastic matrix elements: 

P"."+ I 
%+I = - c, n = -M, ' ' ' ," 1, 

P n +  I .n 

where c" is determined by 
M 

C c, = 1. 
"=-M 

4. The  probability  distribution of the  phase 
For the calculation of the average state density V E )  we need 
to know the average relative number of those wave functions 
of the statistical ensemble of random potentials the phase of 
which  passes through ~ / 2  (mod*) per unit t-interval. This 
relative number is  also equal to the probability that  the 
phase  of an individual wave function passes through 7r/2 
(mod*) in unit interval. To find the latter, we introduce the 
conditional probability P,(t,, @)de, which  gives the 
probability of  finding, at the point t,, the phase 0 in the 
interval (0, 0 + do), provided that at the same point the 
potential has the value V,. 

equation which is now derived. Suppose that during (t,-l, t,) 
the potential is Vm, and at the phase was in the interval 
(e,-,, + dol::). Then  the probability that at time t, the 
phase is in the interval (0, Oi + dop') is  given  by 

P,(t,, 0,)dOj"' = C P,,(L,-~, @,-,)p,,,d@j:~. (9)  

The conditional probability P,(ti, @)do obeys a differential 

M 

"=-M 
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Here, p,, is the stochastic  matrix, which expresses the 
probability that  at  time ti- ,  the potential  changed  from V, to 
V,. The phases 0:' and  are related by the evolution 
equation (5 ) .  From  Equation ( 5 )  one  can derive a relation 
between the infinitesimal  phase  intervals, 

and this relation permits  the  elimination of the infinitesimals 
&?', from Equation (9). The evolution equation 
allows the  elimination of from  Equation (9) as well. We 
are interested  in the stationary  probability distributions 

Pm(0) = Pm(t + QI, 0), ( 1   1 )  

which (as can be rigorously proven) will develop if t >> At. 
From  Equation (9) we obtain after some algebra the 
Kolmogorov-type difference equations 

M 

Pm(@) = 1 P,(O - Ad"') 
n=-M 

1 - Vmk-'cos2(@ - A@") 
'Prim I - Vmk-2cos20 f (12)  

with 

A@("' = 0 - tan-'(u,'tan[u,'kAt + tan"(a,tan@)]) (13)  

and 

U, = ( 1  - V,/k ) 2 -112 

Once  the  functions Pm(0) [which depend  on  the energy 
through the  parameter k; see Equations (12),  ( 14)] are 
known, the density  of  states can be calculated. In fact, the 
probability  per unit t-interval of the passage of the phase 
through any angle 0 is given by the  product of the 
probability  density  of that phase angle with the speed of 
phase  change, summed over all possible values of the 
potential. Since the speed I 6 1 of  phase  change  equals k for 
all values of the potential if 0 = ~ / 2  [see Equation ( 5 ) ] ,  it 
follows that 

5. Differential  equations for the  stationary 
probability  densities 
To simplify the solution of Equation (12),  we go from 
difference to differential equations by means of the transition 
At + 0. Since p,, is the probability that  at  the  end of the 
interval At the potential  changes  from Vn to V,, we have to 
require that p,, scale linearly with At as follows: 

P,, = pZ,At, 

and 

where pi,,, are constants.  According t 
constants  must obey the relations 

o Section 3. these 

P:M-I,-M - p:M,-M-l - Pk,M+I = Pk+I.M = 
- - (18) 

and 

PK,,,, - P;, + PK,,-, = 0 m = -M, . . ., M. (19) 

In the  limit At + 0 we obtain  the set of  coupled  differential 
equations 

Pm-I(@IPK-l,m - Pm(@lPK, + P,+I(@) PK,,,, 

d 
do + - [(l - V,k-2~~~20)P,(0)] = 0 

m = - M  9 .. ., M, (20)  

with the  boundary  conditions 

Pm(7r) = Pm(0) m = -M, . . . , M, (21) 

and normalization 

It is easily seen from  Equation (19) that  the following 
expression is a "constant  of motion": 

M 

1 Pm(0)( 1 - V,k-2COS2@) = C. (23)  
m=-M 

From  Equation (1 5) ,  it follows that 

c = k - l q E ) .   ( 2 4 )  

Therefore, the calculation  of the density  of  states  for a given 
energy E requires the knowledge of the  functions Pm(0), to 
be obtained by solving the differential equations (19). These 
functions  depend,  through  the  parameters Vmk-2, on  the 
energy E = k2/2m. The set of 2 M  + I differential equations, 
(19), can always be reduced to a single differential equation 
of order 2M. 

6. Two-step  random  potential 
As an example [ 7 ] ,  we consider a potential which may  take 
the values 0 and v,  i.e., M = %. The stochastic  matrix pim 
depends now on  two parameters, go and ql, defined by 

90 = P:112,-112 - - P:112.112~ 41 = P;I2,112 = P;12,-1,2. (25) 

This potential may be thought of  as being produced by two 
sorts of ions with concentrations 

41 40 c, = - , c , = -  
90 + 41 40 + 91' 

respectively, c, being the  concentration of the  atoms 
producing  zero  potential. The probability x , ( / )  per unit 
length of finding a segment of length /of  constant potential 
is 

r,(f) = q,exp(-q,f) i = 0, 1. (27)  
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Giving qo and q1 specifies more  than  just  the  concentration 
of the two species: It also specifies the correlations between 
adjacent ions. 

The solution of Equation (20) is given by 

PI,,(@) = -cqOk-I exp[-f(V)]dV + d [$’ 1 
.expf(@)[l - (1 -  COS'^]-^, (28) 

with the abbreviations 

f(V) = k-l[qoV + aq, tan-’(atanV)], (29) 

d = [expk-la(-q0 - q,a) - 11-’ exp[-f(V)]& (30) 

and 

1‘ 
a = ( 1  - yk-’)-’/’. (31) 

From  Equation (23) it follows that 

P-,,2(0) = c - ( 1  - vk-2coszO)P1,2(0), (32) 

and from Equations (22)-(24) the density of states  is 

flE) = ka-l 1 + vk-’ P1, , (0)co~0d0 . 

To restrict the discussion, let us  consider  two  limiting cases 
only, k’ >> v and k‘ << v.  

When k’ >> v,  a  simple  power series expansion in vk-2 
yields 

[ ir I (33) 

(34) 

where c,  is the  concentration of ions producing the potential 
V .  This  formula shows the change  in the free-electron density 
of states No = ka-I due  to a weak random potential. 

When k2 << v ,  

flE) = - 
qo + 41 

(35) 

This result may  be  understood by a simple physical 
argument,  due  to Luttinger and Sy [SI: When  the particle 
energy is very much smaller than  the height of the potential 
V ,  the particle may be thought of as being localized in  the 
wells of zero  potential which exist between the subsequent 
segments  of  potential u. The lengths of these wells are 
statistically distributed  according to  the probability law given 
by Equation (27). According to  quantum mechanics, the 
energy levels of  a  particle in a deep well of  length ! are given 
by 

E, ( ! )  = (Ajlf)’, A 2  = h2r2/2m, j = integer. (36) 

The average number of wells of length f per unit length is, 
from  Equations (26) and (27), no(!) = ao(f)/(qo + 4,). Hence, 
the average number of energy levels below E per unit length 

50 is obtained by averaging with respect to  the distribution 
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no(f). Thus, using the step  function O(x) = 1 for x > 0, 
O(x) = 0 for x < 0: 

flE) = OIE - EJ(t‘)]no(f)df 
J= 1 

(37) 

For small E we obtain  the exponentially decreasing density 
of  states given in Equation (35). 

The evaluation of the density of states  for the multistep 
potential, obtained by numerical integration of  Equation 
(20) will be published elsewhere. 

7.  The rotator model 
We may  interpret o ( t )  as  the angle between the positive 
x-axis and  the radius  vector  of  a point moving around  the 
unit circle [9]. The evolution equation [see Equation (5)] 

6,(t) = -k + V,k-lcos’@,(t) k = constant, (38) 

shows, that except  for V,, = 0, the  angular velocity varies 
with time.  One  may regard the  rotator  as being subject to a 
random force. For the multistep  potential V,,, the  functions 
P,,(t,; 0) represent the probability  density  (per unit angle) that 
if the potential  has the value V,, at  time t,, the  rotator is 
found at  the angle 0. If one  thinks of many  points starting 
their rotation simultaneously at O(t = 0) = 0, the  motion of 
each point being governed by another realization  of the 
random potential V(t), the  function Pn(0) may be thought of 
as the  stationary density distribution  around  the  unit circle 
of  those points which at  the angle 0 happen  to be subject to 
the particular value V, of the potential (n  = -M, . . . , M ) .  
The  stationary  distribution develops  after  a sufficiently long 
time.  Since the total number of circling points is conserved, 
it follows that  the total number of points traversing at  any 
given angle has  to be a constant of the  motion,  and is given 
by 
M 

1 P,(O)O, = c, (39) 
“=-M 

in accordance with Equation (23). Since 6 = -k for 
0 = ~ / 2 ,   3 ~ 1 2 ,  at these  particular angles all points have the 
same angular velocity, hence the simple  expression, 
Equation ( 15). 

rotator  model  as follows: Proceeding from left to right 
every “time”  the wave function crosses the t-axis, the 
corresponding rotator passes through 0 = a12 
(since tan0  = $/k$). Since the average number of zeros per 
unit length  is proportional  to  the density of states, the latter 
becomes proportional  to  the average number of rotators 
crossing 0 = ~ / 2 ,  i.e., to  the flux c of rotators. 

This  equation may be understood  with reference to  the 
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As a  consequence  of the Schrodinger equation,  the wave 
function does not cross the t-axis along an interval where the 
potential is higher than  the kinetic energy of the particle. In 
these  intervals the phase  approaches  a  limiting angle, which 
for the two-step potential is 

0, = cos-’(kv-1’2). (40) 

The  rotator corresponding to  this wave function slows down, 
but  never reaches this limiting angle. Eventually, at  some 
further point  of the axis the potential  changes to a lower 
value, and  the  rotator moves on. I do  not  treat this case in 
detail here, except to remark that  the calculation  of WE) 
proceeds the  same way as indicated  above. 

The density  distribution  of the  rotators  around  the circle is 
by no  means uniform. Even the first approximation  in  terms 
of v E 2  leads, for the two-step potential  treated in Section 6, 
to 

PI,(@) P ?/(E)k-’c,(l - vk-2co)(I - u ~ - ~ c o s ~ @ ) - ’ .  (41) 

This result is in  accord with the intuitive  idea that  the 
density  of the  rotators is less at those angles where they are 
moving faster. 

method here described is the  one where the  random 
potential consists of an array  of  delta-functions.  Integrating 
Equation (5) between a  point  preceding and a point 
following a  &-potential shows that 0 changes  discontinuously 
across this type of  potential. This corresponds to a jump of 
rotator by a finite angle (the  “kicked  rotator”). One has to 
take  into  account  the fact that  the flux of rotators consists of 
two  components: the flux due  to  the uniform motion with 
speed k between potentials, and  the flux due  to  the  jumps.  In 
this case, there is only  one probability  density  distribution 
function P(0) instead  of the 2M + 1 functions discussed 
above, so that WE) is easy to find. 

This paper is dedicated to Dr. Rolf Landauer  on  the 
occasion of his sixtieth  birthday. 

An interesting case which can also be treated by the 
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