Density

of states of
one-dimensional
random
potentials

by Paul Erdos

Following an introduction to the early history of
the theories of the density of electronic states in
one-dimensional structures, pioneered, among
others, by R. Landauer and J. C. Helland, a
particular model, that of a multistep random
potential, is discussed. It is shown that
Kolmogorov-type equations can be obtained for
the probability distribution of the phase of the
wave function, and, by solving these equations,
the density of states may be calculated. An
analogy with the classical rotator in a random
force field is worked out, and helps in visualizing
the resuits.

1. Introduction

In historical perspective, it now seems quite natural that
once the calculation of the electronic density of states in
periodic potentials was mastered, theoreticians turned their
attention to the density of electronic states in nonperiodic,
disordered structures.

To cope with the complexity of nature, simple model
systems were studied. Among these, a one-dimensional array
of potentials localized at random positions was the first one
investigated. This was done by H. M. James and
A. S. Ginzbarg [1] in 1953. The complications of this first
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analytical study revealed the need to apply numerical
methods to obtain concrete and transparent results.

In 1954 R. Landauer and J. C. Helland [2] published for
the first time their results for the density of states in random
potentials obtained by an ingenious numerical simulation,
thereby helping to lay the groundwork for the understanding
of nonperiodic structures.

It is not my purpose here to describe the further
development of this subject: This has been done in books [3]
and reviews [4]. Rather, I would like to present a small
contribution to the theory which is interesting from the
point of view of the mathematical techniques used and also
because it points out a relationship between the problem at
hand and a problem of classical mechanics, that of the
randomly driven rotator. In view of this relationship, I use
the notation ¢ instead of x for the coordinate, since the
spatial coordinate of the random potential corresponds to
the time coordinate of the rotator.

When a particle of mass m, restricted to move in one
dimension in the interval 0 < ¢ < L, is subject to a potential
U(1), the Schrodinger equation for its wave function is

W dy

—E?+[U(t)—E]¢=O. (N

According to Sturm’s oscillation theorem, a real solution

¥,(2) of (1), obeying ¥,.(0) = ¥,(L) = 0 with energy-

eigenvalue E_, has m zeros in the interval (0, L), provided

the eigenvalues are subscripted in increasing order. The

integrated density of states A E) is defined as the number

of eigenvalues between —o and E. Therefore, if 47
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E . <E<E

WE) = m. )

It follows that if a real solution ¥(r; E) of (1) for a given E is
found, the number of its zeros within (0, L) equals the
integrated density of states A E).

This fact provides the most powerful method to determine
the average density of states for random potentials in one
dimension, as was demonstrated by Frisch and Lloyd [5] and
by Borland [6].

2. The phase evolution
It is practical to introduce
Yy = 2mh UG k= k' 2mE)'”, A3)

and a new function, 6(¢), henceforth referred to as the phase,
defined by

tan®(t) = (dy/dn/ky. 4

Elimination of y(¢) from (1) yields a first-order nonlinear
differential equation for the phase

0 = —k[1 — B(r)cos’ &(D)], 5)
with
O = do/dt and B() = VI)/IK. (6)

Equation (5) shows how the phase of the wave function
varies along the f-axis. In particular, if the potential is zero,
the phase varies linearly, as expected of a wave function of
the form y(¢) = coskt. If the potential is a nonzero constant,
Equation (5) is easily solved, and this solution is used later in
Equation (10). For a general potential, Equation (5) cannot
be explicitly solved, but as we shall see, the knowledge of the
differential equation (5) suffices for the calculation of the
average density of states of an ensemble of random
potentials.

To find the number of zeros of Y(t; E) note that if for
some t,: ¥ = 0, dy/dt # 0, it follows from Equation (4) that
the phase is

0(t,) = T4 n = integer. 7

2
Therefore, the average (over a long interval L) density of
states per unit length is equal to the average number of times
6(¢) passes through =/2 (mod ) per unit length. Reflection
shows that instead of observing a single random potential,
we may observe a large ensemble of N random potentials
created by some probabilistic law. If we then follow the
evolution along the t-axis of the phase of the wave function
with energy E in each of these potentials, the average density
of states #{E) will be equal to the average number—divided
by N—of wave functions whose phases pass through /2
(mod~) in any unit interval of the t-axis. (This assertion of
ergodicity can be rigorously proven in the case here
considered.)
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3. The random potential

We choose a one-dimensional random potential which
simulates a potential produced by a random distribution
of different ionic species as follows: If in the interval

At =1, — t,_, the potential has the value V,, then in the
interval At = ¢,,, — ¢, it may have the value V,, and the
probability of this change is given by a fixed number p_. In
particular, we set ¥, — V,_, = V for all », and suppose that
the stochastic matrix (p,,,) is such that it admits only the
transitions ¥, — V, and V, — V., hence (p,,) is
tridiagonal. Thus we have the relations

pn.n+l + pn,l + pn,n-l = 1 (8)

We further assume that there is a highest and lowest value
of the potential, corresponding to n = M and n = —M. The
potential thus changes according to a Markov process which
in probability theory is called a “one-dimensional random
walk with reflecting barriers,” the barriers being V,,and V_,,.

This random potential excludes arbitrarily large jumps of
W(t) between arbitrarily close points. Such jumps are a very
unrealistic feature of white-noise-type potentials treated in
the literature.

Note that for L > At the Markov process becomes
stationary. This and Equation (8) imply the detailed balance
relation between the concentration c, of segments of length
At with potential ¥, (i.e., ionic species of type #) and the
stochastic matrix elements:

Cooy = Pnaes c n=-M,...

n+1 n
pn+l.n

where c_,, is determined by

M
Y ¢, =1

n=—M

4. The probability distribution of the phase

For the calculation of the average state density X E) we need
to know the average relative number of those wave functions
of the statistical ensemble of random potentials the phase of
which passes through 7/2 (mod «) per unit ¢-interval. This
relative number is also equal to the probability that the
phase of an individual wave function passes through =/2
(mod ) in unit interval. To find the latter, we introduce the
conditional probability P _(t, ©)d®, which gives the
probability of finding, at the point ¢, the phase 0 in the
interval (0, ® + d0), provided that at the same point the
potential has the value V.

The conditional probability P,(t, ©)d® obeys a differential
equation which is now derived. Suppose that during (¢,_,, #,)
the potential is V,, and at ¢,_, the phase was in the interval
(8,_,,®,_, + d8")). Then the probability that at time ¢, the
phase is in the interval (8, 8, + d0{™) is given by

M
P, @,.)d@f.m) = X P, @i-l)andet'T:- 9

n=—M
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Here, p,,, is the stochastic matrix, which expresses the
probability that at time #,_, the potential changed from V, to
V. The phases 6™ and ©") are related by the evolution
equation (5). From Equation (5) one can derive a relation
between the infinitesimal phase intervals,

1=V, k cos’®,_,

— g (10)
1 =V, k cos’8,

dgf"—"l) = i
and this relation permits the elimination of the infinitesimals
de\™, d6'") from Equation (9). The evolution equation
allows the elimination of ®,_, from Equation (9) as well. We
are interested in the stationary probability distributions

P (0) = P (t - «, 0), (11)

which (as can be rigorously proven) will develop if ¢ > Az
From Equation (9) we obtain after some algebra the
Kolmogorov-type difference equations

P (8) = § PO — 20™)
n=—M
1 =V, k7 cos (® — A0™)

P 1-V,k cos’® (2
with
A0 = @ — tan"'{a]'tan[a] kAt + tan”'(a,, tan®)]} (13)
and
a,=(-V, /K" (14)

Once the functions P, (0) [which depend on the energy
through the parameter k; see Equations (12), (14)] are
known, the density of states can be calculated. In fact, the
probability per unit ¢-interval of the passage of the phase
through any angle 0 is given by the product of the
probability density of that phase angle with the speed of
phase change, summed over all possible values of the
potential. Since the speed | ®| of phase change equals k for
all values of the potential if ® = /2 [see Equation (5)), it
follows that

HNEY=k Y P,,,<I>. (15)

m=-M 2

5. Differential equations for the stationary
probability densities

To simplify the solution of Equation (12), we go from
difference to differential equations by means of the transition
At — 0. Since p,, is the probability that at the end of the
interval Af the potential changes from V, to V, , we have to
require that p,  scale linearly with At as follows:

pnm = p:mAt’ (16)
and
D, =1 - 0,4t (17
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where p, . are constants. According to Section 3, these
constants must obey the relations

Plpimimar = Plpgosiet = Pispret = Prperne = 0 (18)
and
Prmer = Pom ¥ Py =0 m=—=M, -, M. (19)

In the limit Az — 0 we obtain the set of coupled differential
equations

Pm—-l(e)p:n—l,m - Pm(e)p:nm + Pm-H(@) p:rH-l.m
+ 4 [(1 =V Kk cos’@P,(0)] =0
d@ m n

m=-M, .-, M, (20)

with the boundary conditions

P (z)= P, (0) m=-M,. ..., M, 2n
and normalization

Py -

2 f P,(0)do = 1. (22)
m=~M 0

It is easily seen from Equation (19) that the following
expression is a “constant of motion”:
M

Y POXl -V, Kk cos’®) =c (23)

m=—M

From Equation (15), it follows that
¢ = k'WE). (24)

Therefore, the calculation of the density of states for a given
energy E requires the knowledge of the functions P, (0), to
be obtained by solving the differential equations (19). These
functions depend, through the parameters mG_z, on the
energy E = k*/2m. The set of 2M + 1 differential equations,
(19), can always be reduced to a single differential equation
of order 2M.

6. Two-step random potential

As an example [7], we consider a potential which may take
the values 0 and v, i.e., M = . The stochastic matrix p;,,
depends now on two parameters, ¢, and g,, defined by

4= Plijp-12 = Plipaps 4 = Pipap = Pipip- 25)

This potential may be thought of as being produced by two
sorts of ions with concentrations

_ 4 o = 9

4% +4q’ Vgt
respectively, c, being the concentration of the atoms
producing zero potential. The probability =,(¢) per unit
length of finding a segment of length / of constant potential
is

(26)

)

7, (/) = q;exp(—gq;?) i=0,1. 27)
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Giving ¢, and g, specifies more than just the concentration
of the two species: It also specifies the correlations between
adjacent ions.

The solution of Equation (20) is given by

P, ,(0) = —cqok_l [ J(; exp[—f(P)d¥ + d]

.expf@)1 — (1 — a Hcos’®]”',  (28)
with the abbreviations

f1®) = k'[g,® + ag,tan” (atan®)], (29)

d = [expk '=(—q, — q,@) — 1]’ fo exp[—/(P)lde  (30)

and

a=(1—vk?" (31)
From Equation (23) it follows that

P_,0) = ¢ = (1 — vk *cos’@)P, (®), (32)

and from Equations (22)-(24) the density of states is

1

WE) = kw"'[l + vk f Pl/z(e)cosz@de)] . (33)
0

To restrict the discussion, let us consider two limiting cases
only, ¥ > v and &’ < v.

When &* > v, a simple power series expansion in vk >
yields

v2mE 1 o’
nor = (1 o) 9
where ¢, is the concentration of ions producing the potential

v. This formula shows the change in the free-electron density
of states N, = kx~' due to a weak random potential.

When k% <« v,

4o, ( gohm )
E)= exp| - —].

(35)

This result may be understood by a simple physical
argument, due to Luttinger and Sy [8]: When the particle
energy is very much smaller than the height of the potential
v, the particle may be thought of as being localized in the
wells of zero potential which exist between the subsequent
segments of potential v. The lengths of these wells are
statistically distributed according to the probability law given
by Equation (27). According to quantum mechanics, the
energy levels of a particle in a deep well of length /are given
by

E(6) = (4j/ty, A*=#7'/2m,  j= integer. (36)

The average number of wells of length / per unit length is,
from Equations (26) and (27), n,(¢) = =4(/)/(q, + 4,). Hence,
the average number of energy levels below E per unit length
is obtained by averaging with respect to the distribution
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n,(f). Thus, using the step function 8(x) = 1 for x > 0,
6(x) =0 for x < 0:

WE) = J(: 2 O[E — E()n(0dr
j=1

94, =
Y exp(— AgyjE™""?
Qb+ 5 o/E )
9, ~1/2 -1
= exp(4q,.E -17. 37
. 41[ p(Ag, )= 1] 37

For small E we obtain the exponentially decreasing density
of states given in Equation (35).

The evaluation of the density of states for the multistep
potential, obtained by numerical integration of Equation
(20) will be published elsewhere.

7. The rotator model

We may interpret 6(¢) as the angle between the positive
x-axis and the radius vector of a point moving around the
unit circle [9]. The evolution equation [see Equation (5)]

0,() = —k + VK 'cos’®,(t)  k = constant, (38)

shows, that except for V,, = 0, the angular velocity varies
with time. One may regard the rotator as being subject to a
random force. For the multistep potential ¥, the functions
P (t; ©) represent the probability density (per unit angle) that
if the potential has the value V, at time ¢, the rotator is
found at the angle ©. If one thinks of many points starting
their rotation simultaneously at 8(t = 0) = 0, the motion of
each point being governed by another realization of the
random potential ¥(z), the function P (0) may be thought of
as the stationary density distribution around the unit circle
of those points which at the angle ® happen to be subject to
the particular value V,, of the potential (n = =M, - .-, M).
The stationary distribution develops after a sufficiently long
time. Since the total number of circling points is conserved,
it follows that the total number of points traversing at any
given angle has to be a constant of the motion, and is given
by

M

T P9, =c (39)
n=—M
in accordance with Equation (23). Since ® = —k for
0 = x/2, 3x/2, at these particular angles all points have the
same angular velocity, hence the simple expression,
Equation (15).

This equation may be understood with reference to the
rotator model as follows: Proceeding from left to right
every “time” the wave function crosses the t-axis, the
corresponding rotator passes through 0 = 7/2
(since tan® = y/ky). Since the average number of zeros per
unit length is proportional to the density of states, the latter
becomes proportional to the average number of rotators
crossing © = /2, i.e., to the flux ¢ of rotators.
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As a consequence of the Schrodinger equation, the wave
function does not cross the r-axis along an interval where the
potential is higher than the kinetic energy of the particle. In
these intervals the phase approaches a limiting angle, which
for the two-step potential is

0, = cos” (kv™'"?). (40)

The rotator corresponding to this wave function slows down,
but never reaches this limiting angle. Eventually, at some
further point of the axis the potential changes to a lower
value, and the rotator moves on. I do not treat this case in
detail here, except to remark that the calculation of #E)
proceeds the same way as indicated above.

The density distribution of the rotators around the circle is
by no means uniform. Even the first approximation in terms
of vk leads, for the two-step potential treated in Section 6,
to

P, (0) = NE "¢ (1 — vk c)(1 — vk *cos’@)". (41)
172 1 0

This result is in accord with the intuitive idea that the
density of the rotators is less at those angles where they are
moving faster.

An interesting case which can also be treated by the
method here described is the one where the random
potential consists of an array of delta-functions. Integrating
Equation (5) between a point preceding and a point
following a é-potential shows that @ changes discontinuously
across this type of potential. This corresponds to a jump of
rotator by a finite angle (the “kicked rotator”). One has to
take into account the fact that the flux of rotators consists of
two components: the flux due to the uniform motion with
speed & between potentials, and the flux due to the jumps. In
this case, there is only one probability density distribution
function P(@) instead of the 2M + 1 functions discussed
above, so that #(E) is easy to find.

This paper is dedicated to Dr. Rolf Landauer on the
occasion of his sixtieth birthday.
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