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A simple  approach  which  can  describe  both 
coherent  tunneling  and  sequential  tunneling 
is applied to resonant  tunneling  through  a 
double-barrier  structure.  This  approach  models 
phase-randomizing  events  by  connecting to the 
conductor  a side branch  leading  away  from  the 
conductor to a  reservoir. The reservoir  does  not 
draw  or  supply a net  current,  but  permits 
inelastic  events  and  phase  randomization. A 
conductance  formula is obtained  which  contains 
contributions  due to both  coherent  and 
sequential  tunneling. We discuss  the limiting 
regimes of completely  coherent  tunneling  and 
completely  incoherent  transmission,  and  discuss 
the  continuous  transition  between  the  two.  Over 
a  wide  range of inelastic  scattering  times 
tunneling is sequential.  The  effect of inelastic 
events on the  peak-to-valley  ratio  and  the 
density of states in the  resonant  well is 
investigated. We also  present  an  analytic 
discussion of the  maximum  peak  conductance 
e/h of  an isolated resonance in a  many-channel 
conductor. 

1. Introduction 
As is well known, the scattering  of waves or carriers at a 
target which permits inelastic  events in  addition  to elastic 
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scattering  exhibits  a cross section  consisting  of  two 
contributions: an elastic, coherent part and  an inelastic, 
incoherent  part [ 1, 21. If for the purpose of calculating the 
conductance we  view the  conductor  (or a device) as  a  target 
at which carriers are either reflected or  permitted  to traverse, 
we can similarly expect that  the  conductance also exhibits 
two  contributions:  a coherent  contribution which arises from 
carriers  traversing the  sample suffering only elastic events, 
and  an  incoherent  contribution  due  to carriers which 
suffered inelastic  events while traversing the sample.  Carriers 
which are scattered elastically emerge with a  phase which has 
a definite relationship to  the phase of the  incident carriers. 
Carriers which are scattered inelastically emerge  from the 
sample with a phase which is unrelated to  that of the 
incident carriers. A discussion of conductance which views 
the sample as a target  has  long  been  advocated by Landauer 
[3,4]. The  incident  currents  are specified and  the net current 
and  the piled-up charges are  obtained  from  the 
wavefunctions [3,4]. This  approach is typically restricted to 
the case of elastic scattering  (coherent  tunneling) only. 
Recently we have expanded  this  approach  and have found 
an expression for the  conductance which allows for  both 
coherent and  incoherent scattering processes [ 5 ] .  The total 
transmission  probability  for  a  carrier to traverse the sample 
is 

where T, is the probability  for  a  carrier to traverse the 
sample  coherently and Ti is the transmission  probability  for 
carriers which have suffered an inelastic  event. The coherent 
transmission  probability cannot be calculated as if there were 
no inelastic events  in the sample,  since  it is also affected by 
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r Channel 1 Channel 2 1 

Double barrier (rectangles) with an inelastic scatterer in the well, 
modeled by  an extra branch leading away from the conductor and 
connected to an extra reservoir 3 .  Reservoirs 1 and 2 serve as source 
and sink of carriers and energy. Reservoir 3 draws no net current but 
permits  inelastic  phase-randomizing  events. A carrier  which 
traverses the double barrier from reservoir 1 to reservoir 2 without 
entering reservoir 3 is said to tunnel coherently. A carrier which 
progresses from reservoir 1 to reservoir 2 via reservoir 3 is said to 
tunnel sequentially. 

the presence of these  processes. For the case  of a single 
inelastic scatterer located in the sample, the incoherent 
transmission probability in Equation (1) is of the form [5] 

T=- ‘bSf 

s, + Sf’ 

S, is the transmission probability for a camer emerging from 
the inelastic scatterer to traverse the sample backward 
against the direction of carrier flow. Sf is the transmission 
probability for a camer emerging from the inelastic scatterer 
to traverse the sample forward in the direction of current 
flow. Equation (2) can be understood in the following way 
[4]: Only a fraction Sf/(Sf + S,) of the camers reaching the 
inelastic scatterer will  leave the sample in the forward 
direction. The probability for camers incident on  the sample 
to reach the inelastic scatterer is S,, and  the probability for 
incoherent transmission is thus S, multiplied by the factor 
we have just discussed. A mathematical derivation of 
Equation (2) is  given in [5] and in Appendix A of this paper. 

It is the purpose of this paper to apply Equations (1) and 
(2) to a sequence of two bamers with a resonant well 
between them [6]. Resonant tunneling is of interest in 
double-bamer diodes [7-151, in tunneling through a barrier 
with impurity states [ 16-  171, in strongly  localized 
conductors [ 18-20], and also in scanning tunneling 
microscopy,  where a localized state can be provided by a 
protruding adatom [21]. In particular we investigate the 
effect  of inelastic events on tunneling. A camer which 
traverses one of the bamers coherently but is scattered 
inelastically in the well and loses  phase memory before 
eventually escaping from the well is said to tunnel 64 
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sequentially [IO]. A recent discussion  of sequential tunneling 
which does not include a phase-randomizing agent found 
that coherent resonant tunneling and sequential tunneling 
lead to equivalent results  for the current [ 141. The analysis 
presented here does not support this conclusion. Coherent 
tunneling is contained in the first term of Equation (I ) ,  and 
sequential tunneling is  given  by the second term of Equation 
( 1 ) .  Inelastic events which are needed to destroy phase 
coherence lead to a broadening and decrease  of the resonant 
transmission [ I ,  2, 191 and, equivalently, to broadening of 
the density of states in the well. The decrease of the peak 
transmission with increasing inelastic scattering is 
accompanied by an increase of the off-resonant transmission. 
As a consequence the peak-to-valley ratio of the total 
transmission probability decreases  with an increasing 
number of sequential processes. 

To model inelastic events we use the approach of [5]. 
Consider Figure 1, which  shows two barriers (indicated by 
squares) connected by pieces  of  perfect conductor (solid 
lines). The conductor is via a junction  (the triangle in Figure 
1) connected to a side branch. For simplicity the perfect 
conductors (denoted as channel 1 and channel 2 in Figure 1) 
are assumed to be one-dimensional, with two states only at 
the Fermi energy. The side branch, however, consists of two 
quantum channels (channels 3 and 4) and is, in turn, 
connected to a reservoir at a chemical potential p,. Reservoir 
1, at a chemical potential pI, plays the role of a carrier 
source, and reservoir 2, at a chemical potential p2, acts as a 
sink. Reservoir 3, in contrast, draws or delivers no net 
current. The condition of zero net current in the side branch 
leading away  from the  conductor determines the chemical 
potential p3 as a function of p I  and p2 [see Equation (AI I)]. 
Each  of the reservoirs  has the property that it absorbs 
camers incident from the conductor, regardless of the energy 
and  the phase  of the  camers. Furthermore, each  reservoir 
emits carriers into  the adjacent conductor up  to its chemical 
potential. These rules, therefore, specify the currents incident 
into  the conductor [3, 41. The triangle in Figure 1 represents 
a quantum-mechanical junction between the side branch 
and  the conductor. A specific example is  discussed and 
solved  in  Appendix B. 

A camer scattered from the  conductor  into the side 
branch propagates to reservoir 3, where the camer suffers 
inelastic events. Eventually, to maintain zero net current, 
reservoir 3 emits a carrier toward the  junction, where the 
camer is either reflected  back to the reservoir or is scattered 
into  the conductor. Sf introduced in Equation (2) is the total 
probability for a camer emitted by reservoir 3 to traverse 
into reservoir 2. Similarly, S, is the total probability for a 
camer emitted by reservoir 3 to end up in reservoir 1. 
Therefore, the camers which  traverse the sample 
sequentially are those that are scattered into reservoir 3 and 
re-emitted by reservoir 3. The junction (triangle) also  allows 
for camers incident in the conductor to be scattered not into 



the side branch  but again into  the  conductor. Therefore, a 
fraction  of the carriers  can traverse the  sample  from reservoir 
1 to reservoir 2 without visiting reservoir 3, and these are  the 
carriers which traverse the  sample coherently. 

Let us introduce  the probability E for a carrier approaching 
the  junction  to be scattered into  the side branch  (channels 3 
and 4) .  For E = 0 the  conductor  and  the side branch  are 
completely  disconnected. For E = 1 every carrier  incident 
from the  conductor  on  the  junction is transferred into  the 
side branch  and reaches reservoir 3. Thus E = 0 is the case of 
completely coherent transmission, and E = 1 is the case of 
completely incoherent transmission. If E differs from these 
limiting values, we have  both coherent transmission and 
sequential  transmission. Thus  the  parameter E determines 
the  amount of  inelastic scattering. The  approach discussed 
here and in [5] allows the  study of the  continuous transition 
from  completely  coherent to completely incoherent 
transmission. To achieve complete phase randomization, 
carriers need to be scattered with probability 1 into reservoir 
3. If the  junction is  required to be symmetric with respect to 
right- and left-moving camers, probability 1 can  only be 
obtained if the side branch  contains  two channels. If the side 
branch  contains only one  channel  and is symmetric with 
respect to right- and left-moving carriers, the  maximum 
probability [5] which can be achieved  for  scattering into 
reservoir 3 is 112. 

The  method of introducing inelastic  scattering or 
sequential processes described  above  is not limited to a 
single side branch.  Conductors  connected  to  many side 
branches are of interest  as well [ 5 ,  221. Another system is 
obtained if  we eliminate two  of the reservoirs in Figure 1 by 
forming the  conductor  into a loop. A normal loop,  driven by 
a magnetic flux and with a single side branch  to  model  the 
effect of  inelastic  events on  coherent superconducting-like 
phenomena [23], is the subject of [24]. Another interesting 
feature  of the  approach proposed  here is the following: The 
conductor shown in Figure 1 is a three-terminal device. 
Reservoir 1 can serve as a current source and reservoir 3 as a 
current sink. This  situation bears a close resemblance to  the 
experiment of MorkoG et al. [25], where current was drawn 
directly from the “well.” As in the  experiment [25], our 
approach also yields a resonant conductance  in  this case, 
even though a net current flows only through  one barrier. 

Below, we emphasize the two-terminal conductance [26] 
= R ’  = (e2/h)T, ,  considering channels 1 and 2 as  the 

conductor.  Thus we are  not directly addressing the negative 
differential conductance  phenomena which were first 
discussed by Tsu  and Esaki [7] and which have  generated 
much interest lately [8- 15, 251. Instead, we assume  that we 
can  control  the  Fermi energy and  that  it is the dependence 
of the  conductance  on  the  Fermi energy which matters. This 
paper is also limited to  the case where kT is  small compared 
to  the width of the resonance (see, however, Appendix A). 
Most  of the calculations leading to  the results presented 

below are relegated to  four appendices. We focus on one- 
dimensional  conductors, except in Appendix C, where we 
discuss the peak conductance  due  to  an isolated  resonant 
state  in a many-channel conductor. 

2. Completely  coherent  versus  completely 
incoherent  transmission 
In this  section we discuss the  extreme limits in which one of 
the  terms  in  Equation (1) vanishes. In  the completely 
coherent  limit Ti = 0, the  coherent transmission  probability 
through  two  barriers in series exhibits  resonances near  the 
energies of the quasi-eigenstates of the well, 

with a peak value at resonance 

The peak value is 1 if the transmission  probabilities  of the 
two  barriers are equal, and is smaller than 1 and given by 
T,, = 4Tl/T2 in  the case that TI << T2. In  Equation (3), 

re = r l  + r2 ( 5 )  

is the total elastic width; I’, and r2 are  the partial elastic 
widths  of the  resonant level. 117, = r,/h is the decay rate of 
the resonant  state. The transmission through a double- 
barrier structure is  analyzed in Appendix B. This calculation, 
which invokes some simplifying assumptions  not relevant 
for our subsequent  discussion, yields for the partial elastic 
widths the  WKB expressions 

r l  = h u ~ , ,  r2 = h U ~ , .  ( 6 )  

Here u is an  attempt frequency, and  in  the case of a square 
well is given by I = 2w/v, where w is the width of the well 
and v is the velocity of a carrier  in the well at  the resonant 
energy E,. At energies E away from E,, transmission  is still 
coherent  but typically many orders of magnitude smaller 
than T,, and, approximately, 

T, = To, 0: a TI  T2 .  (7) 

Therefore, the peak-to-valley ratio Tres/Toff is  exponentially 
large if the transmission  probabilities are exponentially 
small. Such huge peak-to-valley ratios  have not been 
observed experimentally;  inelastic  scattering, discussed 
below, is one reason for  this discrepancy. But there  are  other 
reasons also, e.g., the averaging over an energy  range due  to 
a three-dimensional  incident  distribution [lo], deviations 
from  an ideal planar  structure,  and elastic scattering due  to 
impurities [ 151. 

coherent  transmission and consider the limit  of  completely 65 
Let us  now turn away from  the limit of completely 
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incoherent transmission, i.e., Tc = 0. In  this case every 
camer reaching the inelastic  scatterer loses phase. In this 
limit  a camer  cannot travel from  one side of the  resonant 
well to  the  other without  being  scattered inelastically. This 
process is a special limit  of the sequential tunneling process 
and is labeled completely incoherent. In general, a sequential 
tunneling process permits  many oscillations in  the well with 
frequency u before the  camer loses phase memory. We 
invoke  a  scatterer  (triangle in Figure 1) which re-emits 
camers with equal probability to  the left and right into  the 
conductor.  In  the limit of complete phase randomization, 
the probability of a camer emerging from  the inelastic 
scatterer to traverse the sample  backward is given by S, = T I ,  
and similarly the probability  of  a camer being  scattered in 
the forward  direction is Sf = T2. Therefore, in  the completely 
incoherent limit Equation (2) yields [5] 

A single bamer with transmission  probability T, in  an 
otherwise perfect wire gives rise to a  two-terminal 
resistance W, = (h /e2)TJ1.  Therefore, Equation (8), using 
W =  (h/e2)T&: = (h/e2)Ty’, yields the series addition of 
resistors, M = PI + P2. If inelastic  scattering is so strong that 
every carrier loses phase memory while traversing the well, 
the resistance of the  structure  contains  no detailed 
information  about  the geometrical arrangements of the 
scatterers  (separation of the  bamers)  but is the  sum of the 
resistances due  to  the individual scatterers. Note  that  the 
transmission in  the  incoherent limit, Equation (8), is not  the 
same as the off-resonant coherent transmission, Equation 
(8). If the transmission  probabilities are small, the 
completely incoherent transmission  probability, Equation 
(8), far exceeds the off-resonant coherent transmission 
probability, Equation (7). On  the  other  hand,  the 
transmission at resonance T,,, Equation (3), exceeds the 
purely sequential  transmission  probability, Equation (8). It is 
now clear what happens when we start  from a situation 
where only coherent processes are allowed and  introduce 
inelastic  events. Both the transmission at resonance  [peak 
value, Equation (4)] and  the off-resonance transmission 
[minimum value, Equation (7)] must, with increasing 
inelastic  scattering,  eventually approach  the completely 
incoherent  limit,  Equation (8). Therefore, the peak value 
must in general decrease with an increasing amount of 
inelastic scattering, and  the off-resonant transmission must 
in general increase with increasing  inelastic scattering. 

The transition from  the completely  coherent limit  to  the 
completely incoherent limit  occurs through  the sequential 
tunneling regime in which camers  can execute many 
oscillations in  the well before losing phase  memory. The 
distinction  of three regimes, the coherent limit,  the sequential 
tunneling regime, and  the completely incoherent limit, is 
made because resonant tunneling has two frequency scales 
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[27] which, when compared with the inelastic  scattering  rate 
r,/h, yield three physically distinct regimes: The  time scales 
[2] associated with a  resonance are  the elastic decay rate r,/h 
given by Equations (5) and ( 6 )  and  the  attempt frequency 
= , , / 2 ~ .  We show that for ri << re we are  in a regime 

where the  main  part of the  current is camed by coherent 
processes, in  the regime re << ri << hu current is  carried by 
sequential tunneling processes, and if hu << ri we are  in  the 
completely incoherent limit. Below we discuss  this in  more 
detail. 

3. Crossover  from coherent to sequential 
transmission 
To study the crossover from  coherent resonant tunneling  to 
coherent sequential tunneling  it is possible to apply the 
formulae  of Breit and Wigner [ I ,  21. The applicability of 
these formulae  to  tunneling  through disordered conductors 
in  the presence of inelastic  scattering  is mentioned by Azbel 
et al. [ 181. However, the results presented in [ 181 are  not 
compatible with the Breit and Wigner approach. 
Subsequently results compatible with the Breit and Wigner 
formulae were obtained  for  a  symmetrical double barrier by 
Stone  and Lee [ 191. They used an imaginary (optical) 
potential to describe inelastic  scattering. This  does  not allow 
the  determination of the forward and backward  scattering 
probabilities. Reference [ 191 makes the plausible assumption 
(for a symmetric barrier) that S, = Sf = S, and consequently 
Ti = S/2. The  approach of [5] introduced  in Section 1 allows 
us to  determine  the forward and backward  scattering  rates 
S, and Sf. These  probabilities are also determined by the 
Breit and Wigner  formulae, which are  mentioned  in 
textbooks [2] but seem to have found little attention in solid- 
state physics. A  discussion of these formulae is presented  in 
Appendix C .  

if there is elastic resonant  transmission from  channel 1 to 
channel 2, 

The key point of Breit and Wigner [ I ,  21 is the  notion  that 

then  the weakly coupled  inelastic channels (channels 3 and 4 
in Figure 1) are also characterized by resonant transmission 
and couple to  the elastic transmission  with  partial  widths I‘3 

and r4. The backward  scattering  probability  becomes 

and  the forward  scattering  probability  becomes 

‘2ri Sf = 
( E  - E,)’ + t r2’ 

where ri = r3 + r4 is the total  inelastic  width.  According to 
Breit and Wigner, the width r in  Equations (9)-( 1 1) is the 
sum of all the partial  rates, 
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J=4 

r =  rJ=re+ri .  (12) 
J= I 

r, and r2 are specified by Equation (6). For  the  model 
studied  in  Appendix B, the inelastic  widths are 

r3 = r4 = hue. (13) 

Here E is the probability  for a camer  in  the  conductor, 
approaching  the  junction,  to be scattered into  the side 
branch [see Figure 1 and  Equation (B8)]. By using Equations 
(IO),  ( 1  I) ,  and ( 2 ) ,  we find for the sequential  transmission 
probability 

a Fer1 
T = Trcs ( E  - Er)2 + a p' (14) 

Here we have used the fact that T,, = 4I',F2/I'?. The total 
transmission  probability near a  resonance is thus 

Therefore, the peak value of the total  transmission 
probability at resonance is TJe/I'. Thus  the inclusion  of 
inelastic or sequential  events  leads to a decrease  of the peak 
value and broadens the resonance. It is  interesting to 
compare  the fraction  of the  current  camed by the  camers 
traversing the  structure coherently, Tc/TIoI = re/r, with the 
fraction of the  current carried by the  camers traversing the 
sample  sequentially, T,/T,, = ri/r. To evaluate  these 
fractions we have used Equations  (l), (2) ,  (9), and (10). We 
see that if the total elastic width and  the total  inelastic width 
are equal, the  currents  due  to  coherent  tunneling  and  due to 
sequential tunneling  are equal. The smaller the elastic width, 
the smaller is the  amount of  inelastic  scattering [ 191 needed 
to  make  the sequential tunneling  current  dominant. 

In the crossover region re r, we have not only  a 
decrease  of the peak value of the transmission  with  inelastic 
scattering, but also an increase  of the off-resonance 
transmission  probability. The model  calculation  in  Appendix 
B yields an off-resonance (minimal) transmission  probability 

TIol.off OC a r, TIT,. 
I 1' 

(16) 

Using Equations ( I  5 )  and (16) yields a peak-to-valley ratio of 
the  order 

where we have used Equation (5). Thus  the peak-to-valley 
ratio  of the transmission  probability decreases rapidly as 
sequential tunneling processes become important. 

We mention here an  additional result which is  derived in 
Appendix D. The density  of  states in  the resonant well also 
depends  on  the degree of  sequential  tunneling. For the 
density  of  states  in the well  we find in  the crossover region 

Note  that  the density  of  states in  the well is determined by 
the total  width I', Equation ( 1  2) .  Thus,  as  the  number of 
sequential tunneling processes increases, the density of states 
in the well becomes less sharply  peaked at  the resonant 
energy and broadens.  Reference [ 141, in  attempting  to show 
that resonant tunneling  and sequential tunneling  are 
equivalent, uses a density  of states which is independent of 
the degree of  inelastic  scattering. 

the crossover from the  coherent  to  the sequential 
tunneling regime. If the inelastic  scattering rate exceeds the 
elastic width by orders  of  magnitude, one  must 
go beyond this formalism. 

4. Coherence  corrections of the  completely 
incoherent  transmission 
In  the  limit  in which every camer traversing the well is 
scattered inelastically, the  coherent transmission  probability 
T, vanishes and S, = TI and S, = T2. The total  transmission 
probability is given by Equation (8). The completely 
incoherent transmission is independent of the separation w 
of the  bamers. Consider  now the situation in which a tiny 
fraction  of all the  camers  can execute one or more full 
revolutions in  the well before losing phase memory.  We  can 
then expect  a  small  correction  of Equation (8) by a term 
which depends  on  the phase 4 = kw accumulated  during 
well traversal. This correction term is, therefore, sensitive to 
the geometrical arrangement of the  bamers. Below we 
consider the case where the  camers in the well can execute 
at most one revolution before losing phase memory. 

Suppose that  the carriers  have  a  small  probability 1 - c, 

with c close to 1 to traverse the well without  being  scattered 
into reservoir 3. Interestingly, to  the lowest order in 1 - c, it 
is the forward and backward  scattering  probabilities which 
contain these  interference  terms, not  the  coherent 
transmission  probability. The  coherent transmission 
probability T, is easily obtained  in this limit.  The probability 
amplitude for traversal of the  structure of  Figure 1 from 
channel 1 to  channel 2 is t , ,  = t,d1 - E t,, and hence 

The Breit and Wigner  formalism can  only  handle 

- 

T, = T2, = = (1 - &)TIT2.  (19) 

Carriers which traverse  coherently from  channel 1 to 
channel 2 and  in  addition execute a full revolution in  the 
well have to traverse the well at least three  times  and  are of 
order ( I  - e)'. 

Now  consider the Sequential tunneling process and let us 
focus on  the backward  scattering  probability S,. Consider the 
camers which are injected by the inelastic  scatterer into  the 
conductor with a negative velocity. A  fraction  of  these leave 
the well through the left bamer with amplitude t ,  and give 
rise to a  backscattering  probability S, = TI to lowest order. 
Most  carriers are reflected back into  the well if R ,  is close to 67 
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(a) Maximum resistance and minimum resistance corresponding to 
off-resonant and resonant transmission of a double-barrier structure 
as a function of E.  The parameter E is the probability for carriers 
incident on the junction to be scattered into the extra reservoir. The 
two barriers forming the well have transmission probability T I  = 0.05 
and T2 = 0.01. (b) Ratio of coherent current and sequential current as 
a function of E for the double-barrier structure with parameters as in 
Figure 2(a). 

I ,  and a tiny fraction of these camers traverses the well back 
and forth,  completing a full revolution. The probability 
amplitude for a carrier starting  in  the well and completing a 
full revolution - is A = (J1-c ~:")(Ji--c ~:")e'(~'+~') 
Here dl - e is the  absolute value of  the probability 
amplitude for a camer  to traverse the well without losing 
phase  (without  being  scattered into reservoir 3 of  Figure l) ,  

68 and R:l2 and R : I2 are  the absolute  probability amplitudes for 

reflection at  the right and left bamer. 4 = kw with w the 
width of the well is the phase accumulated  during well 
traversal, and A& is the phase accumulated  during  the two 
reflection processes. The superposition  of the carriers 
escaping directly from the well with amplitude t ,  on those 
that escape after one revolution with probability amplitude 
t , A  gives rise to a combined  amplitude t ,  + t ,A, and hence to 
an interference  correction proportional  to  2T,Re [ A ] ,  with 

Re[A] = (1  - e)RI R 2  cos(24 + A$). 

Consideration of all the processes that  contribute  to  the 
backward-scattering  probability to  order 1 - E gives (see also 
Appendix B) 

112 112 
(20) 

S, = T,[1 - ( 1  - e)(T2 + 2R,  R, COS(@))]. I12 112 
(2 1) 

Here @ = 24 + A 4  is the  total phase. In  contrast  to T,, the 
backward-scattering probability S, is sensitive to  the 
separation  of the  two barriers. Similarly,  for the fonvard- 
scattering  probability we find 

Sf = T2[ I - ( 1  - &)(TI + 2R,  R, COS(@))]. 112 I/, 
(22) 

Using Equations ( 1  9) - (22) to evaluate Equations (1) and (2) 
yields 

TI T2 
TI + T2 T o 1  = - [l  + 2(1 - e)(T,T, - R ,  R, COS(@))]. (23) 

112 112 

For e = 1, Equation (23) gives exactly the result of Equation 
(8) for  completely incoherent transmission. Equation (23) is 
valid independent of the  magnitude of the transmission 
probabilities TI and T,. If these  are taken  to be small 
compared  to unity and if ws use in addition  Equation (B22), 
which expresses E in terms of the inelastic  scattering time 7i 

and  the well frequency u = u/2w, Equation (23)  becomes 

Thus, in the case of strong inelastic  scattering 2mi < I ,  we 
obtain corrections to  the completely incoherent transmission 
which are sensitive to  the geometrical arrangement of the 
scatterers. If the Fermi energy is  such that 0 = (2n + l)a, we 
have maximum transmission, and for 3 = 2an we have 
minimal transmission. 

Due  to interference effects, the  number of states in  the 
well per  unit energy (see Appendix D) is also modified. In 
the case of complete phase randomization,  the  number of 
states  per unit energy is dN/dE = 2w(dn/dE). A calculation 
yields 

dN/dE = 2w(dn/dE) 

X [ I  + (1/2)(1 - E)(R, + R, - 2R,  R, COS(@))], (25) 112 112 

which in the limit of small  transmission  probabilities 
becomes 

dN/dE = 2w(dn/dE)[ 1 + 2e"1'"'1sin2(@/2)J. (26) 
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The enhanced transmission at @ = (2n + I)* coincides with 
an enhanced density of states and the minimal transmission 
at @ = 2 n ~  is accompanied by a reduced density of states. 

5. Transition  from  completely  coherent  to 
completely  incoherent  transmission 
In  Section 2 we discussed the limiting behavior of 
completely coherent and completely incoherent 
transmission. In Sections 3 and 4 we investigated the 
departure from these simple limits. In this section we address 
the transition from one limiting behavior to the other for the 
entire domain of inelastic scattering. A simple model 
calculation is presented in Appendix B, and here we 
summarize these results by discussing Figures 2 and 3. 

W/(h/e2) = T i : ,  with Tl0, given  by Equations (1) and (2)  
evaluated in Appendix B for a two-bamer structure with 
TI  = 0.05 and T2 = 0.01 as a function of the coupling 
parameter E. The upper curve shows the maximum 
resistance (minimum or off-resonant transmission) and the 
lower curve shows the  minimum resistance (peak 
transmission). E = 0 is the purely coherent limit, and the 
minimum  (maximum) resistance  is determined by Equations 
(3) and (7), respectively. E = 1 is the purely incoherent limit, 
and  the resistance  is determined with the help of Equation 
(8). For small E the  minimum resistance is given  by Equation 
( 15) (Breit and Wigner limit) and the maximum resistance  is 
determined by Equation (1 6). An increasing number of 
sequential tunneling processes (increasing E)  leads to a 
decreasing ratio of the  minimum  and maximum resistance 
(transmission) caused both by a decrease in the maximum 
transmission probability and by a rise in the  minimum 
transmission probability. Thus sequential tunneling leads to 
lower  peak  values  in the transmission, but increases the off- 
resonant transmission. For E close to 1, only small 
corrections remain from the completely incoherent 
transmission. These corrections are  due  to a small fraction of 
camers which can undergo a complete revolution before 
leaving the well, as discussed in Section 4. 

Figure 2(b) shows the ratio of the coherent current to the 
total current, T,/T,,,, and the ratio of the current due to 
incoherent (sequential) processes to the total current, T,/Ttot. 
For small transmission probabilities, a small amount of 
inelastic scattering 2~ = l / v ~ ~  > ( T I  + T,) = 1/v7= makes the 
sequential current dominant. 

The density of states in the well  gives a good indication of 
the degree to which coherence effects  play a role. In Figure 3 
the density of states in the well (calculated in Appendix C )  is 
shown as a function of E - E, for three different scattering 
rates. For small scattering rates Equation ( 16) applies. With 
increasing inelastic scattering, the variation in the density of 
states is less pronounced. For E = 1, i.e.,  when camers are 
scattered every time they reach the  junction in Figure 1, the 
density of states in the well  is without structure. 

Figure 2(a) shows the two-terminal resistance 

-3 - 2  - I  0 1 2 3 

( E  - Er)/hv 

$ Number of states  per  unit  energy in the  resonant  well  for  three 
i different  degrees of inelastic  scattering as a function of  energy. E ,  is 
2 the resonant energy  and 11 is the well frequency; (dnidE) is the  density I of states in the perfect conductors and w is the well width. 

Phase randomization is a consequence of inelastic events. 
To describe such processes it is necessary to explicitly take 
into account the phase-randomizing agent. To describe 
sequential tunneling in terms of a density of states 
corresponding to the completely coherent case, as in [ 141, is 
not correct. In order to have sequential tunneling we must 
have a phase-randomizing scatterer, and this in turn affects 
the density of  states. 

Admittedly, in this paper we have  focused on a one- 
dimensional (one quantum channel) conduction problem, 
and inelastic scattering might have a more drastic effect in 
such  small  systems. The approach introduced here can, 
however,  be extended to treat more complex situations, as 
indicated in Appendix C .  

Note added in proof 
References [ 141 and [34] consider a large applied voltage I/ 
which  exceeds the width r of the resonance. References [ 141 
and [34] find an integrated current which is independent of 
the inelastic width r,, when the resonance is centered in the 
applied bias range.  We emphasize that Equation (1 5 )  has a 
limited range  of  validity. For an applied voltage  large 
compared to the elastic  width re but small compared to hv, 
the current decreases  with increasing elastic width ri with a 
slope 

a 1 1  - "0gI E -> - ari eV-  hv 
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Equation (27)  is valid for  a  small  inelastic  width. The peak- 
to-valley ratio is  smaller than  that given by Equation ( 17) 
and is proportional  to  h2v2/rV. 
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Appendix A: Coherent  and  sequential  parts of 
conductance 
Consider the  conductor [5] in Figure 1. To derive Equations 
(1) and (2) we have to calculate the  net  current which flows 
due  to a difference in  the chemical  potentials p ,  and p2. The 
perfect conductors between the reservoir and  the scatterers 
are assumed to be one-dimensional; i.e., there  are two  states 
at  the  Fermi energy, one with positive velocity (from the 
reservoir toward the  conductor)  and  one with negative 
velocity. Let us consider the case of a low temperature such 
that  the energy spread k T  can  be neglected. The  reservoirj 
feeds all channels  connected  to  it equally [29] and  up  to  the 
chemical  potential pJ. Let us introduce a reference potential 
po which is  smaller than or equal  to  the lowest of the  three 
chemical  potentials p, ,  p2, p,. Below the reference potential 
po all  states are completely filled and we need to consider 
only the energy range  above po. The  current  emitted by the 
reservoirj  into  an adjacent channel  in  the energy range pJ - 
Po is 

ti, = a(dn/dE)(pJ - ('41) 

Here v is the  Fermi velocity and dn/dE is the density 
of states (for one spin  direction). In  one  dimension 
dn/dE = (dn/dk)(  dk/dE) = 1 /27rhv, since dnldk = I /27r. 
Thus  the reservoir injects into each channel  connected  to it  a 
current 

To obtain  the net currents we must specify the probabilities 
of camers for  transmission and reflection at  the  conductor of 
Figure 1. Let Tk/ be the probability  for  a  carrier  incident in 
channel I to traverse the  structure  into  channel k to reach  a 
different reservoir. The probabilities for a  carrier emitted by 
a reservoir to be scattered  back into  the  same reservoir are 
denoted by Rk,. In  the absence of a  magnetic field the 
probabilities are symmetric, T,, = Tlk, R, = R,. 
Furthermore, because of current observation, 

T2I + 4 2  + T23 + T24 = 1, 

T,, + T3* + R,, + R,, = 1, 

T,, + T42 + R,, + R,, = 1. 

Consider  now the  net  current flowing in channel I .  
70 In  channel I ,  reservoir 1 contributes a net  current 

(e/27rh)(l - RIl)(p, - po). The incident current given by 
Equation (A2) is  diminished by reflection at  the sample. 
Current injected by reservoir 2 gives rise to a current 
- ( e / 2 ~ h ) T , ~ ( p ~  - po) in  channel 1. Current injected by 
reservoir 3 into  channels 3 and 4 gives rise to a current 
- (e/27rh)(TI, + TJp, - po) in  channel 1. Collecting all 
contributions yields a net  current  in  channel 1, 

Here we have introduced  the  total transmission  probability 

for  a  carrier  incident  in channel 3 or 4 to be scattered into 
channel 1. The reference chemical  potential does  not  occur 
in  Equation (A4) since the  currents  proportional  to po add  to 
zero because of Equation (A3a). Similar  considerations yield 
a current  in  channel 2 given by 

where 

SF = T2, + T24 (A7) 

is the total  probability  for camers incident  in channels 3 and 
4 to be scattered into  channel 2.  Finally, the  currents  in 
channels 3 and 4 are  found  to  be 

The net current flow in  the  extra  branch consisting of 
channels 3 and 4  has to  be zero. Using Equations (A3) and 
the definition equations (A5) and (A7), we find 

and hence the chemical  potential p, is given by [5] 

Equation (A1 1) is a result which is important beyond the 
context of this paper. The  extra  branch leading away from 
the  conductor  and  connected  to  the reservoir also can 
describe a voltage probe, and p, is the chemical  potential 
which is  measured at  this  probe [28]. Equation (A1 1) 
generalizes earlier concepts of "potentiometers" used in 
[29-311 because it  invokes no  assumptions  on  the  symmetry 
of the coupling between the lead and  the  conductor  and 
because the  junction in  Figure 1 is treated fully quantum- 
mechanically; i.e., amplitudes  are  matched,  and  not 
intensities. 
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Here we use Equation  (AI 1) to  eliminate p3 from 
Equation (A4) or Equation (A6) to  determine  the  net  current 
flow along the  conductor.  Current conservation  requires 
I = I, = -I2. Using Equation (A3) and  the  symmetry T,, = q, 
yields, after a little algebra, 

Here T, = T I ,  = T,, is the  coherent transmission  probability. 
These  carriers  never reach reservoir 3. Thus  the total 
transmission  probability  has  two  terms, as indicated in 
Equations (1) and (2) .  The two-terminal conductance with 
the voltages (chemical  potentials)  measured at reservoirs 1 .. and 2 becomes 

G = I /V  = eI/(p, - p2) = (e2/h)T,, 

An extension  of this  approach for conductors with many 
states at  the  Fermi energy is discussed in [28]. 

For completeness, and  to avoid  potential 
misunderstanding, the expression for the  conductance for 
the case  of a sizable spread kT is added here. Assuming that 
reservoirj  emits  camers with a Fermi  distribution 

f(E - P,) = [exp(E - P,,)/kT + I]-', 

a repetition of the steps  explained  above yields G = Gc + Gi, 
with 

Gc = (e2/h) J ~ E ( - ~ J ~ E ) T , ( E )  

and 

where dfldE is the derivative  of the equilibrium  Fermi 
functionf(E - EJ. 

Appendix B: Solution of specific  example 
Below  we present a calculation which specifies the basic 
ingredients  of our approach,  the transmission  probabilities 
T,, and  the reflection probabilities R,. The  bamers  to  the 
right and left of the  junction (see Figure 1) are specified by 
2 X 2 s-matrices which determine  the outgoing waves in 
terms of the incident waves. (Alternatively, we can also 
specify transfer  matrices.) The  elements of the 2 X 2 s- 
matrix are  the reflection amplitudes r, ,  r ;  and  the 
transmission amplitudes t ,  = t ; for the scatterer to  the left 
and r2, r;, t, for the scatterer to  the right. Here  the  quantities 
without a prime give the reflection and transmission 
amplitudes  for  camers incident from  the left and  the 
quantities with a prime give the reflection and transmission 
amplitudes for  carriers  incident from  the right. These 
amplitudes  are conveniently expressed in  the  form 
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t, = T;I2e"J 

and 

~ = jR;12ei(+~+4a~), 

rJt = i~J~12ei(4,-40~) 

where q and R, are  the transmission and reflection 
probability  of the  bamer, respectively; @, is the phase 
accumulated  during  bamer traversal; 4, + @u,J is the phase 
change  associated with reflection for camers incident from 
the left-hand side, and 6, - @a,J is the phase  change 
associated with reflection for camers incident from  the right- 
hand side. The phase @ accumulated by traversing the piece 
of perfect wire between the  two barriers can also be included 
in  the  amplitudes given above. Below  we assume  that  the 
junction (triangle in Figure 1) connects precisely to  the 
center  of the well. The following substitutions  in  Equations 
(BI) - (B3) account for the phase increments for traversal 
from  the barrier to  the  center of the well: 4, + @, + 612, 

Multiplication  of the  two transfer  matrices  associated with 
the two  scatterers yields a combined transmission  probability 
through  the  double well structure given by 

40,1 + @u,l - 412, 62 + @, + $12, 40,2 + 40,2 + 412. 

By using Equations (BI) - (B3) and  the  substitutions  just 
discussed, Equation (B4) becomes  [3] 

TI  T2 
TI2 = 1 + R,R2 + 2 R ,   R ,  cos(@)' 112  112 

where 

@ = 26 + d,  + 4, + 40.2 - 4 J u , l .  036) 

Equations (B5) and (B6) are exact. The phase accumulated 
in the well is 

4 = kw = w(2mE)'I2/h, (B7) 

where w is the distance between the  bamers  and E is the 
energy of the incident camers. To simplify the analysis, we 
assume now that it  is  only the energy dependence of the 
phase accumulated in the well which matters, and  that  the 
energy dependence of all the  other  amplitudes  and phases 
in  Equations (B5) and (B6) can be neglected. Thus 
@ ( E )  = 2@(E) + Ab, with @ determined by Equation (B7) 
and A 4  an energy-independent phase. Note  that we are  only 
concerned with transmission in a narrow energy interval. If 
only the phase @ accumulates  during well-traversal counts, 
then the  condition for  resonance  of the transmission 
probability [Equation (BS)] is @ = 2@(E) + A 4  = a(2n + I), 
where n is an integer. This  condition  determines  the phase 
@ = d,,, accumulated  at resonance, and  determines  through 
Equation (B7) the  resonant energy Er,n. In  the limit  of 
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impenetrable bamers, R, = R, = 1, we have A@ = T,  and  the 
resonance condition @ = 2@(E) + A@ = ~ ( 2 n  + 1)  yields the 
ladder of eigenstates of a square well, E,, = (h2a2/2m)(n/wf. 
Due to the simplifying assumption made above, the 
transmission probability, Equation (BS), exhibits a whole 
ladder of resonant states. Below  we investigate the behavior 
of the transmission probability near one of  these resonant 
levels. Expansion of the  denominator away from @ = @,,,, for 
small transmission probabilities TI << 1, T2 << 1, yields 
Equations (3) - (6). The transmission is minimal for @ = 

2 ~ n ,  and this value is taken as a measure for the off-resonant 
transmission probability. For small transmission 
probabilities the  denominator of Equation (BS) is 
( 1  + R :12R:’2)2 = 4, and hence the off-resonant transmission 
is proportional to a TIT2 as stated in Equation (7). 

Let us now  specify the properties of the junction in Figure 
I .  The junction connects the conductor (channels 1 and 2) 
to  the extra branch (channels 3 and 4). The amplitudes of 
the incoming waves in these channels (see  Figure 1) are 
denoted by c, and  the amplitudes of the outgoing waves are 
denoted by c: . These amplitudes are related by a 4 X 4 
scattering matrix sk/ such that c; = skrcI. A simple choice 
is [5] 

- \ “  0 
7 \ 0 U’E -41 - E  

The parameter E plays the role of a coupling parameter and 
is later related to the inelastic scattering rate. For E = 0, the 
junction completely decouples the extra branch (channels 3 
and 4) from the conductor. For E = I ,  camers incident in 
channel 1 are transmitted into channel 3 with probability 1 
and  camers incident in channel 2 are transmitted into 
channel 4 with probability 1. Therefore, in this limit all the 
camers in the conductor approaching the  junction reach 
reservoir 3. Some detailed results presented below do depend 
on  the particular choice of the splitter, Equation (B8).  We 
cannot, in general, expect results which are independent of 
the specific phase-randomizing mechanism. In general, all 
the matrix elements in Equation (B8) can be different from 
zero. Moreover, the matrix elements can be energy- 
dependent. As mentioned in [5], this can give  rise to peaks 
in the conductance whose origin is not resonant 
transmission. 

To obtain the overall transmission probabilities To, R, for 
the structure shown in Figure 1, we need to determine four 
wave functions \c;. The wave function ICj has amplitude 1 in 
channel j describing incident camers with a unit flux, and 
has amplitude rI, describing camers reflected into channel i 
and amplitude t ,  describing camers transmitted into channel 
j .  From these amplitudes the transmission and reflection 

probabilities T, and R, are obtained. A calculation yields the 
following  results: 

R,,  = [R, + ( 1  - cfR2 

+ 2R:I2R?(1 - e)cos(@)]/lZ12, (B9) 

R,, = [R, + ( I  - E ~ R ,  

+ 2R:’2Ri/2(1 - c )cos (@)] /~Z~~ ,  (B10) 

where 

If  we allow  for complex @ (complex energy), the 
amplitude Z = 1 + ( I  - E)R , R, e vanishes at the energy 
E = E, - i(r, + Fi)/2. Here the elastic width is given  by 

112 1/2 I* 

and  the “inelastic” width by 

For E = 0, when channels 3 and 4 are decoupled from the 
conductor we find the results  discussed at the beginning of 
this Appendix; i.e., the results  for TI, given  by Equations 
(B5) and (B14) are  the same, and R,,  = R,, = 1 - T12.  The 
Breit and Wigner formulae [ 1, 21 (see  also Appendix C) are 
obtained from Equations (B9) - (B 18) in the limit 
@e) = @TI)  = @T2) << 1,  with the partial widths given  by 
Equations (6) and (1 3). The total elastic and inelastic widths 
are consistent with Equations (B20) and (B21) in the limit of 
small transmission probability and small E. The results of 
Section  4, the limit of E close to 1, are obtained by 
expanding Equations (B14) - (B 18) to first order in (1 - E). 

Equation (B2 1) allows an interpretation of the parameter E 

in terms of an inelastic scattering time; with Ti = h / ~ ~  we 
obtain from Equation (B2 1) 

From Equations (B15) - (B18) we obtain for the forward 
and backward scattering rates 

S, = cT,[1 + ( I  - E)R,]/IZI~, 

Sf= eT,[I + (1 - E ) R , ] / ~ Z ~ ~ .  
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Together with T, = TI,,  with T , ,  given by Equation (B14), 
Equations (B23) and (B24) determine  the total  transmission 
probability T,,,, Equation ( I ) ,  for  arbitrary  coupling E .  

Figures 2(a) and 2(b) are generated with the  help of  these 
results. 

Appendix C: The  Breit  and  Wigner  formulae 
The Breit and Wigner formulae  determine  the scattering 
matrix  in the presence  of a resonance. They  are usually 
derived in  the  context of  nuclear  reactions [ 1, 21 and  this 
perhaps  accounts for the fact that they  seem not  to  be 
appreciated in solid-state physics. Consider a bamer 
connected to  two perfect wires [4,29]. In the perfect wires 
the longitudinal motion is assumed to be separable from  the 
transverse motion.  Thus  motion  in  narrow perfect wires can 
be characterized by the  quantized  motion  in  the transverse 
direction, giving rise to a set of  discrete energies E,. Kinetic 
longitudinal energy can be added  to  the transverse energy to 
give the Fermi energy: EF = hkf/2m + E,. Here we have 
used a free-particle term  to characterize the kinetic energy of 
the longitudinal motion,  but  this is not essential. Thus each 
channel j is associated with two  states at  the  Fermi level with 
longitudinal velocities u, = +d(2/rn)(EF - E,). We have N 
input  channels  and N output channels. The set of transverse 
energies in the perfect wire to  the left of the  bamer  can be 
equal to or different from  the set of  transverse energies to  the 
right of the  bamer. Similarly, for  conductors with side 
branches, we assign a set of channels  to each branch of the 
conductor [5, 22, 281. For  the  conductor of  Figure 1, N = 4. 
The  conducting  sample mixes these  channels; i.e., a wave 
incident  in channel j leads in general to outgoing waves in all 
the channels. We have used here the  notion of channels  in a 
perfect conductor [29] as  an example. The Breit and Wigner 
formulae  presented below apply quite  independently of the 
particular  properties  of the channels, i.e., whether we deal 
with plane waves, Bloch waves, or spherical waves. Let us 
denote  the  amplitude of the  incident  current  in  channelj by 
a, and  the outgoing current  amplitude in channel j by a,!. 
The relation between the  incoming waves and  the outgoing 
waves is given by an s-matrix a,’ = cizf slJa,. Current 
conservation  requires the  matrix s to be unitary, and  time 
reversal (in the absence  of a magnetic field) requires in 
addition  that this  matrix be symmetric, s,, = s,? Suppose  now 
that  the  bamer  contains a state with a long  lifetime h / r  at 
an energy E = E, - ir/2.  The key point of Breit and Wigner 
is the following: All matrix elements of the  s-matrix which 
relate to  the decay of the resonance must themselves be 
resonant and have a denominator of the  form E - E, + ir/ 
2. Below we assume  that all the  channels of the  s-matrix 
discussed above couple  to  the  resonant state. If this is not  the 
case, our considerations  apply to a properly  defined and 
reduced portion of the s-matrix. The s-matrix  takes an 
especially simple form if it is expressed on  the basis of the 
“eigenchannels” which are related to  the  channels discussed 
above by an  orthogonal  transformation 0. Consider for 
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simplicity a sample  (bamer)  connected  to only  two perfect 
wires. The eigenchannels are defined  in the following way: 
Away from  the  resonant energy, transmission through  the 
sample  is very small and  can  be neglected. Thus, away from 
resonance, camers  incident  on  the  sample  are (in  this 
approximation) totally reflected. In general, camers incident 
in channel j are reflected with nonvanishing  probabilities 
into all the  channels of the perfect conductor.  The 
eigenchannels are chosen such  that  the reflection away from 
resonance is diagonal. There is an orthogonal transformation 
0, which transforms  the  channels of the left perfect 
conductor  and  an orthogonal transformation 0, which 
transforms  the  channels of the right perfect conductor.  On 
the basis of eigenchannels the s-matrix away from resonance 
is given by s,, = 6mnel(6m+6n), where 6,“ is the  Kronecker 
symbol and 6, are  the phases acquired in  the reflection 
process. On  the basis of the eigenchannels, and  in  the 
presence of  resonant  transmission, the matrix elements of 
the s-matrix are of the  form 

where the matrix elements M,, remain  to be determined. 
The s-matrix is symmetric, and hence M,, = M,,,. 
Furthermore, since s is unitary, differing rows of the s- 
matrix must be orthogonal to  one  another.  The 
orthogonality of rows m and n gives 

ME” M m n  

E - E, - i r /2  E - E, + i r /2  
- 

J=N 

ir M,~M; 

(E - EJ’ + r2’ 
- J = I  - (C2) 

As shown  in [2], Equation (C2)  implies first that M,, is real 
and second that M,,, is a matrix which is equal  to its own 
square. Since M is  symmetric,  it can  be diagonalized, and 
since the matrix  is unimodular,  its eigenvalues are either 0 or 
1. If there is no accidental degeneracy of resonant levels in 
the sample, all eigenvalues of the “matrix are  equal  to 0 
except  for one eigenvalue, which is equal  to 1. As shown in 
[2], in this case 

M,“ = Jm/c (C3) 

where the rm are called the  partial widths of the  channels 
and r = c:I;”I’, is the  total width  of the  resonant level. Thus 
the set of phases 6,, n = 1, . . . , N,  and  the N partial  widths 
determine  the  matrix  elements of the s-matrix. The matrix 
[Equation  (Cl)] specified by Equation (C3) is  unitary. The 
constraint 6, = 6, where  sin6 = r/2[(E - E$ + 
(1’/2)2]’’2, makes s,, a special unitary matrix.  Using 
Equations (C3) and  (Cl) yields a probability 
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for m # n and 

for n = m. Thus  the Breit and Wigner  formulae, Equations 
(C4) and (C5), determine  the transmission  probabilities and 
the reflection probabilities of a resonant  scatterer  coupled to 
N channels in terms of the partial  widths  of  these  channels. 
For  the particular  example  analyzed  in  Appendix B, we find 
that in the Breit and Wigner limit,  Equations (B 1 l), (B 12), 
and (B 14) - (B IS) are of the  form given by Equation (C4), 
and  Equations (B9), (BlO), and (B13) are of the  form given 
by Equation (C5). In  this example the  transformation  to 
eigenchannels affects only channels 3 and 4. 

As an  additional application  of  these results, let us 
consider the case of  a single resonant well in a barrier 
connected to  the left and right to perfect wires (see [ 161 and 
[ 171). The perfect wire to  the left has N, quantum channels, 
and  the perfect wire to  the right has N, quantum channels. 
The total number of channels is N = N, + N,. The decay into 
the eigenchannels on  the left-hand  side  of the  barrier gives 
rise to  the partial  widths rt,i and  the decay into  the 
eigenchannels on  the right-hand side gives rise to  the partial 
widths I’r.J. The probability  for  transmission  from channel j 
(on  the 1.h.s.) to  channel i (on  the r.h.s.) is, according to 
Equation (C4), T,J = I’J,,J(E - E,? + a I”. Here 
r = rr + r, is the total  width and rr = C:.:: rr., is the total 
partial  width associated with decay  of the resonant  state into 
the r.h.s. perfect conductor,  and r, = E;:;”/ rt,, is the total 
width associated with the decay into  the 1.h.s. perfect 
conductor.  The  conductance [29, 321 (6) + (6) T,J 
G = - tr(t t )  = - 

I= I .J= I 

is easily evaluated and given by 

G = (g) rrr, 
h ( E  - E,)’ + a (r, + rf‘  

Here we have  evaluated the  conductance  on  the basis of 
eigenchannels, which is allowed since tr(t’t) is invariant 
under  the orthogonal transformations 0, and 0, discussed 
above. Thus, application  of the Breit and Wigner formulae 
immediately yields the key result of  Kalmeyer and Laughlin 
[ 171. In the presence of a single resonant  state the 
conductance is bounded by e2/h. The  maximum value is 
obtained if rr = r,. A single resonant state, described in  the 
Breit and Wigner formalism by requiring that  the “matrix 
have  only one eigenvalue equal  to 1, can  at best provide one 
effective conduction  channel [33]. 

Appendix D: Local  density of states 
In this  section we discuss the density  of  states  in the well and 
the effect of inelastic  scattering on  the density  of states. Let x 

74 be the  coordinate along the  conductor, with x = 0 marking 

the location of the  junction.  The  number of camers in the 
segment of the  conductor between x and x + dx and  in  an 
energy interval E,  E + AE due  to carriers  incident  in 
channel j is [24, 3 I ]  

dN(x) = (dn/dE)AE I $,(E, x )  I2dx. ( D l )  

Here (dn/dE) = 1/27rhv is the density of states  in channel j .  
The wave function is normalized  such that  the incident wave 
has amplitude 1. Iil the  conductor of Figure 1 we have  a 
total of four wave functions,  each  describing  carriers incident 
in one of the  four channels. Thus, in the  sample of  Figure 1, 
assuming that  the density  of  states  of all the  channels is the 
same, the  number of  carriers in  an interval from x to x + dx 
is given by 

dN(x) = (dn/dE)AE 1 I$,(E, x)12dx. 

Let us now  apply Equation (D2) to find the total number of 
carriers  in the resonant well. This requires that we integrate 
the right-hand  side  of Equation (D2) over the width of the 
well. Dividing  this by AE yields the  number of  states  in the 
well per unit energy, 

dN/dE = (dn/dE) 1 dx I $k(E,  x) 1,. 033) 

For a well which is wide compared  to  the  Fermi wavelength, 
the integration  limits are  determined by the  turning points. 
We are  not interested in density  variations on  the scale of  a 
Fermi wavelength and, therefore,  it is sufficient to use a 
density which has been averaged over  a  small volume several 
times larger than  the scale set by the  Fermi wavelength 
[3, 24, 29, 3 11. In the well the wave function is a 
superposition  of  plane waves. The averaged square of the 
wave function  to  the left (and right) of the splitter is 
determined by a  pair  of  amplitudes, a,,  a;, b , ,   b i ,  
respectively. For instance, the averaged wave functions  to  the 
left of the splitter are given by ( I $,(x) I ’) = I a, ( j )  1’ + 
lal(j)12 = lc , ( j )I2 + lci(j)12. Here  the ( )  indicate the 
spatial average. Because the a and c coefficients (see Figure 
1) in  this equation differ only by phase factors, either set can 
be used. For brevity we do  not present this calculation in 
detail but  only give the final result, 

dN/dE = (dn/dE)( w/2)( 1 / I Z I ’) 

J=4 

(D2) 
J= 1 

k=4 F W / 2  

k-1 F--h./2 

X [(2 - &)(TI + T,) + (1 - c)(2 - e)(R,T, + R2Tl)  

+ 2c + 4 2  - c)(RI + R,) + 241 - c)R1R2]. (D4) 

The  number of  states  per unit energy, Equation (D4),  is 
shown  in Figure 3. Equation (B7) is used to  obtain  the 
energy dependence. In the Breit and Wigner  limit, Equation 
(D4) yields Equation ( 17). In the limit c = 1 corresponding 
to complete  phase randomization,  the density of states in  the 
well is the  same  as  that  in  the perfect leads  connecting to  the 
reservoirs; i.e., Equation (D4) yields dN/dE = (dn/dE)2w. 
Clearly, for  a  narrow well with a  width  of the  order of the 
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Fermi  wavelength,  the  approximations  used above to find 
the  number of states in the  well  are not adequate. The key 
point of our discussion, already  made  in [24], is  that  inelastic 
scattering  affects  the  density of states. 
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