Coherent

and sequential
tunneling

In series barriers

by M. Buttiker

A simple approach which can describe both
coherent tunneling and sequential tunneling

is applied to resonant tunneling through a
double-barrier structure. This approach models
phase-randomizing events by connecting to the
conductor a side branch leading away from the
conductor to a reservoir. The reservoir does not
draw or supply a net current, but permits
inelastic events and phase randomization. A
conductance formula is obtained which contains
contributions due to both coherent and
sequential tunneling. We discuss the limiting
regimes of completely coherent tunneling and
completely incoherent transmission, and discuss
the continuous transition between the two. Over
a wide range of inelastic scattering times
tunneling is sequential. The effect of inelastic
events on the peak-to-valley ratio and the
density of states in the resonant well is
investigated. We also present an analytic
discussion of the maximum peak conductance
e/h of an isolated resonance in a many-channel
conductor.

1. Introduction
As is well known, the scattering of waves or carriers at a
target which permits inelastic events in addition to elastic
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scattering exhibits a cross section consisting of two
contributions: an elastic, coherent part and an inelastic,
incoherent part [1, 2]. If for the purpose of calculating the
conductance we view the conductor (or a device) as a target
at which carriers are either reflected or permitted to traverse,
we can similarly expect that the conductance also exhibits
two contributions: a coherent contribution which arises from
carriers traversing the sample suffering only elastic events,
and an incoherent contribution due to carriers which
suffered inelastic events while traversing the sample. Carriers
which are scattered elastically emerge with a phase which has
a definite relationship to the phase of the incident carriers.
Carriers which are scattered inelastically emerge from the
sample with a phase which is unrelated to that of the
incident carriers. A discussion of conductance which views
the sample as a target has long been advocated by Landauer
[3, 4]. The incident currents are specified and the net current
and the piled-up charges are obtained from the
wavefunctions [3, 4]. This approach is typically restricted to
the case of elastic scattering (coherent tunneling) only.
Recently we have expanded this approach and have found
an expression for the conductance which allows for both
coherent and incoherent scattering processes [S]. The total
transmission probability for a carrier to traverse the sample
is

Ta=1.+T, (1)

where T, is the probability for a carrier to traverse the

sample coherently and T is the transmission probability for

carriers which have suffered an inelastic event. The coherent

transmission probability cannot be calculated as if there were

no inelastic events in the sample, since it is also affected by 63
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Channel 2

Double barrier (rectangles) with an inelastic scatterer in the well,
modeled by an extra branch leading away from the conductor and
connected to an extra reservoir 3. Reservoirs 1 and 2 serve as source
and sink of carriers and energy. Reservoir 3 draws no net current but
permits inelastic phase-randomizing events. A carrier which
traverses the double barrier from reservoir 1 to reservoir 2 without
entering reservoir 3 is said to tunnel coherently. A carrier which
progresses from reservoir 1 to reservoir 2 via reservoir 3 is said to
tunnel sequentially.

the presence of these processes. For the case of a single
inelastic scatterer located in the sample, the incoherent
transmission probability in Equation (1) is of the form [5]

S,
T = 2

iTS, + S @)

S, is the transmission probability for a carrier emerging from
the inelastic scatterer to traverse the sample backward
against the direction of carrier flow. S;is the transmission
probability for a carrier emerging from the inelastic scatterer
to traverse the sample forward in the direction of current
flow. Equation (2) can be understood in the following way
[4]: Only a fraction S;/(S; + S,) of the carriers reaching the
inelastic scatterer will leave the sample in the forward
direction. The probability for carriers incident on the sample
to reach the inelastic scatterer is S, and the probability for
incoherent transmission is thus S, multiplied by the factor
we have just discussed. A mathematical derivation of
Equation (2) is given in [5] and in Appendix A of this paper.
It is the purpose of this paper to apply Equations (1) and
(2) to a sequence of two barriers with a resonant well
between them [6]. Resonant tunneling is of interest in
double-barrier diodes {7-15], in tunneling through a barrier
with impurity states [16-17], in strongly localized
conductors [18-20], and also in scanning tunneling
microscopy, where a localized state can be provided by a
protruding adatom [21]. In particular we investigate the
effect of inelastic events on tunneling. A carrier which
traverses one of the barriers coherently but is scattered
inelastically in the well and loses phase memory before
eventually escaping from the well is said to tunnel
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sequentially [10]. A recent discussion of sequential tunneling
which does not include a phase-randomizing agent found
that coherent resonant tunneling and sequential tunneling
lead to equivalent results for the current [14]. The analysis
presented here does not support this conclusion. Coherent
tunneling is contained in the first term of Equation (1), and
sequential tunneling is given by the second term of Equation
(1). Inelastic events which are needed to destroy phase
coherence lead to a broadening and decrease of the resonant
transmission [1, 2, 19] and, equivalently, to broadening of
the density of states in the well. The decrease of the peak
transmission with increasing inelastic scattering is
accompanied by an increase of the off-resonant transmission.
As a consequence the peak-to-valley ratio of the total
transmission probability decreases with an increasing
number of sequential processes.

To model inelastic events we use the approach of [5].
Consider Figure 1, which shows two barriers (indicated by
squares) connected by pieces of perfect conductor (solid
lines). The conductor is via a junction (the triangle in Figure
1) connected to a side branch. For simplicity the perfect
conductors (denoted as channel 1 and channel 2 in Figure 1)
are assumed to be one-dimensional, with two states only at
the Fermi energy. The side branch, however, consists of two
quantum channels (channels 3 and 4) and is, in turn,
connected to a reservoir at a chemical potential ;. Reservoir
1, at a chemical potential g,, plays the role of a carrier
source, and reservoir 2, at a chemical potential u,, acts as a
sink. Reservoir 3, in contrast, draws or delivers no net
current. The condition of zero net current in the side branch
leading away from the conductor determines the chemical
potential u, as a function of , and u, [see Equation (A11)].
Each of the reservoirs has the property that it absorbs
carriers incident from the conductor, regardless of the energy
and the phase of the carriers. Furthermore, each reservoir
emits carriers into the adjacent conductor up to its chemical
potential. These rules, therefore, specify the currents incident
into the conductor [3, 4]. The triangle in Figure 1 represents
a quantum-mechanical junction between the side branch
and the conductor. A specific example is discussed and
solved in Appendix B.

A carrier scattered from the conductor into the side
branch propagates to reservoir 3, where the carrier suffers
inelastic events. Eventually, to maintain zero net current,
reservoir 3 emits a carrier toward the junction, where the
carrier is either reflected back to the reservoir or is scattered
into the conductor. S; introduced in Equation (2) is the total
probability for a carrier emitted by reservoir 3 to traverse
into reservoir 2. Similarly, S, is the total probability for a
carrier emitted by reservoir 3 to end up in reservoir 1.
Therefore, the carriers which traverse the sample
sequentially are those that are scattered into reservoir 3 and
re-emitted by reservoir 3. The junction (triangle) also aliows
for carriers incident in the conductor to be scattered not into
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the side branch but again into the conductor. Therefore, a
fraction of the carriers can traverse the sample from reservoir
1 to reservoir 2 without visiting reservoir 3, and these are the
carriers which traverse the sample coherently.

Let us introduce the probability ¢ for a carrier approaching
the junction to be scattered into the side branch (channels 3
and 4). For ¢ = 0 the conductor and the side branch are
completely disconnected. For ¢ = 1 every carrier incident
from the conductor on the junction is transferred into the
side branch and reaches reservoir 3. Thus ¢ = 0 is the case of
completely coherent transmission, and ¢ = 1 is the case of
completely incoherent transmission. If ¢ differs from these
limiting values, we have both coherent transmission and
sequential transmission. Thus the parameter ¢ determines
the amount of inelastic scattering. The approach discussed
here and in [5] allows the study of the continuous transition
from completely coherent to completely incoherent
transmission. To achieve complete phase randomization,
carriers need to be scattered with probability 1 into reservoir
3. If the junction is required to be symmetric with respect to
right- and left-moving carriers, probability 1 can only be
obtained if the side branch contains two channels. If the side
branch contains only one channel and is symmetric with
respect to right- and left-moving carriers, the maximum
probability [5] which can be achieved for scattering into
reservoir 3 is 1/2.

The method of introducing inelastic scattering or
sequential processes described above is not limited to a
single side branch. Conductors connected to many side
branches are of interest as well [5, 22]. Another system is
obtained if we eliminate two of the reservoirs in Figure | by
forming the conductor into a loop. A normal loop, driven by
a magnetic flux and with a single side branch to model the
effect of inelastic events on coherent superconducting-like
phenomena [23], is the subject of [24]. Another interesting
feature of the approach proposed here is the following: The
conductor shown in Figure | is a three-terminal device.
Reservoir 1 can serve as a current source and reservoir 3 as a
current sink. This situation bears a close resemblance to the
experiment of Morkog et al. [25], where current was drawn
directly from the “well.” As in the experiment [25], our
approach also yields a resonant conductance in this case,
even though a net current flows only through one barrier.

Below, we emphasize the two-terminal conductance [26]
¢= = (ez/h) T, considering channels 1 and 2 as the
conductor. Thus we are not directly addressing the negative
differential conductance phenomena which were first
discussed by Tsu and Esaki [7] and which have generated
much interest lately [8-15, 25]. Instead, we assume that we
can control the Fermi energy and that it is the dependence
of the conductance on the Fermi energy which matters. This
paper is also limited to the case where kT is small compared
to the width of the resonance (see, however, Appendix A).
Most of the calculations leading to the results presented
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below are relegated to four appendices. We focus on one-
dimensional conductors, except in Appendix C, where we
discuss the peak conductance due to an isolated resonant
state in a many-channel conductor.

2. Completely coherent versus completely
incoherent transmission
In this section we discuss the extreme limits in which one of

the terms in Equation (1) vanishes. In the completely
coherent limit 7, = 0, the coherent transmission probability
through two barriers in series exhibits resonances near the
energies of the quasi-eigenstates of the well,

1 2
T= T —tt 3)
(E—-E) + T,
with a peak value at resonance
4T\T,

T =—"3. 4
res (Tl + T2)2 ( )

The peak value is 1 if the transmission probabilities of the
two barriers are equal, and is smaller than | and given by
T, = 4T /T, in the case that T, < T,. In Equation (3),

r,=r, +T, %)

is the total elastic width; T', and T, are the partial elastic
widths of the resonant level. 1/7, = T, /A is the decay rate of
the resonant state. The transmission through a double-
barrier structure is analyzed in Appendix B. This calculation,
which invokes some simplifying assumptions not relevant
for our subsequent discussion, yields for the partial elastic
widths the WKB expressions

T, =wT,, T,=mwT,. (6)

Here » is an attempt frequency, and in the case of a square
well is given by » = 2w/v, where w is the width of the well
and v is the velocity of a carrier in the well at the resonant
energy E.. At energies E away from E,, transmission 1s still
coherent but typically many orders of magnitude smaller
than 7, and, approximately,

T.=T,«; T, 7

Therefore, the peak-to-valley ratio T,/ T is exponentially
large if the transmission probabilities are exponentially
small. Such huge peak-to-valley ratios have not been
observed experimentally; inelastic scattering, discussed
below, is one reason for this discrepancy. But there are other
reasons also, e.g., the averaging over an energy range due to
a three-dimensional incident distribution [10], deviations
from an ideal planar structure, and elastic scattering due to
impurities [15].

Let us now turn away from the limit of completely
coherent transmission and consider the limit of completely 65
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incoherent transmission, i.e., 7_ = 0. In this case every
carrier reaching the inelastic scatterer loses phase. In this
limit a carrier cannot travel from one side of the resonant
well to the other without being scattered inelastically. This
process is a special limit of the sequential tunneling process
and is labeled completely incoherent. In general, a sequential
tunneling process permits many oscillations in the well with
frequency v before the carrier loses phase memory. We
invoke a scatterer (triangle in Figure 1) which re-emits
carriers with equal probability to the left and right into the
conductor. In the limit of complete phase randomization,
the probability of a carrier emerging from the inelastic
scatterer to traverse the sample backward is given by S, =T,
and similarly the probability of a carrier being scattered in
the forward direction is S; = T,. Therefore, in the completely
incoherent limit Equation (2) yields [5]

T,T, 1 1T
O N Atk ®
A single barrier with transmission probability 7 in an
otherwise perfect wire gives rise to a two-terminal

resistance K, = (#/e’)T". Therefore, Equation (8), using

R = (h/e")T o = (h/e*)T; ", yields the series addition of
resistors, K = R, + K,. If inelastic scattering is so strong that
every carrier loses phase memory while traversing the well,
the resistance of the structure contains no detailed
information about the geometrical arrangements of the
scatterers (separation of the barriers) but is the sum of the
resistances due to the individual scatterers. Note that the
transmission in the incoherent limit, Equation (8), is not the
same as the off-resonant coherent transmission, Equation
(8). If the transmission probabilities are small, the
completely incoherent transmission probability, Equation
(8), far exceeds the off-resonant coherent transmission
probability, Equation (7). On the other hand, the
transmission at resonance T, Equation (3), exceeds the
purely sequential transmission probability, Equation (8). It is
now clear what happens when we start from a situation
where only coherent processes are allowed and introduce
inelastic events. Both the transmission at resonance [peak
value, Equation (4)] and the off-resonance transmission
[minimum value, Equation (7)] must, with increasing
inelastic scattering, eventually approach ihe completely
incoherent limit, Equation (8). Therefore, the peak value
must in general decrease with an increasing amount of
inelastic scattering, and the off-resonant transmission must
in general increase with increasing inelastic scattering.

The transition from the completely coherent limit to the
completely incoherent limit occurs through the sequential
tunneling regime in which carriers can execute many
oscillations in the well before losing phase memory. The
distinction of three regimes, the coherent limit, the sequential
tunneling regime, and the completely incoherent limit, is
made because resonant tunneling has two frequency scales

M. BUTTIKER

[27] which, when compared with the inelastic scattering rate
T,/h, yield three physically distinct regimes: The time scales
[2] associated with a resonance are the elastic decay rate T, /A
given by Equations (5) and (6) and the attempt frequency

v = vy/2w. We show that for T, << I, we are in a regime
where the main part of the current is carried by coherent
processes, in the regime T', < T'; < #ww current is carried by
sequential tunneling processes, and if /v << I'; we are in the
completely incoherent limit. Below we discuss this in more
detail.

3. Crossover from coherent to sequential
transmission

To study the crossover from coherent resonant tunneling to
coherent sequential tunneling it is possible to apply the
formulae of Breit and Wigner [1, 2]. The applicability of
these formulae to tunneling through disordered conductors
in the presence of inelastic scattering is mentioned by Azbel
et al. [18]. However, the results presented in [18] are not
compatible with the Breit and Wigner approach.
Subsequently results compatible with the Breit and Wigner
formulae were obtained for a symmetrical double barrier by
Stone and Lee [19]. They used an imaginary (optical)
potential to describe inelastic scattering. This does not allow
the determination of the forward and backward scattering
probabilities. Reference [19] makes the plausible assumption
(for a symmetric barrier) that S, = S; = S, and consequently
T, = §/2. The approach of [5] introduced in Section | allows
us to determine the forward and backward scattering rates
S, and S;. These probabilities are also determined by the
Breit and Wigner formulae, which are mentioned in
textbooks [2] but seem to have found little attention in solid-
state physics. A discussion of these formulae is presented in
Appendix C.

The key point of Breit and Wigner [1, 2] is the notion that
if there is elastic resonant transmission from channel 1 to
channel 2,

F1F2 9
TC—TZI—(E_E‘_)2+iF2’ ()
then the weakly coupled inelastic channels (channels 3 and 4
in Figure 1) are also characterized by resonant transmission
and couple to the elastic transmission with partial widths I';
and T,. The backward scattering probability becomes

Ny

= (10)
l k
(E-Ey +;T°

Sy

and the forward scattering probability becomes
I,T,

S il E— (11
(E-Ey+;T" )

Sf
where T, = T', + T, is the total inelastic width. According to
Breit and Wigner, the width T in Equations (9)-(11) is the
sum of all the partial rates,
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=4

Ir=3T,=T,+T,. (12)
J=1

I', and T, are specified by Equation (6). For the model

studied in Appendix B, the inelastic widths are

I'y=T, = hve. (13)

Here ¢ is the probability for a carrier in the conductor,
approaching the junction, to be scattered into the side
branch [see Figure 1 and Equation (B8)]. By using Equations
(10), (11), and (2), we find for the sequential transmission
probability

i Fcri

7-‘i = 7-‘n':s T o2 12 (14)
(E-E) + 2T

Here we have used the fact that T, = 4T, T,/T". The total

transmission probability near a resonance is thus

1
T =T T.r

—_—- 15
tot res (E _ Er)2 + % I‘Z ( )

Therefore, the peak value of the total transmission
probability at resonance is T,,T',/T. Thus the inclusion of
inelastic or sequential events leads to a decrease of the peak
value and broadens the resonance. It is interesting to
compare the fraction of the current carried by the carriers
traversing the structure coherently, T./T,, = T',/T, with the
fraction of the current carried by the carriers traversing the
sample sequentially, 7;/T,,, = I;/T. To evaluate these
fractions we have used Equations (1), (2), (9), and (10). We
see that if the total elastic width and the total inelastic width
are equal, the currents due to coherent tunneling and due to
sequential tunneling are equal. The smaller the elastic width,
the smaller is the amount of inelastic scattering [19] needed
to make the sequential tunneling current dominant.

In the crossover region T', = I, we have not only a
decrease of the peak value of the transmission with inelastic
scattering, but also an increase of the off-resonance
transmission probability. The model calculation in Appendix
B yields an off-resonance (minimal) transmission probability

(16)

1

r
1
Tol.oﬂ‘ x ZF T‘T2'

Using Equations (15) and (16) yields a peak-to-valley ratio of
the order

Tiotres (E‘E)z L
Towor \I'/ (T, +T) T’
where we have used Equation (5). Thus the peak-to-valley
ratio of the transmission probability decreases rapidly as
sequential tunneling processes become important,

We mention here an additional result which is derived in
Appendix D. The density of states in the resonant well also
depends on the degree of sequential tunneling. For the
density of states in the well we find in the crossover region

(17)
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[d_fv]=1_i_
dE| w(E-E)y +,T"

Note that the density of states in the well is determined by
the total width T', Equation (12). Thus, as the number of
sequential tunneling processes increases, the density of states
in the well becomes less sharply peaked at the resonant
energy and broadens. Reference [14], in attempting to show
that resonant tunneling and sequential tunneling are
equivalent, uses a density of states which is independent of
the degree of inelastic scattering.

The Breit and Wigner formalism can only handle
the crossover from the coherent to the sequential
tunneling regime. If the inelastic scattering rate exceeds the
elastic width by orders of magnitude, one must
20 beyond this formalism.

(18)

4. Coherence corrections of the completely
incoherent transmission
In the limit in which every carrier traversing the well is
scattered inelastically, the coherent transmission probability
T, vanishes and S, = T, and S; = T,. The total transmission
probability is given by Equation (8). The completely
incoherent transmission is independent of the separation w
of the barriers. Consider now the situation in which a tiny
fraction of all the carriers can execute one or more full
revolutions in the well before losing phase memory. We can
then expect a small correction of Equation (8) by a term
which depends on the phase ¢ = kw accumulated during
well traversal. This correction term is, therefore, sensitive to
the geometrical arrangement of the barriers. Below we
consider the case where the carriers in the well can execute
at most one revolution before losing phase memory.
Suppose that the carriers have a small probability 1 — ¢,
with ¢ close to | to traverse the well without being scattered
into reservoir 3. Interestingly, to the lowest order in 1 — ¢, it
is the forward and backward scattering probabitlities which
contain these interference terms, not the coherent
transmission probability. The coherent transmission
probability T, is easily obtained in this limit. The probability
amplitude for traversal of the structure of Figure 1 from
channel 1 to channel 2 is t,, = #,¥1 — ¢ t,, and hence

T.=T, = |t,I’=( - &)T,T,. (19)

Carriers which traverse coherently from channel 1 to
channel 2 and in addition execute a full revolution in the
well have to traverse the well at least three times and are of
order (1 — e)z.

Now consider the sequential tunneling process and let us
focus on the backward scattering probability S,. Consider the
carriers which are injected by the inelastic scatterer into the
conductor with a negative velocity. A fraction of these leave
the well through the left barrier with amplitude ¢, and give
rise to a backscattering probability S, = T, to lowest order.
Most carriers are reflected back into the well if R, is close to 67

M. BUTTIKER




68

or
8
Off-resonant
—_ 6 [
=
NN
§
g
al
Resonant
2
0 I ) ] ] J
0.0 0.2 04 0.6 0.8 1.0
£ =
(@)
1.2
1.0
‘% 0.8 Sequential
g 0.6
© 04
0.2 Coherent
0.0 L L t . ]
0.0 0.2 04 0.6 0.8 1.0
E———»

(a) Maximum resistance and minimum resistance corresponding to
off-resonant and resonant transmission of a double-barrier structure
as a function of €. The parameter & is the probability for carriers
incident on the junction to be scattered into the extra reservoir. The
two barriers forming the well have transmission probability 7', = 0.05
and T, = 0.01. (b) Ratio of coherent current and sequential current as
a function of € for the double-barrier structure with parameters as in
Figure 2(a).

1, and a tiny fraction of these carriers traverses the well back
and forth, completing a full revolution. The probability
amplitude for a carrier starting in the well and completing a
full revolution is 4 = (V1 — ¢ R*)(¥I — ¢ RY/?)e"®**2?
Here V1 — ¢ is the absolute value of the probability
amplitude for a carrier to traverse the well without losing
phase (without being scattered into reservoir 3 of Figure 1),
and R}” and R|” are the absolute probability amplitudes for
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reflection at the right and left barrier. ¢ = kw with w the
width of the well is the phase accumulated during well
traversal, and A¢ is the phase accumulated during the two
reflection processes. The superposition of the carriers
escaping directly from the well with amplitude ¢, on those
that escape after one revolution with probability amplitude
1,4 gives rise to a combined amplitude ¢, + ¢,4, and hence to
an interference correction proportional to 27" Re [4], with

Re[d] = (1 — e)R*R)*cos(2¢ + Ag). (20)

Consideration of all the processes that contribute to the
backward-scattering probability to order 1 — ¢ gives (see also
Appendix B)

S, = T,[1 = (1 = eXT, + 2R\”R}* cos())). (1)

Here ® = 2¢ + A¢ is the total phase. In contrast to T, the
backward-scattering probability S, is sensitive to the
separation of the two barriers. Similarly, for the forward-
scattering probability we find

Sp= T,[1 = (1 = eXT, + 2R\*R}cos(®))]. (22)

Using Equations (19) — (22) to evaluate Equations (1) and (2)
yields

T,T,
T 142

o = e [+ 201~ (T T, — RPR cos@)]. (23)
1 2

For ¢ = 1, Equation (23) gives exactly the result of Equation
(8) for completely incoherent transmission. Equation (23) is
valid independent of the magnitude of the transmission
probabilities 7', and T,. If these are taken to be small
compared to unity and if we use in addition Equation (B22),
which expresses ¢ in terms of the inelastic scattering time 7,
and the well frequency v = v/2w, Equation (23) becomes

. T,T,

w =7 - 2¢”'"cos(®)]. (24
1 2

Thus, in the case of strong inelastic scattering 2vr, < 1, we
obtain corrections to the completely incoherent transmission
which are sensitive to the geometrical arrangement of the
scatterers. If the Fermi energy is such that & = 2n + 1), we
have maximum transmission, and for ® = 27» we have
minimal transmission.

Due to interference effects, the number of states in the
well per unit energy (see Appendix D) is also modified. In
the case of complete phase randomization, the number of
states per unit energy is dN/dE = 2w(dn/dE). A calculation
yields

dN/dE = 2w(dn/dE)
X {1 + (1/2X1 — &R, + R, — 2R}’ R}*cos(®))],  (25)

which in the limit of small transmission probabilities
becomes

dN/dE = 2w(dn/dE)1 + 2¢~"*"isin®(#/2)]. (26)
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The enhanced transmission at ® = (2n + 1) coincides with
an enhanced density of states and the minimal transmission
at & = 2nr is accompanied by a reduced density of states.

5. Transition from completely coherent to
completely incoherent transmission

In Section 2 we discussed the limiting behavior of
completely coherent and completely incoherent
transmission. In Sections 3 and 4 we investigated the
departure from these simple limits. In this section we address
the transition from one limiting behavior to the other for the
entire domain of inelastic scattering. A simple model
calculation is presented in Appendix B, and here we
summarize these results by discussing Figures 2 and 3.

Figure 2(a) shows the two-terminal resistance
Rl(h/e®) = T, with T, given by Equations (1) and (2)
evaluated in Appendix B for a two-barrier structure with
T,=0.05and T, = 0.01 as a function of the coupling
parameter ¢. The upper curve shows the maximum
resistance (minimum or off-resonant transmission) and the
lower curve shows the minimum resistance (peak
transmission). ¢ = 0 is the purely coherent limit, and the
minimum (maximum) resistance is determined by Equations
(3) and (7), respectively. e = 1 is the purely incoherent limit,
and the resistance is determined with the help of Equation
(8). For small ¢ the minimum resistance is given by Equation
(15) (Breit and Wigner limit) and the maximum resistance is
determined by Equation (16). An increasing number of
sequential tunneling processes (increasing ¢) leads to a
decreasing ratio of the minimum and maximum resistance
(transmission) caused both by a decrease in the maximum
transmission probability and by a rise in the minimum
transmission probability. Thus sequential tunneling leads to
lower peak values in the transmission, but increases the off-
resonant transmission. For ¢ close to 1, only small
corrections remain from the completely incoherent
transmission. These corrections are due to a small fraction of
carriers which can undergo a complete revolution before
leaving the well, as discussed in Section 4.

Figure 2(b) shows the ratio of the coherent current to the
total current, T_/T, , and the ratio of the current due to
incoherent (sequential) processes to the total current, 7./7,,.
For small transmission probabilities, a small amount of
inelastic scattering 2¢ = 1/vr; > (T, + T,) = 1/vr_ makes the
sequential current dominant.

The density of states in the well gives a good indication of
the degree to which coherence effects play a role. In Figure 3
the density of states in the well (calculated in Appendix C) is
shown as a function of E — E_ for three different scattering
rates. For small scattering rates Equation (16) applies. With
increasing inelastic scattering, the variation in the density of
states is less pronounced. For ¢ = 1, i.e., when carriers are
scattered every time they reach the junction in Figure 1, the
density of states in the well is without structure.
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(dN/dE) ! 2w dni/dE)

(E- Er)/fw

Number of states per unit energy in the resonant well for three
different degrees of inelastic scattering as a function of energy. E_is
. theresonantenergy and v is the well frequency; (dn/dE) is the density
of states in the perfect conductors and w is the well width.

Phase randomization is a consequence of inelastic events.
To describe such processes it is necessary to explicitly take
into account the phase-randomizing agent. To describe
sequential tunneling in terms of a density of states
corresponding to the completely coherent case, as in [14], is
not correct. In order to have sequential tunneling we must
have a phase-randomizing scatterer, and this in turn affects
the density of states.

Admittedly, in this paper we have focused on a one-
dimensional (one quantum channel) conduction problem,
and inelastic scattering might have a more drastic effect in
such small systems. The approach introduced here can,
however, be extended to treat more complex situations, as
indicated in Appendix C.

Note added in proof

References [14] and [34] consider a large applied voltage V'
which exceeds the width I of the resonance. References [14]
and [34] find an integrated current which is independent of
the inelastic width T,, when the resonance is centered in the
applied bias range. We emphasize that Equation (15) has a
limited range of validity. For an applied voltage large
compared to the elastic width I, but small compared to A»,
the current decreases with increasing elastic width T; with a

slope
3 1
_ % eratsl 27
ar, 8l = op= g, @7 69
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Equation (27) is valid for a small inelastic width. The peak-
to-valley ratio is smaller than that given by Equation (17)
and is proportional to W TV,
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Appendix A: Coherent and sequential parts of
conductance

Consider the conductor [5] in Figure 1. To derive Equations
(1) and (2) we have to calculate the net current which flows
due to a difference in the chemical potentials x, and p,. The
perfect conductors between the reservoir and the scatterers
are assumed to be one-dimensional; i.e., there are two states
at the Fermi energy, one with positive velocity (from the
reservoir toward the conductor) and one with negative
velocity. Let us consider the case of a low temperature such
that the energy spread k7 can be neglected. The reservoir j
feeds all channels connected to it equally [29] and up to the
chemical potential x,. Let us introduce a reference potential
#, which is smaller than or equal to the lowest of the three
chemical potentials p,, u,, u,. Below the reference potential
u, all states are completely filled and we need to consider
only the energy range above u,. The current emitted by the
reservoir j into an adjacent channel in the energy range p, —
Ho 18

L, = ev(dn/dEXu; — p,). (A1)

Here v is the Fermi velocity and dn/dE is the density

of states (for one spin direction). In one dimension

dn/dE = (dn/dk)(dk/dE) = 1/2nhv, since dn/dk = 1/2=.
Thus the reservoir injects into each channel connected to it a
current

I, = (e/2xh)u, = uy). (A2)

To obtain the net currents we must specify the probabilities
of carriers for transmission and reflection at the conductor of
Figure 1. Let T, be the probability for a carrier incident in
channel / to traverse the structure into channel & to reach a
different reservoir. The probabilities for a carrier emitted by
a reservoir 1o be scattered back into the same reservoir are
denoted by R,,. In the absence of a magnetic field the
probabilities are symmetric, 7, = T}, R, = R,,.
Furthermore, because of current observation,

R, +T,+T;+T,=1, (A3a)
T,,+R,+ T, + T, =1, (A3b)
T,,+ T, + Ry + Ry, = 1, (A3c)
T,+T,+R,+R,=1 (A3d)

Consider now the net current flowing in channel 1.
In channel 1, reservoir 1 contributes a net current
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(e/2xh)(1 — R, ), — n,)- The incident current given by
Equation (A2) is diminished by reflection at the sample.
Current injected by reservoir 2 gives rise to a current

— (e/2mh)T,,(1, — m,) in channel 1. Current injected by
reservoir 3 into channels 3 and 4 gives rise to a current
—(e/2xh)(T,; + T,,)(15 — 1) in channel 1. Collecting all
contributions yields a net current in channel 1,

e
11 = m [(1 - Rn)ﬂ] - lel‘z - S[,H;;]- (A4)

Here we have introduced the total transmission probability
Sp=T,,+ T, (AS)

for a carrier incident in channel 3 or 4 to be scattered into
channel 1. The reference chemical potential does not occur
in Equation (A4) since the currents proportional to u, add to
zero because of Equation (A3a). Similar considerations yield
a current in channel 2 given by

e
I, = ﬁ [ - Rzz)l‘z - Tzlﬂl - Sfﬂ3]a (A6)
where
S;=T,, + T,, (A7)

is the total probability for carriers incident in channels 3 and
4 to be scattered into channel 2. Finally, the currents in
channels 3 and 4 are found to be

e
L= 2t [(1 = Ry = Ryuy — Ty, — Tiomyl, (A8)

e
4= 2xh [(1 = Ry — Rduy — Tym, — Tipmy]. (A9)

The net current flow in the extra branch consisting of
channels 3 and 4 has to be zero. Using Equations (A3) and
the definition equations (A5) and (A7), we find

e
0= I, + 1, = 5[5+ Sty = Symy = Sl (A10)

and hence the chemical potential g, is given by [5]

b f
Equation (A11) is a result which is important beyond the
context of this paper. The extra branch leading away from
the conductor and connected to the reservoir also can
describe a voltage probe, and x, is the chemical potential
which is measured at this probe [28]. Equation (A11)
generalizes earlier concepts of “potentiometers” used in
[29-31] because it invokes no assumptions on the symmetry
of the coupling between the lead and the conductor and
because the junction in Figure 1 is treated fully quantum-
mechanically; i.e., amplitudes are matched, and not
intensities.
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Here we use Equation (A11) to eliminate , from
Equation (A4) or Equation (A6) to determine the net current
flow along the conductor. Current conservation requires
I=1, = -I,. Using Equation (A3) and the symmetry 7;,= T,
yields, after a little algebra,

_ € Sbe
=2 <T° TS+ Sf>(“' a)-

Here T, = T,, = T,, is the coherent transmission probability.
These carriers never reach reservoir 3. Thus the total
transmission probability has two terms, as indicated in
Equations (1) and (2). The two-terminal conductance with
the voltages (chemical potentials) measured at reservoirs 1
and 2 becomes

G=1/V = ell(u, — u,) = (€'/WT,,

(A12)

= (&*/h <T + ﬁ) Al13
=(e"/h\ T, S, +5) (A13)
An extension of this approach for conductors with many
states at the Fermi energy is discussed in [28].

For completeness, and to avoid potential
misunderstanding, the expression for the conductance for
the case of a sizable spread kT is added here. Assuming that

reservoir j emits carriers with a Fermi distribution
JE ) = [exp(E — w/kT + 1],

a repetition of the steps explained above yields = G, + G,
with

(Al14)

G. = (/h) f dE(—dfjdE)T(E) (A15)

and
[ dE(—dfldE)S(E) | dE(—df]dE)S{E)
J dE(-dfldE)IS(E) + S(E)] ~

G = (€’/h) (Al16)
where dffdE is the derivative of the equilibrium Fermi
function f(E — E,).

Appendix B: Solution of specific example

Below we present a calculation which specifies the basic
ingredients of our approach, the transmission probabilities
T, and the reflection probabilities R . The barriers to the
right and left of the junction (see Figure 1) are specified by
2 x 2 s-matrices which determine the outgoing waves in
terms of the incident waves. (Alternatively, we can also
specify transfer matrices.) The elements of the 2 X 2 s-
matrix are the reflection amplitudes r, r; and the
transmission amplitudes ¢, = ¢; for the scatterer to the left
and r,, 1}, £, for the scatterer to the right. Here the quantities
without a prime give the reflection and transmission
amplitudes for carriers incident from the left and the
quantities with a prime give the reflection and transmission
amplitudes for carriers incident from the right. These
amplitudes are conveniently expressed in the form
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=T e" (B1)
and

r, = iR} "%, (B2)
r! = iR %, (B3)

where 7’ and R, are the transmission and reflection
probability of the barrier, respectively; ¢, is the phase
accumulated during barrier traversal; ¢, + ¢, is the phase
change associated with reflection for carriers incident from
the left-hand side, and ¢, — ¢, is the phase change
associated with reflection for carriers incident from the right-
hand side. The phase ¢ accumulated by traversing the piece
of perfect wire between the two barriers can also be included
in the amplitudes given above. Below we assume that the
junction (triangle in Figure 1) connects precisely to the
center of the well. The following substitutions in Equations
(B1) - (B3) account for the phase increments for traversal
from the barrier to the center of the well: ¢, — ¢, + ¢/2,
P = by — 02,0, —> D+ 0/2,0,,— b,, + ¢/2.
Multiplication of the two transfer matrices associated with
the two scatterers yields a combined transmission probability
through the double well structure given by

1,0,

=12 (B4)

=)

By using Equations (B1) - (B3) and the substitutions just
discussed, Equation (B4) becomes [3]

T, LT (BS)
271 + R.R, + 2R\RYcos(®)’

where

O=20+¢, + b+ by — by, (B6)

Equations (B5) and (B6) are exact. The phase accumulated
in the well is

& = kw = w2mE)"’/h, (B7)

where w is the distance between the barriers and E is the
energy of the incident carriers. To simplify the analysis, we
assume now that it is only the energy dependence of the
phase accumulated in the well which matters, and that the
energy dependence of all the other amplitudes and phases
in Equations (B5) and (B6) can be neglected. Thus

®(E) = 2¢(E) + Ag, with ¢ determined by Equation (B7)
and A¢ an energy-independent phase. Note that we are only
concerned with transmission in a narrow energy interval. If
only the phase ¢ accumulates during well-traversal counts,
then the condition for resonance of the transmission
probability [Equation (B5)] is ® = 2¢(F) + A¢ = 7(2n + 1),
where n is an integer. This condition determines the phase
¢ = ¢, accumulated at resonance, and determines through
Equation (B7) the resonant energy E, . In the limit of 71
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impenetrable barriers, R, = R, = 1, we have A¢ = 7, and the
resonance condition ® = 2¢(E) + A¢ = #(2n + 1) yields the
ladder of eigenstates of a square well, E, = (#’x"/2m)(n/w)’.
Due to the simplifying assumption made above, the
transmission probability, Equation (B35), exhibits a whole
ladder of resonant states. Below we investigate the behavior
of the transmission probability near one of these resonant
levels. Expansion of the denominator away from ¢ = ¢
small transmission probabilities 7', <« 1, T, < 1, yields
Equations (3) - (6). The transmission is minimal for & =
2wn, and this value is taken as a measure for the off-resonant
transmission probability. For small transmission
probabilities the denominator of Equation (B3) is
(1+ R:/ ’R ;/ 2)2 =~ 4, and hence the off-resonant transmission
is proportional to i T,T, as stated in Equation (7).

Let us now specify the properties of the junction in Figure
1. The junction connects the conductor (channels 1 and 2)
to the extra branch (channels 3 and 4). The amplitudes of
the incoming waves in these channels (see Figure 1) are
denoted by c; and the amplitudes of the outgoing waves are
denoted by c;. These amplitudes are related by a 4 X 4
scattering matrix s,, such that ¢, = ¥, s5,,c;. A simple choice
is [5]

for

n

0 V1i—-e Ve 0

V= 0 0 Ve
s = (B8)
NS 0 0 -1 —¢
0 Ve =JT-¢ 0

The parameter ¢ plays the role of a coupling parameter and
1s later related to the inelastic scattering rate. For ¢ = 0, the
junction completely decouples the extra branch (channels 3
and 4) from the conductor. For ¢ = 1, carriers incident in
channel 1 are transmitted into channel 3 with probability 1
and carriers incident in channel 2 are transmitted into
channel 4 with probability 1. Therefore, in this limit all the
carriers in the conductor approaching the junction reach
reservoir 3. Some detailed results presented below do depend
on the particular choice of the splitter, Equation (B8). We
cannot, in general, expect results which are independent of
the specific phase-randomizing mechanism. In general, ail
the matrix elements in Equation (B8) can be different from
zero. Moreover, the matrix elements can be energy-
dependent. As mentioned in [5], this can give rise to peaks
in the conductance whose origin is not resonant
transmission.

To obtain the overall transmission probabilities 7, R, for
the structure shown in Figure 1, we need to determine four
wave functions ¢, The wave function ¥, has amplitude 1 in
channel j describing incident carriers with a unit flux, and
has amplitude r; describing carriers reflected into channel i
and amplitude ¢, describing carriers transmitted into channel
Jj. From these amplitudes the transmission and reflection
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probabilities T;; and R, are obtained. A calculation yields the
following results:

R, = [R, + (1 — &R,

+ 2RRY*(1 ~ e)cos(@/1ZI°,  (BY)
Ry, =[R,+ (1 - &/R,

+ 2RYRYA(1 = e)cos(@))/1 ZI°,  (B10)

Ry, = R/|Z), (B11)
R, =Ry/|ZI, (B12)
R, = R, =[1 + RR, + 2R}"R*cos(®)}/1Z|>,  (B13)
T, =T, =(—-eT,Ty/|Z| (B14)
Ty =Ty = eT,/| 21, (B15)
T, =T, =e(l = LR /I ZI%, (B16)
T, =T, =l — TR,/ ZI%, (B17)
T, = Ty = eTo/|1 ZI%, (B18)
where

[Z]" =1+ (1 — &FRR, + 2(1 — &)R,*R,cos(®). (B19)

If we allow for complex ¢ (complex energy), the
amplitude Z = 1 + (1 — &)R}”’R.¢"® vanishes at the energy
E = E, - i(T', + T,)/2. Here the elastic width is given by

T, = —hwlog(R,R,), (B20)
and the “inelastic” width by
T, = —2hAvlog(l — ). (B21)

For ¢ = 0, when channels 3 and 4 are decoupled from the
conductor we find the results discussed at the beginning of
this Appendix; i.e., the results for T, given by Equations
(BS) and (B14) are the same, and R, = R,, = 1 — T},. The
Breit and Wigner formulae [1, 2] (see also Appendix C) are
obtained from Equations (B9) - (B18) in the limit
O(e) = (T ) = O(T,) < 1, with the partial widths given by
Equations (6) and (13). The total elastic and inelastic widths
are consistent with Equations (B20) and (B21) in the limit of
small transmission probability and small e. The results of
Section 4, the limit of ¢ close to 1, are obtained by
expanding Equations (B14) - (B18) to first order in (1 — ¢).
Equation (B21) allows an interpretation of the parameter e
in terms of an inelastic scattering time; with T, = /7, we
obtain from Equation (B21)

e=1-—¢"m (B22)

From Equations (B15) - (B18) we obtain for the forward
and backward scattering rates

S, =T, (1 + (1 = R,/ ZI%, (B23)
S, = eT,[1 + (1 — ORI ZI% (B24)
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Together with T, = T,,, with T, given by Equation (B14),
Equations (B23) and (B24) determine the total transmission
probability T, Equation (1), for arbitrary coupling e.
Figures 2(a) and 2(b) are generated with the help of these
results.

Appendix C: The Breit and Wigner formulae

The Breit and Wigner formulae determine the scattering
matrix in the presence of a resonance. They are usually
derived in the context of nuclear reactions [1, 2] and this
perhaps accounts for the fact that they seem not to be
appreciated in solid-state physics. Consider a barrier
connected to two perfect wires [4, 29]. In the perfect wires
the longitudinal motion is assumed to be separable from the
transverse motion. Thus motion in narrow perfect wires can
be characterized by the quantized motion in the transverse
direction, giving rise to a set of discrete energies £, Kinetic
longitudinal energy can be added to the transverse energy to
give the Fermi energy: E. = hkf./2m + E, Here we have
used a free-particle term to characterize the kinetic energy of
the longitudinal motion, but this is not essential. Thus each
channel j is associated with two states at the Fermi level with
longitudinal velocities v, = i~/(2/m)(EF — E). We have N
input channels and N output channels. The set of transverse
energies in the perfect wire to the left of the barrier can be
equal to or different from the set of transverse energies to the
right of the barrier. Similarly, for conductors with side
branches, we assign a set of channels to each branch of the
conductor [3, 22, 28). For the conductor of Figure 1, N = 4.
The conducting sample mixes these channels; i.e., a wave
incident in channel j leads in general to outgoing waves in all
the channels. We have used here the notion of channels in a
perfect conductor [29] as an example. The Breit and Wigner
formulae presented below apply quite independently of the
particular properties of the channels, i.e., whether we deal
with plane waves, Bloch waves, or spherical waves. Let us
denote the amplitude of the incident current in channel j by
a; and the outgoing current amplitude in channel j by a;.
The relation between the incoming waves and the outgoing
waves is given by an s-matrix a/ = 3.~ s,a,. Current
conservation requires the matrix s to be unitary, and time
reversal (in the absence of a magnetic field) requires in
addition that this matrix be symmetric, s; = 5,. Suppose now
that the barrier contains a state with a long lifetime #/T at
an energy E = E, — iI'/2. The key point of Breit and Wigner
is the following: All matrix elements of the s-matrix which
relate to the decay of the resonance must themselves be
resonant and have a denominator of the form E — E, + iT'/
2. Below we assume that all the channels of the s-matrix
discussed above couple to the resonant state. If this is not the
case, our considerations apply to a properly defined and
reduced portion of the s-matrix. The s-matrix takes an
especially simple form if it is expressed on the basis of the
“eigenchannels” which are related to the channels discussed
above by an orthogonal transformation O. Consider for
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simplicity a sample (barrier) connected to only two perfect
wires. The eigenchannels are defined in the following way:
Away from the resonant energy, transmission through the
sample is very small and can be neglected. Thus, away from
resonance, carriers incident on the sample are (in this
approximation) totally reflected. In general, carriers incident
in channel j are reflected with nonvanishing probabilities
into all the channels of the perfect conductor. The
eigenchannels are chosen such that the reflection away from
resonance is diagonal. There is an orthogonal transformation
O, which transforms the channels of the left perfect
conductor and an orthogonal transformation O, which
transforms the channels of the right perfect conductor. On
the basis of eigenchannels the s-matrix away from resonance
is given by s,,, = 6m,,ei('5’"+"”), where é,,, is the Kronecker
symbol and §,, are the phases acquired in the reflection
process. On the basis of the eigenchannels, and in the
presence of resonant transmission, the matrix elements of
the s-matrix are of the form

I'M,

mn

s =15 —i i85 +5,)
i ['"" ’E—E,+ir/2]e ’

where the matrix elements M, remain to be determined.
The s-matrix is symmetric, and hence M,,, = M, .
Furthermore, since s is unitary, differing rows of the s-
matrix must be orthogonal to one another. The
orthogonality of rows m and n gives

(C€n

M, M

mn

E—E —il)2 E-E, +il2

=N
ir 2. M, M)
=
(E-EY +;1" ©
As shown in [2], Equation (C2) implies first that Af, is real
and second that M, , is a matrix which is equal to its own
square. Since M is symmetric, it can be diagonalized, and
since the matrix is unimodular, its eigenvalues are either 0 or
1. If there is no accidental degeneracy of resonant levels in
the sample, all eigenvalues of the M-matrix are equal to 0
except for one eigenvalue, which is equal to 1. As shown in
[2], in this case

M, = T,T,T, (C3)

where the T, are called the partial widths of the channels
andT' = Zf:fvl‘j is the total width of the resonant level. Thus
the set of phases §,, n =1, - - -, N, and the N partial widths
determine the matrix elements of the s-matrix. The matrix
[Equation (C1)] specified by Equation (C3) is unitary. The
constraint ¥~V 5 = 5, where siné = I'/2[(E — E,)’ +
(172’1, makes 8, @ special unitary matrix. Using
Equations (C3) and (C1) yields a probability

Son = 15mal’ atE (C4)
=15 =—
mmo et C(E-EY 45T 73
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for m # n and

2o (E-Ey+;(@-1)
" (E-Ey+;T°

S =|s

n (C5)
for n = m. Thus the Breit and Wigner formulae, Equations
(C4) and (CS), determine the transmission probabilities and
the reflection probabilities of a resonant scatterer coupled to
N channels in terms of the partial widths of these channels.
For the particular example analyzed in Appendix B, we find
that in the Breit and Wigner limit, Equations (B11), (B12),
and (B14) — (B18) are of the form given by Equation (C4),
and Equations (B9), (B10), and (B13) are of the form given
by Equation (C5). In this example the transformation to
eigenchannels affects only channels 3 and 4.

As an additional application of these results, let us
consider the case of a single resonant well in a barrier
connected to the left and right to perfect wires (see [16] and
[17]). The perfect wire to the left has N, quantum channels,
and the perfect wire to the right has N, quantum channels.
The total number of channels is N = N, + N,. The decay into
the eigenchannels on the left-hand side of the barrier gives
rise to the partial widths T',; and the decay into the
eigenchannels on the right-hand side gives rise to the partial
widths T, . The probability for transmission from channel j
(on the L.h.s.) to channel i (on the r.h.s.) is, according to
Equation (C4), T, = T, T, (E — E)’ +; I'’. Here
T =T, +T,is the total width and T, = ¥/_|" T , is the total
partial width associated with decay of the resonant state into
the r.h.s. perfect conductor, and T', = Zj’:fv’ T, is the total
width associated with the decay into the Lh.s. perfect
conductor. The conductance [29, 32]

& g =N, =N,
G= <Z>tr(t N = <7> i=l,zj=l T;
is easily evaluated and given by

o (e
\R)(E-EY+i(@T +T) (C6)

Here we have evaluated the conductance on the basis of
eigenchannels, which is allowed since tr(¢*¢) is invariant
under the orthogonal transformations O, and O, discussed
above. Thus, application of the Breit and Wigner formulae
immediately yields the key result of Kalmeyer and Laughlin
[17]. In the presence of a single resonant state the
conductance is bounded by ¢°/h. The maximum value is
obtained if I', = T',. A single resonant state, described in the
Breit and Wigner formalism by requiring that the M-matrix
have only one eigenvalue equal to 1, can at best provide one
effective conduction channel [33).

Appendix D: Local density of states

In this section we discuss the density of states in the well and
the effect of inelastic scattering on the density of states. Let x
be the coordinate along the conductor, with x = 0 marking
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the location of the junction. The number of carriers in the
segment of the conductor between x and x + dx and in an
energy interval E, E + AE due to carriers incident in
channel j is [24, 31]

dN(x) = (dn/dE)AE |{,(E, x)|’dx. (D1)

Here (dn/dE) = 1/2nhv is the density of states in channel j.
The wave function is normalized such that the incident wave
has amplitude 1. In the conductor of Figure 1 we have a
total of four wave functions, each describing carriers incident
in one of the four channels. Thus, in the sample of Figure 1,
assuming that the density of states of all the channels is the
same, the number of carriers in an interval from x to x + dx
is given by

j=4

dN(x) = (dn/dE)AE 3 |y (E, X)) dx. (D2)
J=1

Let us now apply Equation (D2) to find the total number of
carriers in the resonant well. This requires that we integrate
the right-hand side of Equation (D2) over the width of the
well. Dividing this by AE yields the number of states in the
well per unit energy,

k=4 (X=W/2

dN/dE = (dn/dE) ¥ f dx |YE, x)|*. (D3)
k=1 Yx=—w/2

For a well which is wide compared to the Fermi wavelength,
the integration limits are determined by the turning points.
We are not interested in density variations on the scale of a
Fermi wavelength and, therefore, it is sufficient to use a
density which has been averaged over a small volume several
times larger than the scale set by the Fermi wavelength
[3, 24, 29, 31]. In the well the wave function is a
superposition of plane waves. The averaged square of the
wave function to the left (and right) of the splitter is
determined by a pair of amplitudes, a,, a;, b,, b,
respectively. For instance, the averaged wave functions to the
left of the splitter are given by (|¢(x) |2) = |a,(J)) I* +
la}()” = e,()I* + | ¢/(j)|”. Here the () indicate the
spatial average. Because the a and ¢ coefficients (see Figure
1) in this equation differ only by phase factors, either set can
be used. For brevity we do not present this calculation in
detail but only give the final result,

dN/dE = (dn/dE)w/2X1/|Z|")
X [(2 = )T, + T,) + (1 — &)2 = eXR,T, + R, T))
+ 2+ 62 — e)(R, + R,) + 2¢(1 — e)R,R,]. (D4)

The number of states per unit energy, Equation (D4), is
shown in Figure 3. Equation (B7) is used to obtain the
energy dependence. In the Breit and Wigner limit, Equation
(D4) yields Equation (17). In the limit ¢ = | corresponding
to complete phase randomization, the density of states in the
well is the same as that in the perfect leads connecting to the
reservoirs; i.e., Equation (D4) yields dN/dE = (dn/dE)2w.
Clearly, for a narrow well with a width of the order of the
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Fermi wavelength, the approximations used above to find
the number of states in the well are not adequate. The key
point of our discussion, already made in [24], is that inelastic
scattering affects the density of states.
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