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BlOCh electron by Mark Ya. Azbel
in a magnetic field:

Mixed

dimensionality

and the

magnetic-field-

induced

generalized

guantum

Hall effect

The energy spectrum of a Bloch electron in a leads to the generalized quantized Hall effect.
magnetic field is one-dimensional. This leads to  The latter has a finite magnetoresistance as a
the Peierls instability and the magnetic-field- semimetal, and Hall plateaus similar to the
induced transition to the quantized Hall effect. quantized ones, but they may have any value of
The wave function is two-dimensional. This the effective charge.

decreases the Peierls gap and makes it

exponentially vanishing with magnetic field. 1E .

Disorder lifts the degeneracy and one- -Experiment

dimensionality of the spectrum. High disorder Experiments {1] in quasi-two-dimensional (2D) Bechgaard

yields a metallic behavior. Intermediate disorder  salts (TMTSF),X, X = CIO,, PF, ReO,, have clearly
demonstrated Hall resistance plateaus similar to but different
from those in the quantized Hall effect (QHE).
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1. j.qis orders of magnitude less than j.

2. The effective charge v is neither an integer nor an odd-
denominator fraction.

3. A very high n = 2 x 10" cm™ implies k./ = 2000,
ker.> 100 (k. is the Fermi wave vector, r, = hk.c/eH, /is
the mean free path), and thus rules out any localization
[2], which is so crucial for QHE.

Gor’kov and Lebed’ [3] were the first to understand that
quasi-1D materials undergo a magnetic-field-induced
transition (MFIT). Although this transition is related to the
Peierls instability [4], the gap, which opens at the Fermi
energy, leads to a QHE rather than to an insulator. Indeed, a
completely filled sub-band is in fact [S] a broadened Landau
level which carries electrons or holes, whereas a
“conventional” Peierls transition yields a “true” band with
electron and hole currents compensating each other. Defects [5]
lead to a generalized QHE (GQHE) with an “irregular”
effective charge, in agreement with experiments [6].

In this paper I demonstrate that the physics of the GQHE
is related to the “dimensionality mixture” for a 2D Bloch
electron in a magnetic field. Its highly degenerate spectrum is
quasi-1D, whereas its wave function is 2D. I study the
resulting unusual Peierls transition, where defects lift the
spectrum degeneracy, make it quasi-2D, and lead to the
effective charge ». The GQHE emerges at intermediate
randomness. It is flanked by the QHE on the “very pure
sample side” and by a metallic phase on the “dirty sample
side.” A complete phase diagram, METAL-QHE-GQHE, is
presented.

In Section 2, I discuss the Peierls instability in the
presence of randomness for H = 0 and H # 0. Section 3
considers the implications of the “1D” spectrum for the
magnetic field-induced transition (MFIT). The GQHE is
discussed in Section 4, and Section 5 deals with the
METAL-QHE-GQHE phase diagram.

2. The Peierls instability

Consider the Peierls instability in magnetic field & || z. In

the plane xy, the dispersion relation in the Bechgaard salts is
2;2

L + acos(k,b), )

m*

€=2

where &, = 1500 K, a =~ 300 K, m* = 107" g, b= 7 A. The
Peierls substitution [7],

in the vector potential Landau gauge, 4 = A, = — Hx, yields
the Schrodinger equation for the wave function ¢:

_#
2m* 9x?

b d
+ acos(; _y +— x) ¥ =&y (2)

Choosing y = x exp(ik,y), one finds
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Table 1 Experimental conditions and results.

“Common” QHE Bechgaard salts

Conditions

Two-dimensional Quasi-two-dimensional (c/e; < 0.003)

heH
m*

. heH .
> | Potential | s <« | Potential |

No periodic potential Strong periodic potential along y

j=nchjeH = 1 100 = j < 250
Results
h h
o S
P =0 P #0

Electrons or holes Electron < hole transitions

”n zm* g_H__b — pa—
x” + X [e acos s (x xo)]x =0, 3)
chk,
Xo==—m C))

This is the Mathieu equation. Its gaps are « exp(—2000/H),
where H is the magnetic field in teslas. Clearly, they are
absolutely negligible. However, Equation (3) in x, = x — x,
is effectively the Schrodinger equation in a 1D periodic
potential. Thus, it is unstable [3] with respect to the Peierls
gap formation [4]. The perturbative SDW potential
V,cos(2k.x) generates a gap A at & = ¢ and decreases the
electron energy by =A’In (eg/A). For sufficiently small A, this
is always beneficial, since the SDW energy increase is «A”.
The gap formation is clearly related to the 1D nature of the
spectrum, i.e., to the degeneracy of the spectrum with
respect to k. The wave function remains [8] 2D. To make
the impact of this “dimensionality difference” explicit,
consider the Peierls gap formation in more detail in a
“conventional” 1D case (when H = 0) and in the Equation
(3) situation. When defects are present, this analysis turns
out to be of importance.

3. 1D Schrodinger equation
Consider the 1D Schrodinger equation with a periodic
potential u(x):

2m*
2 (e

¢+h

—uy =0. (5

When ¢ > max u, the exact solution to Equation (5) in the
allowed band may be presented in the form

=k <:t' f kdx), 6
12 exp| xi (6) 53
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> X

One-dimensional nesting in a magnetic field. Dashed lines—closed
orbits with clockwise and anticlockwise motion. Dotted lines—
“*best nesting”’ in Equation (3); largest closed-orbit areas with
clockwise electron and anticlockwise hole motion.

R

where k(x) is determined by the equation

3k? — 2kk”
e @)

i =2

m*
e (e —u) +
In the quasi-classical limit, k> = 2m* (¢ — u)/h’—see
Figure 1.

A perturbative potential V' nests the two branches,
generating a gap

A= f ¥,V _dx. 8
By Equation (8), the largest gap is provided by

V= V,Re(y,¥) ®
Then

A= Vof Iy 2dx = V. (10)

Defects lead to a random contribution to # in Equation (5)
(and to localization). Still, the choice(s) of the perturbative
potential may allow for the gap A = V in the spectrum.
The picture for Equation (3) is drastically different, since
x = x(x — x;) depends on the orbit center coordinate x,,.
One cannot choose the same “good for all x,,” factor ¥ of
Equation (9). The “2D nature” of the wave function results
in a gap, which is much smaller than V, and which —0
when H — 0. The “best” nesting in Equation (3) (leading to
the largest gap) is related to the largest closed-orbit areas
(dotted lines in Figure 1), which may correspond to
clockwise electrons or anticlockwise holes. [For the best
nesting in Equation (2), see [9]]. The quantization of
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magnetic flux through closed orbits leads to the Landau
levels. Magnetic breakdown tunneling between the orbits
broadens the levels into Landau sub-bands separated by
narrow gaps. If the Fermi energy is in the largest gap, then
the corresponding filling factor is

1 -
Jr = 7 (dotted area) < H™'.

(11)
In the quasi-classical limit, electron and hole orbits are
almost degenerate; hence easy electron-hole and hole-
electron transitions occur.

The largest gap is [5, 9]

Ao V,HT', (12)

Given the relation between A and V,,, thermodynamics
determines V,,. The minimum of the combined electronic
[ A’In(ee/A)] and SDW (« A%) energies yields [5, 9]

Invy' e 2. (13)

The random potential W contribution to Equations (2)
and (3) lifts the spectrum degeneracy. Hence, it may be
impossible to generate the gap for all x,’s at the same energy.
Even the best nesting may leave a small density of states at
the Fermi energy. Physically this is most explicit in the
quasi-classical limit (k.r, > 1) when | VW] < (v/c)eH,
where 7 = 1/h de/ok is the velocity. Then, in the leading
approximation we find the Lorentz equation #k = (e/c)f X H
and

heH

=70+Fx(1%—120). (14)

=

Now the conservation of the total energy ¢, implies, by
Equation (14),

e, = e(k) + W(7) = o(k) + W[?O + g;[—ff x (k - 120)]. (15)
Thus, the kinetic energy

. . heH . .
e(k) = ¢ — W[’o*’ﬁ X (k—ko)} (16)

changes with k and depends on the initial 7, and k. (Note
that when W = 0, ¢ is conserved.) The corresponding
smearing of the gap may be much larger than the
conventional broadening #/7 = hv/{, where 7 is the mean
free path time. For instance, if one considers an “average”
variation W over distances of order / then the characteristic
gap smearing is

w
oW = (WD, = — === hfr,
T T
since W hQ = (heH/m*c)—see Table 1. If 6W > A, then

any nesting yields states at e (although their density may be
low). They lead to finite dissipation and magnetoresistivity.
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4. GQHE theory

The theory of the GQHE may be constructed by introducing
into Figure 1 the probability p of a magnetic breakdown and
the probability matrix 7 of random intra- and inter-branch
scattering per unit time. The average distance traveled along
xis =r/q, where g = | — p. If r /g < {, then the orbit is
effectively closed, and one may expect a “conventional”
QHE. This, in particular, happens when /— o, If 7 /g > ¢
then scattering occurs before an electron “learns” that its
orbit is closed, and it may “presume” it to be effectively
open. This happens, in particular, when g = 0 (truly open
orbit). To understand the physics of the general situation,
consider first the latter case. Suppose the electric field E is
along the £ direction, and let » be a coordinate perpendicular
to £ (the crystallographic axes are x and y). Then the Lorentz
equation

hl‘é=<§r‘xﬁ>+e@: (17)
implies that

§ =& — he(k, — ky)/eH. (18)

The total energy ¢, conservation

e, = e(k) — eEt (19)
yields
e(k) = ¢, — e(t, + hcky/eH)E + hck E/H. (20)

[Note that, in contrast to Equation (16), Equation (20) is an
exact formula.] The energy (k) slowly decreases until, close
to the self-crossing (at H = 0) energy ¢, , an orbit has a
reflection point. The corresponding change in the energy is
large, so one must consider a “complete” Bloch dispersion,

eg.,
e = cos(kb,) + acos(k b) a<l. 21

After the reflection, k, decreases, and the increase in the
energy, by Equation (20), ultimately also leads to the
reflection in the vicinity of the hole self-crossing energy e.,,.,
and so on—see Figure 2. By Equation (19),
Ae

= o Ae = aﬁax - e::in; (22)
i.., Af is finite, but usually very large, and E > Ae/eL leads
to nonlinearity (L is the sample size along £). By Equation
(17), the average velocity (n) along 5 is

cE ch . Ak

() ==+ 51

H " eHarw A’ (23)

where Ak, # 0. Equation (23) gives a renormalized
“conventional” Hall velocity (—cE/H). (A closed orbit is
periodic, and its Ak, = 0.) To calculate (#), complement
Equation (20) with the Hamilton equation
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¢ Open orbit (m_I\:spacc) in crossed electric and magnetic fields.

k€

% Orbit center motion.

~.
i

(=1

W-bl %’

1
h

which with Equation (18) relates k, in Equation (17) to k;

1 de . .

S = =f=- H. 24
7 ok, hek, fe (24)
Equations (20) and (24) allow one to calculate k (¢) and k,(2).
Then Equation (23) determines (#),

_ cE 2 K™
=" oo —rlel
bf k.| dk,
0

The orbit is extended along 7, but {#) « F is usually very
small. See Figure 3 for the orbit center motion.

(25)
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QHE
£ / —
max
Metal
e:ax + min Wi
o
z GQHE Metal
S;Cin + max W,
Metal
fmin 507 A R
4t N g v ¢
q
QHE a

METAL-QHE-GQHE phase diagram.

Now consider a general case with finite /and q. In the
quasi-classical limit, we have

1 —q=pocexp<-—f |4, dx). (26)

Calculating the integral in the classically forbidden region
[generated by the gap A from Equation (12)], one arrives at

Inp™ = jii Vs. @7)
Now, solving the master equation, one determines the Hall
resistivity per plane [5]:

h
Py = (28)

==,
ev]eﬂ

where j. is an integer and » is the effective charge. In a
general case [5],

T
|k;nin| +.1______£lf 7! |k |dt
27 q ()}

L 2 =
14174

=1

(29)

#dt
0

Here

2xb
S= f |k, |dk,
0

is the orbit area, T is the period:

¢ a8
T= el o’
and the subscript * denotes the interbranch scattering.
Clearly, » may take any value and can be of either sign in the
GQHE.
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5. METAL-QHE-GQHE phase diagram
When a sample is sufficiently dirty, 7w/ /> A, there is no gap
nor a MFIT. When a sample is very clean, /> r_/q, the
orbits are closed, k;"i" = 0 in Equation (29), and » = I; i.e.,
one observes MFI QHE.

Until now I have discussed only orbits which are open
at H = 0. If the Fermi energy corresponds to a closed
(at H = 0) orbit, then the Landau sub-band is exponentially
narrow, « exp(—k.r.), and it makes “exponentially little
sense” to open a gap in it. Since k.7, >> 1 implies no
localization [2], the phase is metallic, with a conventional
Hall effect. Localization, together with QHE, develops near
the band edges, where k.7, < 1. (Note that throughout the
paper I assume a 2D situation.)

According to Equation (16), when
Woax = W) < (epnax — €min)s

there are two boundaries between open and closed orbits, at

SC
€= max + Wmin

and at
_ ¢
€= €min + Wmax‘

Thus, at T = 0 the 2D phase diagram in the energy
e-impurity concentration (C;) plane appears as in Figure 4.
The following are some remarks concerning the diagram:

1. The boundaries between the GQHE and the QHE are
obviously smeared.

2. The boundaries between the GQHE and metallic phases
have in fact a complicated shape, since the Landau
spectrum is complicated in the vicinity of self-crossing
orbits [10].

3. There are two “quasi-mobility edges” at METAL-QHE
boundaries. These are not “true” mobility edges, since an
unrealistically large L > fexp (27 ¢/b) implies localization
at all energies.
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