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The energy  spectrum of a  Bloch  electron in a 
magnetic field is one-dimensional.  This  leads to 
the  Peierls  instability  and  the  magnetic-field- 
induced  transition to the  quantized  Hall  effect. 
The  wave function is two-dimensional.  This 
decreases  the  Peierls  gap  and  makes it 
exponentially  vanishing  with  magnetic  field. 
Disorder lifts the  degeneracy  and  one- 
dimensionality  of  the  spectrum.  High  disorder 
yields  a  metallic  behavior.  Intermediate  disorder 
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leads to the  generalized  quantized  Hall  effect. 
The latter has  a finite magnetoresistance as a 
semimetal,  and  Hall  plateaus  similar to the 
quantized  ones,  but  they  may  have  any  value of 
the  effective  charge. 

1. Experiment 
Experiments [ I ]  in quasi-two-dimensiond (2D) Bechgaard 
salts (TMTSF),X, X = ClO,,  PF,, Reo,, have  clearly 
demonstrated Hall  resistance plateaus similar to but different 
from those in the quantized Hall  effect (QHE). 

In Table 1 p, and p, are, respectively, the Hall  resistivity 
and magnetoresistivity (per crystallographic z-plane); c is the 
(smallest) bandwidth along the magnetic field H, cF is the 
Fermi energy; m* is the effective  mass; n is the charge 
density in the xy plane; j is the filling factor;j,, is the 
effective  filling factor; A 11 z. Three features of the Bechgaard 
salts sound strange for QHE: 
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1. jen is orders of magnitude less than j .  
2. The effective charge v is neither an integer nor an odd- 

3. A very  high n = 2 X l O I 4  cm-2 implies kFt- 2000, 
denominator fraction. 

kFrc > 100 (k, is the Fermi wave vector, r, = hk,c/eH; tis 
the mean free path),  and  thus rules out any localization 
[2], which is so crucial for QHE. 

Gor’kov and Lebed‘ (31 were the first to understand that 
quasi- 1 D materials undergo a magnetic-field-induced 
transition (MFIT). Although this transition is  related to the 
Peierls instability [4], the gap,  which opens at the Fermi 
energy,  leads to a QHE rather than  to  an insulator. Indeed, a 
completely filled sub-band is in fact [5] a broadened Landau 
level  which cames electrons or holes,  whereas a 
“conventional” Peierls transition yields a “true” band with 
electron andhole currentscompensatingeach other. Defects [5] 
lead to a generalized QHE (GQHE) with an “irregular” 
effective  charge, in agreement with experiments [6]. 

In this paper I demonstrate that  the physics  of the  GQHE 
is related to  the “dimensionality mixture” for a 2D Bloch 
electron in a magnetic field. Its highly degenerate spectrum is 
quasi- 1 D, whereas its wave function is  2D. I study the 
resulting unusual Peierls transition, where  defects  lift the 
spectrum degeneracy, make it quasi-2D, and lead to the 
effective  charge v. The  GQHE emerges at intermediate 
randomness. It  is  flanked by the  QHE  on  the “very pure 
sample side” and by a metallic  phase on the “dirty sample 
side.” A complete phase diagram, METAL-QHE-GQHE, is 
presented. 

In  Section  2, I discuss the Peierls instability in the 
presence of randomness for H = 0 and H # 0. Section 3 
considers the implications of the “ 1 D” spectrum for the 
magnetic field-induced transition (MFIT). The GQHE is 
discussed  in Section 4, and Section 5 deals with the 
METAL-QHE-GQHE  phase diagram. 

2. The Peierls  instability 
Consider the Peierls instability in magnetic field H 11 z. In 
the plane xy, the dispersion relation in the Bechgaard salts is 

I .  

where tF = 1500 K, a = 300 K, m* = g, b - 7 A. The 
Peierls substitution [7], 

- 1  k + T V - ” A ,  e 
I hc 

in the vector potential Landau gauge, A = A, = - Hx, yields 
the Schrodinger equation for the wave function 4: 

Choosing + = xexp(ik,y), one finds 
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Table 1 Experimental conditions and results. 

“Common” QHE Bechgaard salts 

Conditions 

Two-dimensional Quasi-two-dimensional (c/eF c 0.003) 

No periodic potential Strong periodic potential along y 

j = nchleH = 1 100 d j d 250 

Results 

h 
Pxy = - e? 

P u = O  P,fO 

Electrons or holes  Electron whole transitions 

X ”  + 7 E - acos- (x - = 0, 
2m*[ ch 

eHb 
h 

chk,, 
eH ‘ 

x =-- 

This is the Mathieu equation. Its gaps are a exp(-2000/HT), 
where HT is the magnetic field in teslas.  Clearly,  they are 
absolutely  negligible.  However, Equation (3) in x, = x - x, 
is  effectively the Schriidinger equation in a ID periodic 
potential. Thus, it is unstable [3] with  respect to the Peierls 
gap formation [4]. The perturbative SDW potential 
V,cos(2kFx) generates a gap A at E = cF and decreases the 
electron energy by =A21n(cF/A). For sufficiently small A, this 
is  always  beneficial, since the SDW energy increase is =A2. 
The gap formation is clearly related to the ID nature of the 
spectrum, i.e., to  the degeneracy  of the spectrum with 
respect to k,. The wave function remains [SI 2D. ‘To make 
the impact of this “dimensionality difference”  explicit, 
consider the Peierls gap formation in more detail in a 
“conventional” 1 D case (when H = 0) and in the Equation 
(3) situation. When  defects are present, this analysis turns 
out to be of importance. 

3. 1D Schrodinger  equation 
Consider the 1 D Schrodinger equation with a periodic 
potential u(x): 

*” + 7 ( E  - u)* = 0. 2m* 
h ( 5 )  

When E > max u, the exact solution to Equation ( 5 )  in the 
allowed band may be presented in the form 

$* = k-l“exp(*i kdx), (6) 
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i Onc-dimensional nesting in a magnetic  field. Dashed lines-closed 
orbits with clockwise  and  anticlockwise  motion.  Dotted lines- 
“best  nesting” in Equation (3);  largest  closed-orbit  areas  with 
clockwise  electron and anticlockwiac hole motion. a 

9 

where &x) is determined by the  equation 

2m* 3kV2 - 2kk” 
h2 4k2 ’ 

k = - - - ( E - u ) +  

In  the quasi-classical limit, k 2  = 2m* (e - u)/h2-see 
Figure I .  

A perturbative  potential V nests the two  branches, 
generating  a gap 

A = s $+V&dx. (8) 

By Equation (8), the largest gap  is  provided by 

V = V, Re ($+$-I. (9) 

Then 

A = V,, s I$+$-12dx V,. (10) 

Defects lead to a random  contribution  to u in  Equation ( 5 )  
(and  to localization). Still, the choice(s) of the perturbative 
potential may allow for the  gap A = V, in  the spectrum. 

The picture  for Equation (3) is drastically different, since 
x = x(x - x,,) depends  on  the orbit center  coordinate x,. 
One cannot choose the  same “good  for all x,,” factor V of 
Equation (9). The “2D nature” of the wave function results 
in  a gap, which is much smaller than V,, and which +O 
when H + 0. The “best” nesting in Equation (3) (leading to 
the largest gap) is  related to  the largest closed-orbit areas 
(dotted lines in Figure I ) ,  which may correspond to 
clockwise electrons or anticlockwise holes. [For the best 

54 nesting in  Equation (2), see [9]]. The  quantization of 

magnetic flux through closed orbits  leads to  the  Landau 
levels. Magnetic  breakdown tunneling between the  orbits 
broadens the levels into  Landau sub-bands  separated by 
narrow gaps. If the  Fermi energy is in  the largest gap, then 
the corresponding filling factor is 

1 
Jew = 2, (dotted  area) 0: H“. ( 1  1) 

In  the quasi-classical limit, electron and hole orbits are 
almost  degenerate;  hence easy electron-hole and hole- 
electron  transitions  occur. 

The largest gap is [ 5 ,  91 

A a V,,H-If3.  (12) 

Given the relation between A and V,, thermodynamics 
determines V,,. The  minimum of the  combined electronic 
[a A21n (eF/A)] and  SDW (a A2) energies yields [ 5 ,  91 

In vi’ ,,’E. (13) 

The  random potential W contribution  to  Equations (2 )  
and (3) lifts the spectrum degeneracy. Hence,  it may  be 
impossible to generate the  gap for  all X<S at  the  same energy. 
Even the best nesting may leave a small  density  of  states at 
the Fermi energy. Physically this is most explicit in the 
quasi-classical limit (kFrc >> 1 )  when I V W (  << (u/c)eH, 
where 17 = l / h  ae/& is the velocity. Then, in the leading 
approximation we find the  Lorentz  equation h i  = (e/c)f X H 
and 

P = P,, + - X ( k  - k,). hcH - - 
eH2 (14) 

Now the conservation of the total energy et implies, by 
Equation ( 14), 

e, = e ( & )  + W(P) = e(&) + W Po + - X (& - Lo) . ( 1 5 )  
hCH [ eH2 1 

Thus,  the kinetic energy 

e(&) = e, - w Po + - x ( E  - Lo) hCH [ eH2 1 (16) 

changes with k and  depends  on  the initial Po and k,. (Note 
that when W = 0, E is conserved.) The corresponding 
smearing  of the  gap  may be much larger than  the 
conventional broadening h / ~  = huff,  where T is the  mean 
free path time. For instance, if one considers an “average” 
variation W over  distances of order f, then  the characteristic 
gap  smearing is 

since W >> hR = (heH/m*c)-see Table I .  If 6 W > A, then 
any nesting yields states at eF (although  their  density may be 
low). They  lead to finite dissipation and magnetoresistivity. 
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4. GQHE theory 
The theory of the  GQHE  may be constructed by introducing 
into Figure 1 the probability p of a magnetic  breakdown and 
the probability  matrix  of random  intra-  and inter-branch 
scattering  per unit  time.  The average distance traveled along 
x is w J q ,  where q E 1 - p.  If rc/q << I, then  the  orbit is 
effectively closed, and  one  may expect a “conventional” 
QHE. This, in particular, happens when $+ 03. If rc/q >> $, 

then scattering  occurs before an electron  “learns” that its 
orbit  is closed, and  it  may  “presume” it to be effectively 
open.  This happens, in particular,  when q = 0 (truly open 
orbit). To understand the physics general situation, t Open orbit ( in  k-space) in crossed  electric and magnetic  fields. 

consider first the  latter case. Suppose the electric field E is 
along the [ direction, and let q be a coordinate perpendicular 
to [ (the crystallographic axes are x and y ) .  Then  the Lorentz 
equation 

h k =  - r x H   + e E  (2 -1 
implies that 

[ = to - hc(k, - ko)/eH. 

The total energy ct conservation 

ct = ~ ( k )  - eE[ 

yields 

~ ( k )  = C, - e(t0 + hckofeH)E + hck,,E/H. 

[Note  that, in  contrast to  Equation (16), Equation (20) is an I \  
exact formula.] The energy &(E) slowly decreases until, close 
to  the self-crossing (at H = 0)  energy E:,,, an  orbit has a 
reflection point. The corresponding  change in  the energy is 
large, so one  must consider a “complete” Bloch dispersion, 
ex.. 

\ 

I, 

c = cos(k,b,) + acos(k,b)  a < 1 .  (21) 
f Orbit  center  motion. 

After the reflection, k, decreases, and  the increase in  the 
energy, by Equation (20), ultimately  also  leads to  the 
reflection in  the vicinity of the hole self-crossing energy czax, 

and so on-see Figure 2. By Equation (19), r = - ?  A I a& 
h ak’ 

A[ = - A& = &E, - A& sc 

eE (22) which with Equation ( 18) relates k, in  Equation ( 1  7) to k,,: 

i.e., A[ is finite, but usually very large, and E > Ac/eL leads - - - - i = - hck,, feH.  (24) 
to nonlinearity ( L  is the sample size along E ) .  By Equation 
( 1  7), the average velocity ( i )  along q is Equations (20) and (24) allow one  to calculate k,(t) and k,(t). 

(+) = -- + - lim -, 

where Ak, # 0. Equation (23) gives a renormalized b I k, I dk, ‘ 
“conventional”  Hall velocity (-cE/H). (A closed orbit is 
periodic, and its Akt = 0.) To calculate ( i ) ,  complement  The orbit is extended  along 7, but (e) a E is usually very 
Equation (20) with the  Hamilton  equation small. See Figure 3 for the  orbit  center  motion. 55 

1 a& 
h ak, 

CE ~h Ak, Then  Equation (23) determines ( i ) ,  

UCE 27r l k y l  H  eH AI- At (23) (+)=x u =  1 - ( 2 5 )  
I 
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METAL-QHE-GQHE  phase  diagram. 

and  at 

5. METAL-QHE-GQHE phase  diagram 
When a sample is sufficiently dirty, hu/ t>  A, there is no gap 
nor a MFIT. When a sample is very clean, I> rJq, the 
orbits are closed, k y  = 0 in  Equation (29), and v = 1; i.e., 
one observes MFl  QHE. 

Until  now I have discussed only orbits which are  open 
at H = 0. If the  Fermi energy corresponds to a closed 
(at H = 0) orbit,  then  the  Landau sub-band  is  exponentially 
narrow, exp(-k,r,), and  it makes  “exponentially little 
sense” to  open a gap  in it.  Since kFrc >> I implies no 
localization [2], the phase  is metallic, with a conventional 
Hall effect. Localization,  together with QHE, develops near 
the  band edges, where kFrc 5 1. (Note  that  throughout  the 
paper I assume a 2D situation.) 

According to  Equation (1 6), when 

(W,,, - WmiJ < (&SITax - 

there  are two boundaries between open  and closed orbits, at 

= emax + W m m  
SC 

Now consider a general case with finite t and q. In  the 
quasi-classical limit, we have 

Calculating the integral in  the classically forbidden region 
[generated by the  gap A from  Equation ( 1  2)], one  amves  at 

lnp-l = jz vi. (27) 

Now, solving the  master  equation,  one  determines  the Hall 
resistivity per plane [5]: 

h 
Pxv = 2 . 9  

e ’Jea 

where j,, is an integer and v is the effective charge. In a 
general case [ 51, 

2 H  Ik,”’”I + 7 lTK’ Ikxldt 
v =  1 ”  

bS 
1 + 9 lT 

4 

Here 
2nb 

s= l Ik,ldk, 

is the orbit  area, T i s  the period: 

T=- -  c a s  
eH a&’ 

and  the subscript * denotes  the  interbranch scattering. 
Clearly, v may  take  any value and  can be of  either sign in  the 
GQHE. 
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& = e;i” + wma,. 
Thus,  at T = 0 the  2D phase  diagram in  the energy 
&-impurity concentration (Ci) plane  appears  as  in Figure 4. 
The following are  some  remarks concerning the diagram: 

1. The  boundaries between the  GQHE  and  the  QHE  are 
obviously smeared. 

2. The  boundaries between the  GQHE  and metallic phases 
have in fact a complicated  shape,  since the  Landau 
spectrum is  complicated in  the vicinity of self-crossing 
orbits [ 101. 

boundaries.  These are  not  “true” mobility edges, since an 
unrealistically large L >> t exp(2~t /b)  implies  localization 
at all energies. 

3. There  are  two “quasi-mobility edges” at METAL-QHE 
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