
Ferroresonance by Donald M. Scoggin 
James E. Hall, Jr. 

This paper describes a mathematical model for 
ferroresonant  circuits  that addresses some of 
the deficiencies of earlier analyses of 
ferroresonant  regulators. Derived using 
piecewise-linear, normalized  differential 
equations,  the model accommodates  nonlinear 
behavior and predicts circuit  performance  in 
terms of parameters such as line voltage, 
frequency, and load. A phase-plane analysis  is 
used to  simplify  the  determination of linear 
regions of operation between nonlinear  events. 
Numerical  solutions of the  resulting  equations 
are used to generate time-domain and 
parametric  performance  curves. The results 
compare  well  with experiments and suggest 
potential  applications  in the design of high- 
frequency voltage regulators. 

Introduction 
Ferroresonance and, in  particular, the ferroresonant 
transformer have played an  important role in the electronic 
and industrial communities for more  than  40 years. The 
ferroresonant  regulator  has  provided  inexpensive and reliable 
line-voltage regulation for consumer, industrial, and  data 
processing products. The technical  papers  describing  its 
operation, however, are few and often conflicting. This paper 
briefly reviews general voltage regulators and  the literature 
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on ferroresonance, then develops  a  model to explain and 
simulate ferroresonant  behavior more completely than these 
earlier  descriptions. 

In most  electronic  products, there exists a need to 
compensate for varying input voltage. Usually this is 
accomplished by linear, switching, or ferroresonant power 
supplies. The linear power supply uses a  transistor in its 
active region to  absorb variations  in input.  This regulator 
offers optimum performance at  the expense of efficiency and 
relatively large size. A switching regulator  gains  its  advantage 
by using a  transistor as a high-frequency, theoretically 
nondissipative switch; it offers high performance but 
generates high levels of electromagnetic  interference (EMI) 
and has relatively low reliability. (For a  concise  description 
of EM1 and  an  alternate  approach  to dealing with it, see [I].) 
The ferroresonant  regulator offers extreme reliability but,  at 
the traditional  operating  frequency  of 60 Hz,  has the 
disadvantage of size and weight. We show here, however, 
that  the  phenomenon of  ferroresonance can be used at 
higher frequencies to achieve the size and weight advantages 
while retaining the useful features of the 6O-Hz devices. 
(There are also other, quasi-resonant designs that  are 
receiving research attention [2, 31.) 

material to limit the operating flux in a  magnetic  element. 
This results in  a degree of voltage regulation; however, 
saturation of the magnetic device leads to  nonlinear circuit 
behavior that linear methods of analysis can only 
approximate. A review of existing papers [4-61 nevertheless 
indicates that  the use of linear  techniques to achieve 
approximate models is prevalent. 

Ferroresonance involves the use of square-loop  magnetic 

Basu [4], Friedman [ 5 ] ,  Kakalec and  Hart [6], Keefe [ 7 ] ,  
and others use phasor analysis. Often, as in  Kakalec, the 
equations  are modified by empirical data. These  models are 
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;, Two popular ferroresonant circuit configurations. 

the accepted  industrial standards  and  do in fact yield 
acceptable design starting  points, but usually they are only 
the first step  in an iterative process. More desirable would be 
a  model that accepts nonlinear behavior and predicts  circuit 
performance  in terms of parameters such  as  line voltage, 
frequency, or load  (where  load is varied). Such  a  model is 
proposed  in  this  paper. 

Behavior of ferroresonant circuits 
The ferroresonant  circuit can be implemented in many ways. 
Two  popular versions are  shown in Figure 1 with their 
physical and electrical representations. 

inductor L,, a  capacitor  in parallel with L,, and a  load 
resistor R. 

Each circuit  consists  of  a  linear inductor L,, a saturating 

Historically, the 60-Hz ferroresonant transformer has 
employed the configuration  of Figure I(a) because of the 
lower material and labor  costs that  can be achieved by 
incorporating  the linear inductor  and  transformer  into  one 
assembly. However, as  frequency is increased, the circuit  of 
Figure l(b) becomes more attractive due  to  the types and 
sizes of cores that  can be used. 

The duality of the circuits  of Figure 1 is described by 
Biega [8] and Kakalec and  Hart [6]. Briefly, in Figure l(a), 
the linear inductor is realized by placing a  magnetic shunt 
between the primary and secondary windings. This  shunt 
creates  a  path  for flux and is modeled  as  a series inductance. 
This is analogous to  the  standard  approach of modeling the 
leakage flux of  a  linear  transformer  as  a series inductance. 
The leakage inductance of the linear  transformer is usually 
reflected arbitrarily to  one side or split equally. This is 
justified since  its effect can be shifted or split without  altering 
circuit  performance.  However, the  shunts  in Figure 1 (a) 
create  a flux path (leakage inductance) between windings. 
Thus,  the resulting leakage inductance is more accurately 
modeled by inserting  it between windings. In most analyses 
[4-61, the circuit of Figure l(a) is reduced to  that of  Figure 
I(b) by refemng  elements  to  one side and neglecting 
magnetizing inductance [Lp in Figure l(a)]. 

The basic operation of a  ferroresonant  regulator can be 
described as follows. If the saturable inductor of Figure l(b) 
has  a  magnetizing  curve (or hysteresis loop; the curve  for 
square-loop  material is shown  in Figure 2), then  the voltage 
across the device can be written  as 
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d* 
dt e(t) = N -, 

where N = number of turns, IC. = magnetic flux, and 
t = time. Integrating and assuming that  the core  saturates 
prior to  the  end of  a half-cycle yields 

where Vo is the half-cycle average output voltage, T/2  is the 
time required  for one half-cycle of operation, IC.,,, is the 
maximum flux during  the half-cycle, and f (= 1/T) is the 
frequency. 

output voltage V, is constant if the  input is driven from a 
constant-frequency  source and  the flux changes by 2+,,, 
each half-cycle. However, e([), the  instantaneous value for 
Vo, can vary. 

An observation can  be  made  that a given core can be 
driven between saturation limits  without the linear inductor 
or capacitor.  However, the need for efficient power  transfer 
necessitates an  element  that will limit peak line current when 
L, saturates. As will be seen, the use of  such  a  linear element 
extends the useful operating range of the circuit. The role of 
the  inductor is unique in  this  topology. The volt-second 
limiting and voltage switching action  of L, forces L, to act 
as  a volt-second buffer for the circuit. If the average value of 
the  input voltage exceeds the average value of the  output 
voltage, then L, will act  to  absorb  the excess volt-seconds. If 
the average input voltage is too low, then  the  inductor is 
“pumped”  and  made  to act  as  a  source of stored energy, to 
maintain  the required volt-second content of the  output 
voltage. 

By assuming steady-state operation,  the circuit can be 
described as follows. Prior to  saturation,  the  current in the 
saturable  reactor (inductor) L, is essentially zero, since  it 
has a very high inductance. At time t , ,  the  core saturates 
(Figure 3), and  the  inductance L, is reduced to a  small 
value. A current pulse I,, begins to flow through  the 
saturated  inductor. It would, in a  linear  circuit, ring at a 
frequency of 

Equation (3) states that  the half-cycle average value of the 

However, as the  current  approaches 0, L, comes  out of 
saturation, stopping the oscillation (t2 in  Figure 3). The 
voltage across the capacitor is reversed, and  remains  at this 
polarity until the  end of the half-cycle, when the  saturation 
occurs  again ( t3  in Figure 3). 

The  saturation of the reactor and  the resulting current 
pulse have  a squaring effect on  the  output.  This  squaring 
causes phasor  analysis to be an  approximate  technique  at 
best, since  phasors are applicable  only to linear,  steady-state, 

I*  

I+*ma 
J H 

- 
*ma 

+“I /v. 

- V I  

sinusoidal systems. The  standard  methods of describing 
circuit  operation using phasor  techniques are  not  adequate 
to predict operation over a a  complete range of circuit 
operation. In real devices, the  current  and voltage waveforms 
range from sinusoidal to rectangular  depending on  input 
voltage, frequency, and load. 

The square-wave output is ideal for filtering purposes. 
Additionally, the  input  impedance of these devices results in 
a low-pass LC filter behavior,  making  it  a  good buffer for 
high-frequency noise. Also, the circuit  is not sensitive to 
waveform distortions because it  integrates the  input 
waveform. The volt-seconds of the  input waveform must, 
however, be sufficient to  saturate  the  inductor L,. 
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are  the time-varying input  and  output, respectively, and  are 
not  to be confused with the  terms defined earlier  for average 
values.] Grouping terms, we obtain  the following: 

s V,(t)dt + - ILa 
L L C  C 

The  term "ferroresonance," used to describe circuit 
operation, is misleading. The circuit does  not  operate like a 
linear  resonant  circuit, but is instead  a volt-second limiter. 
The circuit is tuned  about a  certain  frequency to achieve 
optimum behavior but  does  not oscillate in a  linear mode. 
We note  that  this circuit, given specific component values, 
can be solved by computerized analysis programs, e.g. 
[9, IO], and  additional second-order effects, such  as  stray 
capacitance,  could be included. (For a discussion of  this 
approach, see [ I  I].) However, we seek a more general result. 

A  model is needed that predicts  circuit operation  under 
various  operating  conditions. The model  should be 
normalized to allow circuit parameters  to be varied  without 
difficulty, and it  should closely track observed behavior. The 
derivation and justification of such  a  model are now  shown. 

System analysis 

differential equations.  Furthermore,  the  term ILso is 
neglected, since  it can be assumed to be negligible when Ls is 
not  saturated.  This  assumption is discussed in the phase- 
plane analysis and  symmetry  arguments given later in this 
paper. 

of interest  is the flux in the saturable inductor L,. As a 
result, a  substitution can be made in Equation (6) to  obtain 
the  output voltage in  terms of flux. This is possible since 
Faraday's law states that 

From  the previous  discussion,  it is known that  the variable 

d*S V,(t) = N -, 
dt 

where +, is the magnetic flux in saturable inductor L,. 
Substituting Equation (7) into  Equation (6) gives 

s VJt)dt + - ILO 

L L C  C 

- - _  d (N'iVs) - ( N ) d * s  
dt dt RC dt 

+ "  

Mathematical circuit analysis + E ( L + i ) s 2 d t ,  
The model  in Figure 4 represents the desired ferroresonant c L, 
circuit, which can be described  mathematically with a 
second-order  linear differential equation.  This  approach is "- s F(t)dt + - 
justified if the resulting equation is reset at each nonlinear L L C  

C 

occurrence, and  the  nonlinear result is reduced to a series of 
linear segments. This is accomplished by resetting the initial 
conditions of the  equations. 

describing the circuit  can be written about  node A  as 

ILO 

Nd2# N d*s N "+"+- - 
dl2 RC dt C (9) 

A Kirchoff nodal equation in one of the linear  segments and 

follows: s V,(t)dt + - ILO 

L L C  C 

where ILo is the initial current in  linear inductor L, and ILso 1 
~ 668 is the initial current in saturable  inductor L,. [ y(t) and V,(t) LLC ' 

w =-  
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where w0 is the resonant  frequency of the linear inductor  and 
capacitor; and 

where wS is the  resonant frequency  of the saturable inductor 
and capacitor. Then  the quality  factor Q can  be written  as 

+ N J / m a x ( W i  + ( x  - x o ) .  (15) 

Next divide by the coefficient of d2X/dT2, which results in 

The quality  factor Q relates load R to  the values of L and C. 
As can be seen from  the analysis, the values of L and C must 
meet  two  criteria. First, they must be selected from the 
standpoint of realizable frequencies ( w ,  and w,). Second,  they 
must be selected to meet the load requirements through the 
Q, relationship. 

Substituting w i ,  w;,  and Q, into  Equation ( IO) ,  we obtain 

Consider  a  bipolar  square wave for the  input waveform. 
Then define 

87r3 y( 7 )  
VI" or, for  convenience, LY = f- , 

Nwo*max 

where (Y is the normalized input  and V, is the  amplitude of 
the  input waveform. Making  similar  definitions, 

47r2 ( W i  + W ; )  

P =  2 
0 0  

Equation ( 1  1) represents the circuit  for any linear  period  of 
operation,  and  can be reset at each nonlinear event  in the 
cycle by resetting the initial conditions. (It should be noted 
that a  similar  representation appears in the work  edited by 
Katz [ 121; there, however, the Qo term is not included and 
loading is therefore not taken into  account.) 

and 

Q,o = 

where P is the normalized natural circuit  frequency, I,,, is 
the normalized inductor  current  at 7 = 0, and Q,, is the 
normalized  load  (quality) factor. 

The resulting differential equation  can be written as 

Circuit normalization 
At this  point,  it is desired to  make  the results general in 
nature  and  independent of particular  circuit values. A 
normalized equation is needed. Normalization allows circuit 
parameters  to be varied more easily. Begin  by normalizing 
time  and flux: 

As desired, the resulting coefficients of the differential 
equation  are dimensionless. normalized time = 7 = 

actual time 
resonant period of W, 

Solution of the system equation 
The general solution  of Equation (21) is obtained by 
standard  methods (see Appendix A) and is shown below: 

and 

normalized flux = x = 
actual flux in Ls -~ - '& ; (13) 

saturation flux of L, $,,, 

so 

ff IL", + - 7 + - + x 0 - - ,  2Q"Off 
P P  P2 

where Vono is the normalized output voltage at 7 = 0, ILno is 
the normalized  linear inductor  current  at 7 = 0, x. is the 

Substituting Equations (12), ( I  3), and (14) into  Equation 
( 1  1) gives 669 
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Time-domain plot of waveforms for nominal operating conditions: 
a = 0.7 amax; Q = 0.2; 0 = 10"; frequency = nominal. 

normalized flux at T = 0, and 

u = Jp - Q:,, 

Similarly, the  output voltage, according to  Faraday's law, 
can be written as  the  time derivative of the flux: 

Both Equations (22) and (23) have terms for the linear 
inductor  current. An expression for this circuit  variable  is 
needed in combination with Equations (22) and (23) to 
describe the circuit  completely. By refemng  to  the initial 
circuit  schematic, the following equation can be written to 
describe the  inductor  current: 

It can be shown (see Appendix B) that this can be rewritten 
as 

IL" = 017 - 4T2(X - x01 + IL"O, 

where I,, is the normalized  linear inductor  current  and ILno 
is the normalized  linear inductor  current  at T = 0. Equations 
(22), (23), and (25) are sufficient to describe the network. 
However, certain initial conditions must be determined  in 
order to  obtain particular  solutions for a given system. 
Inspection  of the flux and voltage equations reveals terms for 
initial linear  inductor  current ILnO, initial output voltage VanO, 
and initial flux x. in the saturable inductor L,. These values 
are  derived from analytical arguments  and  the property of 
phase-plane symmetry. 

Phase-plane analysis 
The phase plane is a method of graphically observing the 
solutions  of  a  second-order  system. It is particularly helpful 
when  dealing  with nonlinear systems. The phase plane is 
represented  as  a plot of the derivative of a variable versus the 
variable. Saturating  inductor flux and its time derivative, 
output voltage, are  the two variables for the particular  phase 
plane of our system, shown  in Figure 5.  

The horizontal axis represents flux and  the vertical axis 
represents the  time derivative of the flux (Le., normalized 
voltage). For clarity, points in the phase plane are 
alphabetically labeled for later comparison  to  time-domain 
plots (Figures 6 ,  7, and 8). During ferroresonant operation, 
refer to negative flux saturation  point A (- 1, IfonO, ILnO) 
(or t = 0 for time  domain; see Figure 6) and proceed left to 
right toward positive saturation, represented by point 
C ( + I ,  Vo,,, I,,,). Point B (x, Van,, ILnx) represents the  point 
at which the  input voltage waveform switches polarity. At 
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this point, we make  the general observation that  the  input 
voltage switches prior  to  the  saturation of the  inductor.  This 
is an observed phenomenon  and is useful in completing the 
analysis. The  amount of delay is referred to as the phase lag. 
The phase lag is represented by the  time it takes  the 
saturable  reactor flux to move from  point B ( x ,  V,,,, ILnX) 
to positive saturation,  point C ( + l ,  V,,,, ILnl). Following the 
input polarity  change, the "resonant"  capacitor  drives the 
output  to  the  saturation  point.  The capacitor discharges, 
driving the system to point D (+ 1, - Von2, ZLn,), 
and  the cycle moves  along the  bottom segment to  point E 
(-X, - V,,,, -ILnx), where the  input switches again. 

For a stable oscillatory system, we can surmise several 
characteristics that  can simplify the analysis; these are 
presented  in  Appendix C. They allow the  treatment of only 
the first two  segments. The first segment is the trajectory 
from negative saturation  to  point B, where the  input 
switches. The next  segment is from  point B to  point C. By 
forcing convergence  of  these two segments, the performance 
of the  entire system can be determined. 

summarized. Expressions for output voltage, flux, and linear 
inductor  current have been obtained. Also, the initial and 
final values of flux (+ 1 or - 1) are known from symmetry. 
However,  initial values are not  known for output voltage or 
linear inductor  current. Additionally, Equations (22), (23), 
and (25) are only valid for the first segment,  prior to  the 
polarity  change of the  input waveform. The  equations  are 
reset at this point  and applied  over  segment B-C. The phase 
lag from B to C is defined as 6 degrees, or T~ in normalized 
time units. The phase angle and  the initial  values  of output 
voltage and  input  current in this second  segment must be 
determined.  It  can be shown  (Appendix D) that  the initial 
inductor  (input)  current can be defined  in terms of the phase 
angle as 

ILno = 4 r 2  - a(PeriodJ4 - T J  , (26) 

where Period is the cycle of oscillation (e.g., nominal 
Period = 1). 

Thus,  the problem  is reduced to finding  values  for 0 and 
the initial output voltage. Previous arguments (see Appendix 
C) have determined  that Vono = VOnI. 

Expressions can be written  for voltage and flux for the first 
and second  segments.  These equations, coupled with the 
linear inductor  current equations, are sufficient to define the 
system completely. 

expressions for  the initial output voltage in terms of T ~ ,  the 
single unknown (see Appendix E): 

At this  point, calculations and conclusions can  be 

The family of equations  can be solved to yield two 

v;,o = ~ ( T J  

V:"o = &To). 

and 

IBM J. RES. DEVELOP. VOL. 31 NO. 6 NOVEMBER 1987 

A 

YJ- 

E 

- acy") 

'L 

5 ...... Flux (Ls) 

_" 
-.- 

main plot of waveforms for conditions of  high line voltage 
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Time-domain plot of waveforms for conditions of  low line voltage 
and maximum load; (Y = 0.4 amax; Q = 0.5; 0 = 58": frequency = 
nominal. 

Numerical methods 
The complexity of the transcendental  exponential equations 
necessitates a numerical approach. A modified Newton- 67 1 
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f Experimental waveforms for conditions similar to those of Figure 6: 8 01 = 1.0; Q = 0.4. The nominal input voltage was 5 V, or 158 “alpha 
1 ii units.” Note that V,, is nearly in phase withI,,. 

$ Experimental waveforms for conditions similar to those of Figure 7: 
01 = 1.4; Q = 0.1.5. The nominal input voltage was 5 V. Note the 1 “corner eaks” in V and the olarit hase ofthe in  ut current. 

Raphson algorithm was selected and  implemented with 
compiled BASIC on  an IBM Personal Computer.* An 
arbitrary  phase angle 7H was selested to  minimize  the 
difference IJ(7,)  - f , (7 , )  I over T ~ ,  and substituted into  the 
equations for the initial output voltage. The phase angle 7@ 

was then incremented in the direction of convergence: 

7n2 = 74  - AV/(AV/A7n), (27) 

where A V is the difference in output  equations for 7n1 and 
To2, AT, is the difference between T ~ ,  and T ~ ~ ,  and 7n1 and 7,2 

are values of T~ initially chosen  arbitrarily, then calculated. 
This  approach yields convergence of the two equations in 

typically four or fewer iterations.  With the value of 7n 

determined, initial values of voltage and  current  can be 
determined,  and complete time-domain plots can  be 
obtained. 

The program is written to  prompt for  normalized  circuit 
constants such as  input voltage, input frequency, and load 
(quality  factor). The derivation of these quantities is shown 
in  Appendix F for nominal conditions. 

The program  works well for  a normal range of  parameters, 
but convergence difficulties are  encountered for extreme 
ranges. For example,  a high line voltage with minimum load 
and a minimum  line voltage with maximum load  exhibit 
convergence difficulties. These results are closely 
corroborated by observed system behavior. 

* lntervlew wlth Dr. Jorge Mescua, Department of Engineenng Analysls and Design, 
University of North Carolina, Charlotte, NC. 

Results 
Plots of input  and  output waveforms can be obtained with 
variations  in  such  parameters as  input voltage and load. The 
results can be used to predict  circuit  performance as these 
parameters  are varied. Figure 6 shows a condition of 
nominal line voltage, load, and frequency.  (Magnitudes  of 
the  parameters  are scaled for graphical reasons, since the 
magnitudes of the normalized parameters vary.) At nominal 
conditions, the  input voltage and  output voltage are 
rectangular. The phase angle is approximately I o ”  of the 
basic period. As expected, the flux is  triangular. The  shape of 
the  output voltage gives a broad  conduction angle for 
capacitive input filters. This  can reduce the ripple current 
requirements  for filters of this type. It is apparent  from these 
waveforms that phasor  techniques are  not  the  appropriate 
tool  for analysis. 

Figure 7 is a plot of the  same  parameters for maximum 
line voltage and  minimum load. The phase angle is  reduced 
to approximately 1 S o  and  the  output voltage has peaks. A 
capacitive input filter would tend  to transfer  these  peaks to 
the  output.  The  input  current lags the  input voltage and is 
larger in magnitude. This  unusual effect is observed in 
physical systems. 

and  maximum load. The phase angle is increased to 58” of 
the basic period, and  the  input  current now  leads the  input 
voltage. The quasi-sinusoidal  behavior  of the waveforms 
indicates the  approach of linear  operation. If the  input 
voltage is reduced or the load  increased, we can force the 

Figure 8 shows the waveforms  for minimum  input voltage 
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system to  drop  out of "resonance" and  operate in  a purely 
linear  mode. (Authors such  as  Kakalec and  Hart [6] use 
phasor analysis at  the  boundary between resonance and 
linear operation,  noting  that  this is suggested by quasi- 
sinusoidal  behavior  near the transition.) 

The plots of Figures 6-8 are in close agreement with 
experimental results (see Figures 9-11). 

Under all conditions of line and load, the average output 
voltage is  equal to 4.0 X Period  (where  Period is normalized 
to 1 for nominal conditions)  for  a given half-cycle. However, 
the distortion introduced indicates the need  for an averaging 
filter for optimum results. 

It is possible to derive  a closed expression that closely 
approximates this  relationship by assuming that  both  the 
input voltage and  the  output voltage are perfect square 
waves. The energy flow in the  inductor  may  then be 
determined as  a function of the phase angle between the  two 
voltages and  their amplitudes. From these results the 
following equation  may be obtained: 

64xQ 
%I," = - Period ' 

Figure 12 depicts  a  circuit  for  a higher-frequency 
ferroresonant supply. Q, and Q, provide  a  bipolar  drive to 
transformer T I .  L,  is a  mutually  coupled inductor  that serves 
as the linear inductor.  Due  to  impedance  transformation,  the 
equivalent  capacitance Cl is equal to 4C of our model. 

characteristics that  enhance  the use of this topology. For all 
conditions of line and load, input  current lags input voltage 
at turn-off of the  conducting device. If  we observe the linear 
inductor  dot  convention,  the  current in the  other device 
when it turns  on is being  supplied by the reactive bypass 
diode and is, in fact, negative with reference to  the  normal 
direction of current flow. This "dry" switching yields 
minimum switching losses. For FET-based designs, the 
parasitic diode which is inherent in  these devices may be 
used for this  purpose if speed and  current ratings are 
adequate. 

The turn-off condition as  predicted by Figures 5 through 8 
appears  to be typical of  inductive turn-off, which would lead 
to  the coincidence  of high power dissipation. In practice, 
however, this was not true; the devices Q, and Q, also turn 
off "dry," with their current falling to zero before the 
transistor voltage begins to rise. Subsequent  evaluation has 
shown that  this is due  to  the distributed shunt capacitance 
across the winding  of the series inductor L , .  For example, as 
Q, begins to  turn off, two new current  paths  are established 
(see Figure 13). The load current in the primary  winding is 
shifted from the source to  the resonant  capacitor C,, and  the 
inductor  current is shunted  into  the distributed  capacitances 
CD, and CD2. Therefore, if the turn-off time of the devices Q, 
is less than  the ring time of the  inductor  and its  parasitic 
elements, the collector current will  fall to zero before the 

Referring to Figures 6, 7, and 8 reveals some 
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1 Experimental waveforms for conditions similar to those of Figure 8: 
(Y = 0.3; Q = 0.3.  The nominal input voltage was 2 V. Note the 

1 near-sinusoidal behavior of E,, and I,", despite the "squareness" of 
y,; note also that I," is phase-inverted as compared with Figure IO. 

j 

4 

! Possible  implementation of  a high-frequency  ferroresonant 1 regulator. 
d 

collector voltage begins to rise. This performance 
characteristic can be controlled by fabricating the mutually 
coupled inductance for minimum distributed  capacitance 
and  adding a fixed capacitance in each inductor winding. 

This low-dissipation switching is the  most  important 
aspect of the high-frequency ferroresonant  concept,  since 
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1 “Dry” switching of turn-off current. 

t 

‘ Q  = 0.0 

Phase angle, 0 
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switching-transistor device limitations have been a major 
cause of reliability concerns in off-line switching regulators. 

The chief  drawback to  the use of higher-frequency 
ferroresonant  supplies is the circulating currents  that  must be 
handled by the saturating core  and capacitor. The peak 
current in the capacitor is inversely proportional  to  the 
characteristic impedance of the saturated inductor  and 
capacitor. As the squareness ratio  (the ratio  of residual flux 
density to  maximum flux density  in the core) increases, the 
peak current also increases. For a given power level, the peak 
current will not be a function of frequency. Thus, a  smaller 
capacitor will be required to  handle  the  same RMS current 
as  its  60-Hz  cousin. The resulting core losses associated with 
the large currents  must be addressed. 

Parametric plots 
Figure 14 shows a family of curves with Q as a  parameter. 
The curves are hyperbolic and show  increasing  phase shift 
for  decreasing  line voltage or increased  load. As 0 approaches 
90”, the circuit falls out of resonance. 

Figure 15 shows a family of curves with input frequency 
as a parameter; this information might be used, e.g., to 
implement frequency modulation  and thereby extend  the 
useful operating range. 

a  60-Hz system and for higher-frequency designs. A higher 
operating  frequency allows the use of smaller  magnetic and 
capacitive devices. 

Since the results are normalized,  they can be used both for 

Conclusions 
This  paper has reexamined the  phenomenon of 
ferroresonance and derived  a mathematical model that 
allows engineers to design and  simulate ferroresonant 
circuits. The characterizing equations  are general and  may 
be used regardless of frequency, and  the model is closely 
corroborated by experimental results. For a given power 
level and frequency, the relationships  derived  in this  paper 
can be used to select values for all the  elements in a 
ferroresonant power supply. 

device as  the regulating element is attractive from a 
reliability standpoint.  The  inherent regulation  characteristics 
of the converter,  along with its effective core  utilization, 
make it  a candidate for higher-frequency applications with 
the recent  developments [ 131 in square-loop amorphous 
magnetics. 

A high-frequency ferroresonant  power  supply and features 
unique  to ferroresonance and  the particular topology chosen 
have been discussed. These  features allow “dry” switching of 
the transistors, yielding improved reliability. 

To  the authors’ knowledge, a normalized design tool  has 
not been  available to accurately describe and simulate 
ferroresonant  behavior under all circuit  operating  conditions. 
In  addition,  the  mathematical  approach used to solve this 

The ability of a  ferroresonant unit  to use a  magnetic 
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system  may be  used for other mechanical or electrical 
systems  which are nonlinear and can be described  with a 
phase plane. 

Appendix A: System  equation  solution 
Given the expression 

ar + ILnO + Px, = 7 + 2Qno - + P x ,  d2x  dx 
dr dr 

define 

x = x + - + x o  IL"0 

P 

and then 

so 

To obtain a general solution, set 

d2 x d x  
O = f + 2 Q n o z + P x .  

dr dt - 

This is a standard second-order equation, so the roots of the 
characteristic polynomial can be defined  as 

D = -eno k ju,  

where 

= mot 
and  the general solution for an underdamped homogeneous 
second-order linear differential equation can then be 
written as 

X = e-Qd'(A c o s u ~  + Bsin ur) . 

Since the general  differential equation has no power greater 
than 7, assume a particular solution in 7: 

- 

x p  = KO7 + K l ;  

then 

dXP d2 x - = KO and = 0. dr dr 

Substitution yields 

x = cos ur + Bsin ur) + - r - 2Q,, - + - + x0. a a k n o  

P P2 P 

Using initial conditions r = 0, x = x,,, and x = vono to find 
A and  B yields 

, 
1 

0.0s 0.125 0 .25   0 .5  0.75 1 . 0  

Quality lactor 

+-T" 
a 2Qnoa ILno 
P P P 

+ - + xo. 

By using the product rule, the derivative is obtained: 

x = v,, 

- 1 ( Qnovn0 + - - ILno sin ur + - . 
Qnoa P 1 1 

Appendix 6: Determining  normalized  inductor 
current 
From the circuit schematic, 

I = [v,(t) - V,(t)]dt + ZLo 
L L  

1 
L  L 

= - s V,(t)dt - s V,(t)dt + ZLo. 675 
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Since 

wot = 2 ~ 7  

and 

J V0(W = N$max(x - X O ) ,  

we may  substitute fort and V,(t) 

Multiplying  both sides by 

4T2L 4T2 

NGrnax N J / ~ ~ ~ w ~ c '  

we have 

" - 

I, ( 4 ~ ~ )  8r3V,(7) I ~ ~ ( ~ T ~ )  
-=- 
W~CNIC~,, wdv$rnax 

From earlier  definitions of 01 and ILnO, 

I," = a7 - 4T2(X - xo) + IL",. 

7 - 4T2(X - x,) + 
4CN*max ' 

Appendix C: Phase-plane symmetry  arguments 
Refer to Figure 5 .  Several observations and  assumptions  can 
be  made  to  simpliffie analysis. If one assumes that this is a 
balanced  magnetic system, the following statements hold 
true in  steady state: 

I IL"0l = IIL"2li 

I Vono I = I Vun2 I; 

I I = I -ILnx I; 

I V0",I = l-VO",l; 

lIL"ll = lIL"3l; 

I V,", I = I Von3 I .  
Next, if the  saturated value of L, << L,, then  the voltage 
reversal (points C - D) will occur  in a time  much less than 
the period  of oscillation. Hence, the  current in L, cannot 
change much  during this increment, so ILnl = ILn2 and 

Furthermore, if one neglects winding and  core losses 
ILn3 = I,",. 

during reversal, one  can  state  that 

I V d  I = I Vo,2I; 

I Von31 = I V0"OI. 

Combining  the above equations, we obtain 

'on0 = 'on1 

and 

The results imply that if  we can describe the  top segment  of 
the phase  trajectory, we have described the complete system. 
This allows the analysis of the  top segment of the phase 
plane to completely  describe the behavior  of the system. 

Appendix D: Derivation of the  initial normalized 
linear  inductor  current 
From Appendix B, recall that 

ILn = a7 - 4T2(X - x,)  + ILn0. (Dl) 

Define 7y as the  time required to move from  point A to 
point B (see Figure 6). Then 

IL",x = f f T X  - 4T2tX, - (-111 + IL"0. (D2) 

Define r0 as  the  time required to move from  point B to  point 
C (see Figure 6). Then, by substitution in  (Dl), 

-ILnO = - ( Y T ~  - 4r2(  1 - x ,  ) + ILn,x. (D3) 

Combining Dl and D2, we obtain 

ILno = 4T - - (7, - 7J,  
2 f f  

2 (D4) 

but 7 x  = [(Period/2) - T,], where Period is the normalized 
period for one cycle (= 1 for nominal), so 

ILno = 4T2 - a(T Period - 4 .  (D5) 

Appendix E: Obtaining  system  solutions 
From Appendix C, simplifying assumptions have been made 
that  permit  the  treatment of the  top segment of the phase 
plane to be sufficient to  determine system behavior. Thus, 
the  equations for flux, voltage, and  current need to be 
applied  only to  this segment. 

The trajectory in Figure 5 can be split into two  linear 
segments: the segment between points A and B when the 
input  and  output voltage are in phase, and  that between 
points B and C when the  input switches and is out of phase. 

The flux and voltage equations (22) and (23) can be 
combined with the  inductor  current  equations  to generate 
equations for the initial output voltage Vono that  are 
functions of  known coefficients and  time. 

This is accomplished by rewriting the flux and voltage 
equations  in  the form 

Similarly, the second  segment may be written  as 
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J 
These equations, coupled with the  inductor  current 
equations ( D l ) ,   ( D 3 ) ,  and (D4),  are solved by substitution to 
yield two  expressions for Vono that  are  functions of -C a, p, 
Qn0, Period, and rg. Since a, p, Qn0, and Period are design 
parameters  and hence  known, we can write the  two 
equations  and solve for r8. 

Substitution yields the following equations: 

Vono = 1 - K7K4 + 4r2K8K, 

+ K8a (7) + K 1 3  
Period 

+ 
1 - K7K4 + 4r2K8K, ’ 

where K , ,  = -4r2K8K3 + K,; and 

I + K3(47r2Kll - 1) - K , s 6  - a K , ,  (7) - K , ,  
Period 

Vuno = K, (  1 - 47r2K, ,) + KIOK4 

+ [K,(4r2K,1 - 1) - K,&51K,4 

K , (  1 - 4r2K1 1)  + K,&4 ’ 

where K , ,  = 4r2 - a[(Period/4) - rn].  

equations converge to  the  same value. 

parameters  known, along with the initial  normalized flux 
(-I) ,  the flux, voltage, and  current  equations  can be plotted 
for an  entire cycle. 

Appendix F: Derivation  of  nominal  normalized 
circuit  coefficients 
Derivation  of a, 0, and Q: 

1. a is defined as 

The  equations above are solved by varying r n  until both 

With r8 determined, ILno can be calculated. With these  two 

87r3 y 
NWo*max ’ 

Since must supply volt-seconds to saturate  the core 
(+ to - saturation in  a half-cycle), 

Y 
- = 2N#,,,, 
WO 

and let 

- v, = 2 4 ; )  v,, 
WO 
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or 

Substituting, 

a = 8~ X ; = 1 5 8  (nominal value of a). 3 2  

2 .  is defined as 

47T2(4 + Wi) 
2 

WO 

For  the segment of interest, 

W2 = - << Wo = - 
LSC L,C ’ 

p = 4 r 2  (nominal value of p). 

1 2 1  

so 

3 .  Period and frequency were normalized to 1 by definition 

4 .  Q was found  to be optimum  at 0.2 from experimental 
in the section on circuit  normalization. 

data (see Figure 15). 
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