Ferroresonance

by Donald M. Scoggin
James E. Hall, Jr.

This paper describes a mathematical model for
ferroresonant circuits that addresses some of
the deficiencies of earlier analyses of
ferroresonant regulators. Derived using
piecewise-linear, normalized differential
equations, the model accommodates nonlinear
behavior and predicts circuit performance in
terms of parameters such as line voltage,
frequency, and load. A phase-plane analysis is
used to simplify the determination of linear
regions of operation between nonlinear events.
Numerical solutions of the resulting equations
are used to generate time-domain and
parametric performance curves. The results
compare well with experiments and suggest
potential applications in the design of high-
frequency voltage regulators.

Introduction

Ferroresonance and, in particular, the ferroresonant
transformer have played an important role in the electronic
and industrial communities for more than 40 years. The
ferroresonant regulator has provided inexpensive and reliable
line-voltage regulation for consumer, industrial, and data
processing products. The technical papers describing its
operation, however, are few and often conflicting. This paper
briefly reviews general voltage regulators and the literature
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on ferroresonance, then develops a model to explain and
simulate ferroresonant behavior more completely than these
earlier descriptions.

In most electronic products, there exists a need to
compensate for varying input voltage. Usually this is
accomplished by linear, switching, or ferroresonant power
supplies. The linear power supply uses a transistor in its
active region to absorb variations in input. This regulator
offers optimum performance at the expense of efficiency and
relatively large size. A switching regulator gains its advantage
by using a transistor as a high-frequency, theoretically
nondissipative switch; it offers high performance but
generates high levels of electromagnetic interference (EMI)
and has relatively low reliability. (For a concise description
of EMI and an alternate approach to dealing with it, see [1].)
The ferroresonant regulator offers extreme reliability but, at
the traditional operating frequency of 60 Hz, has the
disadvantage of size and weight. We show here, however,
that the phenomenon of ferroresonance can be used at
higher frequencies to achieve the size and weight advantages
while retaining the useful features of the 60-Hz devices.
(There are also other, quasi-resonant designs that are
receiving research attention [2, 3].)

Ferroresonance involves the use of square-loop magnetic
material to limit the operating flux in a magnetic element.
This results in a degree of voltage regulation; however,
saturation of the magnetic device leads to nonlinear circuit
behavior that linear methods of analysis can only
approximate. A review of existing papers [4-6] nevertheless
indicates that the use of linear techniques to achieve
approximate models is prevalent.

Basu [4], Friedman [5], Kakalec and Hart [6], Keefe [7],
and others use phasor analysis. Often, as in Kakalec, the
equations are modified by empirical data. These models are
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the accepted industrial standards and do in fact yield
acceptable design starting points, but usually they are only
the first step in an iterative process. More desirable would be
a model that accepts nonlinear behavior and predicts circuit
performance in terms of parameters such as line voltage,
frequency, or load (where load is varied). Such a model is
proposed in this paper.

Behavior of ferroresonant circuits

The ferroresonant circuit can be implemented in many ways.

Two popular versions are shown in Figure 1 with their
physical and electrical representations.

Each circuit consists of a linear inductor L, a saturating
inductor Lg, a capacitor in parallel with Lg, and a load
resistor R.

Historically, the 60-Hz ferroresonant transformer has
employed the configuration of Figure 1(a) because of the
lower material and labor costs that can be achieved by
incorporating the linear inductor and transformer into one
assembly. However, as frequency is increased, the circuit of
Figure 1(b) becomes more attractive due to the types and
sizes of cores that can be used.
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Physical implementation

Electrical equivalent

(b

The duality of the circuits of Figure 1 is described by
Biega [8] and Kakalec and Hart [6]. Briefly, in Figure 1(a),
the linear inductor is realized by placing a magnetic shunt
between the primary and secondary windings. This shunt
creates a path for flux and is modeled as a series inductance.
This is analogous to the standard approach of modeling the
leakage flux of a linear transformer as a series inductance.
The leakage inductance of the linear transformer is usually
reflected arbitrarily to one side or split equally. This is
justified since its effect can be shifted or split without altering
circuit performance. However, the shunts in Figure 1(a)
create a flux path (leakage inductance) between windings.
Thus, the resulting leakage inductance is more accurately
modeled by inserting it between windings. In most analyses
[4-6], the circuit of Figure 1(a) is reduced to that of Figure
1(b) by referring elements to one side and neglecting
magnetizing inductance [L, in Figure 1(a)].

The basic operation of a ferroresonant regulator can be
described as follows, If the saturable inductor of Figure 1(b)
has a magnetizing curve (or hysteresis loop; the curve for
square-loop material is shown in Figure 2), then the voltage
across the device can be written as
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where N = number of turns, ¥ = magnetic flux, and
¢ = time. Integrating and assuming that the core saturates
prior to the end of a half-cycle yields

72 v
2 2N i
v, 7,1: e(hdt = T f ay; 2

~Vmax

Vo 4Nf wmax ? (3 )

where V, is the half-cycle average output voltage, 7/2 is the
time required for one half-cycle of operation, ¥, is the
maximum flux during the half-cycle, and f(=1/T') is the
frequency.

Equation (3) states that the half-cycle average value of the
output voltage ¥, is constant if the input is driven from a
constant-frequency source and the flux changes by 2y,
each half-cycle. However, e(¢), the instantaneous value for
V,, can vary.

An observation can be made that a given core can be
driven between saturation limits without the linear inductor
or capacitor. However, the need for efficient power transfer
necessitates an element that will limit peak line current when
L, saturates. As will be seen, the use of such a linear element
extends the useful operating range of the circuit. The role of
the inductor is unique in this topology. The volt-second
limiting and voltage switching action of Ly forces L, to act
as a volt-second buffer for the circuit. If the average value of
the input voltage exceeds the average value of the output
voltage, then L, will act to absorb the excess volt-seconds. If
the average input voltage is too low, then the inductor is
“pumped” and made to act as a source of stored energy, to
maintain the required volt-second content of the output
voltage.

By assuming steady-state operation, the circuit can be
described as follows. Prior to saturation, the current in the
saturable reactor (inductor) L, is essentially zero, since it
has a very high inductance. At time ¢,, the core saturates
(Figure 3), and the inductance L is reduced to a small
value. A current pulse /;  begins to flow through the
saturated inductor. It would, in a linear circuit, ring at a
frequency of

1

/= 27 YLy C'

)

However, as the current approaches 0, Lg comes out of
saturation, stopping the oscillation (¢, in Figure 3). The
voltage across the capacitor is reversed, and remains at this
polarity until the end of the half-cycle, when the saturation
occurs again (#, in Figure 3).

The saturation of the reactor and the resulting current
pulse have a squaring effect on the output. This squaring
causes phasor analysis to be an approximate technique at
best, since phasors are applicable only to linear, steady-state,
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sinusoidal systems. The standard methods of describing
circuit operation using phasor techniques are not adequate
to predict operation over a a complete range of circuit
operation. In real devices, the current and voltage waveforms
range from sinusoidal to rectangular depending on input
voltage, frequency, and load.

The square-wave output is ideal for filtering purposes.
Additionally, the input impedance of these devices results in
a low-pass LC filter behavior, making it a good buffer for
high-frequency noise. Also, the circuit is not sensitive to
waveform distortions because it integrates the input
waveform. The volt-seconds of the input waveform must,
however, be sufficient to saturate the inductor Lg.
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The term “ferroresonance,” used to describe circuit
operation, is misleading. The circuit does not operate like a
linear resonant circuit, but is instead a volt-second limiter.
The circuit is tuned about a certain frequency to achieve
optimum behavior but does not oscillate in a linear mode.
We note that this circuit, given specific component values,
can be solved by computerized analysis programs, e.g.

[9, 10], and additional second-order effects, such as stray
capacitance, could be included. (For a discussion of this
approach, see [11].) However, we seek a more general result.

A model 1s needed that predicts circuit operation under
various operating conditions. The model should be
normalized to allow circuit parameters to be varied without
difficulty, and it should closely track observed behavior. The
derivation and justification of such a model are now shown.

System analysis

o Mathematical circuit analysis
The model in Figure 4 represents the desired ferroresonant
circuit, which can be described mathematically with a
second-order linear differential equation. This approach is
justified if the resulting equation is reset at each nonlinear
occurrence, and the nonlinear result is reduced to a series of
linear segments. This is accomplished by resetting the initial
conditions of the equations.

A Kirchoff nodal equation in one of the linear segments
describing the circuit can be written about node A as
follows:

1
ZI f [Vie) — V(Dldt + I,

v 1 Vi
=C P +Z;fV°(z)dt+ R, S (5)

where [, is the initial current in linear inductor L, and 7, o,

is the initial current in saturable inductor Lg. [V(?) and ¥V (¢)
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are the time-varying input and output, respectively, and are
not to be confused with the terms defined earlier for average
values.] Grouping terms, we obtain the following:

1 L,
TC Vi(nd: + C
4V + V(1)
T od RC
+ <i + L) <l> f V(tdt + 1 I (6)
L, LJ)\C ° c s

The terms I, , and ], ¢, allow the equations to be reset at each
nonlinear transition. This is critical in the analysis since this
allows us to treat the nonlinear system with ordinary
differential equations. Furthermore, the term 7, g, is
neglected, since it can be assumed to be negligible when L is
not saturated. This assumption is discussed in the phase-
plane analysis and symmetry arguments given later in this
paper.

From the previous discussion, it is known that the variable
of interest is the flux in the saturable inductor Lg. As a
result, a substitution can be made in Equation (6) to obtain
the output voltage in terms of flux. This is possible since
Faraday’s law states that

ays
Vi =N—=, M
where y is the magnetic flux in saturable inductor Lg.

Substituting Equation (7) into Equation (6) gives

I J‘ un
LC Vitydt + C
_£<§%>+<ﬁ>£’_‘*_s
Tdr\ a RC/ dt

N1 1 dys
+ C <Ls + LL> dt, (8)

1 f I,
LC Vitd: + C

Ndys N dbs N1 1) f b
= = 3=+ &y, 9
i T RC dt+C<LS+LL o, W O
and
1 f ILO
I.C (dt + c
_Nd’y | N dis (1 1) N
=7 Trea t\g )W owe 00

At this point, we define parameters for ease of analysis:
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where w, is the resonant frequency of the linear inductor and
capacitor; and
P

S LC’
where w is the resonant frequency of the saturable inductor
and capacitor. Then the quality factor Q can be written as

0 _“’oLL___ 1
°" R w,CR’

The quality factor Q relates load R to the values of L and C.
As can be seen from the analysis, the values of L and C must
meet two criteria. First, they must be selected from the
standpoint of realizable frequencies (wg and w,). Second, they
must be selected to meet the load requirements through the
0, relationship.

Substituting wé, wé, and @, into Equation (10), we obtain

1
w f V(ndr + %

d*yg
dr

=N

+ NQyw, d; + N(wo + ws) Ws — V) - (11)
Equation (11) represents the circuit for any linear period of
operation, and can be reset at each nonlinear event in the
cycle by resetting the initial conditions. (It should be noted
that a similar representation appears in the work edited by
Katz [12]; there, however, the Q, term is not included and
loading is therefore not taken into account.)

e Circuit normalization

At this point, it is desired to make the results general in
nature and independent of particular circuit values. A
normalized equation is needed. Normalization allows circuit
parameters to be varied more easily. Begin by normalizing
time and flux:

_ actual time
resonant period of w,

normalized time =

! @y

" Grfay 22" (2
and
) actual flux in Lg ¥
normalized flux = x = saturation flux of Lg - m (13
$0
2
%=< >Zf and %=<%>Z—i\f (14)

Substituting Equations (12), (13), and (14) into Equation
(11) gives
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Next divide by the coefficient of d*x/d=>, which results in

P fV(T)dT . 41, (@) + @) (47) x,
' N

Nw0¢max maxw(z)C w(z)
2 2 2
4’ X dx 47 (wp + wg) x
=TS0 +— (16)
@

Consider a bipolar square wave for the input waveform.
Then define

81r3V(T)
Nogd

V., or, for convenience, a = (17)

max
where « is the normalized input and V is the amplitude of
the input waveform. Making similar definitions,

4 (o + o)

2
Wo
4’1
L= ﬁ s (19)
and
Qo = 70> (20)

where § is the normalized natural circuit frequency, I, is
the normalized inductor current at = = 0, and Q, is the
normalized load (quality) factor.
The resulting differential equation can be written as
a d'x

X +20

aT +1Ln0+BX0 d n0 d

X 4 gy (21
As desired, the resulting coefficients of the differential
equation are dimensionless.

o Solution of the system equation
The general solution of Equation (21) is obtained by
standard methods (see Appendix A) and is shown below:

2 1
x(7) = &% {( Qﬁ,;oa ;'°> cos ot

in ]

2
+ 1 I:V.ono _ ILnO no + o <2Qn0 _
g B B\ B

Lo 20,0
Xo — T s

where V_ is the normalized output voltage at 7 = 0, I, is
the normalized linear inductor current at r = 0, x, is the

«a
+-7+

22
5 8 (22)
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normatized flux at r = 0, and

o= Vi 0.

Similarly, the output voltage, according to Faraday’s law,
can be written as the time derivative of the flux:
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x(r) = V,(7)

— 07 a>
4 V ~ — ] COS o1
[( ono 8

1 Q0 .
- - < oV oo =0 _ 11.n0) Slnar] +
I

™R

(23)

Both Equations (22) and (23) have terms for the linear
inductor current. An expression for this circuit variable is
needed in combination with Equations (22) and (23) to
describe the circuit completely. By referring to the initial
circuit schematic, the following equation can be written to
describe the inductor current:

I
I = L—L f (V) — vnlde + I,

I I
- f Viodi = - f Vndt + I, (24)

It can be shown (see Appendix B) that this can be rewritten
as

I, = ar — 47 (x = x) + I,0» (25)

where 1, is the normalized linear inductor current and 7,
is the normalized linear inductor current at 7 = 0. Equations
(22), (23), and (25) are sufficient to describe the network.
However, certain initial conditions must be determined in
order to obtain particular solutions for a given system.
Inspection of the flux and voltage equations reveals terms for
initial linear inductor current 7, ,, initial output voltage V_,
and initial flux x, in the saturable inductor Lg. These values
are derived from analytical arguments and the property of
phase-plane symmetry.

o Phase-plane analysis

The phase plane is a method of graphically observing the
solutions of a second-order system. It is particularly helpful
when dealing with nonlinear systems. The phase plane is
represented as a plot of the derivative of a variable versus the
variable. Saturating inductor flux and its time derivative,
output voltage, are the two variables for the particular phase
plane of our system, shown in Figure 5.

The horizontal axis represents flux and the vertical axis
represents the time derivative of the flux (i.e., normalized
voltage). For clarity, points in the phase plane are
alphabetically labeled for later comparison to time-domain
plots (Figures 6, 7, and 8). During ferroresonant operation,
refer to negative flux saturation point A (=1, V., 7} o)

{or ¢t = 0 for time domain; see Figure 6) and proceed left to
right toward positive saturation, represented by point
C(+1,V,,, I.,). Point B (x, V. I, ) represents the point
at which the input voltage waveform switches polarity. At
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this point, we make the general observation that the input
voltage switches prior to the saturation of the inductor. This
is an observed phenomenon and is useful in completing the
analysis. The amount of delay is referred to as the phase lag.
The phase lag is represented by the time it takes the
saturable reactor flux to move from point B (x, V. I, ,,.)
to positive saturation, point C (+1, V., I, .)). Following the
input polarity change, the “resonant” capacitor drives the
output to the saturation point. The capacitor discharges,
driving the system to point D (+1, =V_ ., I, .,),

and the cycle moves along the bottom segment to point E
(—x, =V,,» —I1,,,)» where the input switches again.

For a stable oscillatory system, we can surmise several
characteristics that can simplify the analysis; these are
presented in Appendix C. They allow the treatment of only
the first two segments. The first segment is the trajectory
from negative saturation to point B, where the input
switches. The next segment is from point B to point C. By
forcing convergence of these two segments, the performance
of the entire system can be determined.

At this point, calculations and conclusions can be
summarized. Expressions for output voltage, flux, and linear
inductor current have been obtained. Also, the initial and
final values of flux (+1 or —1) are known from symmetry.
However, initial values are not known for output voltage or
linear inductor current. Additionally, Equations (22), (23),
and (25) are only valid for the first segment, prior to the
polarity change of the input waveform. The equations are
reset at this point and applied over segment B-C. The phase
lag from B to C is defined as ¢ degrees, or 7, in normalized
time units. The phase angle and the initial values of output
voltage and input current in this second segment must be
determined. It can be shown (Appendix D) that the initial
inductor (input) current can be defined in terms of the phase
angle as

I, = 47" — oPeriod/4 — 7,), (26)

where Period is the cycle of oscillation (e.g., nominal
Period = 1).

Thus, the problem is reduced to finding values for 6 and
the initial output voltage. Previous arguments (see Appendix
C) have determined that V= V..

Expressions can be written for voltage and flux for the first
and second segments. These equations, coupled with the
linear inductor current equations, are sufficient to define the
system completely.

The family of equations can be solved to yield two
expressions for the initial output voltage in terms of 7, the
single unknown (see Appendix E):

V4l)n0 = fl("'o)
and

V<2>n0 = fz("o) *
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o Numerical methods
The complexity of the transcendental exponential equations
necessitates a numerical approach. A modified Newton-
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Experimental waveforms for conditions similar to those of Figure 6:
a = 1.0; 0 = 0.4. The nominal input voltage was 5 V, or 158 *‘alpha
units.”” Note that V, is nearly in phase with /, .

Raphson algorithm was selected and implemented with
compiled BASIC on an IBM Personal Computer.* An
arbitrary phase angle 7, was selected to minimize the
difference | fi(r,) — fi(7,)| over 7, and substituted into the
equations for the initial output voltage. The phase angle 7,
was then incremented in the direction of convergence:

Te

= 19, — AV/(AV/A7), (27)

2

where AV is the difference in output equations for 7, and
Ta, A7 is the difference between 7, and 74, and 74, and 7,
are values of 7, initially chosen arbitrarily, then calculated.

This approach yields convergence of the two equations in
typically four or fewer iterations. With the value of 7,
determined, initial values of voltage and current can be
determined, and complete time-domain plots can be
obtained.

The program is written to prompt for normalized circuit
constants such as input voltage, input frequency, and load
(quality factor). The derivation of these quantities is shown
in Appendix F for nominal conditions.

The program works well for a normal range of parameters,
but convergence difficulties are encountered for extreme
ranges. For example, a high line voltage with minimum load
and a minimum line voltage with maximum load exhibit
convergence difficulties. These results are closely
corroborated by observed system behavior.

* Interview with Dr. Jorge Mescua, Department of Engineering Analysis and Design,
University of North Carolina, Charlotte, NC.
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Experimental waveforms for conditions similar to those of Figure 7:
o = 1.4; @ = 0.15. The nominal input voltage was 5 V. Note the

“‘corner peaks’” in V and the polarity (phase) of the input current.

L

Results

Plots of input and output waveforms can be obtained with
variations in such parameters as input voltage and load. The
results can be used to predict circuit performance as these
parameters are varied. Figure 6 shows a condition of
nominal line voltage, load, and frequency. (Magnitudes of
the parameters are scaled for graphical reasons, since the
magnitudes of the normalized parameters vary.) At nominal
conditions, the input voltage and output voltage are
rectangular. The phase angle is approximately 10° of the
basic period. As expected, the flux is triangular. The shape of
the output voltage gives a broad conduction angle for
capacitive input filters. This can reduce the ripple current
requirements for filters of this type. It is apparent from these
waveforms that phasor techniques are not the appropriate
tool for analysis.

Figure 7 is a plot of the same parameters for maximum
line voltage and minimum load. The phase angle is reduced
to approximately 1.5° and the output voltage has peaks. A
capacitive input filter would tend to transfer these peaks to
the output. The input current lags the input voltage and is
larger in magnitude. This unusual effect is observed in
physical systems.

Figure 8 shows the waveforms for minimum input voltage
and maximum load. The phase angle is increased to 58° of
the basic period, and the input current now leads the input
voltage. The quasi-sinusoidal behavior of the waveforms
indicates the approach of linear operation. If the input
voltage is reduced or the load increased, we can force the
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system to drop out of “resonance” and operate in a purely
linear mode. (Authors such as Kakalec and Hart [6] use
phasor analysis at the boundary between resonance and
linear operation, noting that this is suggested by quasi-
sinusoidal behavior near the transition.)

The plots of Figures 6-8 are in close agreement with
experimental results (see Figures 9-11).

Under all conditions of line and load, the average output
voltage is equal to 4.0 X Period (where Period is normalized
to 1 for nominal conditions) for a given half-cycle. However,
the distortion introduced indicates the need for an averaging
filter for optimum results.

It is possible to derive a closed expression that closely
approximates this relationship by assuming that both the
input voltage and the output voltage are perfect square
waves. The energy flow in the inductor may then be
determined as a function of the phase angle between the two
voltages and their amplitudes. From these results the
following equation may be obtained:

64rQ,

a_. = A .
min Period

(28)

Figure 12 depicts a circuit for a higher-frequency
ferroresonant supply. @, and Q, provide a bipolar drive to
transformer T,. L, is a mutually coupled inductor that serves
as the linear inductor. Due to impedance transformation, the
equivalent capacitance C, is equal to 4C of our model.

Referring to Figures 6, 7, and 8 reveals some
characteristics that enhance the use of this topology. For all
conditions of line and load, input current lags input voltage
at turn-off of the conducting device. If we observe the linear
inductor dot convention, the current in the other device
when it turns on is being supplied by the reactive bypass
diode and is, in fact, negative with reference to the normal
direction of current flow. This “dry” switching yields
minimum switching losses. For FET-based designs, the
parasitic diode which is inherent in these devices may be
used for this purpose if speed and current ratings are
adequate.

The turn-off condition as predicted by Figures 5 through 8
appears to be typical of inductive turn-off, which would lead
to the coincidence of high power dissipation. In practice,
however, this was not true; the devices Q, and Q, also turn
off “dry,” with their current falling to zero before the
transistor voltage begins to rise. Subsequent evaluation has
shown that this is due to the distributed shunt capacitance
across the winding of the series inductor L,. For example, as
Q, begins to turn off, two new current paths are established
(see Figure 13). The load current in the primary winding is
shifted from the source to the resonant capacitor C,, and the
inductor current is shunted into the distributed capacitances
Cp, and Cp,. Therefore, if the turn-off time of the devices Q,
is less than the ring time of the inductor and its parasitic
elements, the collector current will fall to zero before the
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Experimental waveforms for conditions similar to those of Figure 8:
o = 0.3; Q = 0.3. The nominal input voltage was 2 V. Note the
near-sinusoidal behavior of V. and I._, despite the ““squareness’” of

out in?
V., note also that /, is phase-inverted as compared with Figure 10.

Possible implementation of a high-frequency ferroresonant
regulator.

—

collector voltage begins to rise. This performance
characteristic can be controlled by fabricating the mutually
coupled inductance for minimum distributed capacitance
and adding a fixed capacitance in each inductor winding.
This low-dissipation switching is the most important
aspect of the high-frequency ferroresonant concept, since
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switching-transistor device limitations have been a major
cause of reliability concerns in off-line switching regulators.

The chief drawback to the use of higher-frequency
ferroresonant supplies is the circulating currents that must be
handled by the saturating core and capacitor. The peak
current in the capacitor is inversely proportional to the
characteristic impedance of the saturated inductor and
capacitor. As the squareness ratio (the ratio of residual flux
density to maximum flux density in the core) increases, the
peak current also increases. For a given power level, the peak
current will not be a function of frequency. Thus, a smaller
capacitor will be required to handle the same RMS current
as its 60-Hz cousin. The resulting core losses associated with
the large currents must be addressed.

Parametric plots

Figure 14 shows a family of curves with Q as a parameter.
The curves are hyperbolic and show increasing phase shift
for decreasing line voltage or increased load. As 8 approaches
90°, the circuit falls out of resonance.

Figure 15 shows a family of curves with input frequency
as a parameter; this information might be used, e.g., to
implement frequency modulation and thereby extend the
useful operating range.

Since the results are normalized, they can be used both for
a 60-Hz system and for higher-frequency designs. A higher
operating frequency allows the use of smaller magnetic and
capacitive devices.

Conclusions

This paper has reexamined the phenomenon of
ferroresonance and derived a mathematical model that
allows engineers to design and simulate ferroresonant
circuits. The characterizing equations are general and may
be used regardless of frequency, and the model is closely
corroborated by experimental results. For a given power
level and frequency, the relationships derived in this paper
can be used to select values for all the elements in a
ferroresonant power supply.

The ability of a ferroresonant unit to use a magnetic
device as the regulating element is attractive from a
reliability standpoint. The inherent regulation characteristics
of the converter, along with its effective core utilization,
make it a candidate for higher-frequency applications with
the recent developments [13] in square-loop amorphous
magnetics.

A high-frequency ferroresonant power supply and features
unique to ferroresonance and the particular topology chosen
have been discussed. These features allow “dry” switching of
the transistors, yielding improved reliability.

To the authors’ knowledge, a normalized design tool has
not been available to accurately describe and simulate
ferroresonant behavior under all circuit operating conditions.
In addition, the mathematical approach used to solve this
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system may be used for other mechanical or electrical
systems which are nonlinear and can be described with a
phase plane.

Appendix A: System equation solution
Given the expression
d dx

X
a‘r+ILno+ﬁx0=7+2Qn0—J;+ﬁx,
r

define

and then
d  d
ax =22 and (—1——>2( =—,
e dr dr dr
SO
_dx,, %
T = 2 + 20, dr + Bx

To obtain a general solution, set

d’x dx
0=—5+20Q.,— + Bx.

a2 " PO gt X
This is a standard second-order equation, so the roots of the
characteristic polynomial can be defined as

D=-0Q, % jo,
where
[ ‘4.3 - Qioa

and the general solution for an underdamped homogeneous
second-order linear differential equation can then be
written as

X = e % (4cosor + Bsinor).
Since the general differential equation has no power greater
than 7, assume a particular solution in 7:

Xp = o7 T K3

then
2

X _ Xy _
dr =K, and P =0.

Substitution yields

o a i
ET - ZQHOE+—

X = e-Q’”T(A cosor + Bsinar) + 8

Using initial conditions 7 = 0, x = x,, and x = V,, to find
A and B yields
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e

By using the product rule, the derivative is obtained:

="V

on

—Q 7 [+4
e \V.o— -) cos
l:( on0 ﬁ oT

1
- ; <Qn0Vn0 B

o
+ %Q__ - 1Ln0>sina‘r] + %.

Appendix B: Determining normalized inductor

current
From the circuit schematic,

I = % f [V — V(Oldr + I,

1
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=1 f Vityd: - % f V(hdt + I,.
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Since
wol = 277

and

f Vodt = N (x = Xo)s
we may substitute for ¢ and V(1)

_ 2 L2

], Vir)dr — (x = xo)

+ 1.

LT L L

Multiplying both sides by

4L 4r
Mo Ngbmaxwgc ’

we have

I (47")  8cV(7) 1, (47"

— A7 (y —
woN\me (X — Xo) +

w(z)CN¢max wgCN¢max

From earlier definitions of « and 7, ,,

I, = ar = 47°(x = x¢) + Iimo-

Appendix C: Phase-plane symmetry arguments
Refer to Figure 5. Several observations and assumptions can
be made to simplify$the analysis. If one assumes that this is a
balanced magnetic system, the following statements hold
true in steady state:

ol = 1l
Vanol = 1 Vona ]2
Myl = 1=1, 15
Womd = 17 Vanels
i | = sl
[Vomil = 1 Vsl

Next, if the saturated value of Ly << L, then the voltage
reversal (points C — D) will occur in a time much less than
the period of oscillation. Hence, the current in L; cannot
change much during this increment, so /,,, = I, and
Iy = oo

Furthermore, if one neglects winding and core losses
during reversal, one can state that

IVonll = |V0n2|;

|V

on3I =

| VonO I .
Combining the above equations, we obtain
Von() = Vonl

and
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|ILn0| = ‘ILnI|'

The results imply that if we can describe the top segment of
the phase trajectory, we have described the complete system.
This allows the analysis of the top segment of the phase
plane to completely describe the behavior of the system.

Appendix D: Derivation of the initial normalized
linear inductor current
From Appendix B, recall that

I, =ar = 4x(x = xo) + 10 (D1)

Define 7, as the time required to move from point A to
point B (see Figure 6). Then

L, =ar, —4r'lx, = (=D} + I, (D2)

Define 7, as the time required to move from point B to point
C (see Figure 6). Then, by substitution in (D1),

~l = —ar, = 4x'(1 = x,) + I, . (D3)

Combining D1 and D2, we obtain
o
Lo = 4r” — 3 (r, = 7 (D4)

but = [(Period/2) — 7,], where Period is the normalized
period for one cycle (= 1 for nominal), so

Period
I, =4x" — a< yaat 76>. (D3)

Appendix E: Obtaining system solutions

From Appendix C, simplifying assumptions have been made
that permit the treatment of the top segment of the phase
plane to be sufficient to determine system behavior. Thus,
the equations for flux, voltage, and current need to be
applied only to this segment.

The trajectory in Figure 5 can be split into two linear
segments: the segment between points A and B when the
input and output voltage are in phase, and that between
points B and C when the input switches and is out of phase.

The flux and voltage equations (22) and (23) can be
combined with the inductor current equations to generate
equations for the initial output voltage V_ , that are
functions of known coefficients and time.

This is accomplished by rewriting the flux and voltage
equations in the form

X =KV, + Ko+ K,

17 on0

V. =KV, + Kl + K

onx 4" on0

and segment A — B.

_I_
=37

7 final o

Similarly, the second segment may be written as
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=V, (Appendix C) )

=KV, + K, B +K,
I = KioVony + Kiidyy, + K5, psegment B — C.
and
TFina) = Ty

P

These equations, coupled with the inductor current
equations (D1), (D3), and (D4), are solved by substitution to
yield two expressions for ¥, that are functions of  «, 3,
Q.- Period, and 7,. Since e, 8, 9, and Period are design
parameters and hence known, we can write the two
equations and solve for 7,.

Substitution yields the following equations:

P
(KK, — 47°K,K) [473 - ( eriod _ T,,>]

4
on0 = 2
| - KK, + 4r°K,K,
Period
KK, + Ky (—CZ‘—°> + K,

s

1 - KK, + 47°K.K,
where K|, = —4-1r2K8K3 + K; and

Period
I+ K4r'K, — 1) — K, K, = oK), (—4 > - K,

one K(l - 42°K,) + K, K,

+ [K2(47"2K11 -1~ K10K5]K14
K(1 — 47°K,) + KK,

5

where K, = 4x° — of(Period/4) — r,].

The equations above are solved by varying 7, until both
equations converge to the same value.

With 7, determined, 7, , can be calculated. With these two
parameters known, along with the initial normalized flux
(—1), the flux, voltage, and current equations can be plotted
for an entire cycle.

Appendix F: Derivation of nominal normalized
circuit coefficients
Derivation of «, 8, and Q:

1. «ais defined as

81r3Vi

Nog

max

Since V; must supply volt-seconds to saturate the core
(+ to — saturation in a half-cycle),

v,
—-= 2N¢max’
@

and let

V.
A 2W<I> Vi’
w, 2
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or

<2_1r1> Vn = 2N¢max;

2

Vo 2
Nwmax h 1r'
Substituting,

a =81 X % = 158 (nominal value of «).

2. Bis defined as

2, 2 2.
dr(w, + W)
—_—
@o
For the segment of interest,

1

2
<w=7e
L

1
Wi=—
ST LC

S0
8= ar’ (nominal value of f).

3. Period and frequency were normalized to | by definition
in the section on circuit normalization,

4. Q was found to be optimum at 0.2 from experimental

data (see Figure 15).
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