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The quantitative  evaluation of computer-system 
availability is becoming  increasingly  important in 
the  design  and  configuration of commercial 
computer  systems.  This  paper  deals  with 
methods  for  constructing  and  solving  large 
Markov-chain  models of computer-system 
availability. A set  of powerful high-level 
modeling  constructs is discussed  that  can  be 
used to represent  the  failure  and  repair  behavior 
of the  components  that  comprise  a  system, 
including  important  component  interactions,  and 
the  repair  actions  that  are  taken  when 
components  fail. If time-independent  failure  and 
repair  rates  are  assumed,  then  a  time- 
homogeneous  continuous-time  Markov  chain 
can be constructed  automatically  from  the 
modeling  constructs  used to describe  the 
system.  Markov  chains  having  tens  of  thousands 
of states  can be readily  constructed in this 
manner.  Therefore,  techniques  that  are 
particularly  suitable  for  numerically  solving  such 
large  Markov  chains  are  also  discussed, 
including  techniques  for  computing  the 
sensitivities of availability  measures  with 
respect to model  parameters. A computer 
system  modeling  example is presented to 
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illustrate the  use  of  these  modeling  and  analysis 
techniques.  The  modeling  constructs,  automatic 
Markov-chain  construction,  and  model-solution 
methods  have  been  implemented in a  program 
package  called  the  System  Availability  Estimator 
(SAVE). 

1. Introduction 
System availability is becoming an increasingly important 
factor  in  evaluating the behavior  of  commercial computer 
systems. This is due  to  the increased dependence of 
enterprises on continuously  operating computer systems and 
to  the emphasis on fault-tolerant designs. Thus we expect 
quantitative evaluation  of availability to be of  increasing 
interest to computer-system  manufacturers.  Most  of the 
modeling work in  fault-tolerant computing has focused on 
models  of  mission-oriented  systems with high reliability 
requirements  such as space  computers,  avionics systems, 
wind-tunnel systems, and ballistic missile defense computers 
[ 1, 21. For  the mission to succeed, the system must  not fail 
during  the mission time.  In  addition,  the repair or 
replacement of failed components is usually not possible 
during  the mission. Hence, the probability that  the system 
does  not fail during  the mission time, Le., the system 
reliability, is a  measure  of  interest. The modeling of 
continuously operating systems with high availability 
requirements  such as telephone switching systems, general- 
purpose computer systems, transaction processing systems 
(e.g., airline  reservation systems), and  communication- 
network computers has received less attention  and is the 
focus of this paper. For systems like these, system  failures 
can be tolerated if they occur infrequently and result in  short 
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system downtimes. Failed components  can be repaired or 
replaced either during operation or when the system is down. 
For such systems, the expected  fraction  of time  the system is 
operational is an  important availability measure. 

From  an availability-modeling point of view, a system 
consists of a collection of  hardware and software 
components, each of which may be subject to failure, 
recovery, and repair. (Software components in operation  can 
be modeled with constant failure rates. as described in [3].) 
As  we discuss later, component  interactions often  have  a 
substantial effect on system availability and  must therefore 
be considered  in addition  to  the individual component 
behaviors. A system is considered to be operational 
(available) if specified combinations of its components  are 
operational. Different types of mathematical models are used 
to predict system availability and reliability measures, 
including combinatorial models, continuous-time Markov 
chain models, and semi-Markov process models  [4]. In this 
paper we focus on  continuous-time Markov  chain models, 
which are perhaps the most commonly used. The state-space 
size of such  models grows (often  exponentially) with the 
number of components being  modeled.  Therefore,  except  for 
models that represent  a very small number of components 
and hence have a  small state-space size, the direct 
construction of the Markov  chain is a  tedious and error- 
prone process. Rather  than requiring the modeler to 
construct the Markov  chain  directly, it would be better to 
provide  a high-level modeling language containing constructs 
which aid  in  representing the failure, recovery, and repair 
behavior of components in the system, as well as important 
component interactions. The challenge in  developing  such  a 
language lies in  making  it  comprehensive  enough so that 
important system details can be modeled,  but  simple enough 
so that  the Markov  chain can be automatically  constructed 
from the modeling-language description. 

In Section 2 we describe such  a  modeling  language and 
illustrate  its use with an example. The language contains a 
few simple  but powerful constructs  that  are capable of 
representing both  independent  component behaviors and 
component interactions. The constructs  provide  a 
framework for the modeler to use in thinking  about aspects 
of the system to be modeled,  particularly the  component 
interactions. The language has been incorporated in a 
system-availability-modeling  program package called the 
System Availability Estimator (SAVE) [ 5 ] .  SAVE 
automatically  generates the Markov  chain  from the 
modeling language description. Other modeling packages 
(e.g., HARP [6]) provide  simple  fault-tree (or reliability- 
block-diagram)-oriented languages to generate  Markov 
chains, but typically only recovery-based constructs are 
provided to model component  interactions  or dependencies. 

Once  the Markov  chain  has been generated,  it must be 
solved numerically  in order  to  compute system availability 
measures. The SAVE modeling language and  automatic 

Markov  chain construction allow Markov  chains  to be 
generated that have large state spaces, e.g., tens of thousands 
of states. Therefore SAVE incorporates  numerical  solution 
methods  that  are particularly  suitable for large-state-space 
Markov  chains. In Section 3 we first define several 
availability and reliability measures  of  interest and  then 
briefly describe the solution methods  that  are  implemented 
in SAVE to  compute these measures. We also discuss 
solution methods for computing  the sensitivities (derivatives) 
of some of these  measures with respect to model input 
parameters (e.g., failure and repair  rates and coverage [7]). 
Such sensitivities are very useful in suggesting design 
improvements for the system being modeled,  as we 
demonstrate.  More detailed  discussions about solution 
methods  are found  in [4, 8-10]. 

In Section 4, we return to the example  of Section 2 to 
further  illustrate the features  of the SAVE modeling language 
and  to  demonstrate  the capabilities  of the SAVE solution 
methods  and  the use of sensitivity analysis in design and 
reconfiguration of fault-tolerant systems. Section 5 contains 
concluding  remarks and  comments  on  future research 
directions. 

2. An availability  modeling language 

Some modeling considerations 
The uses of system availability models include  comparing 
various  fault-tolerant design alternatives and, for  a  particular 
design, identifying any availability bottlenecks that may 
require  subsequent design improvements. A system 
availability model is an abstraction of the system in which 
we ignore certain design details to reduce the size of the 
model but include other details to be able  to study the 
various design trade-offs. As mentioned in Section 1, for 
availability-modeling purposes  a system is considered to be a 
collection of hardware and software components.  Thus 
components  are  the basic entities that  are represented in a 
model. The modeling language we present allows the 
modeler to describe for  each component its failure and 
repair  behavior,  including its interactions with other 
components. In addition,  the language allows the modeler to 
describe those  subsets of the  components  that  must be 
operational (nonoperational) for the system to be considered 
operational (nonoperational).  The modeler must decide the 
level of details of the hardware and software to include for a 
component representation  in an availability model. For 
example,  in  modeling  a computer system each processor 
could be considered  a component,  or,  at a lower level, each 
of the logic modules  that comprise  a processor could be 
considered  a component. In the latter case there would be 
many  more  components  and  the model  would have a much 
larger state space. The level of  detail  chosen  should depend 
on  the  questions  to be addressed using the model and/or  on 
the obtainable failure and repair data,  as well as on  the 
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resulting model size. Thus, if one wanted to  determine  the 
effect of  a  standby processor on system availability, it  might 
be better to consider processors rather than  the logic 
modules that comprise them  to be components. However, if 
failure data were readily obtainable at  the logic-module level, 
these data could be combined, using a combinatorial model, 
to  estimate  the processor failure rate. This is an example of 
hierarchical modeling, where lower-level data  are  input  to a 
lower-level model which is solved to estimate the  inputs  to a 
higher-level model. In the rest of the  paper we assume that 
the required inputs  are available  for the modeling level that 
is chosen. 

Using the terminology developed in [ 1 I ] ,  a  hardware  fault 
may be transient, intermittent, or permanent. (Software 
faults are  permanent.) A fault is not detected  until the 
hardware component  (or the  section  of the code) is exercised 
and causes an  error which may be detected and recovered 
from or may lead to a component  or system failure. We 
restrict ourselves to modeling at  the  error or failure level 
because error and failure data  are  much easier to  gather  than 
fault data. If the system implements  some error-recovery 
techniques,  modeling at  the  error level may be appropriate; 
otherwise modeling is at the failure level. 

In the  remainder of  this  section we describe the main 
constructs of the availability-modeling language which has 
been implemented in SAVE. (For completeness the  entire 
syntax of the language is given in  Appendix A.) We use the 
simple  computer-system  example  shown  in Figure 1 to aid 
in this  description. The system comprises  a  total  of nine 
components consisting of three software components 
[operating system software (Mvsl), communication 
subsystem software (Vtaml ), and database subsystem 
software (Imsl)]; three hardware components [processor 
(Procl ), power supply (Power1 ), and processor controller 
(Pcl)]; two components  that  are  combinations of  hardware 
and software [front-end network (Network) and storage 
subsystem (Storage)]; and  one  data  component [database 
subsystem (Database)]. The  constructs  contained in the 
language are general enough to be able to describe the above 
types of components  and their  interactions. We also assume 
that  there  are  three classes of  repairmen  available to repair 
the  above system, namely Fieldengineer, Operator, and 
Softretry. The first does hardware  repair, the second does 
software restart, and  the third does  automatic recovery. Note 
that  the software restart and  the  automatic recovery are also 
considered  a  type of repair on a component.  This leads to 
uniformity  in language constructs,  as  explained  later  in  this 
section. 

We  first present the constructs used to describe the failure 
and repair  behavior of components, including the 
component interactions. Next, we present the constructs 
used to describe the actions  taken by the various classes of 
repairmen,  including the repair strategies followed. Finally, 
we present the  constructs used to describe the  conditions 

n Network 

Mvsl 

Database 

Storage 

under which the system is considered to be operational (or 
nonoperational). 

Failure and repair behavior of components 
The most important construct  in the modeling language is 
the COMPONENT construct, which is used to model the 
failure and repair  behavior of a component, including  its 
interactions with other  components. In the modeling 
language we use the  term “failure” to refer to  either  an  error 
or a failure, and we use the  term “repair” to refer to  any 
action that renders  a “failed” component operational.  Many 
types of repair are possible, including automatic recovery, 
operator restart of a  subsystem or the  entire system, and 
physical repair or replacement. In  the modeling language a 
component is assumed to fail in possibly multiple modes, 
and a different type of  repair can  be associated with each 
mode. Also, each  type of repair can be performed by a 
different class of repairman  and  can have a different repair 
rate. (The repair strategies followed by a repairman in  a class 
are discussed in the following subsection.)  Therefore, a 
component  can be either  in the operational state or in one of 
the  many failed states  depending upon  the  mode of failure, 
as  shown in Figure 2. The transition  rates from operational 
to failed and failed to operational  states are affected by 
component  interactions  and  the repair strategies followed by 
the repairmen. A distinct combination of the  state of each 653 
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Operational 

0 
0 
0 
Failed 

component (Figure 2 )  determines  the  total system state. The 
state  of  each component is discussed in  greater  detail  later  in 
this section. 

We first illustrate  a  simple  use  of the COMPONENT 
construct to model different types  of  repair using the 
example  in Figure 1. Suppose that Procl has  two failure 
modes, one  in which software  retry  is successful and  one  in 
which physical repair is needed. This  can be modeled as 
follows using the COMPONENT construct: 

COMPONENT: Procl 
FAILURE RATE: procfr 

REPAIR  RATE: procrrl , procrr2 
REPAIRMAN CLASS USED: Softretry, Fieldengineer 

FAILURE MODE PROBABILITIES: p l ,  1 - p l  

The  convention used in  this paper is that all keywords are 
capitalized; all names, e.g., component  names  and 
repairman class names,  have the first letter  capitalized; and 
all parameters (variables) and  constants  are lowercase words. 
The  constructs  to declare parameters  and  constants  are given 
in  Appendix A. In the above  example, we gave the 
component a name, defined its failure  rate,  failure-mode 
probabilities, and repair  rates  in  each mode,  and specified 
which entity (repairman class) does  the repair  in  each mode. 
These repairman classes are  further defined  in the following 
subsection. The failure and repair  rates are assumed to be 
time-independent. If there  are multiple components  that  are 

identical  in  their  failure and repair  behaviors, e.g., multiple 
identical processors, this is expressed by appending  the 
number of  such components in  parentheses  after the 
component  name,  as shown  in  Appendix A. In general, then, 
the COMPONENT construct describes not  just a single 
component instance but a single component type, where 
components of the  same type are identical  as far as their 
failure and repair  behaviors are concerned. 

more  complicated than we have described so far. 
Operational  dependencies,  failure/error  propagation, and 
differences among  dormant, spare, and operational  states of 
a component affect the failure process. To  capture such 
complex  failure  behavior of a component, we add two more 
states, namely  spare and  dormant, in our  component model, 
as  shown  in Figure 3. Now, a component can be in one of 
four states: operational, failed (could be in one of many 
models),  spare, and  dormant. In the latter  three  states the 
component is considered nonoperational. A component is 
said to  be  dormant when  it  is not operating because its 
operation depends  upon  some  other  components which are 
nonoperational or because the whole system is 
nonoperational.  For example,  a processor is dormant when 
its power  supply has failed. The  component may fail when it 
is either  operational,  spare, or dormant,  and its failure rate 
may be different in the  three states. Thus we distinguish 
among operational,  spare, and  dormant failure  rates of a 
component. A component  may also fail  if it is affected by 
the failure of other components  in  the system (failure 
propagation). In addition  to  the operation  of  a component 
depending on  the operation of other  components,  the repair 
of a component could depend  on  the operation of other 
components.  For example, in systems which have a service 
processor, the service processor must be operational  in order 
for a failed processor to  be repaired. We now  illustrate, again 
using the example  in Figure 1, how this more complicated 
failure and repair  behavior can be modeled using the 
expanded COMPONENT construct shown below: 

In real systems the failure behavior  of  a component  can be 

COMPONENT: 
OPERATION  DEPENDS  UPON: 
REPAIR  DEPENDS  UPON: 
DORMANT WHEN SYSTEM DOWN: 
DORMANT FAILURE RATE: 
FAILURE RATE: 
FAILURE MODE PROBABILITIES: 
REPAIR RATE: 
REPAIRMAN CLASS USED: 
COMPONENTS  AFFECTED: 

Database: 1 - coverage 

Procl 
Powerl 
Powerl, PC1 
NO 
procdfr 
procfr 
P I .  1 - Pl  
procrrl , procrr2 
Softretry, Fieldengineer 
NONE, Database 

In Figure 1, suppose that when Procl fails it  could with 
some probability cause Database to fail  by contaminating 
the  data.  This might happen  in one or more of the failure 
modes of Procl . This behavior is expressed using 
COMPONENTS  AFFECTED where components  that  can be 
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affected (caused to fail) in each failure mode  are specified. 
Moreover,  for  each component  that  can be affected, the 
probability that it is actually affected is also specified. NONE 
is a keyword indicating that no components  are affected in a 
particular  failure  mode. Thus  no  components  are affected in 
the first failure mode of Procl . Database can be affected in 
the second failure mode of Procl and  there is a  probability 
of 1 - coverage of doing so. (In general, in each mode more 
than  one  component can be affected; this  can be specified by 
using the LISTS construct shown in Appendix A, where each 
component in  a list can be affected with a different 
probability.) Database, thus affected (failed), must be 
repaired  before  becoming  operational. This is in  contrast to 
the  operational  dependency  of Procl on Powerl expressed 
using OPERATION  DEPENDS  UPON in the example.  When 
Powerl fails, Procl becomes dormant  rather  than failed, so 
that  no repair on Procl is needed.  When Procl is dormant, 
it can still fail, with a possibly different failure rate than 
when it is operational. This is expressed using DORMANT 
FAILURE  RATE as  shown.  Suppose that Procl is not 
dormant when the system is nonoperational (see the 
subsection on availability specification for the definition  of 
when a system is or is not operational). This is expressed 
using DORMANT  WHEN  SYSTEM  DOWN and  the keyword 
NO. Suppose that  the repair of Procl depends  upon both 
Powerl and Pcl (processor controller) being operational. 
This is expressed using REPAIR  DEPENDS  UPON as  shown. 

The complete  syntax of the COMPONENT construct, 
which is given in Appendix A, has not been fully illustrated 
using the simple  example of Figure 1. If there  are spares  for 
a given component,  the  number of spares and their failure 
rate can be specified using SPARES and SPARES  FAILURE 
RATE, respectively. The failure rate of a component  may 
also be dependent  upon  the  number of that type  of 
component  that  are operational. For example,  in  a  four- 
processor system, if one processor fails, the load  of four 
processors must be handled by only  three, which may cause 
the failure rate  of each individual processor to increase. This 
can be expressed using the general form of FAILURE  RATE 
that is shown  in  Appendix A, in which a different failure-rate 
expression can be given for each possible number of 
operational components of the type being described. 

Actions ofrepairmen 
We next discuss the REPAIRMAN  CLASS construct  that is 
used to provide information  about  the  actions taken by the 
repairmen  in each repairman class. As was mentioned earlier 
in this  section, different types  of  repair, e g ,  automatic 
recovery, operator restart, and physical repair or 
replacement, can be associated with the different failure 
modes of a component. Each type of repair can be 
performed by a different repairman class. A repairman class 
could represent operators who do restart, field engineers  who 
do physical repair or replacement of the parts of the system, 
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System down 
OR I 

; A l l  states of a single  component. 

and either  hardware or software that does automatic 
recovery. A  repairman class is specified by assigning it a 
name, giving the  number of repairmen in the class and  the 
repair strategy used, and, if the repair strategy is based on 
priorities, assigning a  priority to each component type that 
can be repaired by the  repairman class. In some cases the 
number of repairmen in a class is effectively unlimited,  in 
that queueing  for  repair does  not occur. For example,  this 
can be considered to be the case for software retry. The use 
of the REPAIRMAN CLASS construct is illustrated below for 
the  example  in Figure 1: 

REPAIRMAN CLASS: 
REPAIRMAN CLASS: 

REPAIR  STRATEGY: 
Storage: 
Network: 
Procl : 
Powerl : 
PC1 : 

Softretry(UNLIM1TED) 
Fleldengineer(1) 
PRIORITY 
1 
1 
2 
3 
4 

Earlier we specified, using the COMPONENT construct,  that 
Procl has two failure modes, one where software retry is 
successful and  one where physical repair is required, and 
that a different repairman class, named Softretry and 
Fieldengineer, respectively, was used in each mode. The 
keyword UNLIMITED specifies that  the Softretry repairman 
class has an effectively unlimited number of repairmen,  and 655 
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defined, they would result in Markov chains having much 
larger state spaces than with preemptive  resume.  Therefore, 
the only  repair strategies implemented in the SAVE package 
and  the only ones we consider  are PRIORITY and ROS. Network 

“. The COMPONENT and REPAIRMAN CLASS constructs ‘. . have been chosen to allow relatively easy description  of ‘. ‘\ system aspects that  are  important  to incorporate  in an ,/“\, r--L--l ‘. m 2  
availability model. This is illustrated further by the example 

I Power2 I--1 vtam;? in Section 4. They have also been chosen with the  aim of 
I allowing straightforward  generation of the resulting Markov 
i chain and limiting its state-space size. 

‘L/l I ,,-.,, ; Mvs2 I 
I [ P C ~  p-+ 1ms2 I 

‘.J I I  L”7”4 
I . 

/-- Avuikuhility specification 

,/-- 
ONO A system is considered to be available if specified subsets of 

its components  are  operational.  This can be expressed using 
Database a reliability block diagram or, equivalently,  a Boolean - 
Storage expression over the  component  names involving “and”  and 

“or.” Alternatively, it may be easier to specify conditions 
under which the system is unavailable by specifying subsets 
of its components  that  are  nonoperational.  This can be done 

EVALUATION CRITERIA construct  shown below. The 
keyword BLOCKDIAGRAM indicates that system availability 
conditions will  be specified and  the keyword FAULTTREE 

hence  queueing  for  this Class Cannot OCCUT. In this Case it is indicates that system unavailability conditions will  be 
not necessary to specify a  repair strategy. Otherwise the specified. Both are  illustrated and  are logically equivalent: 
number of repairmen for the class is given in  parentheses, 
and a  repair strategy must be specified. In the example it 
is assumed that there is a single field engineer  who  can 
repair/replace any  component  that fails and  that  the repair E x ~ 2 :  powerl and procl and ~~~l and Vtaml and lmsl 

EVALUATION CRITERIA. BLOCKDIAGRAM 
Expl : Database and Storage and Network 

strategy used when there is more  than  one  component  to be 
repaired is to give highest priority to Storage and Network, 
second highest to Procl , and so on. Components  that have 
equal priority are  assumed to have  equal  probabilities  of 
being chosen for repair. The priority  repair strategy is 
assumed to be of the preemptive-resume  type. This  means 
that if a component fails while a component of equal or 
lower priority is being repaired, then  the  current repair is 
preempted and a new decision is made  to repair  a 
component based on the specified repair strategy [ROS 
(Random  Order Service) or PRIORITY]. Eventually  repair is 
resumed on the preempted component as determined by its 
priority. If all component types are assumed to have  equal 
priorities, then  the repair strategy can be specified as ROS 
and  the priority specification omitted. With  a  preemptive- 
resume-type  repair strategy and with the  assumption of  time- 
independent failure and repair rates, the state of the Markov 
chain that results can be represented by a concatenation of 
the states (operational, failed, spare, or dormant) of each 
component. While other types of repair strategies such as 

656 nonpreemptive  priority and first-come-first-served could be 

Expl and Exp2 

Expl : Database or Storage or Network 
Exp2: Powerl or Procl or Mvsl or Vtaml or Imsl 
Expl or Exp2 

EVALUATION CRITERIA. FAULTTREE 

The final expression for availability specification 
(BLOCKDIAGRAM) or unavailability specification 
(FAULTTREE) can  contain previously declared 
subexpressions. Note that we have omitted Pcl from the 
specifications because it is only needed for  repair and is not 
required  for the system to be considered  operational. We 
could also have omitted Powerl from the specifications 
because its effect has  already been taken into  account using 
OPERATION DEPENDS UPON while defining the Procl 
component. Therefore, its exclusion  in the specifications 
would not change any state from operational to 
nonoperational or vice versa. If in  Figure 1 we duplex the 
processor and its associated hardware and software as  shown 
in Figure 4, the following BLOCKDIAGRAM expression 
could be used: 
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EVALUATION CRITERIA:  BLOCKDIAGRAM 
Expl : Database and Storage and  Network 
Exp2:  Power1  and  Procl  and Mvsl and  Vtaml  and lmsl 
Exp3:  Power2  and  Proc2  and Mvs2 and  Vtam2  and  lms2 
Expl and  (Exp2 or Exp3) 

Clearly connectivity or lack of  connectivity among 
components  can affect the  above Boolean specification and 
hence the system availability measures. 

On the basis of the availability specification of the system, 
the state  space of the Markov chain, which is determined by 
the failure and repair  behavior  descriptions of components 
and  the  actions of the repairmen classes, can be partitioned 
into  an available set and  an unavailable set. System 
availability measures can  then be computed, as discussed in 
Section 3. 

3. Computation of availability and reliability 
measures 
In this  section we review numerical methods  that  are 
suitable for computing system availability measures  for large 
irreducible  time-homogeneous continuous-time Markov 
chains of the type that can be generated using the modeling 
language described in Section 2. Such  Markov chains 
typically have a sparse transition-rate  matrix and, since 
repair  rates are typically orders of magnitude larger than 
failure rates, they typically have order-of-magnitude 
differences in transition rates. We show that  the numerical 
methods we discuss are also suitable for computing  mean 
time  to system failure and system reliability, so that we also 
consider  these  measures. The  methods we describe  have 
been implemented in the SAVE package and  are discussed 
in more detail elsewhere [4, 8-10]. We include this review 
for completeness. 

the failure and repair  descriptions of the  components  and 
the  actions of the  repairman classes. On  the basis of the 
availability specification of the system, the state  space can be 
partitioned into a set of  states  for which the system is 
available and a set for which the system is unavailable. (This 
is done automatically  in SAVE.) Let A ( t )  denote  the fraction 
of time  the Markov  chain is in the available set during  the 
interval [0, t ] .  The availability measures we wish to  compute 
are  the interval availability 

The state  space of the Markov  chain is determined from 

10) = -W(Ol, 

the steady-state availability 

A = lim 1(t), 
1” 

and  the distribution of availability 

F(t ,  x) = Pr[A( t )  5 x]. 

Steady-state availability is probably the most commonly 
used availability measure.  However, if failures occur very 
infrequently,  steady  state  may not be reached during a finite 

time interval of interest. In that case, interval availability 
would be a more meaningful  measure than steady-state 
availability. The  distribution of availability is of interest 
when a  vendor offers a computer system with a  guaranteed 
level of availability, e.g., 0.95 or higher. If the guaranteed 
level is not  met over  a specified time interval, e.g., three 
months,  the  vendor pays a  penalty. The  distribution of 
availability can be used to  compute  the probability  of not 
meeting the guaranteed level over the specified interval. 

In system design studies  it is often useful to be able to 
identify the model input parameters, e.g., the failure rates or 
repair  rates to which an availability measure is most sensitive 
in the sense that a  small  fractional  change  in the  parameter 
value would cause  a large change  in the availability  measure. 
We define the sensitivity of an availability measure with 
respect to a  model input  parameter  to be the derivative of 
the measure with respect to  the  parameter (assuming the 
derivative exists) normalized by multiplying by the value of 
the parameter. The normalization  aids  in comparing  the 
absolute values of the sensitivities with respect to different 
parameters.  A negative (positive) sensitivity value  implies 
that a  small  increase  in the  parameter value will decrease 
(increase) the availability  measure. A higher absolute value 
of the sensitivity with respect to a parameter value  implies 
that a  fractional  change  in the  parameter value has more 
effect on  the measure. In Section 4 we illustrate the use of 
sensitivities in design analysis. 

We next  show that  the steady-state  availability,  its 
sensitivity with respect to a  model input  parameter,  the 
mean  time  to system failure, and its sensitivity with respect 
to a  model input  parameter  can be computed by solving four 
different sets of simultaneous linear equations.  The 
stationary  probabilities of an n-state (time-homogeneous) 
Markov  chain satisfy the homogeneous system of n linear 
equations in n unknowns, 

rQ = 0 ,  r e  = 1, (1) 

where Q is the transition  rate  matrix  of the Markov chain, e 
is a column vector of all ones, and  the row vector r is the 
stationary  probability vector. Since the  Markov chain is 
irreducible, r exists and is unique. Assume that  the available 
states of the Markov  chain are  numbered  from I to n’. Then 
the steady-state  availability is 

n’ 

A = E T , .  (2) 
I =  I 

To compute  the derivative  of A with respect to a  model 
input parameter, say X, we compute  the derivative of the 
vector r with respect to X and use (2). Differentiating (1) 
with respect to X yields a nonhomogeneous system of n 
linear equations in n unknowns, 

d r  dQ d r  
dX dX ’ dX 
- Q Q - ~ -  - e = ( ) ,  

Le., xQ = b, xe = 0, 657 
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where b is known  after ?r is computed,  and x is the vector of 
derivatives that is to be computed. 

The  mean  time  to failure  of the system is the mean time 
until  the  Markov  chain first exits the available set of states. It 
is obtained from the transient  behavior  of  a modified 
Markov  chain  in which all unavailable  states are replaced by 
a single absorbing  state. This transient  behavior is described 
by the set of linear differential equations 

where Q is the n' X n' upper left submatrix of Q 
corresponding to  the available  states, and i ( t )  is the vector 
of state  probabilities at  time t for the available  states  in the 
modified Markov chain. All the rows of Q no longer sum  to 
0, as there is a finite transition  rate from  some of the 
available states to  the unavailable states. Integrating (4) from 
0 to infinity, we have 

i, - io = [ p ( t ) d t ]  Q ,  

where io is the vector of initial  state  probabilities and i, is 
the vector of final state probabilities. Since the probability of 
exiting the available set in finite time is 1, i, = 0. The 
components of the vector J; i ( t ) d t  are the  mean  times  spent 
in each available state before exiting the available  set. 
Denoting  this vector by z, we  get the set of n ' 
nonhomogeneous linear equations in n' unknowns 

,. 
ZQ = -io. ( 5 )  

must be made for fill-in (zero elements which become 
nonzero  as a result of operations  upon  the matrix) as well as 
for the  elimination of nonzero elements. In  some cases the 
fill-in can become excessive, which is hard  to predict 
a priori. In addition, with iterative methods, advantage can 
be taken of good initial approximations, especially when  a 
series of related models are being solved. Also, an iterative 
procedure can be halted once a prespecified tolerance 
criterion  has been satisfied (e.g., a user may need three- 
decimal-place accuracy),  whereas  direct  methods, by 
definition,  perform  a fixed amount of computation  and yield 
the best accuracy they can. Finally, iterative methods  do  not 
suffer from problems of stability, for successive iterations 
always refer to  the  iteration matrix, which is not altered. For 
these reasons, we prefer iterative methods for solving large 
Markov-chain  availability models. The  method  implemented 
in SAVE for solving (l), (3), ( 5 ) ,  and (6) is successive 
overrelaxation (SOR). Other  candidate  methods  are 
empirically compared with SOR in [ IO]  and  are shown to be 
inferior. Implementation issues for the  SOR  method  are also 
considered  in [lo], including the choice  of an  appropriate 
relaxation  parameter. It is also shown that  the  structure of 
the  transition-rate matrix and  the order-of-magnitude 
differences in the transition  rates  can be exploited to speed 
up convergence of the  SOR  method. 

Next we consider the  computation of  interval availability 
and reliability, both  of which are time-dependent  measures 
which are  computed in SAVE by a technique called 
randomization or uniformization.  The interval  availability 
during [0, t ]  can be expressed as 

The  sum of the  elements of z gives the  mean  time  to failure. 
To  compute  the derivative  of the  mean  time  to failure with ,=, t 0 

respect to a input parameter, say X $  we compute  the where ?r(t), the state  probability vector at  time t ,  satisfies the 
derivative of the vector z with respect to X .  Differentiating ]inear differential equations 
( 5 )  with respect to X yields a nonhomogeneous system of n' 
linear equations in n' unknowns, " 

n' 1 
4 t )  = c - s'?r,(u)du, (7) 

d?r(t) - ?r(t)Q, ?r(t)e = 1. (8) dt 
dz * dQ 
- Q Q - ~ -  
dX dh ' 

(6) 
The reliability of the system at  time t is given by 

Le., yQ = c, 

where c is known  after z is computed,  and y is the vector of 
derivatives that is to be computed.  The  sum of the  elements 
of y gives the derivative of the  mean  time  to failure with 
respect to X. 

Numerical methods for computing  the solutions of  (I), 
(3), ( 5 ) ,  and (6) must be suitable  for  Markov chains with 
large state spaces. Since Q is sparse, the state-space size 
problem  can be alleviated to  some  extent by using sparse- 
matrix storage techniques.  Iterative-solution methods  are 
particularly  suitable  for use with sparse-storage techniques, 
since the iteration  matrix is not altered on successive 
iterations.  Direct  methods, on  the  other  hand, need much 
more sophisticated sparse-storage schemes, since  allowance 

R( t )  = c +,(t), (9) 
I =  I 

where i ( t )  satisfies the linear differential equations in (4). 
Randomization is an iterative method for computing time- 
dependent measures for a Markov  chain.  The  mathematical 
basis for this  technique was developed  in [ 121. A recent 
recommended reference is [ 131. Randomization is 
particularly  suitable  for  Markov  chains with large state 
spaces, as  has been demonstrated  in [13, 141. As shown  in 
[ 131, ?r( t )  can be computed using the expression 

where 
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Table 1 Parameter  values for the modc :I of Appendix B. 

and where 

q 2 max(-q,,) and I is the identity  matrix. The interval 
availability can be computed by symbolically integrating (10) 
and  summing  the first n' components of the resulting vector, 
which results in 

We can also compute i i ( t )  using the expression in  (10) with 
Q* replaced by Q*, where Q *  is given in ( 1  1) with Q 
replaced by Q. The reliability is computed  from ii( t )  using 
(9). There  are several advantages  in using randomization. 
Numerical  problems are minimized, since all terms in  (10) 
and ( 12) are nonnegative. It is easy to show that  the  errors 
obtained in the interval availability and  the reliability 
obtained by approximating  the infinite sum over k by the 
sum of the first K terms  are  upper-bounded by 

h=K+I 

Thus, it is possible to achieve specified error  tolerances. 
Other advantages  include ease of  exploiting sparse storage 
techniques and ease of implementation.  The derivatives of 
reliability with respect to transition-rate parameters  can also 
be computed using uniformization [ 151. 

The numerical methods of computing  the  distribution of 
availability for  Markov-chain  models are fairly recent. One 
method  implemented in SAVE is based on evaluating the 
joint probability that  the  cumulative operational time  during 
an interval of length t is x and  that  the system is in  a 
particular  operational or  nonoperational state at  time t. 
Equations  are  obtained relating  these joint probabilities  for 
arguments t and x to those for arguments t - A and x and 
those  for arguments t - A and x - A, where A is chosen 
small enough so that  the probability  of  more than  one event 
in the Markov process in time A is negligible. These 
equations allow recursive computation of probability  density 
functions of system availability which can be used to 
compute  the distribution of availability by performing an 
appropriate integration step. The details are given in [9]. An 
alternative method  implemented in SAVE for computing  the 
distribution  of availability is based on  the  randomization 
method [8]. The advantage of this method is that  the global 
errors can be bounded,  and it  requires less computation  time 
than  the numerical method described in [ 9 ] .  The 
disadvantage is that it  requires  a larger amount of storage 
than  the numerical method. 

4. Example continued 
In this  section we continue  the discussion of the example  of 
Section 2 and show that  other types  of components besides 
hardware (Le., Procl) can be modeled by the language 
constructs discussed in that section.  Next, we assign 

Component Mean  time  to  failure  Mean  time  to repair 
(h) fh) 

Proc 
Power 
PC 
Network 
Storage 
Mvs 
Vtam 
Ims 
Database 

960 
9600 
9600 

12000 
12000 
7200 
7200 
7200 
- 

1/10,2 
1 
1 
1 
I 

114 
1/12 
1/12 
114 

numerical values for the  parameters of the  model  and solve 
the model using SAVE. We then show how sensitivity 
analysis can be used to  improve  the design of the system. 

Returning  to Figure I ,  we select Mvsl (a software 
component) for  this discussion. (A complete SAVE language 
description  for the example of Figure 1 is given in  Appendix 
B.) When  a software component fails, the  operator typically 
takes  a system dump  and restarts the software. In such cases, 
the restart time is the  only  time considered in  the repair time 
of software components.  Another  important  point  to  note is 
that when Mvsl fails, the software running  on  top of Mvsl 
(Le., Vtarnl and Irnsl) must also be restarted  after Mvsl has 
been restarted. Therefore,  whenever Mvsl fails, it affects (or 
fails) components Vtaml and Imsl with probability one. If a 
component affects more  than  one  component  in  any given 
failure mode, these affected components  must be declared  as 
part of a list using the LISTS construct given below: 

LISTS: Cmplist2 
CmplistP: Vtaml,  lmsl 

* 
COMPONENT 

OPERATION  DEPENDS  UPON: 
REPAIR  DEPENDS  UPON: 
DORMANT WHEN SYSTEM DOWN: 
FAILURE RATE: 
REPAIR RATE: 
REPAIRMAN CLASS USED: 
COMPONENTS  AFFECTED: 

Cmplist2: 1, 1 

Mvsl 
Procl , Powerl 
Procl , Powerl 
NO 
mvsfr 
mvsrr 
Operator 
Cmplist2 

Another interesting type of component is Database. This 
is a data  component which does  not fail by itself (Le., it has 
a  zero failure rate). It fails only if some  other  component 
affects (or  contaminates)  it. Therefore, in  the Database 
component description no FAILURE  RATE construct has 
been used, as shown in Appendix B. SAVE assumes natural 
default values for the  omitted constructs. We solved the 
model  of  Appendix B using SAVE for the  parameter values 
shown  in Table 1. 

The values for p l  and coverage were both 0.8. We also 
solved a  similar  model  for the example of Figure 4, where 
the processor, power  supply, processor controller. and all the 
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Table 2 Sensitivity of steady-state availability with respect to parameter values. 

Component 

Proc (f) 
Power (b) 
PC (r) 
Network (b) 
Storage (f) 

Mvs (r) 
Vtam (r) 
Ims (r) 
Database (r) 
P l  
Coverage 

Simplex 
( A  = 0.9990) 

(1 - A  = 0.0010) 

0.6 X lo-’ 
0.1 X lo-’ 

0.8 X 
0.1 X 10” 

0.3 X 

Duplex 
( A  = 0.9998) 

(1 - A = 0.0002) 

0.2 X 10-~ 

0.7 X 
0.8 X lo4 
0.1 X 1 0 - ~  

0.4 x 

Duplex i storage 
( A  = 0.99992) 

(1 - A = 0.00008) 

0.5 x 
0.4 x 
0.1 X 1 0 - ~  
0.8 X 1 0 - ~  
0.1 x 

0.9 X 1 0 - ~  
0.3 X 1 0 - ~  
0.3 X 1 0 - ~  
0.3 X 10-~  

0.2 X 
0.2 x 

0.1 x 
0.5 X 10-~ 
0.1 X 10-~  
0.5 X 10-~ 
0.8 X 
0.1 X 

0.6 x  IO-^ 
0.4 X 10” 
0.3 x IO-’ 
0.2 x 10” 
0.1 X lo-’ 
0.1 x 1 K 6  

software are duplexed. To describe this  model we used the 
same  constructs for the duplexed components, which were 
named Proc2, Power2, Pc2, Mvs2, Vtam2, and lms2, 
respectively. The  component  interactions were appropriately 
changed-for example, the operation of Proc2 depends  upon 
Power2. The availability specification for this model is given 
at  the  end of Section 2. We also solved a third model, where 
we duplexed the storage and  the database  over and above the 
duplexing  in Figure 4, by declaring storage as Storagel and 
Storage2, and database  as Databasel and Database2. 
[Component interactions determine when we can specify 
duplexed components as Cmpname(2) and when we have to 
specify them as Cmpnamel and Cmpname2. For example, 
Powerl supplies power to Procl and Pcl, and Power2 
supplies power to Proc2 and Pc2. If Powerl and Power2 
could  supply power to  both  the processing subsystems, then 
we could have declared  power as Power(2) because both  the 
power  supplies would have the  same failure and repair 
behavior and  the  same  component interactions.] The 
availability specification for the third  model is as follows: 

EVALUATION  CRITERIA: BLOCKDIAGRAM 
Expl : Databasel and Storagel and Network 
Exp2: Expl and Powerl and Procl and Mvsl and Vtarnl and Irnsl 
Exp3: Database2 and Storage2 and Network 
Exp4: Exp2 and Power2 and Proc2 and Mvs2 and Vtarn2  and lrns2 
Exp2 or Exp4 

We call these three models  simplex,  duplex, and duplex + 
storage, respectively. The Markov chains constructed for 
these  models have 264, 1 I 6 16, and 34 848 states, 
respectively (certainly not  an easy task to  do by hand).  The 
steady-state availability ( A )  and its sensitivity with respect to 
various parameters  are given in Table 2. The letter (f), (r), or 
(b)  in  parentheses  after  a component  name indicates that  the 
failure rate, the repair  rate, or both  for the  component 
yielded the  maximum absolute value of the sensitivity which 
is given in the table. 

For  the simplex system, the availability is most sensitive to 
p l  , that is, to a processor failure where Softretry is 
successful. Therefore, if  we want to  improve  the availability 
of the system, we should  start by improving  the software 
recovery mechanisms which could  increase p l  . Another 
alternative is to  add a  second processor, together with its 
associated hardware and software, as is done  in  the duplex 
system of Figure 4. Note  that we get a major  improvement 
in availability (that is, about five-times reduction  in 
unavailability) by doing so, and  the effect of processor failure 
(or a  failure of any  of its associated hardware and software) 
on the system availability has  been drastically reduced. 
Network, Storage, and Database still have the  same effect 
on availability as  in the simplex  system,  as no availability 
improvements were made  to these components.  Note  that 
coverage has a slightly higher sensitivity value because now 
two processors and two IMS software components can affect 
the database,  as  opposed to  one of each  in the simplex 
system. Further availability improvement  can be achieved by 
duplexing the storage and  the database, which now have the 
highest effect on availability. We did that for our third 
model. The results are shown  in the last column of Table 2, 
which shows another two-and-a-half-times  reduction  in 
unavailability. Further  improvement would have to  come 
from  duplexing the  other parts of  the system and 
simultaneously  increasing the coverage value by improving 
the database recovery facility. 

Besides design improvement, sensitivity analysis can also 
be very helpful in other ways. Note  that for the simplex 
system, the availability is most sensitive to a processor 
failure, while it is least sensitive to a  processor-controller 
failure. A few remarks  can be made  about  that. First, we 
must estimate failure- and repair-rate parameters very 
carefully for the processor because they affect the availability 
the most. On  the  other  hand,  minor  errors in the processor 
controller’s parameter estimates are  not going to affect the 
availability very much. In fact, since the processor 
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controller's parameters have three orders of magnitude less 
effect on  the availability than those of other  components in 
the system, the processor controller  can be removed  from 
our system model to reduce the size of the model  without 
significantly affecting the model results. We did this and 
found  that  the availability as well as the  parameter 
sensitivities of the  components in the  three systems did  not 
change significantly. Thus, sensitivity analysis is useful not 
only in design improvement,  but also in model reduction 
and  the identification  of  the critical parameters  to be 
estimated. 

5. Conclusions 
The example discussed in this paper shows that  the proposed 
modeling language has powerful modeling capabilities, 
particularly with regard to modeling component interactions. 
Large and complex  models  can be constructed using the 
language without  having  the  modeler  deal directly with the 
underlying  Markov-chain models. This task would be very 
difficult if the Markov-chain  transition-rate  matrix  had to be 
entered directly by the modeler. The numerical methods 
presented in the  paper are particularly  suited to solving large 
Markov-chain  models. The storage requirements have been 
taken into  account by exploiting  sparse-matrix storage. The 
numerical  methods, except for the  computation of the 
distribution of availability, are capable of solving Markov- 

chain  models with tens of thousands of states. We have 
solved models with up  to 35 000 states  when the  transition- 
rate matrix is stored in symbolic form,  and  much larger 
models  when  this  matrix is stored in numerical  form. The 
symbolic  form  of the transition-rate  matrix is needed for 
sensitivity analysis because it  requires  symbolic 
differentiation of the transition-rate  matrix with respect to 
the model  parameters. The main  limiting  factor  for  the size 
of the model solved is the available memory space.  Solution 
speed has not been a  problem, nor has numerical stability. 

For large, complex  models it is hard to identify which 
model parameters affect the availability the most.  Therefore, 
sensitivity analysis is an extremely useful aid  in the design- 
improvement process. Moreover, sensitivity analysis can 
help identify the critical parameters to estimate;  it can also 
identify noncritical components  that may be removed from 
the model to reduce its size. 

There  are several directions  for  further  work  in  this  area. 
One is to improve the modeling  capabilities  of the language, 
for example by providing constructs for spare switch-in 
times. A second is to  compute  other types of measures,  for 
example  performability [ 16-1 91. We are investigating both of 
these  directions. A third is to develop methods for solving 
even larger models than  are currently solved by the 
numerical methods presented in this  paper. In this regard we 
are experimenting with simulation [20] and Markov-chain 
truncation, aggregation, and  lumping techniques [4]. 

Appendix A: Syntax of SAVE language 

MODEL: (rnodelnarne) 
METHOD:(NUMERICAL~MARKOV~COMBlNATORlAL~SIMULATION) 

* 
PARAMETERS: (parameter-name), (parameter-name), . . . 

CONSTANTS: (constant-name),  (constant-name), . . . 
CONSTANT-NAME: (constant-valuelexpression) 
CONSTANT-NAME: (constant-valuelexpresslon) 

* 

* 
LISTS: (list-name),  (kt-name), . . . 

LIST-NAME: (comp-name) ((no -of-comps)) , . . . 
LIST-NAME: (comp-name)((no  -of-cornps)). . . 

IBM J .  RES. DEVELOP. \ 

* 
COMPONENT. 

SPARES. 
SPARES FAILURE RATE. 
OPERATION DEPENDS UPON: 
REPAIR DEPENDS UPON: 
DORMANT WHEN SYSTEM DOWN: 
DORMANT FAILURE RATE: 
FAILURE RATE: 
FAILURE MODE PROBABILITIES: 
REPAIR RATE. 
REPAIRMAN CLASS USED: 

(cornp-name) ((no.-of-comps)) 
(no.-of-spares) 
(expression) 
(cornp-name) ((no.)), . . . 
(cornp-name) ((no.)), . . . 
(YESINO) 
(expression) 
(expresslon),  (expression), . . . 
(prob-value), . . . 
(expression). . . . 
(class-name), . . . 
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COMPONENTS  AFFECTED: (NONEllist-narnelcomp-narne((no.))), , 
(LIST-NAMEICOMP-NAME): (affect-prob-Val), . . . 
(LIST-NAMEICOMP-NAME): (affect-prob-Val) , . , . 

COMPONENT: 

* 
EVALUATION CRITERIA: (ASSERTIONSIBLOCKDlAGRAMlFAULTTREEIPERFORMANCE) 

* 
REPAIRMAN CLASS: (class-name)(( number) I UNLIMITED) 

REPAIR  STRATEGY: (PRIORITY /ROS) 
COMPONENT-NAME: (prlority-level) 
COMPONENT-NAME: (prlority-level) 

REPAIRMAN  CLASS: 

* 
END 

Appendix 9: SAVE language description 
of the example 
MODEL: Example 

METHOD:  NUMERICAL 

* 

* 
CONSTANTS: procfr. procdfr. netfr, storagefr, powerfr, pcfr 

procfr: 1/960 
procdfr: 1 /960 
netfr: 1 /12000 
storagefr: 1 /12000 
powerfr: 1  /9600 
pcfr: 119600 

* 
CONSTANTS: mvsfr, vtamfr, irnsfr 

rnvsfr: 1  /2400 
vtarnfr: 114800 
Irnsfr: 114800 

* 
CONSTANTS: procrrl , procrr2 

procrrl : 10 
procrr2: 1 12 

* 
CONSTANTS: netrr, storagerr, powerrr, pcrr 

netrr:  1 
storagerr: 1 
powerrr: 1 
pcrr: 1 

* 
CONSTANTS: rnvsrr, vtarnrr, irnsrr, dbrr 

rnvsrr: 4 
vtamrr: 12 
imsrr: 12 
dbrr: 4 

* 
PARAMETERS: p l ,  coverage 

LISTS: Crnplistl, Cmpl1st2 
Cmpllstl : Database, Mvsl , Vtaml , Irnsl 
Crnplist2: Vtarnl,  Imsl 

* 

* 

COMPONENT: 
OPERATION  DEPENDS  UPON: 
REPAIR  DEPENDS  UPON: 
DORMANT WHEN SYSTEM DOWN: 
DORMANT FAILURE RATE: 
FAILURE RATE: 
FAILURE  MODE PROBABILITIES: 
REPAIR RATE: 
REPAIRMAN CLASS USED: 
COMPONENTS  AFFECTED: 

Cmpllstl : 1 - coverage, 1, 1,  1 
* 

COMPONENT: 
OPERATION  DEPENDS  UPON: 
REPAIR  DEPENDS  UPON: 
DORMANT WHEN SYSTEM DOWN: 
FAILURE RATE: 
REPAIR RATE: 
REPAIRMAN CLASS USED: 
COMPONENTS  AFFECTED: 

* 

COMPONENT: 
OPERATION  DEPENDS  UPON: 
REPAIR  DEPENDS  UPON: 
DORMANT WHEN SYSTEM DOWN: 
FAILURE RATE: 
REPAIR RATE: 
REPAIRMAN CLASS USED: 
COMPONENTS  AFFECTED: 

Database: 1 - coverage 

* 

COMPONENT: 
OPERATION  DEPENDS  UPON: 
REPAIR  DEPENDS  UPON: 
DORMANT WHEN SYSTEM DOWN: 
FAILURE RATE: 
REPAIR RATE: 
REPAIRMAN CLASS USED: 

* 

Procl 
Powerl 
Powerl , Pcl 
NO 
procdfr 
procfr 
PI ,  1 - PI 
procrrl , procrr2 
Softretry. Fieldengineer 
NONE, Crnplistl 

Mvsl 
Procl,  Powerl 
Procl , Powerl 
NO 
rnvsfr 
rnvsrr 
Operator 
Crnplist2 

Irnsl 
Mvsl,  Procl,  Powerl 
Mvsl,  Procl,  Powerl 
YES 
lrnsfr 
lrnsrr 
Operator 
Database 

Vtaml 
Mvsl , Procl , Powerl 
Mvsl , Procl , Powerl 
YES 
vtarnfr 
vtamfr 
Operator 
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COMPONENT: Storage 
DORMANT  WHEN SYSTEM  DOWN: NO 
FAILURE  RATE: storagefr 
REPAIR  RATE: storagerr 
REPAIRMAN CLASS USED: Fieldengineer 
COMPONENT  AFFECTED: Database 

* 
COMPONENT: Network 

DORMANT  WHEN  SYSTEM  DOWN:  NO 
FAILURE  RATE: netfr 
REPAIR  RATE: netrr 
REPAIRMAN CLASS USED: Fieldengineer 

* 
COMPONENT: Database 

OPERATION  DEPENDS  UPON: Storage 
REPAIR  DEPENDS  UPON: Storage 
DORMANT  WHEN  SYSTEM  DOWN: YES 
REPAIR  RATE: dbrr 
REPAIRMAN CLASS USED: Operator 

* 
COMPONENT: Powerl 

DORMANT  WHEN  SYSTEM  DOWN:  NO 
FAILURE  RATE: powerfr 
REPAIR  RATE: powerrr 
REPAIRMAN CLASS USED: Fieldengineer 

* 
COMPONENT: PC1 

OPERATION DEPENDS UPON: Powerl 
REPAIR  DEPENDS  UPON: Powerl 
DORMANT  WHEN SYSTEM  DOWN: NO 
FAILURE  RATE:  pcfr 
REPAIR  RATE:  pcrr 
REPAIRMAN CLASS USED: Fieldenglneer 

EVALUATION  CRITERIA: blockdiagrarn 
Expl: Mvsl and Vtarnl and Irnsl 
Expl  and  Database  and  Storage  and Network 

* 
* 
REPAIRMAN CLASS: Softretty(UNLIM1TED) 
REPAIRMAN CLASS: Operator(UNLIM1TED) 

REPAIRMAN CLASS: Fieldengineer(1) 
REPAIR  STRATEGY:  PRIORITY 

* 

Network: 1 
Storage:  1 
Procl: 2 
Powerl: 3 
Pcl:  4 

* 
END 
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