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The quantitative evaluation of computer-system
availability is becoming increasingly important in
the design and configuration of commercial
computer systems. This paper deals with
methods for constructing and solving large
Markov-chain models of computer-system
availability. A set of powerful high-level
modeling constructs is discussed that can be
used to represent the failure and repair behavior
of the components that comprise a system,
including important component interactions, and
the repair actions that are taken when
components fail. If time-independent failure and
repair rates are assumed, then a time-
homogeneous continuous-time Markov chain
can be constructed automatically from the
modeling constructs used to describe the
system. Markov chains having tens of thousands
of states can be readily constructed in this
manner. Therefore, techniques that are
particularly suitable for numerically solving such
large Markov chains are also discussed,
including techniques for computing the
sensitivities of availability measures with
respect to model parameters. A computer
system modeling example is presented to
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illustrate the use of these modeling and analysis
techniques. The modeling constructs, automatic
Markov-chain construction, and model-solution
methods have been implemented in a program
package called the System Availability Estimator
(SAVE).

1. Introduction

System availability is becoming an increasingly important
factor in evaluating the behavior of commercial computer
systems. This is due to the increased dependence of
enterprises on continuously operating computer systems and
to the emphasis on fault-tolerant designs. Thus we expect
quantitative evaluation of availability to be of increasing
interest to computer-system manufacturers. Most of the
modeling work in fault-tolerant computing has focused on
models of mission-oriented systems with high reliability
requirements such as space computers, avionics systems,
wind-tunnel systems, and ballistic missile defense computers
[1, 2]. For the mission to succeed, the system must not fail
during the mission time. In addition, the repair or
replacement of failed components is usually not possible
during the mission. Hence, the probability that the system
does not fail during the mission time, i.e., the system
reliability, is a measure of interest. The modeling of
continuously operating systems with high availability
requirements such as telephone switching systems, general-
purpose computer systems, transaction processing systems
(e.g., airline reservation systems), and communication-
network computers has received less attention and is the
focus of this paper. For systems like these, system failures
can be tolerated if they occur infrequently and result in short
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system downtimes. Failed components can be repaired or
replaced either during operation or when the system is down.
For such systems, the expected fraction of time the system is
operational is an important availability measure.

From an availability-modeling point of view, a system
consists of a collection of hardware and software
components, each of which may be subject to failure,
recovery, and repair. (Software components in operation can
be modeled with constant failure rates, as described in [3].)
As we discuss later, component interactions often have a
substantial effect on system availability and must therefore
be considered in addition to the individual component
behaviors. A system is considered to be operational
(available) if specified combinations of its components are
operational. Different types of mathematical models are used
to predict system availability and reliability measures,
including combinatorial models, continuous-time Markov
chain models, and semi-Markov process models [4]. In this
paper we focus on continuous-time Markov chain models,
which are perhaps the most commonly used. The state-space
size of such models grows (often exponentially) with the
number of components being modeled. Therefore, except for
models that represent a very small number of components
and hence have a small state-space size, the direct
construction of the Markov chain is a tedious and error-
prone process. Rather than requiring the modeler to
construct the Markov chain directly, it would be better to
provide a high-level modeling language containing constructs
which aid in representing the failure, recovery, and repair
behavior of components in the system, as well as important
component interactions. The challenge in developing such a
language lies in making it comprehensive enough so that
important system details can be modeled, but simple enough
so that the Markov chain can be automatically constructed
from the modeling-language description.

In Section 2 we describe such a modeling language and
illustrate its use with an example. The language contains a
few simple but powerful constructs that are capable of
representing both independent component behaviors and
component interactions. The constructs provide a
framework for the modeler to use in thinking about aspects
of the system to be modeled, particularly the component
interactions. The language has been incorporated in a
system-availability-modeling program package called the
System Availability Estimator (SAVE) [5]. SAVE
automatically generates the Markov chain from the
modeling language description. Other modeling packages
(e.g., HARP [6]) provide simple fault-tree (or reliability-
block-diagram)-oriented languages to generate Markov
chains, but typically only recovery-based constructs are
provided to model component interactions or dependencies.

Once the Markov chain has been generated, it must be
solved numerically in order to compute system availability
measures. The SAVE modeling language and automatic
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Markov chain construction allow Markov chains to be
generated that have large state spaces, e.g., tens of thousands
of states. Therefore SAVE incorporates numerical solution
methods that are particularly suitable for large-state-space
Markov chains. In Section 3 we first define several
availability and reliability measures of interest and then
briefly describe the solution methods that are implemented
in SAVE to compute these measures. We also discuss
solution methods for computing the sensitivities (derivatives)
of some of these measures with respect to model input
parameters (e.g., failure and repair rates and coverage [7]).
Such sensitivities are very useful in suggesting design
improvements for the system being modeled, as we
demonstrate. More detailed discussions about solution
methods are found in [4, 8-10].

In Section 4, we return to the example of Section 2 to
further illustrate the features of the SAVE modeling language
and to demonstrate the capabilities of the SAVE solution
methods and the use of sensitivity analysis in design and
reconfiguration of fault-tolerant systems. Section 5 contains
concluding remarks and comments on future research
directions.

2. An availability modeling language

& Some modeling considerations

The uses of system availability models include comparing
various fault-tolerant design alternatives and, for a particular
design, identifying any availability bottlenecks that may
require subsequent design improvements. A system
availability model is an abstraction of the system in which
we ignore certain design details to reduce the size of the
model but include other details to be able to study the
various design trade-offs. As mentioned in Section 1, for
availability-modeling purposes a system is considered to be a
collection of hardware and software components. Thus
components are the basic entities that are represented in a
model. The modeling language we present allows the
modeler to describe for each component its failure and
repair behavior, including its interactions with other
components. In addition, the language allows the modeler to
describe those subsets of the components that must be
operational (nonoperational) for the system to be considered
operational (nonoperational). The modeler must decide the
level of details of the hardware and software to include for a
component representation in an availability model. For
example, in modeling a computer system each processor
could be considered a component, or, at a lower level, each
of the logic modules that comprise a processor could be
considered a component. In the latter case there would be
many more components and the model would have a much
larger state space. The level of detail chosen should depend
on the questions to be addressed using the model and/or on
the obtainable failure and repair data, as well as on the
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resulting model size. Thus, if one wanted to determine the
effect of a standby processor on system availability, it might
be better to consider processors rather than the logic
modules that comprise them to be components. However, if
failure data were readily obtainable at the logic-module level,
these data could be combined, using a combinatorial model,
to estimate the processor failure rate. This is an example of
hierarchical modeling, where lower-level data are input to a
lower-level model which is solved to estimate the inputs to a
higher-level model. In the rest of the paper we assume that
the required inputs are available for the modeling level that
is chosen.

Using the terminology developed in [11], a hardware fault
may be transient, intermittent, or permanent. (Software
faults are permanent.) A fault is not detected until the
hardware component (or the section of the code) is exercised
and causes an error which may be detected and recovered
from or may lead to a component or system failure. We
restrict ourselves to modeling at the error or failure level
because error and failure data are much easier to gather than
fault data. If the system implements some error-recovery
techniques, modeling at the error level may be appropriate;
otherwise modeling is at the failure level.

In the remainder of this section we describe the main
constructs of the availability-modeling language which has
been implemented in SAVE. (For completeness the entire
syntax of the language is given in Appendix A.) We use the
simple computer-system example shown in Figure 1 to aid
in this description. The system comprises a total of nine
components consisting of three software components
[operating system software (Mvs1), communication
subsystem software (Vtam1), and database subsystem
software (Ims1)]; three hardware components [processor
(Proc1), power supply (Power1), and processor controller
(Pc1)]; two components that are combinations of hardware
and software [front-end network (Network) and storage
subsystem (Storage)]; and one data component [database
subsystem (Database)]. The constructs contained in the
language are general enough to be able to describe the above
types of components and their interactions. We also assume
that there are three classes of repairmen available to repair
the above system, namely Fieldengineer, Operator, and
Softretry. The first does hardware repair, the second does
software restart, and the third does automatic recovery. Note
that the software restart and the automatic recovery are also
considered a type of repair on a component. This leads to
uniformity in language constructs, as explained later in this
section.

We first present the constructs used to describe the failure
and repair behavior of components, including the
component interactions. Next, we present the constructs
used to describe the actions taken by the various classes of
repairmen, including the repair strategies followed. Finally,
we present the constructs used to describe the conditions
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A computer-system example.

under which the system is considered to be operational (or
nonoperational).

o Failure and repair behavior of components

The most important construct in the modeling language is
the COMPONENT construct, which is used to model the
failure and repair behavior of a component, including its
interactions with other components. In the modeling
language we use the term “failure” to refer to either an error
or a failure, and we use the term “repair” to refer to any
action that renders a “failed” component operational. Many
types of repair are possible, including automatic recovery,
operator restart of a subsystem or the entire system, and
physical repair or replacement. In the modeling language a
component is assumed to fail in possibly multiple modes,
and a different type of repair can be associated with each
mode. Also, each type of repair can be performed by a
different class of repairman and can have a different repair
rate. (The repair strategies followed by a repairman in a class
are discussed in the following subsection.) Therefore, a
component can be either in the operational state or in one of
the many failed states depending upon the mode of failure,
as shown in Figure 2. The transition rates from operational
to failed and failed to operational states are affected by
component interactions and the repair strategies followed by
the repairmen. A distinct combination of the state of each
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States of a single component.

component (Figure 2) determines the total system state. The
state of each component is discussed in greater detail later in
this section.

We first illustrate a simple use of the COMPONENT
construct to model different types of repair using the
example in Figure 1. Suppose that Proc1 has two failure
modes, one in which software retry is successful and one in
which physical repair is needed. This can be modeled as
follows using the COMPONENT construct:

COMPONENT: Proc1
FAILURE RATE: procfr
FAILURE MODE PROBABILITIES: p1,1—p1
REPAIR RATE: procrri, procrr2

REPAIRMAN CLASS USED: Softretry, Fieldengineer

The convention used in this paper is that all keywords are
capitalized; all names, e.g., component names and
repairman class names, have the first letter capitalized; and
all parameters (variables) and constants are lowercase words.
The constructs to declare parameters and constants are given
in Appendix A. In the above example, we gave the
component a name, defined its failure rate, failure-mode
probabilities, and repair rates in each mode, and specified
which entity (repairman class) does the repair in each mode.
These repairman classes are further defined in the following
subsection. The failure and repair rates are assumed to be
time-independent. If there are multiple components that are
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identical in their failure and repair behaviors, e.g., multiple
identical processors, this is expressed by appending the
number of such components in parentheses after the
component name, as shown in Appendix A. In general, then,
the COMPONENT construct describes not just a single
component instance but a single component type, where
components of the same type are identical as far as their
failure and repair behaviors are concerned.

In real systems the failure behavior of a component can be
more complicated than we have described so far.
Operational dependencies, failure/error propagation, and
differences among dormant, spare, and operational states of
a component affect the failure process. To capture such
complex failure behavior of a component, we add two more
states, namely spare and dormant, in our component model,
as shown in Figure 3. Now, a component can be in one of
four states: operational, failed (could be in one of many
models), spare, and dormant. In the latter three states the
component is considered nonoperational. A component is
said to be dormant when it is not operating because its
operation depends upon some other components which are
nonoperational or because the whole system is
nonoperational. For example, a processor is dormant when
its power supply has failed. The component may fail when it
is etther operational, spare, or dormant, and its failure rate
may be different in the three states. Thus we distinguish
among operational, spare, and dormant failure rates of a
component. A component may also fail if it is affected by
the failure of other components in the system (failure
prepagation). In addition to the operation of a component
depending on the operation of other components, the repair
of a component could depend on the operation of other
components. For example, in systems which have a service
processor, the service processor must be operational in order
for a failed processor to be repaired. We now illustrate, again
using the example in Figure 1, how this more complicated
fatlure and repair behavior can be modeled using the
expanded COMPONENT construct shown below:

COMPONENT: Proc1
OPERATION DEPENDS UPON: Power1
REPAIR DEPENDS UPON: Power1, Pct

DORMANT WHEN SYSTEM DOWN:  NO

DORMANT FAILURE RATE: procdfr

FAILURE RATE: procfr

FAILURE MODE PROBABILITIES: p1,1-p1

REPAIR RATE: procrr1, procrr2
REPAIRMAN CLASS USED: Softretry, Fieldengineer
COMPONENTS AFFECTED: NONE, Database

Database: 1 — coverage

In Figure I, suppose that when Proc1 fails it could with
some probability cause Database to fail by contaminating
the data. This might happen in one or more of the failure
modes of Proc1. This behavior is expressed using
COMPONENTS AFFECTED where components that can be
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affected (caused to fail) in each failure mode are specified.
Moreover, for each component that can be affected, the
probability that it is actually affected is also specified. NONE
is a keyword indicating that no components are affected in a
particular failure mode. Thus no components are affected in
the first failure mode of Proc1. Database can be affected in
the second failure mode of Proc1 and there is a probability
of 1 — coverage of doing so. (In general, in each mode more
than one component can be affected; this can be specified by
using the LISTS construct shown in Appendix A, where each
component in a list can be affected with a different
probability.) Database, thus affected (failed), must be
repaired before becoming operational. This is in contrast to
the operational dependency of Proc1 on Power1 expressed
using OPERATION DEPENDS UPON in the example. When
Power1 fails, Proc1 becomes dormant rather than failed, so
that no repair on Proc1 is needed. When Proc1 is dormant,
it can still fail, with a possibly different failure rate than
when it is operational. This is expressed using DORMANT
FAILURE RATE as shown. Suppose that Proc1 is not
dormant when the system is nonoperational (see the
subsection on availability specification for the definition of
when a system 1is or is not operational). This is expressed
using DORMANT WHEN SYSTEM DOWN and the keyword
NO. Suppose that the repair of Proc1 depends upon both
Power1 and Pc1 (processor controller) being operational.
This is expressed using REPAIR DEPENDS UPON as shown.
The complete syntax of the COMPONENT construct,
which is given in Appendix A, has not been fully illustrated
using the simple example of Figure 1. If there are spares for
a given component, the number of spares and their failure
rate can be specified using SPARES and SPARES FAILURE
RATE, respectively. The failure rate of a component may
also be dependent upon the number of that type of
component that are operational. For example, in a four-
processor system, if one processor fails, the load of four
processors must be handled by only three, which may cause
the failure rate of each individual processor to increase. This
can be expressed using the general form of FAILURE RATE
that is shown in Appendix A, in which a different failure-rate
expression can be given for each possible number of
operational components of the type being described.

o Actions of repairmen

We next discuss the REPAIRMAN CLASS construct that is
used to provide information about the actions taken by the
repairmen in each repairman class. As was mentioned earlier
in this section, different types of repair, e.g., automatic
recovery, operator restart, and physical repair or
replacement, can be associated with the different failure
modes of a component. Each type of repair can be
performed by a different repairman class. A repairman class
could represent operators who do restart, field engineers who
do physical repair or replacement of the parts of the system,
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All states of a single component.

and either hardware or software that does automatic
recovery. A repairman class is specified by assigning it a
name, giving the number of repairmen in the class and the
repair strategy used, and, if the repair strategy is based on
priorities, assigning a priority to each component type that
can be repaired by the repairman class. In some cases the
number of repairmen in a class is effectively unlimited, in
that queueing for repair does not occur. For example, this
can be considered to be the case for software retry. The use
of the REPAIRMAN CLASS construct is illustrated below for
the example in Figure 1:

REPAIRMAN CLASS:

REPAIRMAN CLASS:
REPAIR STRATEGY:
Storage: 1
Network: 1
Proc1: 2
Powert: 3
Pci: 4

Softretry(UNLIMITED)
Fieldengineer(1)
PRIORITY

Earlier we specified, using the COMPONENT construct, that
Proc1 has two failure modes, one where software retry is
successful and one where physical repair is required, and
that a different repairman class, named Softretry and
Fieldengineer, respectively, was used in each mode. The
keyword UNLIMITED specifies that the Softretry repairman
class has an effectively unlimited number of repairmen, and
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hence queueing for this class cannot occur. In this case it is
not necessary to specify a repair strategy. Otherwise the
number of repairmen for the class is given in parentheses,
and a repair strategy must be specified. In the example it

is assumed that there is a single field engineer who can
repair/replace any component that fails and that the repair
strategy used when there is more than one component to be
repaired is to give highest priority to Storage and Network,
second highest to Proc1, and so on. Components that have
equal priority are assumed to have equal probabilities of
being chosen for repair. The priority repair strategy is
assumed to be of the preemptive-resume type. This means
that if a component fails while a component of equal or
lower priority is being repaired, then the current repair is
preempted and a new decision is made to repair a
component based on the specified repair strategy [ROS
(Random Order Service) or PRIORITY]. Eventually repair is
resumed on the preempted component as determined by its
priority. If all component types are assumed to have equal
priorities, then the repair strategy can be specified as ROS
and the priority specification omitted. With a preemptive-
resume-type repair strategy and with the assumption of time-
independent failure and repair rates, the state of the Markov
chain that results can be represented by a concatenation of
the states (operational, failed, spare, or dormant) of each
component. While other types of repair strategies such as
nonpreemptive priority and first-come-first-served could be
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defined, they would result in Markov chains having much
larger state spaces than with preemptive resume. Therefore,
the only repair strategies implemented in the SAVE package
and the only ones we consider are PRIORITY and ROS.

The COMPONENT and REPAIRMAN CLASS constructs
have been chosen to allow relatively easy description of
system aspects that are important to incorporate in an
availability model. This is illustrated further by the example
in Section 4. They have also been chosen with the aim of
allowing straightforward generation of the resulting Markov
chain and limiting its state-space size.

& Availability specification

A system is considered to be available if specified subsets of
its components are operational. This can be expressed using
a reliability block diagram or, equivalently, a Boolean
expression over the component names involving “and” and
“or.” Alternatively, it may be easier to specify conditions
under which the system is unavailable by specifying subsets
of its components that are nonoperational. This can be done
using a fault tree or equivalent Boolean expression. Consider
the example in Figure | where all components (except Pc1)
need to be operational for the system to be considered
operational. These conditions can be expressed using the
EVALUATION CRITERIA construct shown below. The
keyword BLOCKDIAGRAM indicates that system availability
conditions will be specified and the keyword FAULTTREE
indicates that system unavailability conditions will be
specified. Both are illustrated and are logically equivalent:

EVALUATION CRITERIA: BLOCKDIAGRAM
Exp1: Database and Storage and Network
Exp2: Power1 and Proc1 and Mvs1 and Vtam1 and Ims1
Exp1 and Exp2
EVALUATION CRITERIA: FAULTTREE
Exp1: Database or Storage or Network
Exp2: Power1 or Proc1 or Mvs1 or Vtam1 or Ims1
Exp1 or Exp2

The final expression for availability specification
(BLOCKDIAGRAM) or unavailability specification
(FAULTTREE) can contain previously declared
subexpressions. Note that we have omitted Pc1 from the
specifications because it is only needed for repair and is not
required for the system to be considered operational. We
could also have omitted Power1 from the specifications
because its effect has already been taken into account using
OPERATION DEPENDS UPON while defining the Proc
component. Therefore, its exclusion in the specifications
would not change any state from operational to
nonoperational or vice versa. If in Figure | we duplex the
processor and its associated hardware and software as shown
in Figure 4, the following BLOCKDIAGRAM expression
could be used:
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EVALUATION CRITERIA: BLOCKDIAGRAM
Exp1: Database and Storage and Network
Exp2: Power1 and Proc1 and Mvs1 and Vtam1 and Ims1
Exp3: Power2 and Proc2 and Mvs2 and Vtam2 and Ims2
Exp1 and (Exp2 or Exp3)

Clearly connectivity or lack of connectivity among
components can affect the above Boolean specification and
hence the system availability measures.

On the basis of the availability specification of the system,
the state space of the Markov chain, which is determined by
the failure and repair behavior descriptions of components
and the actions of the repairmen classes, can be partitioned
into an available set and an unavailable set. System
availability measures can then be computed, as discussed in
Section 3.

3. Computation of availability and reliability
measures

In this section we review numerical methods that are
suitable for computing system availability measures for large
irreducible time-homogeneous continuous-time Markov
chains of the type that can be generated using the modeling
language described in Section 2. Such Markov chains
typically have a sparse transition-rate matrix and, since
repair rates are typically orders of magnitude larger than
failure rates, they typically have order-of-magnitude
differences in transition rates. We show that the numerical
methods we discuss are also suitable for computing mean
time to system failure and system reliability, so that we also
consider these measures. The methods we describe have
been implemented in the SAVE package and are discussed
in more detail elsewhere [4, 8-10]. We include this review
for completeness.

The state space of the Markov chain is determined from
the failure and repair descriptions of the components and
the actions of the repairman classes. On the basis of the
availability specification of the system, the state space can be
partitioned into a set of states for which the system is
available and a set for which the system is unavailable. (This
is done automatically in SAVE.) Let A(¢) denote the fraction
of time the Markov chain is in the available set during the
interval [0, ¢]. The availability measures we wish to compute
are the interval availability

(1) = E[A()},
the steady-state availability

A = lim K1),

{—s0
and the distribution of availability
F(t1, x) = Pr[A(1) = x].

Steady-state availability is probably the most commonly
used availability measure. However, if failures occur very
infrequently, steady state may not be reached during a finite
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time interval of interest. In that case, interval availability
would be a more meaningful measure than steady-state
availability. The distribution of availability is of interest
when a vendor offers a computer system with a guaranteed
level of availability, e.g., 0.95 or higher. If the guaranteed
level is not met over a specified time interval, e.g., three
months, the vendor pays a penalty. The distribution of
availability can be used to compute the probability of not
meeting the guaranteed level over the specified interval.

In system design studies it is often useful to be able to
identify the model input parameters, e.g., the failure rates or
repair rates to which an availability measure is most sensitive
in the sense that a small fractional change in the parameter
value would cause a large change in the availability measure.
We define the sensitivity of an availability measure with
respect to a model input parameter to be the derivative of
the measure with respect to the parameter (assuming the
derivative exists) normalized by multiplying by the value of
the parameter. The normalization aids in comparing the
absolute values of the sensitivities with respect to different
parameters. A negative (positive) sensitivity value implies
that a small increase in the parameter value will decrease
(increase) the availability measure. A higher absolute value
of the sensitivity with respect to a parameter value implies
that a fractional change in the parameter value has more
effect on the measure. In Section 4 we illustrate the use of
sensitivities in design analysis.

We next show that the steady-state availability, its
sensitivity with respect to a model input parameter, the
mean time to system failure, and its sensitivity with respect
to a model input parameter can be computed by solving four
different sets of simultaneous linear equations. The
stationary probabilities of an #n-state (time-homogeneous)
Markov chain satisfy the homogeneous system of # linear
equations in # unknowns,

Q=0 Twe=1I, (n

where Q is the transition rate matrix of the Markov chain, e
is a column vector of all ones, and the row vector « is the
stationary probability vector. Since the Markov chain is
irreducible, 7 exists and is unique. Assume that the available
states of the Markov chain are numbered from 1 to n’. Then
the steady-state availability is

A=3¥7,. )

To compute the derivative of 4 with respect to a model
input parameter, say A, we compute the derivative of the
vector w with respect to A and use (2). Differentiating (1)
with respect to A yields a nonhomogeneous system of n
linear equations in # unknowns,

d—7r = -7 d—Q d_-/r e=0
dan < arx’ d\ ’ 3)
ie., xQ = b, xe = 0, 657
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where b is known after 7 is computed, and x is the vector of
derivatives that is to be computed.

The mean time to failure of the system is the mean time
until the Markov chain first exits the available set of states. It
is obtained from the transient behavior of a modified
Markov chain in which all unavailable states are replaced by
a single absorbing state. This transient behavior is described
by the set of linear differential equations

W) _ 200, @

dt
where (~) is the n” X n’ upper left submatrix of Q
corresponding to the available states, and #(¢) is the vector
of state probabilities at time ¢ for the available states in the
modified Markov chain. All the rows of f) no longer sum to
0, as there is a finite transition rate from some of the
available states to the unavailable states. Integrating (4) from
0 to infinity, we have

Foo— Wy = [ fo ‘Tr(t)dt} 0,

where 7, is the vector of initial state probabilities and 7, is
the vector of final state probabilities. Since the probability of
exiting the available set in finite time is 1, w_ = 0. The
components of the vector [ #(¢)dt are the mean times spent
in each available state before exiting the available set.
Denoting this vector by z, we get the set of n’
nonhomogeneous linear equations in #’ unknowns

Q = -7, (5)

The sum of the elements of z gives the mean time to failure.
To compute the derivative of the mean time to failure with
respect to a model input parameter, say A, we compute the
derivative of the vector z with respect to A. Differentiating
(5) with respect to A yields a nonhomogeneous system of n’
linear equations in »’ unknowns,

ds_ _dQ
a < Tay
. 6)
ie, yQ = ¢,

where ¢ is known after z is computed, and y is the vector of
derivatives that is to be computed. The sum of the elements
of y gives the derivative of the mean time to failure with
respect to A.

Numerical methods for computing the solutions of (1),
(3), (5), and (6) must be suitable for Markov chains with
large state spaces. Since Q is sparse, the state-space size
problem can be alleviated to some extent by using sparse-
matrix storage techniques. Iterative-solution methods are
particularly suitable for use with sparse-storage techniques,
since the iteration matrix is not altered on successive
iterations. Direct methods, on the other hand, need much
more sophisticated sparse-storage schemes, since allowance
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must be made for fill-in (zero elements which become
nonzero as a result of operations upon the matrix) as well as
for the elimination of nonzero elements. In some cases the
fill-in can become excessive, which is hard to predict

a priori. In addition, with iterative methods, advantage can
be taken of good initial approximations, especially when a
series of related models are being solved. Also, an iterative
procedure can be halted once a prespecified tolerance
criterion has been satisfied (e.g., a user may need three-
decimal-place accuracy), whereas direct methods, by
definition, perform a fixed amount of computation and yield
the best accuracy they can. Finally, iterative methods do not
suffer from problems of stability, for successive iterations
always refer to the iteration matrix, which is not altered. For
these reasons, we prefer iterative methods for solving large
Markov-chain availability models. The method implemented
in SAVE for solving (1), (3), (5), and (6) is successive
overrelaxation (SOR). Other candidate methods are
empirically compared with SOR in [10] and are shown to be
inferior. Implementation issues for the SOR method are also
considered in [10], including the choice of an appropriate
relaxation parameter. It is also shown that the structure of
the transition-rate matrix and the order-of-magnitude
differences in the transition rates can be exploited to speed
up convergence of the SOR method.

Next we consider the computation of interval availability
and reliability, both of which are time-dependent measures
which are computed in SAVE by a technique called
randomization or uniformization. The interval availability
during [0, 7] can be expressed as

n 1 !
Iy=% 7 lwi(u)du, )

where (1), the state probability vector at time ¢, satisfies the
linear differential equations
dm(t)

— = =m(1Q,

7 w(t)e = 1. 8)

The reliability of the system at time ¢ is given by
w

R(t) = ¥ #(1), )
i=1

where 7(1) satisfies the linear differential equations in (4).
Randomization is an iterative method for computing time-
dependent measures for a Markov chain. The mathematical
basis for this technique was developed in [12]. A recent
recommended reference is [13]. Randomization is
particularly suitable for Markov chains with large state
spaces, as has been demonstrated in [13, 14]. As shown in
[13], w(¢) can be computed using the expression

o —qt k
x(0) = Sx0NQ &, (10)

k=0

where
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Q*=1+0Q/q, (an

and where

g = max(—q,) and I is the identity matrix. The interval
availability can be computed by symbolically integrating (10)
and summing the first #” components of the resulting vector,
which results in

=313 x00Q9 3
i1 A o

m=k+1

—at, m
-%. (12)
We can also compute () using the expression in (10) with
Q* replaced by Q*, where (~)* is given in (11) with Q
replaced by 6 The reliability is computed from w(¢) using
(9). There are several advantages in using randomization.
Numerical problems are minimized, since all terms in (10)
and (12) are nonnegative. It is easy to show that the errors
obtained in the interval availability and the reliability
obtained by approximating the infinite sum over & by the
sum of the first K terms are upper-bounded by

S Mg
) k-

k=K+1

Thus, it is possibie to achieve specified error tolerances.
Other advantages include ease of exploiting sparse storage
techniques and ease of implementation. The derivatives of
reliability with respect to transition-rate parameters can also
be computed using uniformization [15].

The numerical methods of computing the distribution of
availability for Markov-chain models are fairly recent. One
method implemented in SAVE is based on evaluating the
joint probability that the cumulative operational time during
an interval of length 7 is x and that the system is in a
particular operational or nonoperational state at time ¢.
Equations are obtained relating these joint probabilities for
arguments ¢ and x to those for arguments ¢ — A and x and
those for arguments 1 — A and x — A, where A is chosen
small enough so that the probability of more than one event
in the Markov process in time A is negligible. These
equations allow recursive computation of probability density
functions of system availability which can be used to
compute the distribution of availability by performing an
appropriate integration step. The details are given in [9]. An
alternative method implemented in SAVE for computing the
distribution of availability is based on the randomization
method [8]. The advantage of this method is that the global
errors can be bounded, and it requires less computation time
than the numerical method described in [9]. The
disadvantage is that it requires a larger amount of storage
than the numerical method.

4. Example continued

In this section we continue the discussion of the example of
Section 2 and show that other types of components besides
hardware (i.e., Proc1) can be modeled by the language
constructs discussed in that section. Next, we assign
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Table 1 Parameter values for the model of Appendix B.

Component Mean time to failure ~ Mean time to repair
(h) (h)

Proc 960 1/10, 2
Power 9600 1

Pc 9600 i
Network 12000 1
Storage 12000 1
Mvs 7200 1/4
Vtam 7200 1/12
Ims 7200 1/12
Database — 1/4

numerical values for the parameters of the model and solve
the model using SAVE. We then show how sensitivity
analysis can be used to improve the design of the system.

Returning to Figure 1, we select Mvs1 (a software
component) for this discussion. (A complete SAVE language
description for the example of Figure 1 is given in Appendix
B.) When a software component fails, the operator typically
takes a system dump and restarts the software. In such cases,
the restart time is the only time considered in the repair time
of software components. Another important point to note is
that when Mvs1 fails, the software running on top of Mvs1
(i.c., Vtam1 and Ims1) must also be restarted after Mvs1 has
been restarted. Therefore, whenever Mvs1 fails, it affects (or
fails) components Vtam1 and Ims1 with probability one. If a
component affects more than one component in any given
failure mode, these affected components must be declared as
part of a list using the LISTS construct given below:

LISTS: Cmplist2
Cmplist2: Vtam1, Ims1

*

COMPONENT
OPERATION DEPENDS UPON: Proc1, Power1
REPAIR DEPENDS UPON: Proc1, Power1
DORMANT WHEN SYSTEM DOWN: NO

Mvs1

FAILURE RATE: mvsfr

REPAIR RATE: mvsrr

REPAIRMAN CLASS USED: Operator

COMPONENTS AFFECTED: Cmplist2
Cmplist2: 1, 1

Another interesting type of component is Database. This
is a data component which does not fail by itself (i.e., it has
a zero failure rate). It fails only if some other component
affects (or contaminates) it. Therefore, in the Database
component description no FAILURE RATE construct has
been used, as shown in Appendix B. SAVE assumes natural
default values for the omitted constructs. We solved the
model of Appendix B using SAVE for the parameter values
shown in Table 1.

The values for p1 and coverage were both 0.8. We also
solved a similar model for the example of Figure 4, where

the processor, power supply, processor controller, and all the 659
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Table 2 Sensitivity of steady-state availability with respect to parameter values.

Component Simplex Duplex Duplex + storage
(4 = 0.9990) (4 = 0.9998) (4 = 0.99992)

(1 — 4 =10.0010) (1 = 4 =0.0002) (1 — 4 = 0.00008)
Proc ) 0.6x107° 02x10™ 0.5% 107°
Power  (b) 0.1x107° 04x107° 04x%10°
Pc (0 03%x107° 0.7% 10~ 0.1x 10~
Network (b) 0.8 x 107 0.8 x 107 0.8 x 107
Storage  (f) 0.1 x 107 0.1x%10° 0.1 x 107
Mvs ® 09 %107 0.1x10° 0.6 X 10':
Viam () 0.3% 107 0.5% 107 0.4 % 10”
Ims (r) 0.3x 107 0.1x10™ 0.3x 107
Database (r) 0.3x 107 0.5% 107 0.2x 107
p1 02 %107 08 x10™ 0.1x% 107
Coverage 02x 107 0.1x 107 0.1 x 107

software are duplexed. To describe this model we used the
same constructs for the duplexed components, which were
named Proc2, Power2, Pc2, Mvs2, Vtam2, and Ims2,
respectively. The component interactions were appropriately
changed—for example, the operation of Proc2 depends upon
Power2. The availability specification for this model is given
at the end of Section 2. We also solved a third model, where
we duplexed the storage and the database over and above the
duplexing in Figure 4, by declaring storage as Storage1 and
Storage2, and database as Database1 and Database2.
[Component interactions determine when we can specify
duplexed components as Cmpname(2) and when we have to
specify them as Cmpname1 and Cmpname2. For example,
Power1 supplies power to Proc1 and Pct, and Power2
supplies power to Proc2 and Pc2. If Power1 and Power2
could supply power to both the processing subsystems, then
we could have declared power as Power(2) because both the
power supplies would have the same failure and repair
behavior and the same component interactions.] The
availability specification for the third model is as follows:

EVALUATION CRITERIA: BLOCKDIAGRAM
Exp1: Database1 and Storage1 and Network
Exp2: Exp1 and Power1 and Proc1 and Mvs1 and Vtam1 and Ims1
Exp3: Database2 and Storage2 and Network
Exp4: Exp2 and Power2 and Proc2 and Mvs2 and Vtam2 and Ims2
Exp2 or Exp4

We call these three models simplex, duplex, and duplex +
storage, respectively. The Markov chains constructed for
these models have 264, 11616, and 34 848 states,
respectively (certainly not an easy task to do by hand). The
steady-state availability (4) and its sensitivity with respect to
various parameters are given in Table 2. The letter (f), (r), or
(b) in parentheses after a component name indicates that the
failure rate, the repair rate, or both for the component
yielded the maximum absolute value of the sensitivity which
is given in the table.
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For the simplex system, the availability is most sensitive to
p1, that is, to a processor failure where Softretry is
successful. Therefore, if we want to improve the availability
of the system, we should start by improving the software
recovery mechanisms which could increase p1. Another
alternative is to add a second processor, together with its
associated hardware and software, as is done in the duplex
system of Figure 4. Note that we get a major improvement
in availability (that is, about five-times reduction in
unavailability) by doing so, and the effect of processor failure
(or a failure of any of its associated hardware and software)
on the system availability has been drastically reduced.
Network, Storage, and Database still have the same effect
on availability as in the simplex system, as no availability
improvements were made to these components. Note that
coverage has a slightly higher sensitivity value because now
two processors and two IMS software components can affect
the database, as opposed to one of each in the simplex
system. Further availability improvement can be achieved by
duplexing the storage and the database, which now have the
highest effect on availability. We did that for our third
model. The results are shown in the last column of Table 2,
which shows another two-and-a-half-times reduction in
unavailability. Further improvement would have to come
from duplexing the other parts of the system and
simultaneously increasing the coverage value by improving
the database recovery facility.

Besides design improvement, sensitivity analysis can also
be very helpful in other ways. Note that for the simplex
system, the availability is most sensitive to a processor
failure, while it is least sensitive to a processor-controller
failure. A few remarks can be made about that. First, we
must estimate failure- and repair-rate parameters very
carefully for the processor because they affect the availability
the most. On the other hand, minor errors in the processor
controller’s parameter estimates are not going to affect the
availability very much. In fact, since the processor
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controller’s parameters have three orders of magnitude less
effect on the availability than those of other components in
the system, the processor controller can be removed from
our system model to reduce the size of the model without
significantly affecting the model results. We did this and
found that the availability as well as the parameter
sensitivities of the components in the three systems did not
change significantly. Thus, sensitivity analysis is useful not
only in design improvement, but also in model reduction
and the identification of the critical parameters to be
estimated.

5. Conclusions

The example discussed in this paper shows that the proposed
modeling language has powerful modeling capabilities,
particularly with regard to modeling component interactions.
Large and complex models can be constructed using the
language without having the modeler deal directly with the
underlying Markov-chain models. This task would be very
difficult if the Markov-chain transition-rate matrix had to be
entered directly by the modeler. The numerical methods
presented in the paper are particularly suited to solving large
Markov-chain models. The storage requirements have been
taken into account by exploiting sparse-matrix storage. The
numerical methods, except for the computation of the
distribution of availability, are capable of solving Markov-

chain models with tens of thousands of states. We have
solved models with up to 35000 states when the transition-
rate matrix is stored in symbolic form, and much larger
models when this matrix is stored in numerical form. The
symbolic form of the transition-rate matrix is needed for
sensitivity analysis because it requires symbolic
differentiation of the transition-rate matrix with respect to
the model parameters. The main limiting factor for the size
of the model solved is the available memory space. Solution
speed has not been a problem, nor has numerical stability.

For large, complex models it is hard to identify which
model parameters affect the availability the most. Therefore,
sensitivity analysis is an extremely useful aid in the design-
improvement process. Moreover, sensitivity analysis can
help identify the critical parameters to estimate; it can also
identify noncritical components that may be removed from
the model to reduce its size.

There are several directions for further work in this area.
One is to improve the modeling capabilities of the language,
for example by providing constructs for spare switch-in
times. A second is to compute other types of measures, for
example performability [16-19]. We are investigating both of
these directions. A third is to develop methods for solving
even larger models than are currently solved by the
numerical methods presented in this paper. In this regard we
are experimenting with simulation [20] and Markov-chain
truncation, aggregation, and lumping techniques [4].

Appendix A: Syntax of SAVE language

MODEL: (modelname)

METHOD: (NUMERICAL|MARKOV |COMBINATORIAL | SIMULATION)

*

PARAMETERS: (parameter-name), (parameter-name), . ..

*

CONSTANTS: (constant-name), (constant-name), . ..
CONSTANT-NAME: (constant-value|expression)
CONSTANT-NAME: (constant-value{expression)

*

LISTS: (list-name), (list-name), ...

LIST-NAME: (comp-name){(no.-of-comps)), ...
LIST-NAME: (comp-name){(no.-of-comps)), ...

*

COMPONENT:
SPARES:
SPARES FAILURE RATE:
OPERATION DEPENDS UPON:
REPAIR DEPENDS UPON:
DORMANT WHEN SYSTEM DOWN:
DORMANT FAILURE RATE:
FAILURE RATE:
FAILURE MODE PROBABILITIES:
REPAIR RATE:
REPAIRMAN CLASS USED:
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(comp-name) ((no.-of-comps))
(no.-of-spares)

{expression)
{(comp-name){(no.})), ...
(comp-name) ((no.)), ...
(YES|NO)

(expression)

(expression), (expression), ...
{prob-value), ...
(expression), ...
(class-name), ...
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Appendix B: SAVE language description

COMPONENTS AFFECTED:

(LIST-NAME|COMP-NAME):
(LIST-NAME |COMP-NAME):

COMPONENT:

*

(NONE | list-name|comp-name({no.))), ...
(affect-prob-val), ...
(affect-prob-vai), ...

EVALUATION CRITERIA: (ASSERTIONS|BLOCKDIAGRAM|FAULT TREE|PERFORMANCE)

*

REPAIRMAN CLASS:
REPAIR STRATEGY:
COMPONENT-NAME:
COMPONENT-NAME:
REPAIRMAN CLASS:

END

of the exampie
MODEL: Example

*

METHOD: NUMERICAL

*

CONSTANTS: procfr, procdfr, netfr, storagefr, powerfr, pcfr

procfr: 1/960
procdfr: 1/960
netfr: 1/12000
storagefr:  1/12000
powerfr: 1/9600
pcfr: 1/9600

*

CONSTANTS: mvsfr, vtamfr, imsfr

mvsfr:  1/2400
vtamfr:  1/4800
imsfr: 1/4800

*

CONSTANTS: procrr1, procrr2

procrr1:

procrr2:
*

10
1/2

CONSTANTS: netrr, storagerr, powerrr, pcrr

netrr:
storagerr:
powerrr:

perr:
*

4
1
1
1

CONSTANTS: mvsrr, vtamrr, imsrr, dbrr

mvsrr: 4
vtamrr: 12
imsrr: 12
dbrr: 4

*

PARAMETERS: p1, coverage

*

LISTS: Cmplist1, Cmplist2
Cmplist1: Database, Mvs1, Vtam1, Ims1
Cmplist2: Vtam1, Ims1

*
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(class-name)((number) |UNLIMITED)
(PRIORITY{ROS)

{priority-level)

(priority-level)

COMPONENT:
OPERATION DEPENDS UPON:
REPAIR DEPENDS UPON:

DORMANT WHEN SYSTEM DOWN:

DORMANT FAILURE RATE:

FAILURE RATE:

FAILURE MODE PROBABILITIES:

REPAIR RATE:

REPAIRMAN CLASS USED:

COMPONENTS AFFECTED:
Cmplist1: 1 — coverage, 1, 1, 1

*

COMPONENT:
OPERATION DEPENDS UPON:
REPAIR DEPENDS UPON:

DORMANT WHEN SYSTEM DOWN:

FAILURE RATE:

REPAIR RATE:
REPAIRMAN CLASS USED:
COMPONENTS AFFECTED:

*

COMPONENT:
OPERATION DEPENDS UPON:
REPAIR DEPENDS UPON:

DORMANT WHEN SYSTEM DOWN:

FAILURE RATE:

REPAIR RATE:

REPAIRMAN CLASS USED:

COMPONENTS AFFECTED:
Database: 1 — coverage

*
COMPONENT:

OPERATION DEPENDS UPON:
REPAIR DEPENDS UPON:

DORMANT WHEN SYSTEM DOWN:

FAILURE RATE:
REPAIR RATE:
REPAIRMAN CLASS USED:

Proct

Power1

Power1, Pci1

NO

procdfr

procfr

p1,1-p1

procrri, procrr2
Softretry, Fieldengineer
NONE, Cmplist1

Mvst

Proc1, Power1
Proc1, Power1
NO

mvsfr

mvsrr
Operator
Cmplist2

Ims1

Mvs1, Proct, Power1
Mvs1, Proct, Power1
YES

Imsfr

Imsrr

Operator

Database

Vtam1

Mvs1, Proc1, Power1
Mvs1, Proc1, Power1
YES

vtamfr

vtamfr

Operator
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COMPONENT: Storage
DORMANT WHEN SYSTEM DOWN:  NO
FAILURE RATE: storagefr
REPAIR RATE: storagerr
REPAIRMAN CLASS USED: Fieldengineer
COMPONENT AFFECTED: Database

*

COMPONENT: Network
DORMANT WHEN SYSTEM DOWN:  NO
FAILURE RATE: netfr
REPAIR RATE: netrr

REPAIRMAN CLASS USED: Fieldengineer

*

COMPONENT: Database
OPERATION DEPENDS UPON: Storage
REPAIR DEPENDS UPON: Storage

DORMANT WHEN SYSTEM DOWN:  YES
REPAIR RATE: dbrr

REPAIRMAN CLASS USED: Operator

*

COMPONENT: Power1
DORMANT WHEN SYSTEM DOWN:  NO
FAILURE RATE: powertfr
REPAIR RATE: powerrr

REPAIRMAN CLASS USED: Fieldengineer

*

COMPONENT: Pct
OPERATION DEPENDS UPON: Powert
REPAIR DEPENDS UPON: Power1

DORMANT WHEN SYSTEM DOWN: NO
FAILURE RATE: pcfr
REPAIR RATE: perr
REPAIRMAN CLASS USED: Fieldengineer

EVALUATION CRITERIA: blockdiagram
Exp1: Mvs1 and Vtam1 and Ims1
Exp1 and Database and Storage and Network

*

*

REPAIRMAN CLASS: Softretry(UNLIMITED)

REPAIRMAN CLASS: Operator(UNLIMITED)

*

REPAIRMAN CLASS: Fieldengineer(1)
REPAIR STRATEGY: PRIORITY

Network: 1
Storage: 1
Proct: 2
Power1: 3
Pc1: 4
*
END
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