Correlation
analysis of
particle clusters
on integrated
circuit wafers

by C. H Stapper

Defect clustering results in correlations between
the numbers of defects or faults that occur on
integrated circuit chips located adjacent to one
another on semiconductor wafers. Until now, it
has been believed that correlations of this type
were not accounted for in existing yield models.
It is shown in this paper that such correlations
are present in yield models based on mixed or
compound Poisson statistics. A quadrat analysis
of particle distributions on semiconductor
wafers is used to compare data and theory. The
results show that the theoretical correlation
coefficients are in agreement with the
experimental ones. It was also determined from
the particle data how these correlation
coefficients vary as the distance between
quadrats is increased. This variation provides a
convenient method for determining the cluster
dimensions.

1. Introduction

Defective integrated circuit chips often occur next to one
another on semiconductor wafers. Similarly, functionally
usable chips are also regularly found adjacent to one
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another. This is the result of defect clustering. Such
clustering can lead to a correlation between the numbers of
defects found in adjacent chips. Until now it has been
assumed that such correlations did not occur in existing
yield models. This assumption, however, is incorrect.
Correlations of this nature are an integral part of any yield
model based on mixed or compound Poisson statistics. It is
shown here why this is so.

The need for using compound Poisson statistics originates
from three effects. The first of these is the wafer-to-wafer
variation of defect densities. It has been known for a long
time that the distribution of the number of defects per wafer
can best be represented with some form of compound defect
statistics [1]. The second effect deals with the radial variation
of chip yields. Defective chips are more likely to occur near
the edges of wafers [2-6]. This effect has been modeled
mathematically by partitioning the wafers into concentric
circular zones. The use of two zones, an inner and an outer
ong, has been reported previously [7, 8].

Localized defect clustering is the third effect requiring the
use of compound Poisson statistics. An example of this is
found in the crystalline defects that occur in epitaxial silicon.
This material is used in the manufacture of integrated
circuits containing bipolar transistors. The defects cause
short circuits between the emitters and collectors of such
transistors. Another example of localized clustering is found
in dirt particles that occasionally occur in the integrated
circuit manufacturing processes. Such particles usually are
the cause of defects in dielectric insulator materials or
photolithographic patterns. Those defects therefore also have 641
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a tendency to cluster. Models for this localized clustering
have also made use of partitioned regions [9-11]. This
partitioning, however, is more complex than in the case of
radial variations of the yield.

Spatial distributions of defects and faults on
semiconductor wafers are not readily available, which makes
it difficult to verify correlations between adjacent chips.
Correlations of this type can, however, be evaluated with
maps showing the location of particles observed on
integrated circuit wafers. This is done by overlaying the
maps with a grid of squares known as quadrats. The number
of particles per quadrat can then be counted and the
statistics of these counts can be compared to those of
existing theories. This technique is used here to study the
correlations between the numbers of particles in adjacent
quadrats. It results in correlation coefficients that agree with
those calculated using the theory presented in this paper.

2. Random fault statistics

The key to the success of any integrated circuit
manufacturing operation is the fraction of manufactured
semiconductor chips that can be sold to the customers. This
fraction is known as the yield. The yielding chips have to
survive a battery of device tests. Manufacturers learned very
early that chips which failed tests for one application could
be perfectly usable for another one. This led to the practice
of sorting chips.

The subtle differences between defects that affect final test
sorts must be taken into account by theoreticians who want
to help manufacturing lines achieve optimum production. A
method that has proven very effective makes use of the
terminology “faults.” A fault is defined as a defect that
causes an integrated circuit to fail when it is tested for a
specific application. The statistics of such faults are of great
importance to manufacturers of integrated circuits.

In this paper it is assumed that for purely random faults
the distribution of the number of faults in integrated circuits
follows Poisson’s distribution. That distribution can be
expressed in the form

k
Pr(X = k) = % e (1)

where X is a random variable designating the number of
faults per chip, k an integer equalto 0, 1, 2, - - -, etc., and A
a parameter.

Consider next two chips where the random number of
faults on one is indicated by X and on the other by Y. Let
the faults occur on these chips independently. The
probability of finding X = k faults on the first chip and Y =/
faults on the second one therefore is given by

k+!

PrX=k Y=1)= 2' e @

This is a joint probability for two chips. It is valid even if
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these chips are not adjacent to each other. They must,
however, occur as a pair in a region where the numbers of
faults per chip are distributed with Poisson’s distribution,
having an average density of A faults per chip. If the random
variables X and Y are independent, it is not difficult to prove
that their covariance and correlation coefficient are equal to
zero.

3. Mixed and compound Poisson statistics
The wafer-to-wafer variation of the average number of faults
per chip, and the spatial clustering of defects and faults, can
both be modeled with compound Poisson statistics. Using
the method of Feller [12], it was shown in Reference [13]
that this leads to an integral of the form

[3r
Pr(X =k) = dF()). 3)

0

ke
EE’

The function F()\) is known as the compounder and satisfies
the boundary conditions F(0) = 0 and F(e) = 1. It
represents the cumulative distribution of the average number
of faults per chip A. Each one of these average values
pertains to a wafer or a region on a wafer.

For a finite number of regions, the function F(\) is a
staircase function. The number of steps in the staircase is
equal to the number of regions. Use of such a function leads
to a discrete form of compounding and results in the
formula

m k

£\
PriX=k =3¢ F e, 4)

i=1

where m designates the number of regions, \; the average
number of faults per chip in region i, c; a set of constants,
and k an integer 0, 1, 2, 3, - . ., etc.

The constants ¢, in Equation (4) are a set of discrete
compounders. They are equal to the probability of finding a
randomly picked chip within a region associated with the
index /. These probabilities are proportional to the areas of
the partitioned regions, and their sum must satisfy

Te=1 )

This is the normalization requirement for the compounders.

It has also been observed that partitioning is necessary
because of continuously varying manufacturing conditions.
This results in wafer-to-wafer variations of fault densities.
The fault and defect distributions described by Paz and
Lawson [8] are the results of such effects. Wafer-to-wafer
variations of the average number of faults per wafer have
also been discussed by this author in Reference {14]. Such
variations can be modeled by increasing the number of steps
of the staircase function F(A) in the limit to infinity. Because
of this, the function becomes continuous, so that

® Lk
PrX =k) = fo %e‘*f(x)dx, (6)

IBM J. RES. DEVELOP. VOL. 31 NO. 6 NOVEMBER 1987




where

AF(\)
N = —=
oy =)
This function f(}) is a normalized continuous probability
distribution function of fault densities A.

4. Covariance between the numbers of faults

on chips

The method of mixing or compounding Poisson’s
distribution can be extended to pairs of chips. To begin with,
assume that all chip pairs come from regions where
Poisson’s distribution is valid. This means that different pairs
can come from different regions, but the two chips in a pair
cannot. The method of compounding can then be applied
directly to the joint distribution in Equation (2). This results
in

Pr(X =k, Y =1} X and Y in the same region)

! >\k+| R
= fo T edFN. ()

This is a bivariate distribution for the random variables X
and Y. They are equal to k and /, which represent the integer
values 0, 1, 2, 3, - - -, etc. Equation (7) is a conditional
probability to indicate that the faults X and Y occur jointly
in the same region.

The cumulative distribution function F()\} in Equation (7)
is not necessarily equal to the compounder in Equation (3).
This depends on the distribution of the numbers of chip
pairs per region and the distribution of the numbers of chips
per region. If these two distributions are the same, the two
compounders are equal to each other.

It is shown now how the covariance between the numbers
of faults per chip can be determined. In general, the
covariance between two random variables X and Y can be
calculated with the formula

cov(X, Y) = E(XY) — E(QX)E(Y). )

The key to this expression is the expectation E(XY). It can
be obtained by a double summation over distribution (7).
This takes the form

E(XY| X and Y in the same region)

®© o i k+i
=YK fo A e dF (). )

k=0 /=0 kit

The expression is conditional to emphasize that both chips
are in the same region. The summations can be evaluated
and reduced to

1
E(XY| X and Y in the same region) = f NdF(D.  (10)
0

The right-hand side of this expression is equal to the
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expectation E (>\2). In general, it therefore follows that
E(XY| X and Y in the same region) = F ()\2).

In a similar way, the mathematical expectations E(X) and
E(Y) are given by

w o 1 k+1
AT
EX)=3Y Y kfo We“dF(x) (1
k=0 =0 . b
and
© o 1>\k+l .
EY)y=3% ¥ IJ; X l’e dF()\). (12)
k=0 /=0 s b

In these equations the variables X and Y are treated
individually. This eliminates the need for the conditional
specification that was used in the previous formulas. When
the sums in Equations (11) and (12) are evaluated, they both
result in

E(X)=E(Y)=J; AdE (D). 13)

This is simply equal to the expectation E()), and therefore
represents the mean associated with the cumulative
distribution function F(A).

The preceding results can be substituted into formula (8)
for the covariance. This leads to

cov(X, Y| X and Y in the same region)
=EMN) - EQY. (19

The right-hand side of this expression simplifies to the
variance of A, V(A\). The result can therefore be expressed as

cov(X, Y| X and Y in the same region) = V(). 15)

This is the covariance between the number of faults
occurring on one chip and the number occurring on another.
It is an interesting result, since this quantity is simply equal
to the variance associated with the compounding cumulative
distribution function F()).

The covariance obtained here is a two-dimensional spatial
variant of the autocovariance used in stationary time series
by Box and Jenkins [15]. These authors showed that such
autocorrelations varied when the time lag between the
correlated data was increased. Such an increase is akin to a
larger separation between the chips that are used for the
correlation. As long as the chips are in the same region, such
increased separations have no effect on the correlation
coefficient. When the distance between correlated chips
causes the chips in the pairs to occur on both sides of
regional boundaries, some interesting effects take place.
These effects are discussed in subsequent sections.

5. The correlation coefficient

At this point it is possible to determine an expression for the
correlation coefficient relevant to the compound Poisson
statistics discussed in the preceding sections. In general, the
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correlation coeflicient p between two random variables X
and Y is related to the covariance with the well-known
formula

p(X. Y) = cov(X, Y)

=——"c 16
V(XY V(Y) (16)

The variances V'(X) and V(Y) in this expression are equal to
one another because the random variables X and Y have the

same distribution. Either one of these variances can therefore
be calculated with the formula

V(X) = E(XY) — E(X). (17)

The expectation E(X 2) in this expression is obtained with
the double sum

® = 1 k!

A _

EX)=3 XK f = & dF(\). (18)

kil
k=0 =0 0 .

These summations can be evaluated by the method

described in Appendix A of Reference [7] to give

EWXY) = EQ\) + EO). (19)

Here £ ()\2) and E(}) are, as they were in the preceding
section, expectation values associated with the compounder
F()\). These expectations can be introduced into Equation
(17). Furthermore, according to Equation (13), the
expectation value F(X) is equal to the expectation E()).
Equation (17) therefore becomes

V(X) = EQV) + EQN) — E(W. (20)

At this point it must be recognized that the variance of the
compounder F()\) has the form

Y\ = EQ) — EQV. (21)
When this is combined with Equation (20), it results in
V(X) = V() + EQ\). (22)

The variance V(Y) is equal to the same formula.
The correlation coefficient is obtained by substitution of
the preceding results into Equation (16). This produces

p(X, Y| X and Y in the same region)

V(A + E(\)
which shows that this correlation is completely dependent on
the expectation £(A) and the variance V' (A) associated with
the compounder F(A). It should be noted that this
correlation coefficient becomes larger when the ratio of the
variance and the mean of the compounder increases. Any
suitable distribution function can be used as compounder,
thus illustrating the generality of this approach.

Suppose that wafers can be manufactured in such a way
that the defects on them are purely random and follow
Poisson’s distribution. Adjacent chip pairs are then
automatically constrained to the same regions, namely the
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wafers themselves. The wafer-to-wafer variation of defect
densities then defines the compounding process. This
compounding affects the chip pairs and the single chips
equally. In that case, the compounders in Equations (3) and
(7) are therefore the same. Furthermore, the conditionality
constraining the chip pairs to the same region is implicitly
satisfied and can be dropped from the equations of the
preceding sections. Moreover, the covariance and correlation
are completely dependent on the mean and variance of the
wafer-to-wafer variation of defect densities.

Formula (23) is a novel result. It was believed previously
that correlations of this type were not accounted for in
existing yield models [16]. As is shown here, correlations
between the number of faults or defects in adjacent chips are
an inherent consequence of the compounding process. It
does not require the forcing of correlations, as has been done
elsewhere [16].

6. Wafer-to-wafer variation: An example

The wafer-to-wafer variations of defect densities were
originally studied with electronic defect monitors [1]. The
numbers of defects and faults in integrated circuits on actual
wafers are, however, much more difficult to obtain. Until
now, data for only half a wafer have appeared in the
literature [17]. To circumvent this lack of data, statisticians
have resorted to the use of water maps of particle locations
[18]. Such maps can be obtained with electronic particle
detectors which, by use of scattered light, detect the locations
of particles on the surfaces of wafers. Particles often cause
defects and faults in integrated circuits; particle distributions
should therefore give an insight into the distributions of
defects and faults.

A particularly useful set of particle maps were collected by
Armstrong and Saji specifically for the evaluation of yield
models [18]. The data consisted of the twelve square maps
that are reproduced in Figure 1. These maps were analyzed
with the so-called “quadrat” method. This method was
developed by biologists for studying the spatial distributions
of populations of species. The area to be studied is
subdivided with a grid of squares known as “quadrats.” The
population within each square is then counted to obtain a
population distribution.

The particle maps in Figure 1 contain, in ascending order,
9,17, 22, 34, 39, 41, 42, 92, 102, 107, 108, and 140
particles. When an overlay grid of 6 X 6 quadrats is used for
each map, the number of particles for each wafer can be
divided by 36 to obtain an average number of particles per
quadrat for each wafer. This results in a lowest particle
density of 0.25 and a highest density of 3.8889 particles per
quadrat. These values and those from the other wafers form
a distribution. This distribution has a grand mean of 1.7431
particles per quadrat and a variance of 1.3700.

The wafer-to-wafer variation of particle densities
corresponds to the wafer-to-wafer variation of the fault and
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defect densities per chip that was discussed in the preceding
sections. If we assume that the particles are distributed

231000 112130 121000
randomly on each wafer, we can then use formula (23) to
calculate the theoretical correlation coefficient for the ot 0 60000 330000
number of particles in adjacent quadrats. Doing so results in 602010 041210 022300
a value of 0.440. 2101 20 34001 0 01 0000
It is also possible to determine the correlation coefficient 4300 30 030120 020100
from actual particle counts in each quadrat. These particle 21 2 2 4 0 Ll o120 0001 00
counts are tabulated as twelve arrays of numbers shown in
Figure 2. Each one of these arrays represents a wafer, and 78300 0 S 5001 0 0601 00
each numl.)er.m an array shows how mgny particles were. 38200 0 L0000 0 325020
counted within the quadrat at that location. The correlation
coeflicient for the number of particles in adjacent quadrats 644000 000000 0546092
can be calculated from these data. This has to be done with a §B815000 010000 04912174
pairs analysis. The number of particles of each quadrat is to 306000 6011100 007 2 41
be correlated with the particle counts in the other quadrat of 4 45000 1 00000 012320
a pair. Double counting is not allowed. For example, if the
number of particles in quadrat A is correlated with the 000000 000000 000020
number in quadrat B, then quadrat B should not be 000000 ©001006 0275350
002000 001 110 07 4571
004200 6 1 1 1 20 297 8 4 1
001 000 282100 00 Il 46 650
000000 1202219 4 1 002200
- . 000000 000000 000000
. - . . 001130 000000 0060000
’ R . . 305 4212 001 1 10 000000
. o g o 51 486 0 131320 002120
47 41 7 4 3103 32 004 2 2 141
E3EH ’ 310 6 2 6 1 111303 01 1 3 8 |1

Particle counts resulting from a quadrat analysis of the maps in Figure
1. Each number represents the number of particles found in one
quadrat.

correlated again with quadrat A. For nearest-neighbor pairs
this results in thirty horizontal and thirty vertical pairs on
each map.

By using the maps of Figure 2, the correlation coefficient
of the number of particles in adjacent quadrats was found to
have a value of 0.5190. This result has 95% confidence
limits of 0.42 and 0.56. The theoretical correlation
coefficient of 0.44 falls comfortably between these two limits.
Differences between the experimental and theoretical
correlation coefficients can also be the result of the localized
particle clustering. The maps in Figure 2 indicate that many
quadrats with particles cover contiguous areas. In the same
way, many quadrats without particles are adjacent to one
another. The particles therefore appear to be clustered. As
mentioned before, this is typical for particles and defects in

Particle maps obtained with an electronic particle detector.
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(@)

(b)

Contrived maps with dots, generated to illustrate various phenomena
that affect the correlation coefficients for dot counts in adjacent
quadrats. Each map contains the same number of dots.

(©)

Table 1 Frequency distribution of the number of dots per
quadrat for the maps in Figure 3. The Poisson distribution with the
same mean value is also shown.

Number of  Number of Relative Poisson’s
dots per occurrences Sfrequency distribution
quadrat

0 2 0.0556 0.0498
1 5 0.1389 0.1494
2 8 0.2222 0.2240
3 8 0.2222 0.2240
4 6 0.1667 0.1680
5 4 0.1111 0.1008
6 2 0.0556 0.0504
7 1 0.0278 0.0216
8 0.0081
9 0.0027
10 0.0008
11 0.0002
12 0.0001

integrated circuit manufacturing processes. Such localized
clustering also results in a correlation between the numbers
of particles in adjacent quadrats. An illustrative example of
this effect is the subject of the next section.
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7. Spatial clustering: An example

In Reference [18] the ratio of the variance and the mean of
particle distributions was used to measure the deviation of
data from theoretical Poisson distributions. This is a useful
measurement when wafer-to-wafer variations dominate. It is,
however, an insufficient condition for localized fault, defect,
or particle clusters on the wafers themselves. This can best
be illustrated with a contrived example.

Four square maps, each with 108 dots, are shown in
Figure 3. The dots are arranged differently in each of the
maps. The distributions of these dots were analyzed with the
quadrat method by superimposing a grid of 6 X 6 squares
over the maps. The number of dots found in each quadrat is
shown in Figure 4. The maps were made up in such a way
that the distribution of the number of dots per quadrat is the
same for all four maps. The result is tabulated in Table 1.
The mean of this distribution is equal to three dots per
quadrat, and its variance is equal to 2.8333.

The distribution in Table 1 can be modeled with Poisson’s
distribution of formula (1). A value of three for A provides a
model that has a significance level >0.995 when analyzed
with a chi-square test. The applicability of Poisson’s
distribution does not imply that the spatial distribution of
the dots is homogeneously random. The human eye suggests
that the dots in Figure 3 are clustered in different ways. In
map 4(a) of Figure 4, the density of dots appears to be higher
in the upper left-side corner than in the lower right-side
corner. In map 4(b) the dots form striations diagonally
across the map, while in many 4(c) the striations are vertical.
The dots in map 4(d) can best be described as having a
snowflake pattern.

The distribution of the number of dots per quadrat for
these maps has a ratio of the variance and the mean that is
smaller than one. Ratios greater than one are usually
associated with clustering. Therefore, the ratio obtained here
gives no indication of clustering. A better test than this ratio
is necessary to measure the effect of these spatial clusters.
The correlation between the numbers of dots in adjacent
quadrats provides such a test. Correlation coefficients
obtained in this way are shown in Table 2. These results
were obtained from the data in Figures 3 and 4. The
correlation coefficients for horizontally and vertically
adjacent quadrats are shown separately in the two middle
columns. The correlation coefficients for horizontal and
vertical pairs combined are tabulated in the last column.

Completely random dots can be expected to have a
correlation coefficient of zero for the number of dots in
adjacent quadrats. The correlation coefficients for the
snowflake pattern in map 4(d) come closest to this criterion.
As shown in Table 2, for this case, the absolute values of the
correlation coefficients for the horizontal, vertical, and
combined pairs are all less than 0.1. In map 4(c), the
coeflicient obtained for the combined horizontally and
vertically aligned pairs has a small negative value. In this
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case, however, the horizontally aligned pairs produced a
substantial negative correlation coefficient, while the
vertically aligned pairs have a large positive one. These
differences in sign are caused by the vertical striations of
dots. When such striations run diagonally across the map, as
they do in 4(b), the correlation coefficients are negative for
both the horizontally and vertically aligned quadrat pairs.
This contrasts with the results for map 4(a), for which all
correlation coefficients are positive.

The maps in Figure 3 were made up to illustrate, by
accentuation, the different forms of dot clustering that can
affect the correlation coeflicients of the number of dots in
adjacent quadrats. Similar types of clustering have been
observed for faults and defects in integrated circuit chips on
semiconductor wafers, albeit with lower intensity (lower
correlation coefficients). For example, the varying dot
densities in map 4(a) are analogous to the radial variations of
defect densities discussed by Yanagawa [2,3] and Gupta et
al. [4,5]. Striation of defects can be caused by scratches [9],
or by streaking of cleaning solutions, chemicals, or
photoresist materials [19]. The occurrence of highly defective
regions adjacent to defect-free or nearly defect-free regions
can also be observed in the data published by Paz and
Lawson [8].

The dots in Figure 3 were positioned in such a way that
the correlations for a 6 X 6 grid of quadrats were maximized.
A change to different quadrat sizes or different quadrat
locations will change the results. The absolute magnitude of
the correlation coeflicients can be expected to decrease. In
actual data, the locations of the clusters are usually random
with respect to the quadrat locations. Similarly, the locations
of fault clusters are random with respect to chip locations.
This can therefore be expected to lower the correlation
coeflicients when this test is applied to real data.

Another effect that results in lower correlation coefficients
is caused by large samples. In that case the positive and
negative correlation coefficients from the localized clusters
and striations tend to cancel each other. A somewhat
artificial example of this is found with the dot maps of
Figure 3. It occurs when the correlation coefficient is
calculated for all the horizontally and vertically aligned pairs
from all four maps combined. The correlation coeflicient in
that case is —0.02. This is low enough to indicate that there
is no correlation. It illustrates, therefore, that low values for
these correlation coefficients are not necessarily an
indication of a lack of clustering. It also suggests that adding
more quadrats to a sample can diffuse the local correlations
that are caused by the localized clusters. This methodology
therefore appears to be more effective when the correlation is
performed on smaller samples of quadrats, preferably those
that contain the localized clusters. Moreover, quadrat
orientation and dimensions can be expected to influence
results. Variable quadrat sizes and locations may prove to be
useful for studying actual cluster data.
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distribution.

Table 2 Correlation coefficients associated with the number of
dots per quadrat for the maps in Figures 3 and 4.

Dot counts resulting from a quadrat analysis of the dot patterns in
Figure 3. For each map the dot counts per quadrat have identical
frequency distributions, which can be approximated with Poisson’s

Map Horizontal Vertical Combined
4(a) 0.9608 0.9587 0.9595
4(b) -0.9305 -0.9271 —0.9286
4(c) —0.9290 0.9055 —-0.0333
4(d) —0.0833 0.0649 —-0.0109

8. Increasing the distance between quadrats
The correlations obtained in the previous sections dealt with
adjacent quadrats, It is also possibie to perform this exercise
with quadrats separated by a larger distance. Such an
increase in distance results in a high chance of finding
quadrat pairs that straddle different regions. As a
consequence, the correlation coefficient can be expected to
decrease when the distance between quadrats is increased.
This is exactly what is found to be happening with the data
of Figures 1 and 2. The results are shown in Figure 5, where
experimentally determined correlation coefficients are
plotted as a function of the space between quadrat centers.
One of the curves represents the correlation for the quadrats
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The effect of distance between quadrats. The correlation coefficent
decreases as the distance between quadrats is increased. The
difference in values for horizontally and vertically adjacent quadrat
pairs could be an indication of anisotropic clustering. The correlation
coefficients for the combination of horizontally and vertically
aligned quadrat pairs are connected with a solid line.

that are aligned horizontally. A second curve results from
vertically aligned quadrats. The third curve, plotted with a
solid line, is for the combined horizontal and vertical data.
These results indicate that positive correlation coefficients
are observed to a distance of three quadrats. This implies
that quadrat pairs separated by this distance, or less, have a
chance of being located within the same region or cluster.

Correlation coefficients obtained in this fashion can also
have negative values. As can be seen from the example with
the dots, this happens when regions with high numbers of
dots occur next to regions without dots. Such regions must
be similar in shape and area. This did happen on several of
the particle maps of Figures 1 and 2. Some of the negative
correlation coefficients in Table 2 are a result of this.
Quadrat pairs separated by a distance of four quadrat spaces
or more are therefore more likely to have one quadrat inside
a particle cluster while the other quadrat is located outside
that cluster. These results suggest that the range of positive
correlation coefficients is a measure of the average cluster
dimension.

It is noteworthy that correlations as a function of distance
also occur in models for distributions of galaxies in the
universe. In the work of Peebles [20], such correlations are
forced, with so-called “multi-point correlation functions.”
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This differs from the approach followed in this paper, where
nothing was forced. As mentioned before, the correlations
here simply result from the use of compound Poisson
statistics,

9. A simulation model

Correlations between the numbers of defects in adjacent
chips are also taken into account in a simulation model
described by V. Foard-Flack in Reference [16]. In that
theory, defect distributions are generated with a background
grid containing pseudorandom numbers. Although the
numbers in the grid have a negative binomial distribution,
they are completely independent of one another. At each
gridpoint the random numbers of the neighboring gridpoints
are added to the initial number. The rules used for picking
the neighboring numbers can be changed. Each set of rules
defines a different model. The resulting numbers at each grid
point are assumed to represent fail counts for chips
positioned at those points. It is shown in the paper that
regardless of the model, the summed numbers also have a
negative binomial distribution.

In the example given in [16], the random numbers of the
four nearest adjacent grid points were added to the initial
number. The number of defects at the location of each chip
is therefore the sum of five random numbers. Two of these
numbers are shared with a nearest neighbor, resulting in a
dependence between the fail counts of adjacent chips. From
the formulas in the paper, it can be determined that the
theoretical correlation coefficient for this effect is equal to
0.4. This coefhcient is constant. It does not change when the
parameters defining the distribution of numbers in the
background grid are changed.

The Foard-Flack model! in essence smooths out the
random numbers of the background grid. The resulting fail-
count numbers therefore tend to undulate gradually. This is
not necessarily what happens in actual integrated circuit
manufacturing. Highly defective regions often butt up
against defect-free regions. This phenomenon is evident in
the maps of Figures 1 and 2, where quadrats with 18 and 19
particles are adjacent to particle-free quadrats. Another
example of this can be found in the data published by Paz
and Lawson [8].

The smallest defect pattern that can result from the
example in Reference [16] is in the form of a cross. This
occurs when the background grid has a single gridpoint with
x defects in a field of zeros. From this, the model produces a
cluster consisting of five chips arranged in a cross shaped like
a + sign. Each chip within this cross contains exactly x
defects. All other surrounding chips are defect-free.

It was mentioned in [16] that the rules used in the model
could be modified to produce different patterns. This is done
by changing the method for combining the random numbers
of the initial reference grid. For example, let the faults at any
gridpoint be the result of summing the initial random
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size of clusters. Dimensions of clusters are critical in the
design of very large chips that have redundant circuitry for
yield enhancement. Such redundancy has little effect if the
redundant circuits are located in the same fault cluster as the

number at that point only with the initial grid number to the
left of it and the one below it. In that case the smallest
cluster pattern consists of three chips grouped in the shape of
a letter L. However, single isolated chip fails, or an isolated

pair of chips adjacent to each other, cannot be generated
with this model as it stands. Such patterns can be simulated
only if more background grids, with pseudorandom numbers
at each gridpoint, are added to the results of a Foard-Flack
model. Such additions tend to lower the theoretical value of
the correlation coefficients.

The example of [16] has a positive correlation coefficient
only for adjacent chips. Chips that are further removed from
each other have no correlations for the numbers of defects
per chip. The data in Figure 3 suggest that these correlations
should extend beyond the nearest neighbors. The rules for
combining the random numbers of the reference grid can be
modified to include points which are a given distance
removed from each other. This does result in correlations
between chips that are separated from each other by that
distance. Until now such modifications have not resulted in
simulated maps that resemble the data in Figure 1. This is
unfortunate, because a good simulation model for clusters
would be very useful in the field of yield modeling.

10. Conclusions

Compound or mixed Poisson statistics have been used for
yield models since the early 1960s [21]. These models have
been verified numerous times with data during the past
twenty years. Yet, with all their successes, they remain
poorly understood. It is hoped that the discourse in this
paper is useful in clarifying some of the misunderstandings.

One such misunderstanding occurs when the distribution
of the number of faults per chip is mistaken for the
compounder used in the Poisson mixing process. As a result,
the faults per chip are often confused with fault densities. To
prevent such a mistake, the approach taken in this paper is
somewhat tedious. However, only in this way could the
fundamental assumptions be exposed in a clear manner. The
model derived in this way predicts a nonvanishing
covariance between the numbers of faults in adjacent chips.
The value of this covariance is found to be equal to the
variance of the compounder. This result leads to a formula
for a correlation coefficient. Values calculated with that
formula appear to be in reasonable agreement with
correlation coefficients obtained from data of particle
locations on semiconductor wafers. This was not anticipated
in the literature, where it was assumed that correlations of
this type could not be obtained with existing yield models
[16].

The method of correlating the number of particles in
adjacent quadrats provides a convenient test for clusters.
This technique can be extended to quadrat pairs further
removed from each other. In this way the correlation
coefficients can be used as a statistical measurement of the
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circuits that they have to replace.
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