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Defect  clustering  results in correlations  between 
the  numbers  of  defects  or  faults  that  occur on 
integrated circuit chips located adjacent to one 
another  on  semiconductor  wafers.  Until  now, it 
has  been  believed  that  correlations  of  this  type 
were  not  accounted  for in existing yield models. 
It  is shown in this paper  that  such  correlations 
are  present in yield models  based  on  mixed  or 
compound  Poisson  statistics. A quadrat  analysis 
of particle distributions on semiconductor 
wafers is used to compare  data  and  theory. The 
results show that  the  theoretical  correlation 
coefficients  are in agreement  with  the 
experimental  ones. It was  also  determined  from 
the  particle  data how  these  correlation 
coefficients  vary  as  the  distance  between 
quadrats is increased.  This  variation  provides  a 
convenient  method  for  determining  the  cluster 
dimensions. 

1. Introduction 
Defective integrated  circuit  chips  often occur next to  one 
another  on  semiconductor wafers. Similarly,  functionally 
usable chips  are also regularly found adjacent to  one 
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another.  This is the result of defect clustering. Such 
clustering can lead to a  correlation between the  numbers of 
defects found  in adjacent chips. Until now  it has been 
assumed that such  correlations did  not  occur in existing 
yield models. This  assumption, however, is incorrect. 
Correlations of this  nature  are  an integral part of any yield 
model based on mixed or compound Poisson statistics. It is 
shown here why this  is so. 

The need for using compound Poisson statistics originates 
from  three effects. The first of these is the wafer-to-wafer 
variation of defect densities. It has been known  for  a  long 
time  that  the distribution  of the  number of defects per wafer 
can best be represented with some form  of compound defect 
statistics [ 11. The second effect deals with the radial  variation 
of chip yields. Defective chips  are  more likely to  occur near 
the edges of wafers [2-61. This effect has been modeled 
mathematically by partitioning the wafers into  concentric 
circular zones. The use of two zones, an  inner  and  an  outer 
one,  has been reported previously [7, 81. 

Localized defect clustering is the third effect requiring the 
use of compound Poisson statistics. An example  of  this is 
found in the crystalline defects that occur in epitaxial silicon. 
This material is used in  the  manufacture of  integrated 
circuits containing bipolar  transistors. The defects cause 
short  circuits between the  emitters  and collectors of such 
transistors. Another example of localized clustering is found 
in dirt particles that occasionally occur  in the integrated 
circuit manufacturing processes. Such particles usually are 
the cause of defects in dielectric insulator  materials or 
photolithographic  patterns.  Those defects therefore also have 64 1 
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a  tendency to cluster.  Models  for  this localized clustering 
have also made use of partitioned regions [9-1 I].  This 
partitioning, however, is more complex than in the case of 
radial  variations  of the yield. 

semiconductor wafers are  not readily available, which makes 
it difficult to verify correlations between adjacent chips. 
Correlations  of this type can, however, be evaluated with 
maps showing the location of particles observed on 
integrated  circuit wafers. This is done by overlaying the 
maps with a grid of  squares known  as  quadrats.  The  number 
of particles per quadrat  can  then  be  counted  and  the 
statistics of these counts  can be compared  to those of 
existing theories. This  technique is used here to study the 
correlations between the  numbers of particles in adjacent 
quadrats. It results in  correlation coefficients that agree with 
those  calculated using the theory  presented in this  paper. 

2. Random  fault  statistics 
The key to  the success of any integrated  circuit 
manufacturing operation is the fraction  of manufactured 
semiconductor chips that  can be sold to  the customers. This 
fraction is known as the yield. The yielding chips have to 
survive a  battery of device tests. Manufacturers learned very 
early that chips which failed tests for one application  could 
be perfectly usable for another  one.  This led to  the practice 

Spatial distributions of defects and faults on 

these chips  are  not adjacent to each  other.  They must, 
however, occur  as a  pair in a region where the  numbers of 
faults  per chip  are distributed with Poisson’s distribution, 
having an average density  of X faults per  chip. If the  random 
variables X and  Yare  independent, it is not difficult to prove 
that their  covariance and correlation coefficient are equal to 
zero. 

3. Mixed and compound  Poisson  statistics 
The wafer-to-wafer variation  of the average number of  faults 
per chip, and  the spatial clustering of defects and faults, can 
both be modeled with compound Poisson statistics. Using 
the  method of Feller [ 121, it was shown in Reference [ 131 
that this  leads to  an integral  of the  form 

Pr(X = k )  = $’ e-’dF(X). (3) 

The  function F( X) is  known as  the  compounder  and satisfies 
the boundary  conditions F(0)  = 0 and F(m) = 1. It 
represents the  cumulative distribution of the average number 
of faults  per chip X. Each one of these average values 
pertains to a wafer or a region on a wafer. 

For a finite number of regions, the  function F( X) is a 
staircase function.  The  number of steps  in the staircase is 
equal to  the  number of regions. Use of such  a  function leads 
to a  discrete form of compounding  and results in the 
formula 

of sorting  chips. 

sorts must be taken  into  account by theoreticians who want 
The subtle differences between defects that affect final test X: 

,=, k !  
Pr(X = k )  = c, - e-A8, 

to help manufacturing lines  achieve optimum  production. A 
method  that has  proven very effective makes use of the 
terminology “faults.” A fault is defined as a defect that 
causes an integrated  circuit to fail when it is tested for a 
specific application. The statistics  of  such  faults are of great 
importance  to  manufacturers of integrated circuits. 

In this paper it is assumed that for purely random faults 
the distribution of the  number of faults in integrated  circuits 
follows Poisson’s distribution.  That  distribution  can be 
expressed in the form 

Pr(X = k )  = - e , Xk - A  

k !  

where X is a random variable designating the  number of 
faults per chip, k an integer equal  to 0, 1, 2, . . . , etc., and X 
a  parameter. 

Consider next two chips where the  random  number of 
faults on  one is indicated by X and  on  the  other by Y. Let 
the faults occur  on these chips independently. The 
probability of finding X = k faults on  the first chip  and Y = 1 
faults on  the second one therefore is given by 

Pr(X = k, Y = I )  = - e-2A. 
Xk+‘ 
k !  I !  (2) 

642 This is a joint probability  for two chips. It is valid even if 

where rn designates the  number of regions, Xi the average 
number of  faults  per chip  in region i, c, a set of constants, 
and k an integer 0, 1, 2, 3, . . . , etc. 

The  constants c, in  Equation (4) are a set of discrete 
compounders. They are equal to  the probability of finding  a 
randomly picked chip within  a region associated with the 
index i. These  probabilities are proportional to  the  areas of 
the partitioned regions, and their sum  must satisfy 
m 

c, = 1. ( 5 )  
, = I  

This is the normalization  requirement  for the  compounders. 
It has also been observed that partitioning is necessary 

because of continuously varying manufacturing conditions. 
This results in wafer-to-wafer variations  of  fault densities. 
The fault and defect distributions described by Paz and 
Lawson [SI are  the results of such effects. Wafer-to-wafer 
variations of the average number of faults  per wafer have 
also been discussed by this author in  Reference [ 141. Such 
variations can be modeled by increasing the  number of steps 
of the staircase function F(  X) in the limit to infinity. Because 
of this, the function  becomes continuous, so that 

Pr(X = k )  = $ e-v(x)dX, (6) 
m k  
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where 

This functionf(X) is a normalized continuous probability 
distribution function of fault densities X. 

4. Covariance  between  the  numbers of faults 
on  chips 
The method of mixing or compounding Poisson's 
distribution can be extended to pairs of chips. To begin with, 
assume that all chip pairs come from regions  where 
Poisson's distribution is valid. This means that different pairs 
can come from different  regions, but the two chips in a pair 
cannot. The method of compounding can then be applied 
directly to the joint distribution in Equation (2). This results 
in 

Pr(X = k,  Y = I I X and Y in the same region) 
Y l  . k+ l  

This is a bivariate distribution for the random variables X 
and Y. They are equal to k and I ,  which represent the integer 
values 0, 1 ,  2, 3, . . . , etc. Equation (7) is a conditional 
probability to indicate that the faults X and Y occur jointly 
in the same region. 

is not necessarily equal to the compounder in Equation (3). 
This depends on  the distribution of the numbers of chip 
pairs  per  region and the distribution of the numbers of chips 
per  region. If these two distributions are the same, the two 
compounders are equal to each other. 

of faults per chip can be determined. In general, the 
covariance between  two random variables X and Y can be 
calculated with the formula 

The cumulative distribution function F( X) in Equation (7) 

It is  shown  now  how the covariance between the numbers 

cov(X, Y )  = E ( X Y )  - E ( X ) E ( Y ) .  (8) 

The key to this expression  is the expectation E ( X Y ) .  It can 
be obtained by a double summation over distribution (7). 
This takes the form 

E(XY I X and Y in the same region) 
m m Y '  . k+/ 

The expression  is conditional to emphasize that both chips 
are in the same region. The summations can be evaluated 
and reduced to 

E(XY1 X and Y in the same region) = $' X2dF(X). ( I O )  

The right-hand side of this  expression  is equal to  the 
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expectation E@'). In general, it therefore follows that 
E(XY I X and Y in the same region) = E(X2). 

E( Y )  are given  by 
In a similar way, the mathematical expectations E ( X )  and 

and 

In these equations the variables X and Yare treated 
individually. This eliminates the need  for the conditional 
specification that was  used in the previous formulas. When 
the sums in Equations (1  1)  and ( 1  2) are evaluated, they both 
result in 

E ( X )  = E ( Y )  = I' XdF(X). 

This is simply equal to  the expectation E(X), and therefore 
represents the mean associated  with the cumulative 
distribution function F(X). 

for the covariance. This leads to 
The preceding  results can be substituted into formula (8) 

cov(X, Y I X and Y in the same region) 

= E(X2) - E(Xy. (14) 

The right-hand side  of this expression  simplifies to the 
variance of X, V(X). The result can therefore be expressed as 

cov(X, Y I X and Y in the same region) = V(X). (15) 

This is the covariance between the number of faults 
occumng  on one chip and  the number occumng  on another. 
It is an interesting result, since this quantity is simply equal 
to the variance associated  with the compounding cumulative 
distribution function F(X). 

The covariance obtained here is a two-dimensional spatial 
variant of the autocovariance used  in stationary time series 
by  Box and Jenkins [ 151. These authors showed that such 
autocorrelations varied  when the time lag  between the 
correlated data was increased. Such an increase is akin to a 
larger separation between the chips that are used  for the 
correlation. As long  as the chips are in the same region, such 
increased separations have no effect on the correlation 
coefficient. When the distance between correlated chips 
causes the chips in the pairs to occur on both sides of 
regional boundaries, some interesting effects take place. 
These effects are discussed in subsequent sections. 

5. The  correlation  coefficient 
At this point it is possible to determine an expression for the 
correlation coefficient relevant to the compound Poisson 
statistics discussed in the preceding sections. In general, the 643 
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correlation coefficient p between two random variables X 
and Y is related to  the covariance with the well-known 
formula 

The variances V ( X )  and V(  Y )  in  this expression are  equal to  
one  another because the  random variables X and Y have the 
same distribution.  Either one of these  variances can therefore 
be calculated with the  formula 

V ( X )  = E ( X 2 )  - E ( X f .  (17) 

The expectation ,?(X2) in this expression is obtained with 
the  double  sum 

E(X2)  = k 2  E e-2h dF(X). (18) 

These summations  can be evaluated by the  method 
described in  Appendix  A  of Reference [7] to give 

E ( X 2 )  = E(X2) + E(X). (19) 

Here E(X2) and  E(X) are, as they were in  the preceding 
section,  expectation values associated with the  compounder 
F( X). These  expectations can be introduced into  Equation 
( I  7). Furthermore, according to  Equation ( 13), the 
expectation value E ( X )  is equal to  the expectation E(X). 
Equation (1  7) therefore  becomes 

m m  I X k + l  

k=O C O  

V ( X )  = E(XZ) + E(X) - E(Xf. (20) 

At this  point it must  be recognized that  the variance  of the 
compounder F(X) has the form 

V(X) = E(h2)  - E@)*. (21) 

V ( X )  = V(X) + E@). (22) 

When  this is combined with Equation (20), it results in 

The variance V( Y) is  equal to  the  same  formula. 

the preceding results into  Equation ( 1  6). This produces 

p(X ,  Y I X and Y in the  same region) 

The correlation coefficient is  obtained by substitution of 

- V(X) - 
V(X) + E(X) ’ (23) 

which shows that this  correlation is completely dependent  on 
the expectation E(X) and  the variance V(X) associated with 
the  compounder F(h) .  It should be noted that this 
correlation coefficient becomes larger when the  ratio of the 
variance and  the mean of the  compounder increases. Any 
suitable distribution  function  can be used as compounder, 
thus illustrating the generality  of this  approach. 

Suppose that wafers can be manufactured in  such  a way 
that  the defects on them  are purely random  and follow 
Poisson’s distribution. Adjacent chip pairs are  then 
automatically  constrained to  the  same regions, namely the 

wafers themselves. The wafer-to-wafer variation  of defect 
densities then defines the  compounding process. This 
compounding affects the  chip pairs and  the single chips 
equally. In that case, the  compounders in Equations (3) and 
(7) are therefore the same. Furthermore,  the conditionality 
constraining the  chip pairs to  the  same region is implicitly 
satisfied and  can  be  dropped  from  the  equations of the 
preceding sections. Moreover, the covariance and correlation 
are completely dependent  on  the  mean  and variance  of the 
wafer-to-wafer variation of defect densities. 

Formula (23) is a novel result. It was believed previously 
that correlations of this  type were not  accounted for  in 
existing yield models [ 161. As is shown here, correlations 
between the  number of  faults or defects in  adjacent chips  are 
an  inherent consequence of the  compounding process. It 
does not require the forcing of  correlations, as has been done 
elsewhere [ 161. 

6. Wafer-to-wafer variation:  An  example 
The wafer-to-wafer variations of defect densities were 
originally studied with electronic defect monitors [ 11.  The 
numbers of defects and faults in integrated  circuits on actual 
wafers are, however, much  more difficult to obtain. Until 
now, data for only half a wafer have appeared  in the 
literature [ 171. To  circumvent this lack of data, statisticians 
have resorted to  the use of  water maps of particle locations 
[ 181. Such  maps  can be obtained with electronic  particle 
detectors which, by use of scattered light, detect the locations 
of particles on  the surfaces of wafers. Particles  often cause 
defects and faults in integrated  circuits; particle distributions 
should  therefore give an insight into  the  distributions of 
defects and faults. 

A particularly useful set of particle maps were collected by 
Armstrong and Saji specifically for the evaluation of yield 
models [ 181. The  data consisted of the twelve square maps 
that  are reproduced in Figure 1. These maps were analyzed 
with the so-called “quadrat”  method.  This  method was 
developed by biologists for  studying the spatial  distributions 
of populations  of species. The area to be studied is 
subdivided with a grid of  squares  known as “quadrats.” The 
population  within  each  square is then  counted  to  obtain a 
population distribution. 

The particle maps in  Figure 1 contain, in  ascending  order, 
9, 17, 22, 34,  39, 41,  42,  92, 102,  107,  108, and 140 
particles. When  an overlay grid of 6 X 6 quadrats is used for 
each map,  the  number of particles for  each wafer can be 
divided by 36 to  obtain  an average number of particles  per 
quadrat for each wafer. This results in a lowest particle 
density of 0.25 and a highest density of 3.8889 particles per 
quadrat. These  values and those from  the  other wafers form 
a  distribution. This  distribution has a grand mean  of 1.743 1 
particles per quadrat  and a  variance of 1.3700. 

corresponds to  the wafer-to-wafer variation  of the fault and 
The wafer-to-wafer variation of particle  densities 
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defect densities  per chip  that was discussed in  the preceding 
sections. If  we assume  that  the particles are distributed 
randomly  on each wafer, we can  then use formula ( 2 3 )  to 
calculate the theoretical  correlation coefficient for the 
number of particles in adjacent quadrats.  Doing so results in 
a value of 0.440. 

It is  also possible to  determine  the correlation coefficient 
from actual particle counts  in each quadrat. These particle 
counts  are tabulated as twelve arrays of numbers shown  in 
Figure 2. Each one of these arrays  represents  a wafer, and 
each number  in  an  array shows how  many particles were 
counted within the  quadrat  at  that location. The correlation 
coefficient for the  number  of particles in adjacent quadrats 
can be calculated from these data.  This has to  be  done with a 
pairs analysis. The  number of particles of each quadrat is to 
be correlated  with the particle counts  in  the  other  quadrat of 
a  pair. Double  counting is not allowed. For example, if the 
number of particles  in quadrat A is correlated with the 
number in quadrat B, then  quadrat B should not be 

2 3 1 0 0 0  1 1 2 1 3 0  1 2 1 0 0 0  

0 1   I 1 0 0  0 6 0 0 0 0  3 3 0 0 0 0  

0 0 2 0 1 0  0 4 1 2 1 0  0 2 2 3 0 0  

2 1 0 1 2 0  3 4 0 0 1 0  0 1 0 0 0 0  

4 3 0 0 3 0  0 3 0 1 2 0  0 2 0 1 0 0  

2 1 2 2 4 0  I 1 0 1 2 0  0 0 0 1 0 0  

7 8 3 0 0 0  5 5 0 0 1 0  0 0 0 I 0 0  

3 8 2 0 0 0  I 0 0 0 0 0  3 2 5 0 2 0  

6 4 4 0 0 0  0 0 0 0 0 0  0 5 4 6 9 2  

8 I 8 1 5 0  0 0 0 I 0  0 0 0 0 4 9 I 2 1 7 4  

3 0 6 0 0 0  0 1 1 1 0 0  0 0 7 2 4 1  

4 4 5 0 0 0  I 0 0 0 0 0  0 1 2 3 2 0  

0 0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 2 0  

0 0 0 0 0 0  0 0 0 1 0 0  0 2 7 5 5 0  

0 0 2 0 0 0  0 0 1 l l 0  0 7 4 5 7 1  

0 0 4 2 0 0  6 1 1 1 2 0  2 9 7 8 4 1  

0 0 I 0 0 0 2 8 2 0 1 0 0  0 0 I 4 6 6 5 0 

0 0 0 0 0 0 I 2 0 2 2  19 4 I 0 0 2 2 0 0 

o o o o o o  o o o o o o  n o o o o o  
0 0 1   1 3 0  0 0 0 0 0 0  0 0 0 0 0 0  

3 5 4 2 1 2  0 O I I I O  0 0 0 0 0 0  

5 1 4 8 6 0  1 3 1 3 2 0  0 0 2 1 2 0  

4 7 4 1 7 4  3 1 0 3 3 2  0 4 2 2 1 4 1  

3 1 6 2 6 1  1 1 1 3 0 3  0 1 1 3 8 1  

645 
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Table 1 Frequency  distribution of the  number of dots  per 
quadrat for the  maps  in Figure 3. The Poisson distribution with the 
same  mean value is also shown. 

Number of 
dots  per 
quadrat 

Number of 
occurrences 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

Relative 
frequency 

0.0556 
0.1389 
0.2222 
0.2222 
0.1667 
0.1 1 I I 
0.0556 
0.0278 

Poisson's 
distribution 

0.0498 
0.1494 
0.2240 
0.2240 
0. I680 
0.1008 
0.0504 
0.02 16 
0.008 1 
0.0027 
0.0008 
0.0002 
0.000 I 

integrated  circuit manufacturing processes. Such localized 
clustering also results in a  correlation between the  numbers 
of particles  in  adjacent  quadrats. An illustrative  example  of 
this effect is the subject  of the next section. 

7. Spatial clustering: An example 
In Reference [ 181 the  ratio of the variance and  the  mean of 
particle distributions was used to measure the deviation  of 
data  from theoretical Poisson distributions. This is a useful 
measurement when wafer-to-wafer variations dominate. It is, 
however, an insufficient condition for localized fault, defect, 
or particle  clusters on  the wafers themselves. This  can best 
be illustrated with a  contrived  example. 

Four square  maps,  each with 108 dots, are shown in 
Figure 3. The  dots  are arranged differently in each  of the 
maps. The  distributions of these dots were analyzed with the 
quadrat  method by superimposing  a grid of 6 X 6 squares 
over the maps. The  number of dots  found  in each quadrat is 
shown  in Figure 4. The  maps were made  up in  such  a way 
that  the distribution of the  number of dots per quadrat is the 
same for all four maps. The result is tabulated in Table 1. 
The  mean of this  distribution is equal to  three  dots per 
quadrat,  and its  variance is equal  to 2.8333. 

The  distribution in Table 1 can be modeled with Poisson's 
distribution of formula ( I ) .  A value of three for X provides  a 
model that has  a significance level >0.995 when  analyzed 
with a  chi-square test. The applicability of Poisson's 
distribution does  not imply that  the spatial  distribution  of 
the  dots is homogeneously random.  The  human eye suggests 
that  the  dots in Figure 3 are clustered in different ways. In 
map 4(a) of Figure 4, the density of dots appears to be higher 
in the  upper left-side corner  than in the lower right-side 
corner. In  map 4(b) the  dots  form  striations diagonally 
across the  map, while in many 4(c) the striations are vertical. 
The  dots  in  map 4(d) can best be described as having  a 
snowflake pattern. 

The  distribution of the  number of dots per quadrat for 
these maps has  a  ratio  of the variance and  the  mean  that is 
smaller than  one.  Ratios greater than  one  are usually 
associated with clustering. Therefore, the  ratio  obtained here 
gives no  indication of  clustering. A better test than this ratio 
is necessary to measure the effect of these  spatial clusters. 
The correlation between the  numbers of dots in  adjacent 
quadrats provides  such  a test. Correlation coefficients 
obtained  in  this way are shown  in Table 2. These results 
were obtained from the  data in Figures 3 and 4. The 
correlation coefficients for  horizontally and vertically 
adjacent quadrats  are shown separately in the two  middle 
columns. The correlation coefficients for  horizontal and 
vertical pairs combined  are tabulated  in the last column. 

Completely random  dots  can be expected to have  a 
correlation coefficient of zero  for the  number of dots  in 
adjacent quadrats.  The correlation coefficients for the 
snowflake pattern in map 4(d) come closest to this  criterion. 
As shown in Table 2, for this case, the  absolute values of the 
correlation coefficients for the horizontal, vertical, and 
combined pairs are all less than 0.1. In  map 4(c), the 
coefficient obtained for the  combined horizontally and 
vertically aligned pairs has a  small negative value. In this 
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case, however, the horizontally  aligned  pairs  produced a 
substantial negative correlation coefficient, while the 
vertically aligned pairs have a large positive one. These 
differences in sign are caused by the vertical striations of 
dots. When such  striations run diagonally  across the  map, as 
they do in 4(b), the correlation coefficients are negative for 
both the horizontally and vertically aligned quadrat pairs. 
This  contrasts with the results for map 4(a), for which all 
correlation coefficients are positive. 

The  maps in Figure 3 were made  up  to illustrate, by 
accentuation,  the different forms of dot clustering that  can 
affect the correlation coefficients of the  number of dots in 
adjacent quadrats. Similar  types of clustering  have  been 
observed for faults and defects in  integrated  circuit chips on 
semiconductor wafers, albeit with lower intensity (lower 
correlation coefficients). For  example, the varying dot 
densities  in map 4(a) are analogous to  the radial  variations of 
defect densities discussed by Yanagawa [2,3]  and  Gupta et 
al. [4,5]. Striation of defects can be caused by scratches [9], 
or by streaking of cleaning  solutions,  chemicals, or 
photoresist materials [ 191. The occurrence of highly defective 

7 6 5 4 4 3  7 0  6 1 . 5  I 

6 5 4 3 3 2  0 5 1 4 2 4  

5 4 3 2 2 2  6 1 5 2 4 3  

5 4 3 2 1 1  1 4 2 3 2 3  

4 3 3 2 1 0  5 2 4 2 3 3  

3 2 2 1 1 0  2 4 3 3 3 2  

(a) (b) 

7 0 6 1 5 1  5 1 4 1 1 5  

6 0 5 1 4 2  6 3 6 2 4 4  

5 1 4 1 3 2  3 4 3 3 2 2  

5 2 4 2 3 2  2 5 2 1 0 3  

4 2 3 3 3 3  5 3 4 3 3 4  

3 3 2 4 2 4  2 1 2 7 2 0  

(C) ( 4  

Another effect that results in lower correlation coefficients 
is caused by large samples. In that case the positive and 
negative correlation coefficients from the localized clusters 
and striations tend  to cancel each other. A somewhat 
artificial example of this is found with the  dot  maps  of 
Figure 3. It occurs  when the correlation coefficient is 
calculated for all the horizontally and vertically aligned pairs 
from all four  maps combined. The correlation coefficient in 
that case is -0.02. This is low enough  to indicate that  there 
is no correlation. It illustrates, therefore, that low values for 
these  correlation coefficients are  not necessarily an 
indication  of a lack of clustering. It also suggests that  adding 
more  quadrats  to a sample can diffuse the local correlations 
that  are caused by the localized clusters. This methodology 
therefore appears  to be more effective when the correlation is 
performed on smaller  samples of quadrats, preferably those 
that  contain  the localized clusters. Moreover, quadrat 
orientation  and  dimensions  can be expected to influence 
results. Variable quadrat sizes and locations may prove to  be 
useful for studying  actual  cluster data. 

4(4  0.9608 0.9587 0.9595 
4(b)  -0.9305 -0.927 1 -0.9286 
4(c)  -0.9290 0.9055 -0.0333 
4(d)  -0.0833 0.0649 -0.0109 

8. Increasing  the distance between quadrats 
The correlations  obtained in  the previous  sections  dealt with 
adjacent quadrats. It is also possible to perform this exercise 
with quadrats separated by a larger distance. Such  an 
increase in distance results in a high chance of  finding 
quadrat pairs that straddle different regions. As a 
consequence, the correlation coefficient can  be expected to 
decrease when the distance between quadrats is increased. 
This is exactly what is found  to  be happening  with the  data 
of Figures 1 and 2. The results are shown in Figure 5, where 
experimentally determined correlation coefficients are 
plotted  as a function of the space between quadrat centers. 
One of the curves  represents the correlation  for the  quadrats 647 
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‘\ Horizontally  adjacent .. ‘\ / 

This differs from  the  approach followed in  this  paper, where 
nothing was forced. As mentioned before, the correlations 
here  simply result from  the use of compound Poisson 
statistics, 

9. A simulation model 
Correlations between the  numbers of defects in adjacent 
chips are also taken into  account in  a  simulation  model 
described by V. Foard-Hack in  Reference [ 161. In that 
theory, defect distributions  are generated with a  background 
grid containing  pseudorandom  numbers. Although the 
numbers  in  the grid have a negative binomial  distribution, 
they are completely independent of one  another. At each 
gridpoint the  random  numbers of the neighboring  gridpoints 
are  added  to  the initial number.  The rules used for picking 
the neighboring numbers  can be changed. Each set of  rules 
defines a different model. The resulting numbers  at  each grid 
point  are assumed to represent fail counts for chips 
positioned at those  points. It is shown  in the  paper  that 
regardless of the model, the  summed  numbers also have  a 

Space between  quadrat centers 

The effect of distance between auadrats.  The correlation coefficent four nearest adiacent grid uoints were added  to  the initial 
” decreases  as  the  distance  between  quadrats  is  increased,  The number.  The  number of defects at the location of each chip 
i difference in values for horizontally and vertically adjacent quadrat 
1 pairs could be an indication of anisotropic clustering.  The correlation is therefore the sum Of five random numbers’ Two Of these 

” 

that  are aligned horizontally.  A  second curve results from 
vertically aligned quadrats.  The  third curve,  plotted  with  a 
solid line, is for the  combined horizontal and vertical data. 
These results indicate that positive correlation coefficients 
are observed to a  distance  of three  quadrats.  This implies 
that  quadrat pairs  separated by this  distance, or less, have  a 
chance of being  located  within the  same region or cluster. 

Correlation coefficients obtained in this fashion can also 
have negative values. As can be seen from  the example with 
the dots, this  happens when regions with high numbers of 
dots  occur next to regions without  dots. Such regions must 
be similar  in shape  and area. This  did  happen  on several of 
the particle maps of Figures 1 and 2. Some of the negative 
correlation coefficients in Table 2 are a result of this. 
Quadrat pairs  separated by a  distance of four  quadrat spaces 
or more  are therefore more likely to have one  quadrat inside 
a  particle  cluster while the  other  quadrat is  located  outside 
that cluster. These results suggest that  the range of positive 
correlation coefficients is a  measure of the average cluster 
dimension. 

It is noteworthy that correlations as a function of distance 
also occur in models  for distributions of galaxies in the 
universe. In the work of Peebles [20], such  correlations are 
forced, with so-called “multi-point correlation  functions.” 

0.4. This coefficient is constant. It does  not change when the 
parameters defining the distribution of numbers in the 
background grid are changed. 

The  Foard-Hack model in essence smooths  out  the 
random  numbers of the background grid. The resulting fail- 
count  numbers therefore  tend to  undulate gradually. This is 
not necessarily what happens in  actual  integrated  circuit 
manufacturing. Highly defective regions often butt  up 
against defect-free regions. This  phenomenon is evident  in 
the  maps of Figures 1 and 2, where quadrats with 18 and 19 
particles are adjacent to particle-free quadrats.  Another 
example of this can be found in the  data published by Paz 
and Lawson [8]. 

The smallest defect pattern  that can result from the 
example in Reference [ 161 is in  the form of a cross. This 
occurs  when the background grid has a single gridpoint with 
x defects in a field of zeros. From this, the model  produces  a 
cluster  consisting of five chips  arranged in a  cross  shaped like 
a + sign. Each chip within this cross contains exactly x 
defects. All other  surrounding  chips  are defect-free. 

It was mentioned in [ 161 that  the rules used in  the model 
could be modified to produce different patterns.  This is done 
by changing the  method for combining  the  random  numbers 
of the initial reference grid. For example, let the faults at  any 
gridpoint be the result of summing  the initial random 
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number  at  that  point  only with the initial grid number  to  the 
left of it and  the  one below it. In that case the smallest 
cluster pattern consists of three  chips grouped in  the  shape of 
a  letter L. However, single isolated chip fails, or an isolated 
pair of chips adjacent to each other,  cannot be generated 
with this model  as  it  stands.  Such patterns  can be simulated 
only if more background grids, with pseudorandom  numbers 
at each gridpoint, are  added  to  the results of  a  Foard-Flack 
model.  Such additions  tend  to lower the theoretical  value of 
the correlation coefficients. 

The example  of [ 161 has a positive correlation coefficient 
only for adjacent chips. Chips that  are  further removed from 
each other have no correlations  for the  numbers of defects 
per chip.  The  data in Figure 3 suggest that these  correlations 
should  extend  beyond the nearest neighbors. The rules  for 
combining  the  random  numbers  of  the reference grid can be 
modified to include points which are a given distance 
removed  from  each other.  This  does result in correlations 
between chips  that  are separated from each other by that 
distance.  Until  now  such  modifications  have not resulted in 
simulated maps  that resemble the  data  in Figure 1. This is 
unfortunate, because a good simulation  model for  clusters 
would be very useful in the field of yield modeling. 

10. Conclusions 
Compound or mixed Poisson statistics  have  been used for 
yield models  since the early 1960s [21]. These  models  have 
been verified numerous  times with data  during  the past 
twenty years. Yet, with all their successes, they remain 
poorly understood. It is hoped that  the discourse in  this 
paper is useful in clarifying some  of  the misunderstandings. 

One such  misunderstanding  occurs  when the distribution 
of the  number of faults  per chip is mistaken  for the 
compounder used in  the Poisson mixing process. As a result, 
the faults per chip  are often  confused with fault densities. To 
prevent  such  a  mistake, the  approach taken in  this  paper is 
somewhat  tedious.  However,  only  in this way could  the 
fundamental  assumptions be exposed in a clear manner.  The 
model  derived  in this way predicts  a  nonvanishing 
covariance between the  numbers of faults in adjacent chips. 
The value of this  covariance is found to be equal to the 
variance  of the  compounder.  This result leads to a formula 
for a  correlation coefficient. Values  calculated with that 
formula  appear to be in  reasonable  agreement with 
correlation coefficients obtained from  data of particle 
locations on  semiconductor wafers. This was not anticipated 
in  the literature,  where  it was assumed that correlations of 
this type  could not be obtained with existing yield models 

The  method of correlating the  number of  particles in 
adjacent quadrats provides  a convenient test for clusters. 
This  technique  can  be extended to  quadrat pairs further 
removed  from  each  other. In this way the correlation 
coefficients can be used as  a  statistical measurement of the 

size of clusters. Dimensions of  clusters are critical in  the 
design of very large chips  that have redundant circuitry  for 
yield enhancement. Such redundancy has little effect if the 
redundant circuits are located  in the  same fault  cluster as  the 
circuits that they have to replace. 
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