System
|dentification:
An experimental
verification

process of determining a model of a dynamic
system using observed system input-output
data. The identification of dynamic systems
through the use of experimental data is of
considerable importance in engineering since it
provides information about system parameters
which is useful in predicting behavior and
evaluating performance. Traditional methods of
System ldentification are usually time-
consuming, costly, and difficult to use in other
than a product development environment. Within
the last decade, more sophisticated techniques
for System Identification have been developed
that can simultaneously estimate many
parameters accurately and repeatedly. These
modern techniques are, in addition, efficient,
easy to use, inexpensive, and readily adaptable
to manufacturing and in-the-field environments
where they can be used to evaluate product
quality and performance. This paper describes
the use of one such System Identification
algorithm to estimate several mechanical
parameters of 8-inch hard-disk drive spindles
in a manufacturing-like setting. The results
obtained are in excellent agreement with resuits
acquired by more conventional methods, and
demonstrate the potential benefits of System
Identification techniques in evaluating product
quality and performance.
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System Identification is a method of estimating the
polynomial coefficients in the transfer function G(z) of an
unknown system. The coefficient estimates are obtained by
algebraically manipulating input {u(k)} and corresponding
output response {y(k)} data sequences of that system. The
unknown physical parameters (e.g., an electromechanical
system would have force constant, friction, time constant,
etc.) can then be found since they are functions of the
estimated polynomial coefficients. System Identification
methodology is finding applications in many fields of
endeavor such as engineering, physical and life sciences, and
economics. There are many advantages to using System
Identification techniques. Unlike conventional methods for
determining system parameters, which often require a series
of different measurement settings, System Identification
methods can determine all the parameters from a single
measurement setting. This implies that all the estimated
parameters are obtained under the same experimental
conditions. As another advantage, conventional methods are
often difficult, time-consuming, and costly, whereas System
Identification can be performed quickly, easily, and
inexpensively.

With this strong motivation, an experimental verification
of System Identification was done on the motor-spindle-disk
rotational assembly of 8-inch Direct Access Storage Devices
(DASD) or hard-disk files. This paper describes the modeling
and experimentation aimed at using System Identification
techniques to identify several significant mechanical
parameters of numerous DASD spindle assemblies. The
estimated parameters obtained from this new method were
compared with those obtained by conventional parameter
measurement methods, and the results show that they are in
excellent agreement. 571
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§  System Identification model: u(z) = input signal, x(#) = output

signal from unknown system, w(#) = disturbance noise (plant noise),
v(f) = observation noise (measurement noise), and y(f) = measured
output signal.
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System Identification background

System Identification, in the classical sense, has been around
for a long time. It is commonly used to obtain system
models or measure system performance directly from system
(plant) data. Some of these classical methods of System
Identification are

e Frequency response method (Bode plots).
o Step response method.
e Impulse response method.

Each of these traditional methods is basically used to obtain
the system performance and the transfer function G(s)

[or G(2)] by exciting the system with a known input and
observing the corresponding output response.

The modern methods of System Identification refer to the
process of constructing models and estimating (identifying)
the best values of unknown system parameters from
experimental input/output data. In this paper, we refer to
System Identification techniques of the modern kind. We
also assume that the models will be valid for linear, time-
invariant, single-input/single-output, and stationary systems.

A typical model for System Identification is shown in
Figure 1. The mode! of the unknown system is determined
from the stored records of the input, (), and the
corresponding output response, y(f).

The significant problems that must be addressed in System
Identification are the following:

e Determination of the order of the model. The model
should not be too complex to be understood and, thereby,
incapable of predicting the dynamic behavior of the
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unknown system. At the same time, it must not be trivial
to the extent that predictions of dynamic behavior of the
system become grossly inaccurate.

e Selection of the input signal u(t) which will maximize the
accuracy of estimated parameters of the model. It is
important that u(r) be sufficiently rich in frequency
content to excite all modes of the unknown system.

o Selection of the suitable criterion for determining the
model accuracy.

e Selection of sampling time T for use in numerical
computation.

In spite of the fact that a great deal of work has been done in
System Identification, we have at present no general answers
to these questions.

Identification schemes that are available can be classified
according to the manner in which they address some of the
questions mentioned above, that is, the order of the model,
input signal, and criterion used. In addition, it might also be
of interest to classify them with respect to their
implementation from a data processing standpoint. It might
be sufficient to do all computations off-line (batch
processing) after completion of measurements, or on-line
computation might be required at the same time
measurements are made.

The discrete-time transfer function G(z) of a linear system
with samplers and zero-order-hold (ZOH) shown in Figure 2
can be expressed as

G(z) = % =(1-z"Y% [%S—)]

—1 -2 -n
_ bz +bz "+ - +bz
l+az"' +az’+ - +az

B (1

where the @/sand bs (i = 1, 2, - - -, #i) are polynomial
coefficients of the denominator and numerator, respectively,
and Z[-] is the Z-transform operator; 7 is the estimated
order of the system.

The System Identification process is simply an algorithmic
manipulation of the sampled input sequence {u(k)} and its
corresponding output response sequence {y{k)}. The results
of this algorithmic procedure are the estimated values of the
polynomial coefficients given in Equation (1). The process is
conceptually shown in Figure 2.

We do not go into detail on the theory of System
Identification and the great variety of algorithms that are
available. There are several excellent texts available on these
subjects [1-3].

The Least Squares (LS) System Identification algorithm
[1] was tried first on the spindle motor input/output
sequences to obtain estimates. The LS estimates, however,
did not converge well at all. We attributed this to correlated
noise (pink noise) contamination in the output sequence,
and non-white noise, which is the basis for the LS algorithm.
It was, therefore, necessary to select another algorithm that
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would pre-whiten the pink noise in order to obtain a better
convergence in the estimates.

The algorithm used for the experimental verification of
System Identification was the Recursive Prediction Error
Method (RPEM), which is similar to the Maximum
Likelihood Estimate Method. This algorithm uses an
ARMAX (Auto-Regressive Moving Average with Exogenous
Variables) model, and its parameter estimates are quite
robust with respect to plant and measurement noise. The
computations were done in an off-line mode. The RPEM is
briefly covered later, but a detailed discussion can be found
in [3]. The derivations and applications of RPEM algorithms
for different state-space representations have been
extensively covered in References [3-10]. It would be almost
impossible to address all the applications in this paper.

The strength of RPEM parameter estimation schemes is
that they in fact prewhiten the noise and are thus
asymptotically efficient when convergent. More significant
perhaps is the fact that they can exploit effectively a priori
knowledge concerning the signal models, such as knowledge
of signal limiting from the plant. Moreover, RPEM schemes
use lower-order dimensional parameter space than other
identification schemes (i.e., extended least squares), and
through suitable parameterizations, one can expect that this
will contribute to better convergence.

The recursive prediction error methods are
computationally complex and may converge to a local
minimum of the prediction error cost function which may
not be the global minimum, or may diverge and cause
closed-loop instability.

A summary of a modified RPEM algorithm (see Appendix
A for symbols and notation, and Appendix B for the
algorithm) checks the stability of the dynamic system and is
capable of detecting the outliers. (Outliers are measurement
values that deviate substantially from other values in the
measurement sequence.)

The spindie model
Before applying System Identification techniques on actual
disk drives, we first experimented on a test-stand version of
the spindle-motor-disk assembly as shown in Figure 3. On
the basis of the dynamics of two rotational inertias J; and
J,, we can develop differential equations governing the
motion and arrive at a transfer function, G,(s) = w,(5)/7(s),
relating the output angular speed to the input torque in the
s-domain. Here w,(s) = (}z(s).

The two basic equations of spindle-motor-disk assembly in
the time domain are

J6,0) + K[0,(0) = 60,01 = (1),
JA(0) + Bo0) + K[8,(0) — 6,(0] = 0. @

Using the state-variable representation, let us define the
states X, () and X5(2) as follows: X,(2) = 0,(2), X,(1) = 6,(2),
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(O =K i) Disk stack

J, = moment of inertia of the disk stack, K = torsional stiffness
coefficient, B = damping coefficient, 7(f) = applied torque, 6,() =
angular displacement of rotor, and 0,(f) = angular displacement of
disk stack.

§ Model of the test-stand assembly: J = moment of inertia of the rotor,
i

and the input torque as U(f) = 7(¢). The angular velocity
then becomes X,(1) = 8,(1) = X,(2) and X,(¢) = 6,(t) = X, (o).
Equations in (2) can also be written in matrix notation
(indicated in boldface):

X0 =F . X0 +G - U@,
Y =H - X(), 3)

R. D. CISKOWSKI ET AL.

573




574

where

0 1 0 0 0 1 0 0
po| KOO KJ 0 | (-4, 0 4 0

0 0 0 1 0 0 0 1]

K/J, O —=K/J, —BlJ, A4, 0 -4, -4,

G=1[0 1/J, 0 0'=[0 4, O O},

X() = [X,() X0 X0 X0,

where the superior ¢ indicates the matrix transpose, and
A,=K/J, A,=K/J,, A, = B/J,, and A, = 1/J,. If we choose
H=[0 0 1 0], then the output becomes y(f) = X,(9), or
the angular displacement of 8,. We have a so-calied SISO
(single-input/single-output) system. The open-loop transfer
function is given by

G(s) = = = e H[sI - FI''G
_ Az : A4
TS AL U FA)s+ A, - A

“)

where 1 is the identity matrix.

Since we are really measuring the disk-rotational (angular)
velocity ()2(t) = w,(7) as our output, both sides of Equation
(4) are multiplied by s, yielding the third-order transfer
function

_ S0 _ 09)

GO =79 =7

_ A, - A,
S+AS + A +A)+ A4, - A

(52)
The following estimated values of physical constants for the
spindle test-stand are used:

J,=223.10° g-mm’,

J, =426 - 10° g-mm’,

K=134.10" g—mmz/rad/sz,

B=10° g-mmz/s.

Substituting these values into (5a), we have

Gs) =

1.410
S 42347 - 10757 + 6.324 - 10% + 1.141 - 10°°

(5b)

The three distinct roots of the denominator were
determined, resulting in a real root, g = -2.23 - 10_2, and a
pair of complex conjugate roots, b + jc = —5.68 - 107" £
j2.51 - 10°. Then the transfer function can be simplified to

T G+as+ b+ D

Gy(s) ©)

where the numerator constant is K, = 1.410. The physical
meanings of the coefficients can be interpreted as follows:
a = B/(J, + J,) = B/J, is the magnitude of the real dominant
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mechanical pole, and 1/a = 44 s is the mechanical time
constant of the spindle-motor-disk assembly. The value ¢ is
the frequency of torsional resonance, which is in the
neighborhood of 400 Hz for this test-stand system. And the
magnitude of b determines the degree of damping of the
resonance. The salient feature of this system is the large
frequency separation between the torsional resonance poles
at —b + jc and the dominant motor pole at —a.

Preliminary spindle experiments

A series of preliminary System Identification experiments
were performed on test-stand hardware closely resembling a
hard-disk file stack and motor assembly. These experiments
were used as a vehicle not only to test and debug hardware
and software, but more importantly to determine the
particular characteristics and peculiarities encountered when
applying System Identification techniques to disk files.

The main components of the test apparatus consisted of
the mechanical hardware needed to simulate a disk file, the
necessary electrical controls, and an IBM PC for data
acquisition.

To perform the System Identification experiments, the
system dynamics would have to be excited in a frequency
range affecting the parameters being identified, and both the
input excitation and output response would have to be
sampled to provide the time sequences used by the System
Identification techniques. The excitation or input, u(k), to
the system consisted of toggling the drive current to the
motor between high and low values. The corresponding
response output, y(k), was the average angular velocity per
revolution of the rotor. This average velocity was determined
using a digital counter, and a value was available for each
revolution. The IBM PC acquired and stored the input and
output time sequences. These were uploaded to a host VM
system for further processing at the conclusion of an
experiment.

The initial plan was to identify simultaneously the
frequency of the mechanical torsional resonance, ¢, the
amount of damping, B, and the torque constant, K, of the
motor; in other words, obtain all three values in a single
identification process. However, some preliminary
measurement and analysis had indicated that the torsional
resonance of the mechanical system was around 560 Hz.
The pattern of angular displacements (mode shape) between
6, and 6, at this resonance consisted of an out-of-phase
rotation, and 8, on the motor side exhibited most of the
angular motion due to the fact that J, > J,. Therefore, at
the operating rotational velocity (3100 rpm), it was
extremely difficult to excite the torsional resonance so that it
was measurable at the rotor (6,) or disk end.

On the other hand, in order to measure the damping
coefficient and torque constant at operating rpm, the system
would have to be excited in the frequency range of about
0.05 Hz, a four-order-of-magnitude difference with respect to
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the 560-Hz torsional resonance. As a result, it would be
impractical to provide the broadband excitation necessary to
identify all three parameters simultaneously as originally
intended.

The results of these experiments indicated that two
problem areas in the experimental procedure would need to
be studied further and satisfactorily addressed before
proceeding to additional experiments. The two problems
were sampling delay and variable sampling rate.

The sampling delay problem occurred during the sampling
of the angular velocity of the rotor. Because the sampled
velocity was an average value, it was not the velocity
occurring right at the time of the sample, but rather was
delayed from that time by one-half the revolution time. Its
effect on System Identification was shown to be insignificant.
The variable sampling rate occurred because the spindle
velocity was varied during the identification process. The
length of the sampling period would, thus, vary with
variation in the spindle velocity since the sampling was
synchronized with a disk index marker. This problem,
referred to as the nonsynchronous sampling problem, is
discussed later.

Simplified model of the DASD dynamic spindle
system

On the basis of the experimental knowledge gained from the
test-stand system, we decided not to identify the higher-
frequency mode due to torsional resonance, but to use the
lower-frequency (0.05-Hz) excitation to identify the damping
coefficient B and the motor torque constant K,. Thus, the
overall system could be simplified to a first-order model by
lumping J, and J, together and eliminating the torsional
stiffness coefficient K. Again, we start with the differential
equation

7(f) = Ki(f) = Jo(t) + Bw(?), @)

where w(¢) is the rotational velocity of the spindle assembly
and JJ=J, + J,.
Rewrite (7) into the form a(?) = —(B/J)w(t) + (K, /J)i(?).
Let us define the state variable X(f) = w(f), the input
U(t) = i(1), and the output Y(?) = (). Then we recognize
this as a first-order system with the formula
X(t) = ~(B/DX(1) + (K /U
and the output equation
Y() = [1] - XQ@).
In the standard state-variable formulation, this is
X(1) = FX(t) + GU(1),
Y(1) = HX(), (®)

where we have F = [-B/J], G = [K,/J], and H = [1]}.
The reduced-order open-loop transfer function Gg(s) of
the simplified model is given by
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Gus)=H - -[sI-F]"'. G
K /)

TG+ B ©)

Now, sampling the continuous-time transfer function Gg(s),
using a zero-order-hold circuit, yields the discrete-time
transfer function Gg(z). This is given by

G
Gal2) = (1 = z“)z[—‘;(s)]
b, -z
NETREE (1
i

where
a =-e"" (10b)
and

K T
= 'T 1 -, (10c)

Using the best-estimate values of @, and b,, the total

spindle inertia J (which is assumed to be constant), and the
sampling period 7, we can easily determine the damping
coefficient B and the torque constant K, of the spindle motor
drive. Let us use 4, and b, to denote the estimate results
from the recursive identification scheme (RPEM). Thus, the
estimate for the damping coefficient B and the torque
constant 12', can be found [Equations (10b) and (10c)] to be

o J

B=—?- In(-a,)) (11)
and

4 b5 2
‘_1+&|' (12)

The nonsynchronous sampling problem

It has been mentioned that a problem of nonsynchronous or
time-varying sampling periods was encountered in the test-
stand experiments. This is a result of the method used to
determine the file rotational velocity. The problem could
have been eliminated by using expensive analog velocity
transducers, but it was felt that there would be no
comparable benefit to the parameter estimation accuracy of
the System Identification for the increased expense. In the
test-stand experiments, the effects of a variable sampling
period were ignored. In order to obtain the accuracy
required by System Identification in later experiments, the
nonsynchronous sampling rate was accounted for, as is now
described.

Figure 4 shows how the spindle velocity is measured. At
the sensing of an index pulse, pulses from a constant-
frequency oscillator are counted until the next index pulse
occurs. Let N be the number of oscillator pulses counted

between the file index pulses. The revolution time, then, is 575
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N/f, and the disk radian velocity is given by

w(t) = Z—;f [rad/s), (13)

where f is the oscillator frequency.
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The velocity in Equation (13) is the average angular
velocity of the spindle in radians per second for that
particular revolution. If the rotational velocity is constant
and we repeat the process for each revolution, then the time
between index pulses becomes a fixed sampling period T.
However, if the velocity w(#) changes, then the time between
the index pulses also changes and we have a variable
(nonsynchronous) sampling period 7{(¢). The whole theory of
System Identification is based upon a constant (fixed)
sampling period T. Thus, for improved accuracy we adopted
a “resampling” technique for the DASD spindle system
identification.

In order for System Identification to be successful, the
input u(f) must contain frequencies sufficient to excite the
system dynamics. In the DASD spindle case, this was done
open-loop by toggling the current as shown in Figure 5. The
spindle rotational velocity would then increase and decrease.
Correspondingly, the sampling periods would be time-
varying. In Figure 5, it can be observed that the distance
between sampling periods 7(¢) is variable. The toggling
period T, is assumed to be much longer than the variable
sampling period 7(¢).

The solution to this variable sampling period problem (see
Figure 6) is to approximate the original velocity waveform in
software by using a graphical interpolation between the
nonsynchronous sampling points and then sample this new
waveform at a constant sampling period. “Resampling
method” is a good term to apply to this technique, since it is
the second sampling process which occurs on the
approximation of the velocity waveform. The resampling
period T is selected so that it is shorter than or equal to the
minimum value of 7(¢).

The resampling method has successfully been tested on
several DASD files with very good repeatability in estimating
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values for the nonlinear drag coefficient B (around a steady-
state velocity w, = 2200 rpm), and motor torque constant
K. These values were obtained using the first-order system
(n = 1) with the discrete-time transfer function G(z)
expressed in Equation (10a).

The estimated values of a, and b, (i.e., 4, and b,) were
obtained using the RPEM, with B and Kt given by Equations
(11) and (12), respectively. Note that B, the drag, is a
nonlinear function of rotational velocity, so only small
perturbations around w, were permitted in order to be able
to use a linear model as an approximation.

Experimental results using the RPEM
The System Identification experiments were performed on
several 8-inch DASD files using the RPEM. The RPEM
algorithm is quite robust against noise, as mentioned before,
and has good parameter identification capabilities even in
the presence of pink or filtered white noise. The convergence
of the system parameters (a’s, b’s) depends upon selection of
several key parameters (i.e., order of the system, order of the
noise filter, and variable forgetting factors) for the RPEM.
The forgetting factor X is a parameter which regulates how
much the RPEM algorithm weights the past estimated
parameter values ©. X can also be viewed as a time-varying
data “smoother” where the length of the data to be
smoothed increases exponentially with time. This time-
varying weighting function depends upon the filter time
constant « and initial and final values of the forgetting factor
(i.e., A, and A, respectively), and is given by the discrete
equation

M+ D) =a - M)+ (1 —a),, (14a)

with A(0) = A, and A(®) = A,.

Let the Z-transform of A(k) be A(z); then Equation (14a)
becomes

_ z (1 —a)r,

Alz) = <—Z = a) O+ Lo (14b)
and the equation for the forgetting factor is

MK) = [MO) — Mo0)] & + A, (14¢)

The forgetting factor A(k) increases exponentially as time
(or sample number k) elapses, and the rate of growth
depends on the selection of time constant «. As shown in
Figure 7, the initial value is set at A(0) = 0.8, and the final
value A(«) = 0.99. When « is large (approaching unity), A(k)
builds up slowly. However, when « is small (as o = 0.9), A(k)
grows much faster. It can be shown that the settling time is
directly proportional to —1/log(a).

The forgetting factor is also related to “memory size,”
given by

. 1
ry size = —— 15
memory size = T, (15)
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and corresponds to the number of past samples remembered;
e.g., when A = 0.8, the memory size = 5 samples, whereas
when A = 0.9, memory size increases to 10 samples to be
processed. Therefore, the forgetting factor A, with the time
constant «, provides us with a useful tool for adjusting the
sensitivity of the algorithm during the course of system
identification.

The initial and final forgetting factors dictate the tracking
of initial and final portions of the data sequence,
respectively. The time constant « controls how fast A(k)
builds up from the initial to the final values. Thus, at the
start of a recursive process, we want a small value of \(k)
which accounts for smaller numbers of samples to be
remembered in order to compensate for the transience, or
uncertainty, in the identification process. As time goes by,
when the algorithm builds up confidence, we increase A(k) so
as to include more samples to be calculated. In other words,
small A(k) corresponds to “short-term” correction, and large
MK) is for “long-term” adjustment. Since there is no
“cut-and-dried” method to determine how the forgetting
factor filter should be designed, engineers need to
experiment on their data with the algorithm to search for an
optimal result.

The accuracy of the estimated parameters obtained using
RPEM can be checked by observing the convergence of the
parameters over time and comparing their values to those
obtained by other measurement techniques. The selection of
the order (m) of the pre-whitening noise filter was done by
trial and error. The difference in parameter convergences
between using a first-order and a second-order noise filter
was very small. A first-order noise filter (m = 1) was,
therefore, selected in the RPEM algorithm. Note that this
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implies that ¢, in Equation (B3) of Appendix B is nonzero,
and all other ¢’s are equal to zero. The RPEM application
program was designed in such a way that time-sequence
records of the parameter estimates versus iteration number k
were stored. This allowed sequential plotting of the
parameter estimates shown in Figure 8.

The other key parameters (X, A, @) to be used in the
RPEM should be selected so as to ensure adequate
convergence. For the experimental data presented later,

A = 0.8, A, =099, and o = 0.9 were used as variable
forgetting factor parameters. The convergence of the
estimated parameters 4, and 5, is shown in Figures 8(a) and
8(b), which indicate that the 4, parameter converges much
faster than the b, parameter. The 5, parameter is related to
the gains of the system and is more sensitive to changes in
the input. The time constant « is also a critical parameter
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which indirectly affects the convergence of the estimated
parameters. The impact of changing « from 0.9 to 0.99 on
convergence of the estimated parameters is shown in Figures
8(c) and 8(d). Inspection of these figures shows that the B,
parameter is still varying widely near the end of
measurement. It also indicates the robustness of the 4,
parameter even while the 51 parameter is not converging.

In Figure 8(b) [and to a large extent in Figure 8(d)] “blips”
can be seen in the estimated b, sequence. These blips have a
periodicity of ten samples (iterations), which corresponds to
the periodicity of the on/off switching of the spindle motor
current. These blips or disturbances in the b, estimate are
probably due to nonlinear and/or higher-order effects in the
actual spindle motor caused by “large” and fast motor
current changes. The blips can be seen from the graphs to
disturb the convergence. To minimize the blip effects, an
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average over the last 20 5l-sequence points was taken to
yield a final value for the b, estimate in Figure 8(b).

Summary of results

System Identification experiments were conducted using ten
8-inch hard-disk files. The file population consisted of both
single and dual actuator units. A total of 78 individual
measurements were made using these ten files. For each file,
several distinct measurements were made during a one- to
two-hour time frame, and this process was repeated several
times over a four-month span. Synchronous sampling was
used for all measurements.

Each System Identification measurement consisted of
applying the System Identification algorithm to input and
output data sequences from the file. This process yielded
estimates of three specific file parameters, namely the
estimated mechanical time constant Tm, the estimated
damping coefficient B, and the estimated dc gain constant
G,

The time constant for the disk assembly of a hard file is a
measure of the ability of the system to respond to dynamic
input. The conventional method of determining the time
constant is by measuring the rate of exponential decay of the
angular velocity during spin-down from some initial value to
0.368 times this initial value. The mechanical time constant
T, is given by
T J

" =3 (16)

and the estimated mechanical time constant becomes
(17)

Note that the total inertia is treated as constant (a good
assumption).

The estimated damping coefficient B includes bearing
drag, viscous drag on the disk surfaces, drag due to airflow
pumping through the hub, and drag on the disks due to the
presence of read/write heads. In the System Identification
algorithm, the damping coefficient estimate is expressed by

J .

B=-2.In(-a).

T, (18)

The damping coefficient is usually not determined for a file
by conventional methods. Instead, a related parameter, drag
torque, is usually measured. The estimated drag torque 7, is
derived using the estimated damping coefficient B and the
average angular spindle velocity w,, i.e.,

(19)

7a=B - w.

The third parameter, dc gain, corresponds to the value of
the Z-domain transfer function for the system evaluated at
Z = 1. In a more conventional setting, it can be determined
analytically. The estimated dc gain GO is given by
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G, b 20
° T 1+ 4, (20)

These three parameters estimated by the System
Identification algorithm were used along with the average
angular velocity of the file during the measurement to derive
estimates of two additional parameters, drag torque and
torque constant. These two derived parameters, along with
the time constant, give a direct measure of file performance
having real physical significance for the engineer and are the
three key results from the System Identification
measurements. They are discussed here.

The estimated time constant was defined in (17). The drag
torque 7, is the torque necessary to overcome all damping
on the system. The torque constant is a measure of the
ability of the file motor to provide torque to the system. The
time constant, drag torque, and torque constant are
important measures of file performance as well as of the
quality of file components and the assembly process. System
Identification provides all three parameters simultaneously
without the need for special test fixtures.

The values of time constant, drag torque, and torque
constant obtained from the System Identification
measurements were found to be fairly repeatable from
measurement to measurement for each particular file when
operated under similar conditions. As an example,
measurements on one particular single actuator file were
repeated four times over a three-month time span. For these
four groups of measurements, the estimated values of the
time constant just after file start-up were 28.8, 31.0, 28.5,
and 29.2 s,

Uniformity of the measurements from file to file was also
evident from the data. The values obtained for each
mechanical parameter were grouped within a fairly narrow
range. For example, the time constant values for all dual/
actuator files were between 32 and 37 s.

Sensitivity of the measured parameters to changes
occurring within a single file could be seen when the values
of drag torque were examined over a group of file
measurements made within a span of several hours. File
warm-up occurs with each successive measurement, and this
should reduce the amount of drag on the disk assembly
because of decreased drag due to the bearings. This
reduction can be seen in drag torque values as a reduction
over time (see Figure 9). The parameters obtained from
System Identification techniques, therefore, can successfully
be used to flag changes occurring in the file over time.

The parameters can also be used as pass/fail criteria for
the files. The torque-constant values were all grouped rather
tightly around 0.035 N-m/A, except for one file which had
a very low value. The low torque constant for this file
indicated an inadequate drive motor. Closer examination
revealed that this motor had difficulty starting the file. This
critical difference was easily and quickly highlighted by the

System Identification parameters. Therefore, specifications 579
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Table 1 Typical comparison of time-constant values obtained
from System Identification and several conventional methods.

Estimates from Estimates from
System conventional methods
Identification (s)
File During Analysis
coast-down System
Identification
30.2 30.0 30.8 33.1

Table 2 Typical comparison of drag torque values obtained
from System Identification and analysis for three similar files.

Drag torque estimates

(N-m)

System Identification Analysis
0.0371 0.039
0.0364 0.034
0.0394 0.037

could be established for these parameters and used as
pass/fail criteria for the files.

Closure

The verification of System Identification results on several

hard files was done indirectly by comparing the estimates of
580 the three parameters, time constant, drag torque, and torque
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constant, from System Identification measurements with
values for these same parameters determined analytically
and by independent experiments.

The estimated time constant obtained from System
Identification was verified by comparing it with the values
obtained by three other more conventional methods. The
first method was a file coast-down experiment that consisted
of measuring the time required for the file to slow from
some initial rotational velocity to 0.368 times that value.
The second method was similar to the first, but used data
distinct from but available during a System Identification
measurement to compute an estimate of the time constant.
The third method was to obtain an analytical prediction of
the value of the time constant. This was accomplished by
estimating the rotational energy present in the file at
operating rpm, determining the primary damping factors
acting on the file, and then estimating the drag torque effects
of these damping factors. An estimate of the time constant
of the file could then be obtained by using the initial
rotational energy and computing its decrease over time
because of the presence of drag torque due to the damping
factors. The comparison of the System Identification value
with those obtained by the other three methods is
summarized in Table 1. The comparison of values obtained
from the experimentally based methods was very good. The
analytically determined value was slightly higher. It must be
stated that the three methods of estimating the time constant
used here are the more conventional means of obtaining an
estimate of this important parameter. They are time-
consuming and require a substantial amount of effort to
conduct. The benefit of System Identification experiments is
highlighted because of the ease with which the time-constant
value can be determined for each file.

For drag torque verification, the values obtained from
System Identification measurements were checked against
analytically determined values based upon estimates of the
drag torque due to the primary factors affecting file damping.
Table 2 presents several comparisons showing good
agreement between the System Identification and the
analytically computed values.

Excellent closure was also obtained for the torque-
constant values determined by System Identification. Values
obtained for specific files were compared with values of the
motor torque measured experimentally on a test stand
designed for this purpose. These test-stand measurements
were made before the motors were installed in the files. The
values are compared in Table 3, again showing excellent
agreement. All the torque-constant values obtained from
System Identification measurements except two were found
to be within the specifications set for the file. One, already
mentioned, had a very low value, while another had a
slightly higher value than the specified range.

It is quite evident that the time-constant, drag torque, and
torque-constant values estimated by System Identification
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measurements exhibit excellent agreement with values
obtained by more conventional methods. System
Identification measurements provided all three values
simultaneously, quickly, and easily, whereas the more
conventional methods of estimating these parameters
required three distinct, time-consuming efforts.

Conclusions

The main objective of the research described in the body of
the paper was to gain experimental knowledge about
identification of electromechanical system parameters and to
compare the results with those of conventional methods for
parameter estimation. The RPEM algorithm was chosen
because of its robustness in the presence of non-white noise.

The closure between results obtained from the RPEM and
the conventional estimation methods has been excellent. The
sensitivity and repeatability of these RPEM parameter
estimations were much better than those obtained from
conventional methods. For the DASD spindle experiment,
the nonsynchronous sampling problem was encountered and
resolved with a novel solution, i.e., the resampling
technique.

The results of these experiments show that System
Identification is a viable tool for parameter estimation and
may replace many time-consuming conventional methods
for DASD spindles in the near future.

Although the experimental parameter identification was
only applied to DASD spindles, it can easily be extended to
linear and rotary DASD actuators as well as other
electromechanical systems. While the described RPEM
algorithm was run off-line, there are on-line parameter
estimation methods that can be used in connection with
adaptive control of electromechanical structures.

As the title of this paper indicates, this has been an
experimental verification of the System Identification RPEM
algorithm. The reader who is interested in the mathematical
derivation of this algorithm can consult Appendix B or some
of the listed references.

Acknowledgments

The authors would like to thank Dr. G. F. Franklin,
Stanford University professor and consultant at IBM,
Rochester, Minnesota, for bringing System Identification to
life and outlining the RPEM algorithm.

Appendix A: Symbols, abbreviations, and
notational conventions

A Boldface capital letters indicate matrices
A Transpose of matrix A
A™ Inverse of matrix A

Auto-Regressive Moving Average with
Exogeneous Variables

B Damping coefficient

Direct Access Storage Devices
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Table 3 Typical comparison of torque constant values from
System Identification and test-stand measurements for four similar

files.
Motor torque constant range
(N-m/A)
System Identification Test stand
Minimum Maximum Minimum Maximum
0.0340 0.0368 0.0363 0.0395
0.0339 0.0414 0.0360 0.0410
0.0347 0.0391 0.0362 0.0416
0.0333 0.0376 0.0359 0.0396
G(s) Open loop transfer function in s-domain
G(2) Discrete time transfer function (z-domain)
éo Estimated dc gain of spindle motor
Gp(2) Reduced order discrete transfer function
I Identity matrix
K7) Current
J Total moment of inertia J = J, + J,
J Moment of inertia of rotor
J, Moment of inertia of disk stack
K Torsional stiffness coefficient
K, Motor torque constant
L(k) Adaptation gain matrix
In Natural logarithm
7 Estimated order of the system
P(k) Covariance matrix
RPEM  Recursive Prediction Error Method
SISO Single-input/single-output
T Sampling period
T, Resampling time period
T, Estimated mechanical time constant
{u(k)} Input sequence
1) Measurement noise = e(k) + ¢, - e(k — 1)
+ .- ¢ etk—n)
V(©) Loss function
Vn(e) First derivative of cost function with respect to ©
I>n(9) Second derivative of cost function with respect
10 ©
WAY) Process noise
{y(k)} Output sequence
VA Z-transform operator
ZOH Zero-order-hold
« Time constant for RPEM algorithm
ofk = 1) Variable gain
e(k) Prediction error
€(k) Residual prediction error
(S Parameter matrix (vector)
[5) Estimated parameter matrix (vector)
0,(0) Angular position of rotor
0,(1) Angular position of disk stack 581
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k) Variable forgetting factor (lambda)

A Initial value of forgetting factor
A, Final value of forgetting factor
7(t) Applied torque

T4 Estimated drag torque

¢’(k — 1) Observed data matrix (vector) from past
measurement

¢’(k — 1) Sensitivity matrix (vector) using residual error

Y(k — 1) Sensitivity matrix (vector)

¥’(k — 1) Observed data matrix (vector) using residual error

w(f) Angular velocity

@, Average angular spindle velocity

Appendix B: Parameter estimation with the
RPEM algorithm (using residual error)

The intent of this appendix is to summarize the RPEM
algorithm used for recursive identification of the simplified
dynamic model. This improved algorithm has better
convergence properties even for time-varying parameters in
the presence of colored/pink noise. The “variable forgetting
factor” given by the first-order difference equation

Mk + 1) =oark) + (1 — o)A,

was introduced to eliminate the influence of the old data and
make the estimates insensitive to large measurement errors
(outhiers).

Consider a SISO system represented by the ARMAX
model
A" -y = By - wk) + Cz7") - elk), (B1a)
where z~' is a backward shift operator and the polynomials
A(z™"), B(z™") and C(z”") are given by

2 ~n

Az Y=14a, -z '+a,-z2°+-.-+a,-z", (Blb)
Bz =b -z 4by 2+ kb, 27 (BIc)
Czy=14¢ -z2'+¢ 27+ +¢, 2", (BId)

and e(k) is colored/pink noise. Assuming that the order (m)
of the noise filter {C(z™")} and its estimated coefficient ¢’s are
known, the ARMAX model (Bla) can also be represented as

y(ky = ¢'(k — 1O, (B2)

where the parameter and observed data vectors are defined
as

0= [alaZ A ™ blbz T bn’ CCy v Cm]’, (B3)
¢k~ 1)=[-ytk = 1) --- =p(k = n) u(k = 1)
- utk — nyek) --- e(k - m). (B4)

The objective is to come up with the best estimate of
parameter vector denoted by O(k),

~

a A . PO A 7!
O:[alaz ceea, 5152 5",01(;2 Cm]’

R. D. CISKOWSKI ET AL.

such that the weighted quadratic cost function in prediction
error

V@)= % N [y - pr
k;l
=3\ &), (BS)
k=1

is minimized, using iterative numerical search procedures. N
is the number of samples. A very common form of such a
procedure (Gupta and Mehra) is

Ok) =06k -1)- alk - 1)
VO - DT - V0K - 1)), (B6)

where sensitivity function I'/n is defined as a negative gradient
of the prediction error and the Hessian matrix {P(k)} is
approximated as given:

. de, i
Yk —1)=V IOk - 1}= —[26]

=¢pk—-1)—{ek—DYk—-2)+ -.-

+ ém(k —m Yk —m+ 1)}, (B7)
P =V OKk-1)}"=3 {a—] [a—] (B8)
n n 30| 00/

The prediction error is defined as
ek = y(k) — ¢'k — 1O - 1). (B9)
The adaptation gain matrix is computed as

Pk— 1) pk—1)

KO =+ vk-DPk-Dwk =1 (B10
The covariance matrix is updated as
P(k) =% . [ = LékW'tk — 1)] - Pk — 1). (B11)

The parameter vector is updated by the recursive relation

O(k) = O(k — 1) + L(k)e, (k). (B12)

The stability test was also incorporated in the RPEM
algorithm, which ensures that the polynomial C(z™") is stable
and is capable of detecting outliers. The RPEM algorithm
can be significantly improved by computing the “residual
error,” defined as

(k) = y(k) — ¢'k — 1) k),

and substituting for prediction error to calculate observed
and data vector and sensitivity vector given as

-1 =[pl—1 - —pk—myuk—1) -

ulk —n) &k) ek —1) .- Ek—m),  (B13)
V= 1) =k —1) = (&= 1) - Yk - 2)
+ s 8 (k=m) - Wk = m+ 1), (B14)
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A summary of the improved RPEM algorithm using
residual error is given here to make the paper self-contained:

1. Select the initial values for RPEM algorithm parameters.
Select also the order of noise filter C(z™') and its
estimated coefficients:

P, = 10°L, \, = 0.8, \_ = 0.995, a = 0.95,

$(0), ¥(0), C,, order of C(z"")

2. Select the length of measurements N.
3. Compute the prediction and residual errors:

e (k) = y(k) — ¢k — 1) Ok — 1),
&(k) = y(k) = §(k ~ DO(K)

4. Form the observed data matrix (vector) based on
residual error:

ek—1).
5. Form the sensitivity vector based on residual error:
Wk — 1).

6. Compute the adaptation gain L(k):

Pk~ )Wk — 1)
A+ Pk — DPk — Dtk — 1)

L(k) =
7. Update the covariance matrix P(k)
P(k) =i I =Lk ¥k — 1)] - P(k = 1).

8. Update the parameter vector
O(k) = Ok — 1) + Lk)e (k).
9. Compute the innovation error

e (k) = y(k) — §k — DOK).

10. Increment k and go to 3.
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