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System  Identification may be defined as the 
process of determining  a  model  of  a  dynamic 
system  using  observed  system  input-output 
data.  The identification of  dynamic  systems 
through  the  use  of  experimental  data is of 
considerable  importance in engineering  since it 
provides  information  about  system  parameters 
which is useful in predicting  behavior  and 
evaluating  performance.  Traditional  methods of 
System  Identification  are  usually  time- 
consuming,  costly,  and difficult to use in other 
than  a  product  development  environment.  Within 
the last decade,  more  sophisticated  techniques 
for  System  Identification  have  been  developed 
that  can  simultaneously  estimate  many 
parameters  accurately  and  repeatedly.  These 
modern  techniques  are, in addition,  efficient, 
easy to use,  inexpensive,  and  readily  adaptable 
to  manufacturing  and in-the-field environments 
where  they  can be used to evaluate  product 
quality  and  performance.  This  paper  describes 
the  use of  one  such  System  Identification 
algorithm to estimate  several  mechanical 
parameters  of  8-inch  hard-disk  drive  spindles 
in a  manufacturing-like  setting. The results 
obtained  are in excellent  agreement  with  results 
acquired by  more  conventional  methods,  and 
demonstrate  the  potential  benefits of  System 
Identification  techniques in evaluating  product 
quality  and  performance. 
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Introduction 
System Identification is a method of  estimating the 
polynomial coefficients in  the transfer function G(z) of an 
unknown system. The coefficient estimates are  obtained by 
algebraically manipulating  input { u(k)J and corresponding 
output response {y (k )J  data sequences  of that system. The 
unknown physical parameters (e.g., an electromechanical 
system would  have force constant, friction, time  constant, 
etc.) can  then be found since  they are  functions of the 
estimated  polynomial coefficients. System Identification 
methodology is finding  applications in  many fields of 
endeavor such as engineering, physical and life sciences, and 
economics. There  are  many advantages to using System 
Identification  techniques. Unlike  conventional  methods for 
determining system parameters, which often  require  a series 
of different measurement settings, System Identification 
methods  can  determine all the  parameters  from a single 
measurement setting. This implies that all the estimated 
parameters  are  obtained  under  the  same experimental 
conditions. As another advantage, conventional  methods  are 
often difficult, time-consuming, and costly, whereas System 
Identification can  be performed  quickly, easily, and 
inexpensively. 

With this  strong motivation,  an experimental verification 
of System Identification was done  on  the motor-spindle-disk 
rotational assembly of &inch Direct Access Storage Devices 
(DASD) or hard-disk files. This  paper describes the modeling 
and  experimentation  aimed  at using System Identification 
techniques to identify several significant mechanical 
parameters  of numerous DASD  spindle assemblies. The 
estimated parameters  obtained  from this new method were 
compared with those obtained by conventional  parameter 
measurement  methods,  and  the results show that they are in 
excellent agreement. 
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unknown system. At the  same  time,  it  must  not be trivial 

system become grossly inaccurate. 
w(t) to  the  extent  that predictions  of dynamic behavior  of the 

Selection  of the input signal u(t) which will maximize the 
1 accuracy of estimated parameters of the model. It is 

important  that u(t) be sufficiently rich in frequency 
content  to excite all modes of the  unknown system. 

model  accuracy. 

computation. 

40- System 
(unknown) 

&+Y(O Selection of the suitable criterion for determining  the 

Selection of sampling time T for use in  numerical 

= input  signal, x ( t )  = output 

System  Identification  background 
System Identification,  in the classical sense, has  been around 
for a long time.  It is commonly used to  obtain system 
models or measure system performance  directly from system 
(plant)  data.  Some of  these classical methods  of System 
Identification are 

Frequency  response method (Bode plots). 
Step response method. 
Impulse  response method. 

Each  of  these traditional  methods is basically used to  obtain 
the system performance and  the transfer function G(s) 
[or G(z)] by exciting the system with a known  input  and 
observing the corresponding output response. 

process of  constructing  models and  estimating (identifying) 
the best values of unknown system parameters  from 
experimental input/output  data.  In  this paper, we refer to 
System Identification techniques of the  modem kind. We 
also assume  that  the models will be valid for  linear,  time- 
invariant, single-input/single-output, and  stationary systems. 

A typical model for System Identification is shown in 
Figure 1. The  model of the  unknown system is determined 

The  modern  methods of System Identification refer to  the 

In spite  of the fact that a great deal of work has been done  in 
System Identification, we have at present no general answers 
to these  questions. 

Identification  schemes that  are available can be classified 
according to  the  manner  in which they  address some of the 
questions mentioned above, that is, the  order of the model, 
input signal, and criterion used. In  addition, it  might also be 
of interest to classify them with respect to their 
implementation from  a data processing standpoint. It might 
be sufficient to  do all computations off-line (batch 
processing) after completion of measurements, or on-line 
computation might be required at  the  same  time 
measurements  are made. 

The discrete-time  transfer function G(z)  of a  linear system 
with samplers and zero-order-hold (ZOH) shown in Figure 2 
can be expressed as 

where the q ' s  and b,'s ( i  = I ,  2, . . . , A) are polynomial 
coefficients of the  denominator  and  numerator, respectively, 
and Z[. ] is the Z-transform operator; A is the estimated 
order of the system. 

manipulation of the  sampled  input sequence (u(k)]  and its 
corresponding output response  sequence ( y (k ) } .  The results 
of this  algorithmic  procedure are  the estimated values of the 
polynomial coefficients given in Equation (1). The process is 
conceptually  shown in Figure 2. 

Identification and  the great variety of  algorithms that  are 
available. There  are several excellent texts available on these 

The System Identification process is simply an algorithmic 

We do  not go into detail on  the theory  of System 

from  the stored  records  of the  input, u(t), and  the subjects [ 1-31. 
corresponding output response, y( t ) .  The Least Squares (LS) System Identification  algorithm 

Identification are  the following: sequences to  obtain estimates. The LS estimates, however, 

0 Determination of the order of the model. The model noise (pink noise) contamination  in  the  output sequence, 

The significant problems that  must be addressed in System [ 1~ was tried first on the spindle motor input/output 

did  not converge well at all. We attributed  this  to correlated 

should not be too complex to  be understood and, thereby, and non-white noise, which is the basis for the LS algorithm. 
572 incapable  of  predicting the  dynamic behavior of the  It was, therefore, necessary to select another algorithm that 
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would pre-whiten the  pink noise in order  to  obtain a  better 
convergence  in the estimates. 

The algorithm used for the experimental verification of 
System Identification was the Recursive  Prediction Error 
Method  (RPEM), which is similar to  the  Maximum 
Likelihood  Estimate  Method. This algorithm uses an 
ARMAX (Auto-Regressive Moving Average with Exogenous 
Variables) model, and its parameter  estimates  are  quite 
robust with respect to plant and  measurement noise. The 
computations were done in an off-line mode.  The  RPEM is 
briefly covered  later, but a  detailed  discussion can be found 
in [3]. The  derivations  and  applications of RPEM algorithms 
for different state-space  representations  have  been 
extensively covered in References [3-lo]. It would be  almost 
impossible to address all the applications in  this paper. 

The strength  of RPEM  parameter  estimation schemes  is 
that they  in fact prewhiten the noise and  are  thus 
asymptotically efficient when  convergent. More significant 
perhaps is the fact that they can exploit effectively a priori 
knowledge concerning the signal models, such as knowledge 
of signal limiting from  the plant.  Moreover, RPEM schemes 
use lower-order dimensional  parameter space than  other 
identification  schemes (i.e., extended least squares), and 
through suitable  parameterizations, one  can expect that this 
will contribute  to  better convergence. 

computationally  complex  and  may converge to a local 
minimum of the prediction error cost function which may 
not be the global minimum,  or  may diverge and cause 
closed-loop  instability. 

A  for  symbols and  notation,  and Appendix B for the 
algorithm)  checks the stability of the  dynamic system and is 
capable of detecting the outliers. (Outliers are  measurement 
values that deviate  substantially from  other values in  the 
measurement sequence.) 

The recursive prediction error  methods  are 

A summary of  a modified RPEM algorithm (see Appendix 

The spindle  model 
Before applying System Identification  techniques on actual 
disk  drives, we first experimented on a test-stand version of 
the spindle-motor-disk assembly as  shown in Figure 3. On 
the basis of the  dynamics of two  rotational inertias J ,  and 
J2, we can develop differential equations governing the 
motion  and arrive at a  transfer function, Cl(s) = w ~ ( s ) / T ( s ) ,  

relating the  output angular  speed to  the  input  torque  in  the 
s-domain. Here w2(s) = i2 (s ) .  

the  time  domain  are 
The  two basic equations of  spindle-motor-disk assembly in 

J , ~ ~ ( O  + KIOl(t) - O,(~)I = T ( t ) ,  

J,ii,(t) + Be,(t) + K[O,(t) - O1(t)] = 0. (2) 

Using the state-variable  representation,  let  us  define the 
states X, ( t )  and X3(t) as follows: XI@) = Ol(t), X3(t) = O,(t), 
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plant 
"""""""" 

1 
Discrete-time  system  model 

algorithm 

The System Identification process: ,T = saAmpling period; ZOH = 
zero-order-hold; .6,, 4, ' ' ' , d,, b, , b,, . '. , b,, estimated parameters. 

3) 
1 4 = moment of inertia of the disk stack, K = torsional stiffness 

coefficient, B = damping coefficient, ~ ( t )  = applied torque, 6,(t) = 
angular displacement of rotor, and O,(t) = angular displacement of 

and  the  input  torque  as U(t) = ~ ( t ) .  The angular velocity 
then becomes J?,(t) = i , ( t )  = X2(t) and k3(t) = i2(t) = X&). 
Equations  in (2) can also be written in  matrix  notation 
(indicated in boldface): 

X(t )  = F . X ( t )  + G . U(t) ,  

Y( t )  = H . X ( t ) ,  (3) 
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where 

r o  I o o 1 r o  I o 0 - 1  
F = /  -K/J,  0 KfJ ,  0 -A, 0 A ,  

0 0 0  1 1 KfJ2 0 -KfJ2  -BfJ2] 1 A, 0 -A2 -A,] 

G = [0 I fJ ,  0 O]’ = [0 A ,  0 O ] ‘ ,  

X(t) = [X,( t )  x2(t) x,([) x4(t)lZ, 

where the superior t indicates the matrix transpose, and 
A ,  = K f J , ,  A, = KfJ,, A, = BfJ,, and A, = I f J , .  If  we choose 
H = [0 0 1 01, then the output becomes y ( t )  = X,@), or 
the angular displacement of B2. We have a so-called  SISO 
(single-inputfsingle-output) system. The open-loop transfer 
function is given  by 

- A2 . ’44 - 
s[s3 + A,s2 + (A ,  + A& + A ,  . A,] ’ (4) 

where I is the identity matrix. 

velocity i2(t) = w,(T) as our output, both sides of Equation 
(4) are multiplied by s, yielding the third-order transfer 
function 

Since we are really measuring the disk-rotational (angular) 

- ‘42 . A4 - 
s3 + A,sZ + ( A ,  + A2)s + A ,  . A,  . ( 5 4  

The following estimated values  of  physical constants for the 
spindle test-stand are used: 

J ,  = 2.23 . IO5 g-mm2, 

J2 = 4.26 . IO6 g-mm2, 

K = 1.34 . 10” g-mm2/rad/s2, 

B = 105 g-mm2/s. 

Substituting these values into  (5a), we have 

G,(s) = 

1.410 
s3 + 2.347 . 10-’s2 + 6.324 . 106s + 1.141 . IO5’ (5b) 

The three distinct roots of the  denominator were 
determined, resulting in a real root, a = -2.23 . and a 
pair of complex conjugate roots, b f jc  = -5.68 . lo-, f 
j2.5 1 . IO3. Then  the transfer function can be simplified to 

KO 
= (s + a)([$ + b], + c2)’ 

where the numerator constant is KO = 1.410. The physical 
meanings of the coefficients can be interpreted as follows: 
a =. B/(J, + J , )  =. B/J, is the magnitude of the real dominant 

mechanical pole, and l fa  = 44 s is the mechanical time 
constant of the spindle-motor-disk assembly. The value c is 
the frequency of torsional resonance, which  is in the 
neighborhood of 400 Hz for this test-stand system. And the 
magnitude of b determines the degree  of damping of the 
resonance. The salient feature of this system is the large 
frequency separation between the torsional resonance poles 
at -b f j c  and the  dominant  motor pole at -a. 

Preliminary  spindle  experiments 
A series  of preliminary System Identification experiments 
were performed on test-stand hardware closely  resembling a 
hard-disk  file stack and motor assembly. These experiments 
were  used as a vehicle not only to test and debug hardware 
and software, but more importantly to determine the 
particular characteristics and peculiarities encountered when 
applying System Identification techniques to disk  files. 

The main components of the test apparatus consisted of 
the mechanical hardware needed to simulate a disk  file, the 
necessary electrical controls, and  an IBM PC for data 
acquisition. 

To perform the System Identification experiments, the 
system dynamics would  have to be excited in a frequency 
range  affecting the parameters being identified, and both the 
input excitation and output response  would  have to be 
sampled to provide the  time sequences used  by the System 
Identification techniques. The excitation or  input, u(k), to 
the system consisted of  toggling the drive current to the 
motor between  high and low  values. The corresponding 
response output, y(k), was the average angular velocity per 
revolution of the rotor. This average  velocity  was determined 
using a digital counter, and a value  was  available  for each 
revolution. The IBM PC acquired and stored the  input and 
output  time sequences. These were uploaded to a host VM 
system  for further processing at the conclusion of an 
experiment. 

The initial plan was to identify simultaneously the 
frequency of the mechanical torsional resonance, c, the 
amount of damping, B, and  the torque constant, Kt,  of the 
motor; in other words, obtain all three values  in a single 
identification process.  However, some preliminary 
measurement and analysis had indicated that the torsional 
resonance of the mechanical system  was around 560 Hz. 
The pattern of angular displacements (mode shape) between 
8 ,  and 8, at this resonance consisted  of an out-of-phase 
rotation, and 8 ,  on  the motor side exhibited most of the 
angular motion due  to  the fact that J, >> J , .  Therefore, at 
the operating rotational velocity (3 100 rpm), it  was 
extremely  difficult to excite the torsional resonance so that it 
was measurable at the rotor (8,) or disk end. 

On the other hand, in order to measure the damping 
coefficient and torque constant at operating rpm,  the system 
would have to be excited in the frequency range  of about 
0.05 Hz, a four-order-of-magnitude difference  with  respect to 
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the 560-Hz torsional resonance. As a result,  it  would be 
impractical to provide the broadband excitation necessary to 
identify  all three parameters simultaneously as originally 
intended. 

The results of these experiments indicated that two 
problem areas in the experimental procedure would  need to 
be studied further and satisfactorily  addressed  before 
proceeding to additional experiments. The two problems 
were sampling delay and variable sampling rate. 

of the angular velocity  of the rotor. Because the sampled 
velocity  was an average  value, it was not the velocity 
occumng right at the time of the sample, but rather was 
delayed  from that time by one-half the revolution time. Its 
effect on System Identification was shown to be  insignificant. 
The variable sampling rate occurred because the spindle 
velocity  was  varied during the identification process. The 
length of the sampling period  would, thus, vary  with 
variation in the spindle velocity  since the sampling was 
synchronized  with a disk  index marker. This problem, 
referred to as the nonsynchronous sampling problem, is 
discussed  later. 

The sampling delay  problem occurred during the sampling 

Simplified  model of the DASD dynamic  spindle 
system 
On the basis  of the experimental knowledge  gained  from the 
test-stand system, we decided not to identify the higher- 
frequency  mode due to torsional resonance, but to use the 
lower-frequency  (0.05-Hz) excitation to identify the damping 
coefficient B and the motor torque constant K,. Thus, the 
overall  system could be  simplified to a first-order  model by 
lumping J ,  and J2 together and eliminating the torsional 
stiffness  coefficient K. Again,  we start with the differential 
equation 

r(t) = K,i(t) = JG(t) + Bw(t), (7) 

where w(t)  is the rotational velocity  of the spindle assembly 
and J = J ,  + J2. 

Rewrite (7) into the form &(t) = -(B/J)w(t) + (KJJ)i(t). 
Let  us  define the state variable X(t )  = w(t), the input 
U(t) = i ( t ) ,  and the output Y(t) = w(t). Then we  recognize 
this as a first-order  system  with the formula 

= -(B/J)X(t) + (K,/J)U(t) 

and the output equation 

Y(t) = [ I ]  . X@).  

In the standard state-variable formulation, this is 

X(t )  = FX(t) + GU(t), 

Y(t) = HX(t), ( 8 )  

where  we  have F = [-B/J], G = [K,/J] ,  and H = [ 11. 

the simplified  model  is  given by 
The reduced-order open-loop transfer function GR(s) of 
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GR(s) = H . [SI - F]" * G 

- ( K J J )  - 
(s + B/J) '  

Now,  sampling the continuous-time transfer function G,(S), 
using a zero-order-hold circuit, yields the discrete-time 
transfer function GR(z). This is  given  by 

GR(z) = ( I  - z")Z - ["?)I 
where 

a, = -e 

and 

-B.TlJ 

K . T  
B 

b, = ( 1 - e-B.T'J). 

Using the best-estimate  values of a, and b,, the total 
spindle inertia J (which is assumed to be constant), and the 
sampling  period T, we can easily determine the damping 
coefficient B and the torque constant K, of the spindle motor 
drive.  Let us use 6, and 6, to denote the estimate results 
from the recursive  identification  scheme (RPEM). Thus, the 
estimate for the damping coefficient B and  the torque 
constant K ,  can be found [Equations (lob) and ( ~OC)]  to be 

B = -- . In(-;,) - J  
T (1 1) 

and 

i , .B 
K, = - 

1 + 6,' 

The  nonsynchronous  sampling  problem 
It has  been mentioned that a problem of nonsynchronous or 
time-varying sampling periods was encountered in the test- 
stand experiments. This is a result of the method used to 
determine the file rotational velocity. The problem could 
have  been eliminated by  using expensive analog velocity 
transducers, but it was  felt that there would  be no 
comparable benefit to the parameter estimation accuracy of 
the System  Identification  for the increased  expense.  In the 
test-stand experiments, the effects  of a variable sampling 
period  were  ignored.  In order to obtain the accuracy 
required by  System Identification  in later experiments, the 
nonsynchronous sampling rate was accounted for, as is  now 
described. 

Figure 4 shows  how the spindle velocity  is measured. At 
the sensing of an index  pulse,  pulses  from a constant- 
frequency  oscillator are counted until the next  index  pulse 
occurs.  Let N be the number of oscillator  pulses counted 
between the file index  pulses. The revolution time, then, is 
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Frequency 
oscillator 

Reset 

1""""""""i 
Disk enclosure (DE) 

Typical  method  for  obtaining  spindle  velocity  measurements  in I hard-disk files. 

"0 

NIL and  the disk radian velocity  is  given by 

w( t )  = - [radls] , 2 d  
N (13) 

576 wheref is the oscillator frequency. 

t 

Graphical illustration of resampling process using the reconstructed 
velocity waveform. 

The velocity  in Equation (1 3) is the average angular 
velocity of the spindle in radians per second for that 
particular revolution. If the rotational velocity  is constant 
and we repeat the process  for  each revolution, then the  time 
between index pulses becomes a fixed sampling period T. 
However, if the velocity w(t) changes, then the  time between 
the index pulses  also changes and we have a variable 
(nonsynchronous) sampling period T(t). The whole theory of 
System Identification is  based upon a constant (fixed) 
sampling period T. Thus, for improved accuracy we adopted 
a "resampling" technique for the DASD spindle system 
identification. 

In order for  System Identification to be  successful, the 
input u(t) must contain frequencies sufficient to excite the 
system dynamics. In the DASD spindle case, this was done 
open-loop by  toggling the current as shown in Figure 5. The 
spindle rotational velocity  would then increase and decrease. 
Correspondingly, the sampling periods would be time- 
varying. In Figure 5, it can be  observed that the distance 
between sampling periods T(t) is variable. The toggling 
period TI is assumed to be much longer than the variable 
sampling period T(t). 

The solution to this variable sampling period problem (see 
Figure 6) is to approximate the original  velocity  waveform in 
software by using a graphical interpolation between the 
nonsynchronous sampling points and then sample this new 
waveform at a constant sampling period. "Resampling 
method" is a good term to apply to this technique, since it is 
the second sampling process  which occurs on the 
approximation of the velocity  waveform. The resampling 
period To is selected so that  it is shorter than or equal to the 
minimum value of T(t). 

The resampling method has  successfully  been  tested on 
several  DASD  files  with  very  good repeatability in estimating 
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values for the  nonlinear drag coefficient B (around a steady- 
state velocity w,, = 2200 rpm), and  motor  torque  constant 
K,. These values were obtained using the first-order system 
( n  = 1) with the discrete-time  transfer function GR(z) 
expressed in Equation  (loa). 

obtained using the  RPEM, with B and K ,  given by Equations 
( 1  1) and (12), respectively. Note  that B, the drag, is a 
nonlinear  function of rotational velocity, so only  small 
perturbations  around w0 were permitted in order  to be able 
to use a  linear  model as  an  approximation. 

The estimated values of a, and 6, (i.e., 6, and 6,) were 

Experimental results using the RPEM 
The System Identification experiments were performed on 
several 8-inch DASD files using the  RPEM.  The  RPEM 
algorithm is quite robust against noise, as mentioned before, 
and has good parameter identification  capabilities  even  in 
the presence  of  pink or filtered white noise. The convergence 
of the system parameters (a’s, 8 s )  depends  upon selection of 
several key parameters (i.e., order of the system, order of the 
noise filter, and variable forgetting factors) for the  RPEM. 

The forgetting factor X is a parameter which regulates how 
much  the  RPEM algorithm weights the past  estimated 
parameter values 8. X can  also be viewed as a  time-varying 
data  “smoother” where the  length of the  data  to be 
smoothed increases  exponentially with time. This  time- 
varying weighting function  depends  upon  the filter time 
constant a and initial and final values of the forgetting factor 
(i.e., X, and X,, respectively), and is given by the discrete 
equation 

X(k + 1) = a . X(k) + ( 1  - a)X,, ( 1 4 4  

with X(0) = Xl and X(m) = X,. 

Let the  Z-transform of X(k) be A(z); then  Equation (14a) 
becomes 

A(z) = (L) X(0) + ( 1  - a )  x, 
z - a  ( z  - a )  ( 1  - z-l)’ 

and  the  equation for the forgetting factor is 

The forgetting factor X(k) increases  exponentially as  time 
(or sample number k)  elapses, and  the  rate of  growth 
depends  on  the selection of time  constant a. As shown in 
Figure 7, the initial value is set at X(0) = 0.8, and  the final 
value X(m) = 0.99. When a is large (approaching  unity), h(k) 
builds up slowly. However, when a is small  (as a = 0.9), X(k) 
grows much faster. It can be shown that  the settling time is 
directly proportional  to - l/log(a). 

The forgetting factor is also related to  “memory size,” 
given by 

memory size = - 
1 

1 - X ’  (15)  

1 .00 

~ 0.95 

B 
B 
gJ 0.90 
’% 

8 YI 
0.85 

0.80 
0 50  100  150  200  250 

Sample number (k) 

and corresponds to  the  number of past samples remembered; 
e.g., when X = 0.8, the  memory size = 5 samples, whereas 
when X = 0.9, memory size increases to 10 samples to  be 
processed. Therefore, the forgetting  factor X, with the  time 
constant a, provides us with a useful tool  for  adjusting the 
sensitivity of the algorithm during  the course of system 
identification. 

The initial and final forgetting factors dictate the tracking 
of initial and final portions  of the  data sequence, 
respectively. The  time  constant a controls how fast X(k) 
builds up  from  the initial to  the final values. Thus,  at  the 
start  of  a recursive process, we want a  small  value of X(k) 
which accounts for  smaller numbers of samples to be 
remembered in  order  to  compensate for the transience, or 
uncertainty, in  the identification process. As time goes by, 
when the algorithm  builds up confidence, we increase X(k) so 
as to  include  more samples to be calculated. In  other words, 
small X(k) corresponds  to “short-term”  correction, and large 
X(k) is for  “long-term” adjustment. Since there is no 
“cut-and-dried” method  to  determine how the forgetting 
factor filter should be designed, engineers need to 
experiment on  their  data with the algorithm to search for an 
optimal result. 

The accuracy  of the estimated parameters  obtained using 
RPEM  can be checked by observing the convergence  of the 
parameters over time  and  comparing their values to those 
obtained by other  measurement techniques. The selection of 
the  order (rn) of the pre-whitening noise filter was done by 
trial and error. The difference in  parameter convergences 
between using a  first-order and a  second-order noise filter 
was very small. A first-order noise filter (rn = 1) was, 
therefore, selected in  the  RPEM algorithm. Note  that  this 577 
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implies that c, in Equation (B3) of Appendix B is nonzero, 
and all other c’s are equal to zero. The RPEM application 
program was  designed in such a way that time-sequence 
records of the parameter estimates versus iteration number k 
were stored. This allowed sequential plotting of the 
parameter estimates shown in Figure 8. 

The  other key parameters (Xi, X,, a )  to be  used in the 
RPEM should be selected so as to ensure adequate 
convergence. For the experimental data presented later, 
X, = 0.8, X, = 0.99, and (Y = 0.9 were  used  as variable 
forgetting factor parameters. The convergence  of the 
estimated parameters ri, and 6, is shown in Figures 8(a) and 
8(b), which indicate that  the ri, parameter converges much 
faster than  the 6, parameter. The 6, parameter is related to 
the gains of the system and is more sensitive to changes in 
the  input. The time constant a is also a critical parameter 578 

R. D. ( 

which indirectly affects the convergence of the estimated 
parameters. The impact of changing a from 0.9 to 0.99 on 
convergence  of the estimated parameters is  shown in Figures 
8(c) and 8(d). Inspection of these figures  shows that the 6, 
parameter is  still  varying  widely near the  end of 
measurement. It also indicates the robustness of the ci, 
parameter even  while the 6, parameter is not converging. 

In Figure 8(b) [and to a large extent in  Figure 8(d)] “blips” 
can be seen in the estimated 6 ,  sequence. These  blips  have a 
periodicity of ten samples (iterations), which corresponds to 
the periodicity of the on/off switching of the spindle motor 
current. These blips or disturbances in the b, estimate are 
probably due to nonlinear and/or higher-order  effects in the 
actual spindle motor caused by “large” and fast motor 
current changes. The blips can be  seen from the graphs to 
disturb the convergence. To minimize the blip effects, an 
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average over the last 20 6,-sequence points was taken  to 
yield a final value  for the b, estimate  in Figure 8(b). 

Summary  of results 
System Identification experiments were conducted using ten 
8-inch hard-disk files. The file population consisted  of  both 
single and  dual  actuator units. A total  of  78 individual 
measurements were made using these ten files. For each file, 
several distinct measurements were made  during a one-  to 
two-hour time  frame,  and  this process was repeated several 
times over a four-month  span. Synchronous sampling was 
used for all measurements. 

Each System Identification measurement consisted  of 
applying the System Identification  algorithm to  input  and 
output  data sequences  from the file. This process yielded 
estimates of three specific file parameters, namely  the 
estimated  mechanical time  constant f,,,, the estimated 
damping coefficient B ,  and  the estimated dc gain constant 
6,. 

The  time  constant for the disk  assembly  of a hard file is a 
measure of the ability  of the system to respond to  dynamic 
input.  The  conventional  method of determining  the  time 
constant is by measuring the rate  of  exponential  decay of the 
angular velocity during spin-down from  some initial value to 
0.368 times  this initial value. The mechanical time  constant 
T,,, is given by 

T = -  J 
B’ 

and  the estimated  mechanical time  constant becomes 

T,,, = T .  
- J  

B 

Note  that  the total inertia is treated  as constant (a  good 
assumption). 

The estimated damping coefficient E includes  bearing 
drag, viscous drag  on  the disk surfaces, drag due  to airflow 
pumping  through  the  hub,  and drag on  the disks due  to  the 
presence of read/write heads. In the System Identification 
algorithm, the  damping coefficient estimate is expressed by 

B = - - .  In(-ri) 

The  damping coefficient is usually not  determined for a file 
by conventional methods.  Instead, a related parameter, drag 
torque, is usually measured. The estimated drag  torque ;d is 
derived using the estimated damping coefficient B and  the 
average angular  spindle velocity w0, i.e., 

J 
TO I ‘  (18) 

;d = B . ~ 0 .  (19) 

The  third  parameter,  dc gain, corresponds  to  the value of 
the  Z-domain transfer function for the system evaluated at 
Z = 1. In a more  conventional setting,  it can be determined 
analytically. The estimated dc gain eo is given by 
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bl 
1 + 6,’ C, = - 

These three  parameters  estimated by the System 
Identification  algorithm were used along with the average 
angular velocity of the file during  the  measurement  to derive 
estimates  of  two additional parameters, drag  torque  and 
torque  constant. These two derived  parameters,  along  with 
the  time  constant, give a direct  measure  of file performance 
having real physical significance for  the engineer and  are  the 
three key results from  the System Identification 
measurements.  They are discussed here. 

torque rd is the  torque necessary to overcome all damping 
on  the system. The  torque  constant is a measure of the 
ability of the file motor  to provide torque  to  the system. The 
time  constant, drag torque,  and  torque  constant  are 
important measures  of file performance  as well as of the 
quality  of file components  and  the assembly process. System 
Identification  provides  all three  parameters simultaneously 
without the need  for special test fixtures. 

The values of time  constant,  drag  torque,  and  torque 
constant  obtained  from  the System Identification 
measurements were found  to be fairly repeatable from 
measurement  to  measurement for  each particular file when 
operated under similar  conditions. As an example, 
measurements  on  one  particular single actuator file were 
repeated four  times over a three-month  time  span. For these 
four groups of measurements, the estimated  values  of the 
time  constant  just after file start-up were 28.8, 31.0, 28.5, 
and 29.2 s. 

The estimated time  constant was defined in ( 17). The  drag 

Uniformity of the  measurements  from file to file was also 
evident from  the  data.  The values obtained  for each 
mechanical parameter were grouped  within a fairly narrow 
range. For example, the  time  constant values for all dual 
actuator files were between 32 and 37 s. 

Sensitivity of the measured parameters  to changes 
occurring  within a single file could be seen  when the values 
of drag torque were examined over a group of file 
measurements  made within a span of several hours.  File 
warm-up  occurs with each successive measurement,  and  this 
should  reduce the  amount of drag  on  the disk assembly 
because of decreased  drag due  to  the bearings. This 
reduction can be seen in drag  torque values as a reduction 
over time (see Figure 9). The  parameters  obtained  from 
System Identification  techniques,  therefore, can successfully 
be used to flag changes  occurring in  the file over  time. 

The  parameters  can also be used as passlfail criteria for 
the files. The  torque-constant values were all grouped rather 
tightly around 0.035  N-m/A,  except  for one file which had 
a very low value. The low torque  constant for this file 
indicated an  inadequate drive motor. Closer examination 
revealed that  this  motor  had difficulty starting the file. This 
critical difference was easily and quickly highlighted by the 
System Identification  parameters.  Therefore, specifications 
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1 I 

1 Variation of drag  torque  over time for five files. 

Table 1 Typical  comparison  of  time-constant  values  obtained 
from  System  Identification and several  conventional  methods. 

Estimatesfrom  Estimatesfrom 
System conventional methods 

Identification 6 )  

File During Analysis 
coast-down System 

Identifrcation 

30.2  30.0  30.8  33.1 

Table 2 Typical  comparison  of  drag torque values  obtained 
from  System  Identification and  analysis  for three similar  files. 

Drag torque estimates 
W-m) 

System Identification Analysis 

0.037 I 0.039 
0.0364 0.034 
0.0394  0.037 

could be established  for  these parameters  and used as 
pass/fail criteria  for the files. 

Closure 
The verification of System Identification results on several 
hard files was done indirectly by comparing  the estimates  of 
the  three parameters, time  constant, drag torque,  and  torque 

constant,  from System Identification measurements with 
values for  these same  parameters  determined analytically 
and by independent experiments. 

The estimated time  constant obtained  from System 
Identification was verified by comparing it with the values 
obtained by three  other  more  conventional methods. The 
first method was a file coast-down experiment  that consisted 
of measuring the  time required for the file to slow from 
some initial  rotational velocity to 0.368 times  that value. 
The second method was similar to  the first, but used data 
distinct from  but available during a System Identification 
measurement  to  compute  an estimate of the  time  constant. 
The  third  method was to  obtain  an analytical  prediction of 
the value of the  time  constant.  This was accomplished by 
estimating the  rotational energy present in  the file at 
operating rpm,  determining  the primary damping factors 
acting on  the file, and  then estimating the drag torque effects 
of these damping factors. An estimate  of the  time  constant 
of the file could then be obtained by using the initial 
rotational energy and  computing its  decrease  over time 
because of the presence of drag torque  due  to  the  damping 
factors. The  comparison of the System Identification value 
with those obtained by the  other three methods is 
summarized in Table 1. The  comparison of values obtained 
from the experimentally based methods was very good. The 
analytically determined value was slightly higher. It must be 
stated that  the  three  methods of estimating the  time  constant 
used here are  the  more  conventional  means of obtaining  an 
estimate  of this  important parameter.  They are time- 
consuming  and require  a  substantial amount of effort to 
conduct.  The benefit of System Identification experiments is 
highlighted because of the ease with which the time-constant 
value can be determined for  each file. 

For drag  torque verification, the values obtained  from 
System Identification measurements were checked against 
analytically determined values based upon estimates of the 
drag torque  due  to  the primary  factors affecting file damping. 
Table 2 presents several comparisons showing  good 
agreement between the System Identification and  the 
analytically computed values. 

Excellent closure was also obtained for the  torque- 
constant values determined by System Identification.  Values 
obtained for specific files were compared with values of the 
motor  torque measured  experimentally on a test stand 
designed for this purpose.  These  test-stand measurements 
were made before the  motors were installed in the files. The 
values are  compared  in Table 3, again  showing excellent 
agreement. All the torque-constant  values obtained from 
System Identification measurements except  two were found 
to be within the specifications set for the file. One, already 
mentioned,  had a very low value, while another had  a 
slightly higher value than  the specified range. 

torque-constant values estimated by System Identification 
It is quite evident that  the  time-constant, drag torque,  and 
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measurements exhibit excellent agreement with values 
obtained by more  conventional  methods. System 
Identification measurements provided aN three values 
simultaneously,  quickly, and easily, whereas the  more 
conventional  methods of  estimating  these parameters 
required three distinct,  time-consuming efforts. 

Conclusions 
The  main objective of the research described in  the body  of 
the  paper was to gain  experimental knowledge about 
identification  of  electromechanical system parameters  and  to 
compare  the results with those of conventional  methods for 
parameter  estimation.  The  RPEM algorithm was chosen 
because of its  robustness in the presence of non-white noise. 

The closure between results obtained  from  the  RPEM  and 
the  conventional estimation methods has  been excellent. The 
sensitivity and repeatability  of  these RPEM  parameter 
estimations were much better than those obtained  from 
conventional methods. For  the  DASD spindle  experiment, 
the  nonsynchronous sampling  problem was encountered  and 
resolved with a novel solution, i.e., the resampling 
technique. 

Identification is a viable tool  for parameter  estimation  and 
may replace many time-consuming conventional  methods 
for DASD spindles  in the  near future. 

Although the experimental parameter identification was 
only  applied to  DASD spindles, it can easily be extended to 
linear and rotary DASD  actuators  as well as  other 
electromechanical systems. While the described RPEM 
algorithm was run off-line, there  are on-line parameter 
estimation methods  that  can  be used in connection with 
adaptive control of  electromechanical  structures. 

experimental verification of the System Identification RPEM 
algorithm. The reader who is  interested  in the  mathematical 
derivation of this algorithm can  consult Appendix B or  some 
of the listed references. 

The results of  these experiments show that System 

As the title  of this  paper indicates,  this  has  been an 
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Appendix A: Symbols,  abbreviations,  and 
notational  conventions 
A Boldface capital  letters  indicate  matrices 
A' Transpose of  matrix A 
A-I Inverse  of  matrix A 
ARMAX Auto-Regressive Moving Average with 

Exogeneous Variables 
B Damping coefficient 
DASD Direct Access Storage Devices 
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Table 3 Typical comparison of torque constant values from 
System Identification  and  test-stand measurements for four  similar 
files. 

Motor torque constant range 
(N-mI.4) 

System Identification Test stand 

Minimum  Maximum  Minimum  Maximum 

0.0340 0.0368 0.0363 0.0395 
0.0339 0.04 14 0.0360 0.04 10 
0.0347 0.039 1 0.0362 0.04 16 
0.0333 0.0376 0.0359 0.0396 

Open  loop transfer function  in  s-domain 
Discrete time transfer function (2-domain) 
Estimated dc gain  of  spindle motor 
Reduced order discrete transfer function 
Identity matrix 
Current 
Total  moment of inertia J = J ,  + J2 
Moment of inertia of rotor 
Moment of inertia  of  disk  stack 
Torsional stiffness coefficient 
Motor  torque  constant 
Adaptation gain  matrix 
Natural logarithm 
Estimated order of the system 
Covariance  matrix 
Recursive  Prediction Error  Method 
Single-inputfsingle-output 
Sampling period 
Resampling time period 
Estimated  mechanical time  constant 
Input sequence 
Measurement noise = e(k)  + E ,  . e(k  - 1) 
+ . . . En e(k  - n) 
Loss function 
First derivative  of  cost function with respect to 8 
Second  derivative  of  cost  function  with respect 

Process noise 
Output sequence 
Z-transform operator 
Zero-order-hold 
Time  constant for RPEM algorithm 
Variable  gain 
Prediction error 
Residual  prediction error 

to e 

e Parameter matrix  (vector) 
e Estimated parameter matrix  (vector) 
O,(t) Angular  position  of rotor 
O,(t) Angular  position  of  disk  stack 58 1 

~ 
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X(k) Variable  forgetting factor (lambda) 
4 Initial value of forgetting factor 
X, Final value of forgetting factor 
4 )  Applied torque 
7d Estimated drag torque 
+'(k - 1) Observed data matrix (vector) from  past 

such that  the weighted quadratic cost function in prediction 
error 

V,,(e) = 2 AN-& . [ y ( k )  - j (k)I2 
N 

k- I 

measurement - 
O'(k - 1) Sensitivity matrix (vector)  using  residual error 
$(k - 1) Sensitivity matrix (vector) 
$'(k - 1) Observed data matrix (vector)  using  residual error 

is minimized, using iterative numerical search  procedures. N 
is the number of samples. A very common form of such a 
procedure (Gupta and Mehra) is 

4 )  Angular  velocity 
WO Average angular spindle velocity 

0 ( k )  = 8 ( k  - 1) - a(k - I )  

. [Vn{8(k - I))]-' . - l ) ) ,  (B6) 

where  sensitivity function V, is  defined as a negative gradient 

Appendix 6: Parameter  estimation  with  the of the prediction error and the Hessian matrix (P(k)) is 
RPEM  algorithm  (using  residual  error) approximated as given: 
The intent of this appendix is to summarize the RPEM 
algorithm used  for  recursive identification of the simplified $(k - 1) = V@(k - 1)) = - 
dynamic model. This improved algorithm has better 
convergence properties even for time-varying parameters in = f#@ - 1) - (E,@ - 1) $(k - 2) + . . . 
the presence of colored/pink noise. The "variable  forgetting 
factor"  given  by the first-order  difference equation 

[:e] 

+ E,(k - m) $(k - m + I)) ,  (B7) 

X(k + 1) = aX(k) + (1 - a)X, p(k1-l = i in(e(k - I)]-' = 
was introduced to eliminate the influence of the old data and 

(outliers). 
Consider a SISO system  represented  by the ARMAX 

€,(k) = y ( k )  - +'(k - l)i)(k - 1). 

model The adaptation gain matrix is computed as 

A(z") . y ( k )  = B(z") . u(k) + c(z") . e(k) ,  ( B W  P(k - 1) $(k - 1) 

where z" is a backward  shift operator and the polynomials 
= XI + $'(k - 1) P(k - 1) $(k - 1 ) '  

A(z-l), B(z-l) and C(z") are given  by The covariance matrix is updated as 

A(Z-') = 1 + a, . I '  + a2 . z - ~  + . .. + a,, . Z-", (Blb) 

B(z") = b, . z + b, . z + . .. + b, . I " ,  - I  -2 

C(2-l) = 1 + C ,  . z + C,  * z + ... + C, . z - ~ ,  (Bld) - I  -2 

and e(k) is colored/pink noise.  Assuming that the order (m) 
of the noise  filter (C(z")) and its estimated coefficient c's are 
known, the ARMAX  model (Bla) can also be represented as 

Y(k)  = O'(k - 110, (B2) 

where the parameter and observed data vectors are defined 

P(k) = - . [I - L(k)$'(k - I)] . P(k - 1) .  (B11) 
1 
X 

The parameter vector  is updated by the recursive relation 

8 ( k )  = 8 ( k  - 1) + L(k)t,(k). 

The stability test was also incorporated in the RPEM 
algorithm, which ensures that the polynomial C(2-I) is stable 
and is capable of detecting outliers. The RPEM algorithm 
can be significantly improved by computing the "residual 
error,''  defined as 

as g k )  = y ( k )  - O'(k - 1) 8 ( k ) ,  
e = [a,a, . . . a,, b,b2 . . . b,, c,c, . . . CJ, 
O'(k - 1) = [ -y(k - 1) . . . -y(k - n) u(k - 1) and data vector and sensitivity  vector  given as 

(B3) and substituting for prediction error to calculate observed 

. . u(k - n)e(k) . . . e(k - m)]. (B4) S'(k - 1) = [-y(k - 1) .. . -Y(k - n) u(k - 1) ... 
The objective  is to come up with the best estimate of u(k - n) gp(k)  gp(k - 1) . 9 * gp(k - m)], (B13) 
parameter vector denoted by 8 ( k ) ,  - $(k - 1) = S(k - 1) - ( E @  - 1) . $(k - 2 )  

582 8 = [C i , r i2  . . . Ci,, 6,6, . . . 6,, ?,E2 . . . E,]', + ... E , ( k - m ) .   $ ( k - m +  1)). (B14) 
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A summary of the improved RPEM algorithm using 
residual error is  given  here to make the paper self-contained: 

1. Select the initial values  for  RPEM algorithm parameters. 
Select  also the order of noise  filter C(z”) and its 
estimated coefficients: 

Po = 1061, X, = 0.8, X, = 0.995, a = 0.95, 
- 
4(0), $(O), ts, order of C(z”) 

2. Select the length of measurements N .  
3. Compute the prediction and residual errors: 

€p(k) = y ( k )  - &k - 1) e ( k  - I), 

Zp(k) = y(k)  - &k - &k). 

4. Form the observed data matrix (vector) based on 
residual error: 
- 
#‘(k - 1). 

5. Form the sensitivity  vector  based on residual error: 

iw - 1). 

6. Compute the adaptation gain L(k): 

L(k) = 
P(k - 1) $(k - 1) 

XI + $‘(k - 1)P(k - 1W(k - 1)’ 

7. Update the covariance matrix P(k) 

1 
X 

P(k) = - . [I - L(k) F(k - l)] . P(k - 1). 

8. Update the parameter vector 

8 ( k )  = e ( k  - 1) + L(k)tp(k). 

9. Compute the innovation error 

:P(k) = y ( k )  - $(k - 1)8(k). 
10. Increment k and go to 3. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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