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semantics for NIL 

We  present  a  syntax-directed  translation of  NIL, 
a  high-level  language  for  distributed  systems 
programming,  into  CCS,  Milner’s  Calculus of 
Communicating  Systems.  This  translation 
presents  unique  problems  because  of  NIL’s 
highly  dynamic  nature,  and  makes  full  use  of 
CCS’s  descriptive  facilities.  In  particular,  we 
consider  NIL  constructs  for  dynamic  creation 
and  deletion of processes  and  communication 
channels,  queued  synchronous  and 
asynchronous  message  passing, 
nondeterministic  message  selection,  and 
exception  handling. A NIL  implementation  of a 
simple  command  shell is  used  to  illustrate  the 
translation  procedure.  We  discuss  various 
issues  and  open  problems  concerning  the 
suitability  of  CCS  as  an  abstract  semantics 
for  NIL. 

1. Introduction 
In this  paper, we present  a  syntax-directed  translation of  NIL 
into CCS. (A preliminary version of the  paper appeared in 
the proceedings of the  IFIP Conference on  the  Formal 
Description  of Programming Concepts-111, Ebberup, 
Denmark, August 1986.) NIL [ 1, 21 is a high-level language 
for  distributed systems programming developed at IBM 
Research,  Yorktown Heights, New York. CCS, Milner’s 
Calculus of Communicating Systems [3] is a  calculus  for the 
description and algebraic manipulation of concurrent 
communicating systems. Because of the existence of a formal 
(operational) semantics for  CCS, the translation  of NIL  into 
CCS effectively gives NIL a formal semantics. 

The primary  motivation for this work is to provide a 
formal definition of  the  semantics  of  the  NIL language, the 
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first such  definition. We also believe that  the translation will 
enable  people who know CCS to learn NIL  and, conversely, 
enable  people  who  know NIL  to learn CCS. 

Milner,  in Chapter 9 of [3], illustrated the feasibility of 
using CCS as a  semantics for programming languages by 
presenting  a CCS translation of a  simple parallel 
programming language. Other programming languages that 
have been given CCS  semantics  include Hoare’s CSP [4, 51, 
a  subset of Ada [6], and Sticks and Stones [7]. Furthermore, 
CCS has been used as a  semantics for several programming 
systems including the IS0  OS1 [SI and  the system-calls level 
of UNIX [9]. The  sum of  these efforts demonstrates  the 
utility of CCS as a  formal  model  for concurrent 
programming languages and systems. 

Our translation of NIL  into CCS differs from  the above 
work in several respects. Regarding the Ada  translation [6], 
we were required to model NIL‘s dynamic binding of 
communication ports to processes; such  binding is static in 
Ada. Also, the particular  code  body  being  executed by a NIL 
process is determined dynamically (see [IO] for  a much  more 
elaborate comparison of Ada and NIL). Our translation  of 
NIL is inherently different from  the  UNIX translation [9]. In 
UNIX, process creation  is at  the “fork” level; its  translation 
into CCS  is thus primarily  concerned with the copying and 
creation of memory segments.  Interprocess communication 
is at  the file level (i.e., pipes). The corresponding NIL 
constructs are  at a much higher level of abstraction. 

The  structure of this  paper is as follows: Section 2 
provides an overview and  comparison of NIL  and CCS. In 
Section 3, we present our translation  of NIL  into CCS. Some 
highlights of our translation are also given in  the beginning 
of Section 3. The translation  procedure is illustrated in 
Section 4 using a  NIL implementation of a  simple command 
shell. Finally, Section 5 concludes with a discussion of some 
of the issues in using CCS as a  semantics for NIL. 

2. An  overview  of  NIL  and  CCS 
In this  section we  first present an overview of  NIL; we follow 
with an overview of CCS; and conclude with a  capsule 
summary of the main differences between the two. 
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NIL 
NIL is a high-level systems programming language 
developed at  the IBM T. J .  Watson Research Center. The 
single unit of modularity in NIL is the process, which 
subsumes  the  notions of procedures, tasks, data abstraction, 
and others. Unlike abstract data types, where the user  of the 
type is actively making calls and  the abstract data type 
module is passively accepting calls, the relationships between 
processes in NIL  are symmetric. 

Each  NIL process is a strongly typed,  sequential  program 
built from the  standard  control constructs of Algol-like 
imperative languages: sequential composition, if statements 
for alternation,  and while statements for  iteration. In 
addition,  NIL  supports exception  handling.  Each statement 
may result in a normal  termination, which is followed by the 
execution  of the next  sequential statement,  or  an exception 
termination, in which case execution continues  in  an 
exception handler associated with the exception  condition. 
The possible exception conditions which can be raised by a 
given statement  are known statically: from the  statement 
name for  primitive  statements, and  from  the interface  type 
definition  for call statements. 

Processes in NIL  communicate only  over  communication 
channels; there is no sharing  of data across process 
boundaries. Communication is supported  in  the language by 
the type  families  input port-whose values are message 
queues, and output port-whose values are  connections  to 
input ports. Such a connection constitutes the right or 
capability to access the  input port’s message queue for the 
purpose  of enqueueing messages. Figure 1 depicts a 
communication  channel between two processes. The circles 
totally  within a process represent the local variables. The 
circles on  the  boundaries of the processes represent port 
variables. 

Ports, like all variables in  NIL, are statically typed. A 
channel  can  connect  only  output ports and  input  ports of 
the  same user-defined type. A port’s type determines  the type 
of the messages that  may be transmitted along the channel. 
Several output  ports  may be connected  to a single input 
port, but  not vice versa. Messages amving  at  an  input port 
are  enqueued. Processes use guarded commands similar to 
Ada select statements  to selectively respond to 
communication  on  their  input ports. 

NIL  supports both one-way (asynchronous) and two-way 
(synchronous) communication. Two-way communication, 
which uses the  operations call,  accept, and  return, involves 
the transmission  of a callrecord (collection of actual 
parameters) and  the suspension  of the calling process until 
the accepting process has processed and  returned  the 
callrecord. The accept operation removes a single callrecord 
from  the  input  port,  or waits until one is available. 
Sometimes a process which has  accepted a callrecord  later 
decides that  the call should be serviced by some  other 
process. In this case, the accepting process can also forward 

* A communication channel: an input port connected to an output port. d 

the callrecord, and  the responsibility of returning  the 
callrecord to  the caller, to  another process. One-way 
communication, designated by send and receive, does not 
cause the sending process to wait. The receive operation 
dequeues a message from the  input port, if one is  present, 
and otherwise causes the receiving process to wait. 
Successive messages sent over a single output port will be 
received in FIFO order,  but no specific order  other  than a 
fair merge is guaranteed for messages sent  over different 
output ports which amve  at  the  same  input port.* 

Since NIL is a systems programming language, as  opposed 
to  an applications programming language, it  is essential that 
connections between modules  change  dynamically. The 
designers of NIL  thus chose to allow communication 
channels  to be created  dynamically under program  control, 
rather  than statically as in languages like CSP [ 1 I ]  and Ada 
[ 121. A process, say P, can create a communication channel 
through the  statement “Y = outport of X,” where Y is an 
output  port  and X is an initialized input port. P can initialize 
input  port X using the  statement “initialize X.” By passing Y 
to  another process Q, P gives Q the capability to send 
messages to  input  port X .  

Processes are created and destroyed  dynamically. An 
object of type  process is initialized by issuing a create 
operation, supplying as  parameters  the  name of the file 
containing  the compiled NIL program to be executed by the 
process, and a list of creation-time parameters. These 
parameters  are used to pass initial data  and capabilities to  an 
initialization routine within the created process. Like any 
other  NIL object, a process can  be passed in a message from 
one process to  another, with the result that  the receiving 
process now  owns the passed process. 

A process is destroyed  when  its  owner issues a cancel 
operation.  Canceling a process which has not already 

Farmess. tnformally stated. means that if a choice between two types of events A and B is 
offered sufficiently often. eventually each type of event will be chosen. In particular,/air merge 
means that if output port A and output port B are connected to the same input port, and 

message ~n preference to the A message or vice VCM. 

messages are available on both ports. the receiver must not infinitely often choose the B 
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Clients 

re  the call; (b) configuration after client C3 has 
nager  and  has received a port granting  indirect 

terminated causes that process to eventually enter  the 
canceled state. A process in the canceled  state will have  a 
CANCEL exception raised as a  result of issuing a  subsequent 
waiting operation (select, receive, or call), or on a 
subsequent  loop  iteration. The process is then  permitted  to 
perform “last wishes” by providing  a  handler  for the 
CANCEL exception.  However, the language rules  stipulate 
that once  a CANCEL exception  has  been raised, the process 
will terminate in  a finite amount of time. 

Unlike CCS, NIL has no concept of global time or 
simultaneity of events  in  distinct processes. There is  only  a 
partial order between the local times of each process as 
determined by causality of  events: The event of a  sender 
sending message M precedes the event at which the receiver 
receives M. Events which are  not related by communication 
(either directly or indirectly) are incomparable. 

A more  complete  summary of NIL  can be found in [ 11, 
and a status report in [ 131. The following is a simplified but 
illustrative  example of how NIL is used in systems 
programming. 

SCOTT A. SMOLKA AND ROBERT E. STROM 

Suppose there exist a number of  system resources-e.g., 
printers, files, databases, etc. There  are clients who from  time 
to  time require the use of  these resources, and a resource 
manager whose job is to  grant clients temporary access to 
these resources. 

Assume that each  client,  each resource, and  the resource 
manager are separate processes. To simplify the example, 
assume that  the resources each  have a single input  port for 
servicing requests to  operate  on  the resource, and  that  the 
resource manager  has  a single input  port for servicing 
requests from clients to  obtain access to a resource. Then  the 
configuration  of port bindings before any client  has 
requested a resource resembles that  in Figure 2(a)-each 
client  owns an  output  port connected to  the resource 
manager’s input port, and  the resource manager  owns 
output  ports  connected  to  the  input ports  of each resource. 

A client  requests access to a  resource by issuing a  call 
statement, passing a  callrecord with two components:  an 
input parameter Rq.ResourceClass specifying the type  of 
resource desired, and  an  output  parameter Rq.Capability 
which upon  return from the call will contain  an  output  port 
connected to  the resource. 

Since the resource manager may wish to  grant limited 
access to  the resource, and may wish to retain the right to 
cancel the access, the resource manager will grant access to 
the resource not by directly connecting Rq.Capability to  the 
resource, but instead by creating an  intermediate process 
called Filter. The filter process can be programmed  to 
arbitrarily  limit the client’s access to  the filter. Furthermore, 
the resource manager can withdraw  a client’s access to  the 
resource by canceling the filter. The configuration  after  a 
successful call from a  client to  the resource manager 
resembles Figure 2(b). 

The  NIL code for the resource manager process is shown 
in Figure 3. The resource manager process begins by creating 
resources R 1 and R2. Each create  operation causes an 
initialization call to  the newly created resource process, 
which returns  an  output port connected  to  the resource’s 
input port-that is, a capability to access the resource. After 
creating the resources, the resource manager iteratively 
processes service requests. 

The definition  for the type GetResourceInterface specifies 
what  a request must be-namely, an input parameter 
Rq.ResourceClass and  an output parameter RqLapability. 
The  function ChooseResource is then invoked. The code of 
this function is not shown, but its result will be to select an 
appropriate resource based upon  the requested  resource class 
and  to  return a  capability to  that resource. That capability is 
stored  in the variable ResourceCapability. An instance of a 
filter process is created, whose code  body is “Filter.” The 
filter is  initialized by passing it the capability to  the resource 
as an  input  parameter,  and receiving the capability to  the 
filter as an  output  parameter.  The capability to  the filter is 

First the process accepts  a  request Rq from its input  port. 
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stored  in Rq.Capability. The filter process is saved in the 
table ActiveResources, and  then  the request  is returned  to  the 
calling client. 

A realistic version of a resource  manager  would contain 
additional code to  handle deletion  of resources. This code  is 
not shown. 

ccs 
Milner's CCS (Calculus of Communicating Systems) is a 
calculus for the description and algebraic manipulation of 
systems  of communicating processes [3]. Various 
equivalence  relations,  most  notably  observational 
equivalence and congruence,  along  with  their  corresponding 
equational systems, have  been  proposed  for  CCS  [3,14]. 
These systems, which safely allow one CCS term  to be 
rewritten as  another, give CCS its manipulative power. 

of a process is the set of  ports through which it can 
communicate with other processes. Unlike NIL, 
communication in CCS is unbuffered-the sender and 
receiver of a message must agree to synchronize at  some 
point  in time-and the sort of a process is fixed. 

interleaved  execution of the  component processes, with 
simultaneous moves by two processes whenever  they 
communicate (see Milner's "expansion  theorem" [3]). 

In  order  to describe CCS, we first present an example 
from [3], a variant  of which will be used in our translation  of 
NIL.  Consider a process that behaves like an infinite queue 
of elements from some value domain V. We call this 
behavior queue, and it  is  parameterized by a string s from 
V*: 

Like NIL, communication in CCS is  port-based. The sort 

The  semantics of concurrent  composition  in CCS is one of 

queue($ e= in ( x )  . queue (append x s) + 
i f s  = c then OUt ($) . queue(s) 

else OUt (first s) . queue (rest s) 

queue (s) becomes a queue whose contents  are x appended 
to s, whenever a value x E Vis received over input  port in; it 
becomes a queue whose contents  are rest s whenever  it 
outputs its first value over output  port out; and  remains  the 
empty  queue whenever  it outputs $ (the  empty  queue 
symbol)  over out. This example  illustrates  how the 
synchronization and  communication behavior  of a data type 
can be captured in  CCS while leaving its  type-theoretic 
behavior to outside reasoning. 

Fairness is not directly expressible in CCS. Thus,  one 
possible behavior  for queue (c) is to  remain  the  empty  queue 
forever despite  repeated attempts by its environment  to 
enqueue  some element. Recently, fairness has been 
incorporated into SCCS in terms of a "finite-delay" operator 
[ 15,161. SCCS [ 141 is a variant  of  CCS  in which processes 
move as if under  the  control of a global clock. The issue of 
fairness in CCS is discussed further in  Section 5. 
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/* ............... */ 
ResourceManager: process 

Resources: TableOfResourcePorts; 
AcliveResources: TableOfFilters; 
ResourceProcess: Process; 
ResourcePon: Resourcelnte$me; 
Resourcdapability: ResourceInte$me; 
FilterProcess: Process; 

Inpulpon: GetResourcelnterface; 
ChwseResource: ChooseResourcelnterface; 

/* initialize Resources *I 
create (ResourceProcess, "RI",  ResourcePort); 
insert ResourceProcess into ResourceProcesses; 
insert ResourcePort into Resources; 
create (ResourceProcess, "RZ", ResourcePon); 
insert ResourceProcess into ResourceProcesses; 
insert ResourcePon into Resources; 

I* service  requests 
while true do 

accept Rq from Inputport; 
Resourcdapability := ChooseResource (Resources, 

Rq.Resourcd/ass); 
create (Filterprocess, "Filter", ResourceCapability, 

Rq.Capability); 
insert Filterprocess into ActiveResources; 
retum Rq; 

end while; 

end ResourceManager; 

4 NIL code for  resource  manager process. 

. "" ". . . ."."_."l ."."_ _ _  " ". 

We can  augment  the  queue example by defining a 
transmitter  and receiver process which enable  end-users to 
communicate asynchronously with each other using queue: 

transmitter e= user-trans(x) . G ( x )  . transmitter 

receiver e= out(x) , user-rec(x) . receiver 

The  concurrent system consisting  of the  transmitter, 
receiver, and  queue  can be expressed as 

(transmitter] queue (c) I receiver)\(in, out) 

The \ (backslash) denotes  the restriction operation  and,  in 
this case, limits  direct use of the  queue  to  the  transmitter 
and receiver processes. User processes access the set of  ports 
(user-trans, user-rec) in  order  to  communicate. 

We now  present the syntax and informal  semantics of 
CCS with value expressions over a presupposed value 
domain D. We use e l ,  e,, . . . to  denote expressions (e.g., 
function  applications and constants)  over D, and x,   y ,  . . . to 
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Table 1 NIL versus  CCS. 0 B + C is a behavior expression which nondeterministically 
behaves like B or C. The  operator + is the binary version 

NIL ccs of E. 
A high-level distributed systems “A Calculus of Communicating 

0 B 1 C is a behavior expression which behaves  as the 

programming language, IBM Systems” [3] 
Yorktown  Heights 11. 21 binary version of n. 

concurrent composition of B and C. The  operator I is the 

Port variables Port constants only 

Dynamic interconnection of Static (syntactic) 

0 B \{a,, . . . , an) is a behavior expression which behaves 
like B with the set of ports (a,, Y ,  I 1 I i I n)  deleted from 

communication ports interconnection of input and its  sort. \ is called the restriction operator and effectively 
output ports hides all a,-actions  and zi-coactions from B s  outside 

Message  queues-no “action at Synchronous communication 
a distance” 

Dynamic creation and Composition operator plus 
cancellation of processes  recursion 

Dynamic binding of code bodies Static binding of behavior 
to processes expressions to behavior 

identifiers 

Fairness requirements Fairness not part of the original 
calculus 

world. 
0 B [ u , / p , ,  . . . , u,/p,,] is a behavior expression which behaves 

like B with all actions/coactions p, relabeled as u,, 

I s i I n .  
ifcond then B else C is a behavior expression which 
behaves like B if cond is true  and like C otherwise. 
P (e , ,  . . . , ek) is a behavior identijier with actual 
parameters e, ,  . . . , e,. We write P B to associate 
behavior identifier P with behavior  exmession B. 

denote variables over D. A complete exposition on CCS 
including a formal (operational) semantics is given in [3,14]. 

Input ports  in CCS are  denoted by names a, p, . . . , and 
output  ports  are  denoted by conames ;, p, . . . . (In  practice, 
mnemonic English names  are often used in place of small 
Greek letters.) A communication  can  take place only over 
complementary ports, e.g., a and z. 

Names  and  conames will also be used, respectively, to 
denote  input actions and  output coactions taken by a CCS 
process. For example, a(x) is an action that  inputs a value 
for x from  port a, and ;(e) is a coaction that  outputs  the 
value e over port ;. In X-calculus-like terms, the variable x is 
bound by a and  the value expression e is qualijied by G. 
Actions a(x) and .(e) must  occur simultaneously to effect a 
communication,  the result of which is  intuitively 
“x := e.” 

CCS programs, called behavior expressions by Milner, can 
be defined inductively as follows: 

NIL (not  to be confused with the  programming language) 
is a behavior expression which does absolutely  nothing. 

Let a(x) be an  input  action, .(e) an  output  action,  and B 
and C behavior expressions. Then 

a(x) . B is a behavior expression which first inputs  some 
value v over  port a and  then behaves  like B with all free 
occurrences of x bound  to v .  

;(e). B is a behavior expression which first outputs  the 
value of e over the  port a and  then behaves exactly like B. 
Note  that every variable in e must be bound  for  this 

560 coaction to  make sense. 

CCS also allows for parametric  port  names (e.g., a,) and 
behavior identifiers (e.g., P,). In fact, Milner shows in [ 171 
that  the  entire calculus with value  expressions  can be 
encoded into a simpler  calculus  devoid  of  value expressions 
using sets of parametric  port  names of the  form 
(aE ad I d E D), where D is the value domain in  question. 

- 

NIL versus CCS 
NIL  and CCS were designed with very different purposes in 
mind-NIL as a high-level systems programming language, 
and CCS as  an algebraic model of concurrency. As such, a 
direct comparison of the two languages may  not be practical. 
However, both languages define concurrent systems of 
processes that  communicate  only  through  the exchange  of 
messages at ports. Table 1 summarizes  the essential 
differences between NIL  and CCS with respect to 
interprocess communication  and process creation. These 
differences in turn  constitute  the  main issues addressed by 
the translation. 

3. The translation 
In this section we present a syntax-directed translation  of 
NIL into CCS, which will be given in  terms of a set of 
translation  rules (one for  each NIL, construct). The 
translation  rule for a given construct  (syntactic unit) S of 
NIL yields a CCS behavior expression [[SI]. The translation 
is syntax-directed  since [ [SI]  is produced  independently of 
the  context of S. For example, [[if E then S else S f ] ]  will be 
derived  uniquely from [ [ E ] ] ,  [[SI], and [[SI]. 

Variables in  NIL will be modeled as registers in CCS. The 
restriction operator is  applied to prevent other processes 
from  having access to  the ports of the local variables of a 
particular process. However, NIL  input  and  output ports will 
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be modeled as globally accessible ports in  the CCS 
translation. 

The sequential component of NIL 
In Chapter 9 of [3], Milner  presents  a  translation of a  simple 
parallel programming language into CCS. This work is 
fundamental  to  our  own  and we thus describe  it here. 

NIL programs, like programs from Milner’s language, will 
be built  from declarations D and statements S. Declarations 
in NIL associate variable names with types. Here we  use type- 
free declarations whose syntax is D ”+ var X, . . .; var X, 
where X is a program variable. 

Statements will be built from expressions E having  syntax 
E ”+ X I F(E, . . . , E), where F is a function symbol standing 
for the built-in functionJ: 

expression corresponding to a register with sort 
{write,, read,!: 

LOC, e write,@) . REG,(x) 

REG,(y) + write,(x) . REG,@) + G d , ( y )  . REG,(y) 

Note  that X will be “born”  as LOC, and  then become 
REG,(u) as  soon as it inputs a value u. The set of  ports 
needed to access LOC, (the access  sort of LOC,) is 
L, = {write,,  read,!. 

represented by the behavior b,, which first inputs its n 
arguments,  outputs  the value of the corresponding 
application ofJ; and  then dies: 

A variable X will be represented by a  CCS  behavior 

- 

- 

Each nary function symbol F (denoting function f )  will be 

b,* ~ l b , )  . ’ .  . . P,,(x,,) . P(f(xl ,  . . ., x,)) . NIL 

The translation  rules for an expression E containing 
variables X,, . . . , X, will yield a behavior  expression  of  sort 
{readxl, . . . , readxk, p J .  It uses port read,, to read the value 
of X,, and like function symbols, delivers its result at p and 
then dies. 

Several translation rules (e.g., the  one for  assignment 
statements) will yield a  behavior expression that is 
dependent  on  the result delivered by an expression. Thus, for 
some behavior expression B, Milner  abbreviates the CCS 
expression ([[E]] I p(x) . B)\{pl as [[a] result (p(x)  . B). 

A statement S containing variables X,, . . . , X ,  will be 
represented by the behavior expression [[SI] whose sort 
includes the set L,, U . . . U Lxk U 18). The  port 3 is used by 
[[SI] to signal its completion  and  thus effect  flow of  control. 
Milner defines the following auxiliary  behavior expressions 
in this light: 

done = s. NIL 

B,  before B2 = (B,[P/4 I P . B2NPI, 

where P is not in the sort of B, or B,. 
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The following translation  rules are  for expressions [3]: 

[[X]] = read&) . ;(x) . NIL 

[[F(E,, . . .* EJll 

= ( [ [ E , l l [ ~ l / ~ l  I ‘ ’ I [[E,, l l[~,l~l  I b,)\{pl, . . ., p,) 

In the first rule, the value of X is read from its register and 
delivered as  the result of the expression. In the second rule, 
the value of  each expression is read by the behavior b,, 
which then delivers the  appropriate  function application as 
its result. 

What follows are  the translation rules [3] for  assignment, 
sequential composition, conditional,  iteration, and begin- 
block statements. The  NIL syntax  of  these statements  can be 
seen on  the left-hand side of the rules: 

[[X:= E]] = [[E]] result (p(x)  . write,@) . done) 

[[X S’ll = [[SI1 before [[S’ll 

[[if E then Selse  S’ end if]] = [[E]] result (p(x) 

(ifx then [[SI] else [[S’]])) 

[[while E do S end while]] = w, 

where w is  a new behavior  identifier  such that 

w + [[E]] result (p(x)  . I fx  then ([[SI] before w) else done) 

[[block declare var X,; . . .; var X,; begin Send block]] 

= (Loc,I I . . . I L0Cxn I [[SI])\ LXI  u . . . u L,” 
In the assignment statement rule, the result of  evaluating 

E is stored in X’s register. For sequential  composition, the 
before operator ensures that [[SI] is executed before [[S’]]. In 
the conditional statement rule, the result of evaluating E is 
used to  determine whether to execute [[SI] or [[SI]. For  the 
while statement, E is  evaluated to  determine whether to 
re-execute [[SI] or  to deliver the done signal of [[SI]. Finally, 
for the begin statement, register behaviors for each  declared 
variable are started up in parallel with [[SI]. These variables 
are made local to  the scope of the begin through restriction. 

Translating the rest of NIL 
In the previous  subsection we considered the translation  of 
expressions, assignment  statements,  sequential  composition, 
if-then-else statements, while statements, and begin-block 
statements. Now we consider NIL constructs  for dynamic 
creation and deletion of processes and ports, message 
passing, nondeterministic message selection, and exception 
handling. Some  additional flow-of-control constructs are also 
considered. 

NIL  supports variables of type inport (receiveport, 
acceptport) and outport (sendport, callport). For example, 
statements such as X := Yare  permitted, where X and  Yare 
outport variables. (After this  statement is executed, X will be 
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-iipid 

connected to the same inport as Y.)  Also, inports and 
outports can be  passed as messages. 

In CCS there is no notion of port variable but only of port 
constant. The effect  of port variables can be obtained in CCS 
through the use of an indexed  set  of ports [ 171. That is, we 
associate the CCS port Ooprd with each instance of a NIL 
outport variable X, where opid (short for outport id) is a 
unique index. The  outport X may  now  be  referred to in the 
CCS translation by its index opid, which  we store in a 
register  associated  with X. For example, X may be passed in 
a message  by reading the value of opid from its register and 
then passing this value. 

Similarly, we associate a CCS port lipid, and a register in 
which to store the value  of ipid, with  each instance of a NIL 
inport variable. Note that under this convention, the sort of 
the CCS behavior expression resulting from the translation 
of a NIL  process will include the set {L , ,  0, l j  E N]. 

following behavior expression: 

ZdCen( n)  e= =( n)  . ZdCen( n + 1 ) 

To supply a source of ids in our translation, we define the 

Through relabeling we obtain a source for inport and 
outport ids: ZdGen(O)[igen/gen] and ZdCen(O)[ogen/gen], 
respectively. Note that both sources start with id 0. We  will 
also  need a source of process ids (see the translation of 
create) for which we  use the behavior ZdGen(O)Lpgen/gen]. 

As described  in  Section 2, message  passing  in NIL is 
completely asynchronous in that messages are queued at the 
receiving end, and the transit time of a message along a 
communication channel is indeterminate. To model this 
NIL asynchrony in  CCS,  where  message  passing is 
unbuffered and synchronous, we "attach" an infinite queue 
behavior to each  of the L,, 0, CCS ports used in the 
translation. The effect  of a communication channel between 

outport ZoPrd and  inport L , ~ , ,  can then be obtained by 
diverting the  output of the Eop,, queue to  the  input of the L , ~ , ,  
queue. Note that it  is  necessary to attach an infinite queue to 
ooprd (as well as to L,,,,) in order to "desynchronize" 
transmitting processes. 

To illustrate, consider a NIL channel configuration 
consisting  of outports X and Y connected to inport 2. Let 
oopid, ooprd', and L,,,, be the respective  CCS ports. Our 
translation would  yield the picture in Figure 4. 

The access sort of this channel configuration is 
{Oopid, oOprd', L,,,,) as desired. If an infinite queue were not 
attached to each of ports oOprd and oOpld', then the following 
scenario could occur: Let e be the event of transmitting 
message M over outport X, and let e' be the event of 
transmitting message M' over outport Y. If e precedes e' (in 
the partial order of events in a NIL system-see Section 2 ) ,  
then M would  necessarily be enqueued at inport Z before 
M' ,  violating the aspect  of NIL semantics that says the 
transit time of  messages  is indeterminate. 

What follows are  the CCS behavior expressions  for 
outport and  inport queues. In each  case, we  first define a 
behavior that models an empty queue, which  evolves into the 
behavior for a nonempty queue upon inputting a value. Of 
course, a nonempty queue becomes an empty queue after 
outputting its last  value. 

Outport queues are  provided  with a port who,,,, which 
can be interrogated to determine the id  of the inport to 
which it is connected. This feature is  needed in translating 
outport assignment. Inport queues are provided  with two 
auxiliary ports. Port ~ l I p i ,  can be queried to detect the 
current state of the queue, a feature needed in the translation 
of  select. Port make,,,, can be  used to trigger the creation of 
an outport opid connected to inport ipid. 

- 

" 

- 

Empty outport queue 

outq (opid,  ipid) + o,,~(x) . outq' (append x t ,  opid, ipid) 

+ who (ipid) . outq (opid,  ipid) 
oprd 

Nonempty outport queue 

outq'(s, opid, ipid) O,,~,,(X) . outq' (append xs, opid, ipid) 

+ ~,,,,( Jirst s) . $(rest s = C )  then outq (opid,  ipid) 

else outq' (rest s, opid, ipid) 

+ who,,,(ipid) . outq' (s ,  opid, ipid) 

Empty inport queue 

inq (ipid) + out,p,d(x) . inq' (append x t, ipid) 

+ g I ! , , J t )  . inq (ipid) 

+ make,,,,(opid) . (inq  (ipid) I outq (opid, ipid))\{out,p,,] 
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Nonempty inport queue 

inq’ (s, ipid) out,p,d(x) . inq‘ (append x s, ipid) 

+ irprd( first s) . $(rest s = e )  then inq (ipid) 

else inq‘ (rest s, ipid) 

+ s l , p , d ( s )  . inq’ (s ,  ipid) 

+ make,,,,(opid) 

. (inq’ (s ,  ipid) I outq (opid, ipid))\{out,p,d) 

Notice the  asymmetry in the definitions: outq (and outq’) 
names  the  inport  queue  to which it transmits messages, 
while inq (and inq’) receives messages anonymously.  This 
parallels the  situation in NIL where more  than  one  outport 
may be connected to a single inport,  but  an  outport  may  be 
connected to only one  inport. Also note  that port z,p,d in 
outq’(s, opid, ipid) complements out,o,d in inq’(s, ipid), thus 
effecting the  connection. These  ports are  hidden for every 
inport-outport  channel. 

The formal  syntax  of each statement type is evident in  the 
left-hand side of its corresponding  translation rule. 
Comments  about  the semantics  of  each statement  and its 
translation are included. 

What follows are  the translation  rules  for the rest of NIL. 

~ 

[[initialize X ] ]  = igen (ipid) . write,(ipid) . (done I inq (ipid)) 

creates an initialized inport (Le., capability) X. We  note  that 
another possibility for (donel inq (ipid)) is 6 . inq (ipid). We 
view the  former as an  “optimization” of the latter. 

- 
[[ Y := outport of X ] ]  = ogen (opid) . write,(opid) 

. read,(ipid) . make,p,d(opid) . done 
- 

creates  a  unidirectional  channel  from outport Y to  inport X .  

[ [Y  := X ] ]  = ( X ,  Y both outports) 

read,(opid 1) . who,,,,(ipid) . ogen (opid 2 )  

. write,(opid 2 )  . make,,,,(opid 2 )  . done 
- - 

Y becomes an  outport connected to  the  same  inport  to 
which X is connected. 

[ [receive(X,, . . . , X,) from Y ] ]  = read,(ipid) 
- - 

. L,,,,~(x,, . . ., x,) . writeXl(x,) . . . . . write,jx,) . done 
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Values are  input  into variables X , ,  . . . , X, from receiveport 
Y. The receiver must wait if Y‘s message queue is empty. 

[[call Y(Xl, . . .,X,,)]] = igen (ret-ipid) . (donel inq (ret-ipid)) 

before 

ogen (ret-opid) . rnakere,-,Jret-opid) . done 

before 

( [ [ ~ l l l [ P l l P l  I . . . I [ [ ~ , I l [ P , / P l  I 
pl(x,) . . . . . p,(x,,) . read,(opid) 

. o,p;d(x, > ’ . ‘ 9 ret-opid) . Lre(-lprd(XI ’) ’ ’ ’ 9 x n ’ )  

- - 
. writexl(x,’) . . . . . writexJxn’) . done)\(p,, . . ., p,] 

Like Ada’s call,  a callrecord, i.e., a list of actual  parameters 
X,,  . . . , X,, is output  to callport Y. The caller must wait for 
the  return of the callrecord. NIL also has  a facility for 
returning  an exception on a call. 

Regarding the translation, a communication  channel for 
the  return message is first created. The capability  for this 
channel is passed along with the callrecord parameters  to Y. 
In this  translation, all parameters  are considered to be 
in/out. The translation  of in and  out  parameters is handled 
similarly. For example,  since out  parameters  may be 
uninitialized at  the  time of call, no  attempt is made  to read 
their values. 

[[accept CALLREC from Y ] ]  = read,(ipid) 

. L rprd (callrec) . =ecALLREc (callrec) . done 

Like Ada’s accept, a  callrecord is input  from acceptport Y 
into variable CALLREC, a  record  having one field for each 
formal parameter.  The acceptor must wait if Y‘s queue is 
empty. After dequeueing a  callrecord, the acceptor is 
responsible for  either  forwarding or returning  the callrecord. 

Regarding the  translation,  the (n  + 1)th field of 
CALLREC is the capability ret-opid to be used by a return 
statement  to  return CALLREC to  the caller. 

[[return CALLREC]] = [[CALLREC]] result (p(ca1lrec) 

- . ~,,,~,+~(all-but-last callrec) . done) 

CALLREC is returned to  the caller. 

[[forward CALLREC to Y ] ]  = read,(opid) 

. readcALL,,,.(callrec) . ?i,,,(callrec) . done 

CALLREC is forwarded  along sendport Y. The process that 
eventually receives CALLREC assumes the responsibility of 
returning CALLREC to  the original  caller or of  reforwarding 
CALLREC. 
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[[select 

event ( X , )  guard (GI) S,  

event (X, )  guard (G,) S, 

end select]] = ( n Watchdog, I Controller)\(gotcha, 
15,s“ 

stop,, 1 5 i 5 n ]  

where 

Watchdog, e= readx,(ipid) . ([[G,]] result (dg,) . 

ifg, then W, else stop, . NIL)) 

and 

W ,  e= stop, . NIL + poll,,,,(state) . 

if state # e then (gotcha . [[S,]] I stop, . NIL) 

+ stop, . NIL 

else Wi  

and 

Controller (gotcha . n stop, . NIL) before done 

Like Ada’s select, one of the  “open”  statements S, is 
nondeterministically  chosen  for  execution. No fairness 
assumptions  are  made  about  the selection process. An S, is 
open if the  queue of  its inport X, is nonempty  and its  guard 
(Boolean expression) G, is  true. If none of the S, are  open, 
the process waits. 

In  the  translation, Watchdog, (through W,) continually 
polls the  inport  queue of X ,  waiting for it  to  be  nonempty. 
When  this is the case and G, is true (i.e., the  ith alternative is 
open),  it  tries to get selected by signaling Controller with 
gotcha. Controller will nondeterministically issue a 
complementary gotcha with one of the  open alternatives and 
then kill all of the Watchdog,. The signal stop, is  needed in 
three different places in W ,  to make sure  it gets killed. (The 
killing of the Watchdog, is for  the sake  of cleanliness-we 
view processes as resources-it does  not affect the  semantics 
of the  translation of select.) 

Is!=, 

- 

[[create (Q,  NAME, X , ,  . . . , X,,)]] = 

igen (ipid) . (done I inq (ipid)) 

before 
- 

ogen (opid) . make,,,,(opid) . done 

before 
- 

pgen (pid)  . writeQ(pid) . read,,,(name) 

. ([[call “opid” (X , ,  . . . , X,)]] I Pname(ipid)) 

creates a process Q that executes the compiled NIL 
program contained  in file NAME. Creation-time  parameters 
X,, . . ., X ,  are passed to Q over its initialization  port. 
A process id b i d )  is returned as the value of Q, which the 
owner  of Q can use to signal Q s  termination (see the 
translation of the cancel operation  and  the Appendix). 

the parameterized  behavior P,,,,, which will correspond to 
the created NIL process Q. P,,,,, must have previously been 
defined through  the translation of a process statement 
labeled name. Before that a channel is created for passing the 
creation-time parameters  to Q. The  parameter of P,,,, is the 
inport  id for  this channel,  to which P,,,, will refer when 
doing an accept over  its  initialization  port. Quoted 
arguments  to translations (e.g., opid in 
[[call “opid” ( X , ,  . . ., X,)]]) are  to be treated as constants, 
and  thus  no access to a register is required. (This is strictly a 
notational convenience,  since we could  factor out  the 
accessing of the callport variable register from  the translation 
of call. Similar comments apply to  other uses of quoted 
arguments  to translations.) 

This translation  has the effect of starting up  an instance  of 

[[accept CALLREC from r]] = (where Y is of  type initport) 

[[accept CALLREC from “init-ipid”]] 

In the  translation, init-ipid is the first parameter of the 
behavior  currently being defined (see ahead for the 
translation of the process construct). 

[[cancel  Q]] = readQ(pid) . Canp,, . done 

The signal Can,,, will invoke  the cancel handler of Q (see the 
Appendix) if Q has not already terminated. 

[[L: block  declare  var X,; . . . ; var X,; 

begin 

so; 
on (EXJS, ;  

The begin-block construct is enlarged to  include  the 
definition  of a block label ( L )  and exception  handlers: 
Statement S, is executed whenever exception EX, is raised 
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during  the execution  of So and is not handled by an 
exception  handler  of an  inner begin block. 

“exception  ports.” By restricting the  names of these 
exception  ports, an exception will activate the  handler 
defined in the most closely surrounding block. The ex, 
intermediate  communications  are used to  ensure  that 
exceptions raised within one of the  handlers S, do  not 
activate a handler S,, 1 I i, j 5 n, but  rather a handler from 
a block surrounding L.  When an exception  is raised (see 
below for the translation of raise), [[So]]  terminates without 
issuing a done signal; the done signal of the  handler becomes 
the done signal of the block. 

[[raise EX]] = E x .  NIL 

raises exception EX. 

[[leave L]]  = E . NIL 

Compound  statements (begin,  while, and select) may have 
an  optional label. The leave statement causes flow of control 
to be diverted to  the point  immediately following the 
compound  statement labeled L, and  must be nested within 
this compound  statement. 

handler  handled  only by block L. (Refer to  the behavior 
L . done defined in  connection with the translation of a 
block statement labeled L.) Leave statements  that refer to 
other types  of compound  statements  are translated similarly. 

[[Ident: process D; 

In  the translation, identifiers EX, are used as names of 

A leave statement is translated as  an exception with a null 

begin 

s; 
end  process]] = Plde,,,(init-ipid) 

Ident is the  name of the  entry  in  the executable  library which 
is created upon successful compilation of the  NIL program 
(process) being  defined. This  name is used by a create 
statement  to load the module, at which time  statement S is 
executed. As for a normal begin-block, exception  handlers 
can be provided  with the process construct. A default 
handler for the CANCEL exception  is  executed if no such 
handler  is  provided explicitly. 

a begin-block having  declarations D and body S. The 
parameter init-ipid will correspond to  the id of the 
initialization port for Pldenr (see also the translation  of create 
and of accept over an initialization  port). 

The CCS behavior Plden, will be equal  to  the translation  of 

To complete  the  translation, we present the CCS behavior 
corresponding to a NIL system generation. This behavior 
will initiate the generators  for inport,  outport,  and process 
ids, and  the  translation of a special NIL process “Init,” with 

predefined inports  and outports. Init is supplied with 
(constant-valued)  creation-time  parameters. 

IdGen(O)[igen/gen] I IdGen(O)[ogen/gen] I IdGen(O)[pgen/gen] 

[[[create (Q, “Init”, E , ,  . . ., E,)]] 

In a typical NIL  implementation, Init would start  up  the 
device drivers and  then behave  as a command shell. 

4. An example of the  translation 
We present a NIL  implementation of a simple command 
shell (interpreter) in  order  to illustrate our NIL-to-CCS 
translation. We believe that  this example is small enough  to 
be easily presented, yet large enough  to highlight several 
interesting  features of NIL  and its  translation into CCS. 

Our shell repeatedly prompts  the user for a command, 
waits until a command is input,  and  then creates a child 
process to perform the desired task. Our shell is simplistic in 
that background processing and 1/0 redirection are  not 
provided, users cannot kill any processes created by the shell 
on their behalf, and  command  names  are  not checked  for 
their legality. 

Our  NIL  implementation of the shell uses the following 
variables: 

StdIO is a record variable with component fields StdIO.in, 
a receiveport, and StdIO.out, a sendport. 
initp is the shell’s initport. 
Child is a process variable and will correspond to  the 
command  that  the shell is executing. 
CmdName is a string variable and is the  name of the 
program that  the user would like executed. 
Parms is a record variable and corresponds to  the user- 
supplied  parameters. 

In  our  NIL  implementation of the shell, user commands 
are processed within a while loop immediately following the 
shell’s initial accept. This  implementation is somewhat 
artificial in  that  there is no  return  from  this accept. 

What follows is our  NIL program  for the shell: 

Shell process 
declare 

begin 
var StdIO, var initp; var Child; var CmdName; var Parms; 

accept (StdIO) from initp; 
while true do 

send (‘?I) to StdIO.out; 
receive (CmdName, Parms) from StdIO.in; 
create (Child,  CmdName,  Parms); 

end  while; 
end  process 

The CCS  behavior expression resulting from  our 
translation  of Shell is  presented in Figure 5. 565 

IBM J .  RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987 SCOTT A. SMOLKA AND ROBERT E. STROM 



5. Discussion 
The NIL and CCS models of concurrency share several 
fundamental principles: ( I )  Programs define dynamic 
systems  of communicating, nondeterministic, sequential 
processes. (2) Message  passing is the only means for 
processes to communicate. (3) The interface of a process to 
the rest  of the system  is the set  of ports that  it owns. 

This commonality between  NIL and CCS  is certainly one 
of the reasons we chose  CCS  as a semantic model  for NIL. 
Furthermore, the operation of restriction in CCS  allowed us 
to model NIL‘s static scoping of variables and exception 
handlers. 

NIL and CCS do not agree on the issues  of synchronous 
vs. (buffered) asynchronous communication and dynamic 
port creation. However, these differences  were  reconcilable. 
To model the asynchronous communication of  NIL, 
infinite-queue processes at both the transmitting and 
receiving ends were  used  in the CCS translation. NIL 
dynamic port creation was modeled in CCS using indexed 
sets of ports, a technique suggested  by Milner in [ 171 and 
applied in [9 ] .  

One of the primary concerns in giving a programming 
language a formal semantics is the level  of abstractness of 
the semantics. In particular, the semantics should be abstract 
enough to allow  all  possible implementations. Otherwise, 
compilers for the language  might be constrained to generate 
code that is  less than ideal with  respect to a particular target 
environment. 

Our translations of  NIL‘s select and cancel may not be 
abstract enough since they begin to suggest particular 
implementations: the use  of watchdog  processes  for the 
former and the “canceled state” approach for the latter (see 
the Appendix). For cancel, a truly abstract semantics would 
be a temporal statement of the form, “a canceled  process 
eventually terminates.” As such, how termination is obtained 
is  left to the implementors and is not constrained by the 
semantics. 

Our translation of NIL into CCS is from one 
(programming) language into another. One potential 
application behind this approach is to be able to use  CCS to 
reason  algebraically about NIL programs-e.g., to prove that 
NIL program transformations, such as those given in [ 181, 
are semantics-preserving. Alternatively, we could directly 
give NIL a more abstract semantics such as archives [ 191, 
sets  of infinite strings of input/output events.  Archives are 
attractive as a semantics for NIL because they are very 
abstract and naturally allow one to express  fairness. 

notions, e.g., observational equivalence and congruence 
[3,14]. When reasoning about NIL programs, however, one 
typically wants to show that a program Q is a correct 
implementation of a program P, rather than equivalence of 
P and Q. Specifically,  we would  like Q to “satisfy” (or refine) 
P; i.e.,  every property true of P is true of Q but not 
necessarily  vice  versa  (see  also  p. 22 of [ 151). Thus the 
addition to CCS  of a proof system  for  satisfiability, along the 
lines of the [ 151 proposal, would address this issue. 

In general, the concept of fairness is not directly 
expressible  in  CCS. For example, consider our CCS 
description of  NIL inport queues, and let P and Q be two 
NIL  processes  having outports connected to a single inport 
X .  A possible computation of our translation would  allow 
the messages  of P to be enqueued at X infinitely more often 
than the messages  of Q, thereby violating the “fair-merge 
property” [20]. In certain cases,  however,  fairness can be 
enforced in CCS  by introducing additional “machinery.” 

Proof systems  for  CCS are based upon various equivalence 
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This is evidenced by our translation of cancel as described in 
the Appendix  which, with one  noted exception,  guarantees 
the eventual termination of the canceled process. 

Fairness  in CCS has been a subject  of intense  study in 
recent years ([ 15,16,2 1 1  to  name  only a few). For our CCS 
translation  of NIL,  the work of [2 1 1  seems to be the most 
relevant.  They  propose to modify the basic operational 
semantics of  CCS by introducing two  rules (for both weak 
and strong fairness) that rule out  unfair  computations.  It 
would be interesting  future  work to see if the [2 I ]  proof  rules 
are sufficient to satisfy our fairness  requirements. 

Finally, formal definitions  of programming languages can 
be used to  substantiate “folklorish” assertions about  the 
behavior of programs  written  in the language. In NIL, one 
such  assertion is security [ 11: the guarantee that processes in 
a system cannot affect each other except by explicit 
communication. Security, in  turn,  can be viewed in  terms of 
three modularity properties: 

1. Local variables are accessed only by the process in which 
they are declared. 

2. Parameters passed by calls are accessed in a manner 
consistent with their declarations, i.e., in, out, or in/out. 

3. Connections  to  inports  are accessed by a process only 
after  having  been received through explicit 
communication.  (This last property is one of “access 
control.”) 

By examining  the CCS translation  of NIL. the modularity 
properties  of NIL  can be substantiated: 

1. Ports read, and write,, used to  implement  the register 
behavior  for local variable X ,  are restricted in  the 
translation  of the begin-block construct, effectively 
limiting the scope  of X to  the  NIL process in which it is 
declared. 

2. Consider first out parameters.  These variables may be 
uninitialized at  the point  of call, and therefore must  not 
be read at  that  time.  This is consistent with the 
translation  of call, where, if X is an out parameter,  no 
attempt is made  to access port read, before the call is 
made. If X is an in parameter, the checking that X is 
never modified by the called process is done statically by 
the  NIL compiler.  Parameters of type in/out may be 
accessed by the caller and callee as if they were ordinary 
variables. 

3. Processes in the CCS  translation  of a NIL  program access 
connections  to  inports  through  the set of ports I opid 
E N]. Thus,  the value of a NIL  outport variable in  the 
CCS translation is a natural  number.  The  type  and 
typestate  checking  of NIL programs [ 131 ensures that this 
natural  number was obtained through the explicit 
communication of an  outport or through local outport 
assignment. 
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Appendix:  Semantics of cancellation 

Informal  semantics 
Every NIL process is the value of a variable of type process 
within  its  owner. The create P statement creates a new 
process and assigns it as  the value of a process variable P ;  
the cancel P statement causes the process designated by P to 
enter  the canceled state. A process in  the canceled  state may 
execute some finite number of actions (“last wishes”) before 
terminating, but is  guaranteed to eventually terminate. 

Processes may block indefinitely as a result of while, 
select,  receive,  accept, or call statements. It would be 
inconsistent  for the semantics both  to require that canceled 
processes always terminate  and  to have some  statements  not 
be live. Therefore, the above five statements  are defined so 
that they may  terminate by raising the CANCEL exception, 
as well as by normal  termination.  Normal  termination will 
occur  as  defined in  the  main body of the paper. The 
exception termination  must  occur whenever normal 
termination is impossible and failure to  terminate would 
result in the failure of a canceled process to terminate. 

Derivation of the CCS specijication 
The CCS specification for termination of while,  select, 
receive, or accept for  canceled processes is relatively 
straightforward. If the process attempting  to execute while, 
select, or receive is in the canceled  state, then  the  statement 
may raise the CANCEL exception, or it may  continue 
normal execution. For receive/accept and select, a blocked 
process will be waiting at or gotcha, respectively; by 
waiting alternatively  for a cancel “beacon” signal, these 
statements will be guaranteed to eventually  become 
unblocked if the cancel signal is issued. For while, it is 
necessary to execute the loop  in parallel with a behavior 
which waits  for  either the  termination of the while or the 
cancel beacon. If the cancel beacon is sensed, then if the 
loop still does  not  terminate, a stop message is sent, forcing 
the loop to  terminate. 

The CCS specification for termination of call is more 
intricate  as a result of the requirement that call must  not 567 
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terminate, even  with an exception, without the callrecord 
being returned. Now it is necessary to require that  the 
called  process  raise an exception if it does not make progress 
while holding a callrecord belonging to a canceled calling 
process. 

A process under obligation to return its callrecord in order 
to allow some calling process to proceed toward cancellation 
is  said to be forced. If a forced  process  is  itself  blocked 
because  of a call statement, it  may in turn cause the process 
it  is calling to become forced. A forced  process  ceases to be 
forced after it  has returned any callrecords it has accepted 
from canceled or forced  processes. So long as a process is in 
the canceled state or is forced, attempts to execute otherwise 
nonterminating statements will terminate with an exception. 
Since in NIL, raising an exception always terminates the 
current block, eventually all  blocks will terminate. The NIL 
typestate rules [ 131 guarantee that processes  finalize  all their 
variables  before termination, and in particular that any 
accepted callrecords will be returned. 

The CCS solution for call is as follows: 

Every  NIL  process runs in parallel  with a monitor process 
which tracks the canceled and forced states. When the 
monitor process  receives a can signal,  it enters the 
Canceled state. If the NIL process becomes forced  because 
it  owns a callmessage originating from another forced or 
canceled  process, then the  monitor will receive a force 
signal and enter the Forced state. A count is kept  which is 
incremented each time the force signal is received, and 
decremented each time a callmessage from a canceled or 
forced  process is returned. When canceled or forced, the 
beacon signal  is  repeatedly  offered. The beacon signal 
causes the blocked while, select, receive, or accept 
statement to terminate. 
A monitor is  provided  which records whether the 
associated  NIL  process is engaged in a call: Either (a) no 
call is in progress; (b) a call is in progress to process pid 
but the caller has not yet tried to force the call to return; 
or (c) a call  is  in  progress and  another process has been put 
in the forced state because  of the call. 
The call behavior is modified so that if the call does not 
return but the cancelbeacon is sensed, then a new state is 
entered which attempts to either receive the returned 
callrecord or force the current owner of the callmessage. 
The callrecord is augmented so that it includes the pid 
(process id) of the calling  process. 
The return behavior is  modified so that if the returning 
process has had its forced count incremented as a result  of 
this callrecord, the forced count will  be decremented. 
The forward behavior is  modified so that if the forwarding 
process  has had its forced count incremented as a result of 
this callrecord, the forward will be treated as a return, and 
if not, the calling  process will be aware  of the identity of 
the new owner of the callrecord. 568 
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Output ports are modified so that  the identity of the owner 
of the associated input port can be determined. (This 
modification is not shown  here.) 

Formal definitions 

W h o   b i d )  + whoami b i d )  . Who  (pid) 

Normal (pid)  e= canpid. Canceled (pid)  

+force,,, . Forced ( I ,  pid) 

Canceled ( pid) +force,,, . Canceled ( pid) 

+ unforce,, . Canceled (p id)  

+ beacon . Canceled (p id)  

Forced (i, pid) +force,,, . Forced (i + 1, pid) 

+ unforce,,, 

. ( i f i  - 1 = 0 then Normal else Forced (i - 1, pid)) 

+ beacon . Forced (i, pid) + can,,, . Canceled (p id)  

Notcalling (p id)  + call ( pid 2 )  . Calling (pid, pid 2 )  

0 Calling ( pid, pid 2 )  + returned . Notcalling ( pid) 

+ return,,, . Calling ( pid,  pid 2 )  

+ forward,,(pid 3, opid, callrec) 
- . o,,,(callrec) . Calling (pid, pid 3) 

+ forcecallee . f x e p r d 2  . Forcing (pid, pid 2) 

Forcing (pid,  pid 2 )  + returned . Notcalling (pid)  

+ return,,, . unforce,,,, . Forcing ( pid,  pid 2) 

+ forward,,,(pid 3, opid, callrec) 

. o,,,,,~,+,(all-but-last-two callrec) 

. Forcing ( pid, pid 2 )  

- 

Translation of create The last line of the translation of 
create given in Section 4.2 now  reads: 

([[call “opid” ( X , ,  . . . , X,)]] I 

(Pname(zpid) I Who  (pid) I Normal (pid)  I Notcalling (pid))  

\ {  whoami, call, returned}) 

Translation of while We define two new behaviors that 
will run in parallel  with the translation of while. 
Cancelmonitor waits  for either the beacon or the loop 
termination; if the beacon is  sensed, a CANCEL exception 
will  be raised on a subsequent loop boundary: 

Whilemonitor check . ( Whilemonitor 

+ stop . [[raise CANCEL]]) 
Cancelmonitor e= 6 . done + beacon . ( 6  . done + . NIL) 
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[[while E do Send while]] = ((wl Whilemonitor)\{check) 

1 Cancelmonitor)\{ 6, stop} 

4. M. Hennessy, W. Li, and G. Plotkin, “A First Attempt  at 
Translating  CSP  into CCS,” Proceedings of the 2nd IEEE 
International Conference on Distributed Computing, 198 1. 

5. E. Astesiano and E. Zucca. “Semantics of CSP Via Translation 
~ 

where w is as  in  Section 3 but begins with a check action into CCS,” Proceedings ofthe 10th Symposium on Mathematical 
each time  around. Note: If no fairness assumptions  about 

Foundations of Computing, Lecture Notes in  Computer Science 
118. 172-182 (1981). 

CCS are made, there is no  guarantee  that  the stop will 
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in  Section 3. 

Translation of caff The behavior  immediately following 
the second before of the translation of call given in Section 3 
now  reads 

([[x,ll[P,lPl I ’ . . I [ [~“l l [P , lPl  I P l ( 4  . . ‘ ’ . P,(X,) 

. read,(opid) . ownerc,p,,(pid 2 )  . call (pid 2 )  

. whoami (pid 3) . 0,,,,,,,(xI, . . ., x,, ret-opid, pid 3) 

. (L,~,-, , , ,~(x,’,  . . ., x,,’) . write,,(x,’) . . . . 

. writexjxn’) . returned. done 

- 

- 

- + beacon . (L,~,-,,,,~(x,’, . . . , x”’) . writexl(x,’) . . . . 
- 

. write,Jx,,’) . returned.  done) 
- + forcecallee . (L~~~-,,,,,(x,‘, . . ., xn’) . write,,(x,’) . . . . 

- 
. write,jx,,’) . returned 

. (done + [[raise CANCEL]]))))\{p,, . . ., p , )  

Translation of return Same  as  the translation given in 
Section 3 for return except insert the action return,,,+l 
immediately before the action. 

Translation of forward The translation of forward given in 
Section 3 now reads 

read,(opid) . readc,.,,,,,,(callrec) . owner<,,,(pid) 

- 

. forward,,,e,+Jpid, opid, callrec) . done 

6.  M. Hennessy and W .  Li, “Translating a Subset of Ada into 
CCS,” Proceedings of the  IFIP Conference on Formal 
Description of Programming Concepts-11, North-Holland 
Publishing Co., Amsterdam, 1983, pp. 227-247. 
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