556

A CCS
semantics for NIL

by Scott A. Smolka
Robert E. Strom

We present a syntax-directed translation of NIL,
a high-level language for distributed systems
programming, into CCS, Milner’s Calculus of
Communicating Systems. This translation
presents unique problems because of NiL’s
highly dynamic nature, and makes full use of
CCS’s descriptive facilities. In particular, we
consider NIL constructs for dynamic creation
and deletion of processes and communication
channels, queued synchronous and
asynchronous message passing,
nondeterministic message selection, and
exception handling. A NIL implementation of a
simple command shell is used to illustrate the
translation procedure. We discuss various
issues and open problems concerning the
suitability of CCS as an abstract semantics
for NIL.

1. Introduction
In this paper, we present a syntax-directed translation of NIL
into CCS. (A preliminary version of the paper appeared in
the proceedings of the IFIP Conference on the Formal
Description of Programming Concepts—III, Ebberup,
Denmark, August 1986.) NIL [1, 2] is a high-level language
for distributed systems programming developed at IBM
Research, Yorktown Heights, New York. CCS, Milner’s
Calculus of Communicating Systems [3] is a calculus for the
description and algebraic manipulation of concurrent
communicating systems. Because of the existence of a formal
(operational) semantics for CCS, the translation of NIL into
CCS effectively gives NIL a formal semantics.

The primary motivation for this work is to provide a
formal definition of the semantics of the NIL language, the

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

SCOTT A. SMOLKA AND ROBERT E. STROM

first such definition. We also believe that the translation will
enable people who know CCS to learn NIL and, conversely,
enable people who know NIL to learn CCS.

Milner, in Chapter 9 of 3], illustrated the feasibility of
using CCS as a semantics for programming languages by
presenting a CCS translation of a simple parallel
programming language. Other programming languages that
have been given CCS semantics include Hoare’s CSP (4, 5],
a subset of Ada [6], and Sticks and Stones [7]. Furthermore,
CCS has been used as a semantics for several programming
systems including the ISO OSI [8] and the system-calls level
of UNIX [9]. The sum of these efforts demonstrates the
utility of CCS as a formal model for concurrent
programming languages and systems.

Our translation of NIL into CCS differs from the above
work in several respects. Regarding the Ada translation [6],
we were required to model NIL’s dynamic binding of
communication ports to processes; such binding is static in
Ada. Also, the particular code body being executed by a NIL
process is determined dynamically (see [10] for a much more
elaborate comparison of Ada and NIL). Our translation of
NIL is inherently different from the UNIX translation [9]. In
UNIX, process creation is at the “fork™ level; its translation
into CCS is thus primarily concerned with the copying and
creation of memory segments. Interprocess communication
is at the file level (i.e., pipes). The corresponding NIL
constructs are at a much higher level of abstraction.

The structure of this paper is as follows: Section 2
provides an overview and comparison of NIL and CCS. In
Section 3, we present our translation of NIL into CCS. Some
highlights of our translation are also given in the beginning
of Section 3. The translation procedure is illustrated in
Section 4 using a NIL implementation of a simple command
shell. Finally, Section 5 concludes with a discussion of some
of the issues in using CCS as a semantics for NIL.

2. An overview of NIL and CCS

In this section we first present an overview of NIL; we follow
with an overview of CCS; and conclude with a capsule
summary of the main differences between the two.

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

556

A CCS
semantics for NIL

by Scott A. Smolka
Robert E. Strom

We present a syntax-directed translation of NIL,
a high-level language for distributed systems
programming, into CCS, Milner’s Calculus of
Communicating Systems. This translation
presents unique problems because of NiL’s
highly dynamic nature, and makes full use of
CCS’s descriptive facilities. In particular, we
consider NIL constructs for dynamic creation
and deletion of processes and communication
channels, queued synchronous and
asynchronous message passing,
nondeterministic message selection, and
exception handling. A NIL implementation of a
simple command shell is used to illustrate the
translation procedure. We discuss various
issues and open problems concerning the
suitability of CCS as an abstract semantics
for NIL.

1. Introduction
In this paper, we present a syntax-directed translation of NIL
into CCS. (A preliminary version of the paper appeared in
the proceedings of the IFIP Conference on the Formal
Description of Programming Concepts—III, Ebberup,
Denmark, August 1986.) NIL [1, 2] is a high-level language
for distributed systems programming developed at IBM
Research, Yorktown Heights, New York. CCS, Milner’s
Calculus of Communicating Systems [3] is a calculus for the
description and algebraic manipulation of concurrent
communicating systems. Because of the existence of a formal
(operational) semantics for CCS, the translation of NIL into
CCS effectively gives NIL a formal semantics.

The primary motivation for this work is to provide a
formal definition of the semantics of the NIL language, the

©Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

SCOTT A. SMOLKA AND ROBERT E. STROM

first such definition. We also believe that the translation will
enable people who know CCS to learn NIL and, conversely,
enable people who know NIL to learn CCS.

Milner, in Chapter 9 of 3], illustrated the feasibility of
using CCS as a semantics for programming languages by
presenting a CCS translation of a simple parallel
programming language. Other programming languages that
have been given CCS semantics include Hoare’s CSP (4, 5],
a subset of Ada [6], and Sticks and Stones [7]. Furthermore,
CCS has been used as a semantics for several programming
systems including the ISO OSI [8] and the system-calls level
of UNIX [9]. The sum of these efforts demonstrates the
utility of CCS as a formal model for concurrent
programming languages and systems.

Our translation of NIL into CCS differs from the above
work in several respects. Regarding the Ada translation [6],
we were required to model NIL’s dynamic binding of
communication ports to processes; such binding is static in
Ada. Also, the particular code body being executed by a NIL
process is determined dynamically (see [10] for a much more
elaborate comparison of Ada and NIL). Our translation of
NIL is inherently different from the UNIX translation [9]. In
UNIX, process creation is at the “fork™ level; its translation
into CCS is thus primarily concerned with the copying and
creation of memory segments. Interprocess communication
is at the file level (i.e., pipes). The corresponding NIL
constructs are at a much higher level of abstraction.

The structure of this paper is as follows: Section 2
provides an overview and comparison of NIL and CCS. In
Section 3, we present our translation of NIL into CCS. Some
highlights of our translation are also given in the beginning
of Section 3. The translation procedure is illustrated in
Section 4 using a NIL implementation of a simple command
shell. Finally, Section 5 concludes with a discussion of some
of the issues in using CCS as a semantics for NIL.

2. An overview of NIL and CCS

In this section we first present an overview of NIL; we follow
with an overview of CCS; and conclude with a capsule
summary of the main differences between the two.

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

o NIL

NIL is a high-level systems programming language
developed at the IBM T. J. Watson Research Center. The
single unit of modularity in NIL is the process, which
subsumes the notions of procedures, tasks, data abstraction,
and others. Unlike abstract data types, where the user of the
type is actively making calls and the abstract data type
module is passively accepting calls, the relationships between
processes in NIL are symmetric.

Each NIL process is a strongly typed, sequential program
built from the standard control constructs of Algol-like
imperative languages: sequential composition, if statements
for alternation, and while statements for iteration. In
addition, NIL supports exception handling. Each statement
may result in a normal termination, which is followed by the
execution of the next sequential statement, or an exception
termination, in which case execution continues in an
exception handler associated with the exception condition.
The possible exception conditions which can be raised by a
given statement are known statically: from the statement
name for primitive statements, and from the interface type
definition for call statements.

Processes in NIL communicate only over communication
channels; there is no sharing of data across process
boundaries. Communication is supported in the language by
the type families input port——whose values are message
queues, and output port—whose values are connections to
input ports. Such a connection constitutes the right or
capability 1o access the input port’s message queue for the
purpose of enqueueing messages. Figure 1 depicts a
communication channel between two processes. The circles
totally within a process represent the local variables. The
circles on the boundaries of the processes represent port
variables.

Ports, like all variables in NIL, are statically typed. A
channel can connect only output ports and input ports of
the same user-defined type. A port’s type determines the type
of the messages that may be transmitted along the channel.
Several output ports may be connected to a single input
port, but not vice versa. Messages arriving at an input port
are enqueued. Processes use guarded commands similar to
Ada select statements to selectively respond to
communication on their input ports.

NIL supports both one-way (asynchronous) and two-way
(synchronous) communication. Two-way communication,
which uses the operations call, accept, and return, involves
the transmission of a callrecord (collection of actual
parameters) and the suspension of the calling process until
the accepting process has processed and returned the
callrecord. The accept operation removes a single callrecord
from the input port, or waits until one is available.
Sometimes a process which has accepted a callrecord later
decides that the call should be serviced by some other
process. In this case, the accepting process can also forward

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

o ©
© Process 2

the callrecord, and the responsibility of returning the
callrecord to the caller, to another process. One-way
communication, designated by send and receive, does not
cause the sending process to wait. The receive operation
dequeues a message from the input port, if one is present,
and otherwise causes the receiving process to wait.
Successive messages sent over a single output port will be
received in FIFO order, but no specific order other than a
Jair merge is guaranteed for messages sent over different
output ports which arrive at the same input port.*

Since NIL is a systems programming language, as opposed
to an applications programming language, it is essential that
connections between modules change dynamically. The
designers of NIL thus chose to allow communication
channels to be created dynamically under program control,
rather than statically as in languages like CSP [11] and Ada
[12]. A process, say P, can create a communication channel
through the statement “Y = outport of X,” where Y is an
output port and X is an initialized input port. P can initialize
input port X using the statement “initialize X.” By passing Y
to another process Q, P gives Q the capability to send
messages to input port X.

Processes are created and destroyed dynamically. An
object of type process is initialized by issuing a create
operation, supplying as parameters the name of the file
containing the compiled NIL program to be executed by the
process, and a list of creation-time parameters. These
parameters are used to pass initial data and capabilities to an
initialization routine within the created process. Like any
other NIL object, a process can be passed in a message from
one process to another, with the result that the receiving
process now owns the passed process.

A process is destroyed when its owner issues a cancel
operation. Canceling a process which has not already

® Fairness. informally stated, means that if a choice between two types of events A and B is
offered sufficiently often, eventually each type of event will be chosen. In particular, fair merge
means that if output port A and output port B are connected to the same input port, and
messages are available on both ports, the receiver must not infinitely often choose the B

inp e to the A or vice versa.

557

SCOTT A. SMOLKA AND ROBERT E. STROM

558

Clients
C1
q
Resources
= Resource Rl
(’):> ¢ manager >
q
c3 R2
q
(@)
C1
q
e Resource RI
> ="
P manager p
C3 \ R2
g b

q /
\

®)

(a) Configuration before the call; (b) configuration after client C3 has
called the resource manager and has received a port granting indirect
access to resource R2.

terminated causes that process to eventually enter the
canceled state. A process in the canceled state will have a
CANCEL exception raised as a result of issuing a subsequent
waiting operation (select, receive, or call), oron a
subsequent loop iteration. The process is then permitted to
perform “last wishes” by providing a handler for the
CANCEL exception. However, the language rules stipulate
that once a CANCEL exception has been raised, the process
will terminate in a finite amount of time.

Unlike CCS, NIL has no concept of global time or
simultaneity of events in distinct processes. There is only a
partial order between the local times of each process as
determined by causality of events: The event of a sender
sending message M precedes the event at which the receiver
receives M. Events which are not related by communication
(either directly or indirectly) are incomparable.

A more complete summary of NIL can be found in [1],
and a status report in [13]. The following is a simplified but
illustrative example of how NIL is used in systems
programming.

SCOTT A. SMOLKA AND ROBERT E. STROM

Suppose there exist a number of system resources—e.g.,
printers, files, databases, etc. There are clients who from time
to time require the use of these resources, and a resource
manager whose job is to grant clients temporary access to
these resources.

Assume that each client, each resource, and the resource
manager are separate processes. To simplify the example,
assume that the resources each have a single input port for
servicing requests to operate on the resource, and that the
resource manager has a single input port for servicing
requests from clients to obtain access to a resource. Then the
configuration of port bindings before any client has
requested a resource resembles that in Figure 2(a)—each
client owns an output port connected to the resource
manager’s input port, and the resource manager owns
output ports connected to the input ports of each resource.

A client requests access to a resource by issuing a call
statement, passing a callrecord with two components: an
input parameter Rq.ResourceClass specifying the type of
resource desired, and an output parameter Rq.Capability
which upon return from the call will contain an output port
connected to the resource.

Since the resource manager may wish to grant limited
access to the resource, and may wish to retain the right to
cancel the access, the resource manager will grant access to
the resource not by directly connecting Rq.Capability to the
resource, but instead by creating an intermediate process
called Filter. The filter process can be programmed to
arbitrarily limit the client’s access to the filter. Furthermore,
the resource manager can withdraw a client’s access to the
resource by canceling the filter. The configuration after a
successful call from a client to the resource manager
resembles Figure 2(b).

The NIL code for the resource manager process is shown
in Figure 3. The resource manager process begins by creating
resources R1 and R2. Each create operation causes an
initialization call to the newly created resource process,
which returns an output port connected to the resource’s
input port—that is, a capability to access the resource. After
creating the resources, the resource manager iteratively
processes service requests.

First the process accepts a request Rg from its input port.
The definition for the type GetResourcelnterface specifies
what a request must be—namely, an input parameter
Rq.ResourceClass and an output parameter Rq.Capability.
The function ChooseResource is then invoked. The code of
this function is not shown, but its result will be to select an
appropriate resource based upon the requested resource class
and to return a capability to that resource. That capability is
stored in the variable ResourceCapability. An instance of a
filter process is created, whose code body is “Filter.” The
filter is initialized by passing it the capability to the resource
as an input parameter, and receiving the capability to the
filter as an output parameter. The capability to the filter is

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

stored in Rq.Capability. The filter process is saved in the
table ActiveResources, and then the request is returned to the
calling client.

A realistic version of a resource manager would contain
additional code to handle deletion of resources. This code is
not shown.

e CCS

Milner’s CCS (Calculus of Communicating Systems) is a
calculus for the description and algebraic manipulation of
systems of communicating processes [3]. Various
equivalence relations, most notably observational
equivalence and congruence, along with their corresponding
equational systems, have been proposed for CCS [3, 14].
These systems, which safely allow one CCS term to be
rewritten as another, give CCS its manipulative power.

Like NIL, communication in CCS is port-based. The sort
of a process is the set of ports through which it can
communicate with other processes. Unlike NIL,
communication in CCS is unbuffered—the sender and
receiver of a message must agree to synchronize at some
point in time—and the sort of a process is fixed.

The semantics of concurrent composition in CCS is one of
interleaved execution of the component processes, with
simultaneous moves by two processes whenever they
communicate (see Milner’s “expansion theorem” [3]).

In order to describe CCS, we first present an example
from [3], a variant of which will be used in our translation of
NIL. Consider a process that behaves like an infinite queue
of elements from some value domain V. We call this
behavior queue, and it is parameterized by a string s from
|2

quene(s) « in (x) . queue (append x s) +
if s = ¢ then out ($) . queue(s)
else out (first s) . queue (rest s)

queue (s) becomes a queue whose contents are x appended
to s, whenever a value x € V' is received over input port in; it
becomes a queue whose contents are rest s whenever it
outputs its first value over output port ouf; and remains the
empty queue whenever it outputs $ (the empty queue
symbol) over ouf. This example illustrates how the
synchronization and communication behavior of a data type
can be captured in CCS while leaving its type-theoretic
behavior to outside reasoning.

Fairness is not directly expressible in CCS. Thus, one
possible behavior for queue () is to remain the empty queue
forever despite repeated attempts by its environment to
enqueue some element. Recently, fairness has been
incorporated into SCCS in terms of a “finite-delay” operator
[15,16]. SCCS [14] is a variant of CCS in which processes
move as if under the control of a global clock. The issue of
fairness in CCS is discussed further in Section 5.

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

ResourceManager: process
Resources: TableOfResourcePorts;
ActiveResources: TableOfFilters;
ResourceProcess: Process,
ResourcePort: Resourcelnterface;
ResourceCapability: Resourcelnterface;
FilterProcess: Process,

InputPort: GetResourcelnterface;

Ch R ce: Ch R celnterface;

/* initialize Resources */
create (ResourceProcess, "R1", ResourcePort);
insert ResourceProcess inte ResourceProcesses,
insert ResourcePort into Resources;
create (ResourceProcess, "R2", ResourcePort),
insert ResourceProcess inte ResourceProcesses;
insert ResourcePort into Resources,

/* service requests */
while true do
accept Rq from InputPort;
ResourceCapability := ChooseResource (Resources,
Rq.ResourceClass),
create (FilterProcess, " Filter", ResourceCapability,
Rq.Capability),
insert FilterProcess into ActiveResources;
return Rg;
end while;

end ResourceManager;

We can augment the queue example by defining a
transmitter and receiver process which enable end-users to
communicate asynchronously with each other using queue:

transmitter & user_trans(x) . in(x) . transmitter
receiver < out(x) . user—rec(x) . receiver

The concurrent system consisting of the transmitter,
receiver, and queue can be expressed as

(zransmitter | queue (¢) | receiver)\{in, out}

The \ (backslash) denotes the restriction operation and, in
this case, limits direct use of the queue to the transmitter
and receiver processes. User processes access the set of ports
{user_trans, user—_rec} in order to communicate.

We now present the syntax and informal semantics of
CCS with value expressions over a presupposed value
domain D. We use ¢, e,, - - - to denote expressions (e.g.,
function applications and constants) over D, and x, y, - - - to

SCOTT A. SMOLKA AND ROBERT E. STROM

559

560

Table 1 NIL versus CCS.

NIL

CcCs

A high-level distributed systems
programming language, IBM
Yorktown Heights [1, 2]

Port variables

Dynamic interconnection of
communication ports

Message queues—no “action at
a distance”

Dynamic creation and
cancellation of processes

Dynamic binding of code bodies
to processes

Fairness requirements

“A Calculus of Communicating
Systems” {3]

Port constants only

Static (syntactic)
interconnection of input and
output ports

Synchronous communication

Composition operator plus
recursion

Static binding of behavior
expressions to behavior
identifiers

Fairness not part of the original
calculus

denote variables over D. A complete exposition on CCS

including a formal (operational) semantics is given in [3, 14].

Input ports in CCS are denoted by names «, 8, - - -, and
output ports are denoted by conames a, B, - - -. (In practice,
mnemonic English names are often used in place of small
Greek letters.) A communication can take place only over
complementary ports, e.g., a and .

Names and conames will also be used, respectively, to
denote input actions and output coactions taken by a CCS
process. For example, a(x) is an action that inputs a value
for x from port &, and a{e) is a coaction that outputs the

value e over port a. In A-calculus-like terms, the variable x is

bound by « and the value expression e is qualified by .
Actions a(x) and «(e) must occur simultaneously to effect a
communication, the result of which is intuitively

“xw=e”

CCS programs, called behavior expressions by Milner, can

be defined inductively as follows:

e NIL (not to be confused with the programming language)
is a behavior expression which does absolutely nothing.

Let o(x) be an input action, a(e) an output action, and B
and C behavior expressions. Then

& a(x) . B is a behavior expression which first inputs some
value v over port « and then behaves like B with all free

occurrences of x bound to v.

e a(e). B is a behavior expression which first outputs the
value of e over the port « and then behaves exactly like B.
Note that every variable in ¢ must be bound for this

coaction to make sense.

SCOTT A. SMOLKA AND ROBERT E. STROM

e B+ Cis a behavior expression which nondeterministically
behaves like B or C. The operator + is the binary version
of 3.

¢ B|C is a behavior expression which behaves as the
concurrent composition of B and C. The operator | is the
binary version of [].

* B\la,, - -+, a,} is a behavior expression which behaves
like B with the set of ports {«, «,| | < i =< n} deleted from
its sort. \ is called the restriction operator and effectively
hides all o-actions and a-coactions from B’s outside
world.

e Blv,/u,, -, v,/1,) is a behavior expression which behaves
like B with all actions/coactions u, relabeled as v,
l=<i=<n

o if cond then B else C is a behavior expression which
behaves like B if cond is true and like C otherwise.

e Ple, ---, €)is a behavior identifier with actual
parameters e, - - -, e,. We write P <= B to associate
behavior identifier P with behavior expression B.

CCS also allows for parametric port names (e.g., «,) and
behavior identifiers (e.g., P). In fact, Milner shows in [17]
that the entire calculus with value expressions can be
encoded into a simpler calculus devoid of value expressions
using sets of parametric port names of the form
{a,, a,| d € D}, where D is the value domain in question.

o NIL versus CCS

NIL and CCS were designed with very different purposes in
mind-—NIL as a high-level systems programming language,
and CCS as an algebraic model of concurrency. As such, a
direct comparison of the two languages may not be practical.
However, both languages define concurrent systems of
processes that communicate only through the exchange of
messages at ports. Table 1 summarizes the essential
differences between NIL and CCS with respect to
interprocess communication and process creation. These
differences in turn constitute the main issues addressed by
the translation.

3. The translation

In this section we present a syntax-directed translation of
NIL into CCS, which will be given in terms of a set of
translation rules (one for each NIL construct). The
translation rule for a given construct (syntactic unit) S of
NIL yields a CCS behavior expression [[S]]. The translation
is syntax-directed since [[S]] is produced independently of
the context of S. For example, [[if £ then S else S]] will be
derived uniquely from [[E]], [[S]], and [[S']]-

Variables in NIL will be modeled as registers in CCS. The
restriction operator is applied to prevent other processes
from having access to the ports of the local variables of a
particular process. However, NIL input and output ports will

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

be modeled as globally accessible ports in the CCS
translation.

o The sequential component of NIL

In Chapter 9 of [3], Milner presents a translation of a simple
parallel programming language into CCS. This work is
fundamental to our own and we thus describe it here.

NIL programs, like programs from Milner’s language, will
be built from declarations D and statements S. Declarations
in NIL associate variable names with types. Here we use type-
free declarations whose syntax is D — var X; - - -; var X,
where X is a program variable.

Statements will be built from expressions E having syntax
ES X|F(E, -, E), where Fis a function symbol standing
for the built-in function f.

A variable X will be represented by a CCS behavior
expression corresponding to a register with sort
{write,, read,}:

LOC, & write,(x) . REG (x)
REG (y) < writey(x) . REG(x) + read,(y) . REG ()

Note that X will be “born” as LOC, and then become
REG,(v) as soon as it inputs a value v. The set of ports
needed to access LOC , (the access sort of LOC,) is

L, = {write,, read,}.

Each nary function symbol F (denoting function /') will be
represented by the behavior b,, which first inputs its »
arguments, outputs the value of the corresponding
application of f, and then dies:

brepx). - pfx) . p(flx, -+, X)) . NIL

The translation rules for an expression E containing
variables X, - - -, X, will yield a behavior expression of sort
{ readxl, - readxk, pl. It uses port readxi to read the value
of X, and like function symbols, delivers its result at p and
then dies.

Several translation rules (e.g., the one for assignment
statements) will yield a behavior expression that is
dependent on the result delivered by an expression. Thus, for
some behavior expression B, Milner abbreviates the CCS
expression ([[E]]| o(x) . B)\{p} as [[E]] result (p(x) . B).

A statement S containing variables X, - - -, X, will be
represented by the behavior expression [[S]] whose sort
includes the set L, U --- UL, U {8}. The port § is used by
[[S]] to signal its completion and thus effect flow of control.
Milner defines the following auxiliary behavior expressions
in this light:

done = 6 . NIL
B, before B, = (B,[8/8]]8 . B)\{B},

where § is not in the sort of B, or B,.

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

The following translation rules are for expressions [3]:
[[X]] = read,(x) . p(x) . NIL
[([HE, ---, EI
= (LEllo,/0]| - - - L ITE Do,/ 0] BNp,, - -

In the first rule, the value of X is read from its register and
delivered as the result of the expression. In the second rule,
the value of each expression is read by the behavior b,,
which then delivers the appropriate function application as
its result.

What follows are the translation rules [3] for assignment,
sequential composition, conditional, iteration, and begin-
block statements. The NIL syntax of these statements can be
seen on the left-hand side of the rules:

Yy pn;

[[X := E]) = [[E]] result (p(x) . writey(x) . done)
([S; S'11 = [[S]] before [[S']]
[[if £ then S else S’ end if]] = [[E]] result (p(x) .
(if x then [[S1] else [[S"]])
[[while E do S end while]] = w,
where w is a new behavior identifier such that
w = [[E]] result (p(x) . if x then ([[S]] before w) else done)

[[block declare var X; - - -; var X ; begin S end block]]

= (LOCy | -+« | LOCy | I[SIDN LyuU.--UL,

In the assignment statement rule, the result of evaluating
E is stored in X’s register. For sequential composition, the
before operator ensures that [[S]] is executed before [[S’]]. In
the conditional statement rule, the result of evaluating E is
used to determine whether to execute [[S]] or [[S’]]. For the
while statement, E is evaluated to determine whether to
re-execute [[S]] or to deliver the done signal of [[S]]. Finally,
for the begin statement, register behaviors for each declared
variable are started up in parallel with [[S]]. These variables
are made local to the scope of the begin through restriction.

o Translating the rest of NIL
In the previous subsection we considered the translation of
expressions, assignment statements, sequential composition,
if-then-else statements, while statements, and begin-block
statements. Now we consider NIL constructs for dynamic
creation and deletion of processes and ports, message
passing, nondeterministic message selection, and exception
handling. Some additional flow-of-control constructs are also
considered.

NIL supports variables of type inport (receiveport,
acceptport) and outport (sendport, callport). For example,
statements such as X := Y are permitted, where X and Y are

outport variables. (After this statement is executed, X will be 561

SCOTT A. SMOLKA AND ROBERT E. STROM

562

o . X
opid
L
. Z

> biid

Y

NIL channel.

connected to the same inport as Y.) Also, inports and
outports can be passed as messages.

In CCS there is no notion of port variable but only of port
constant. The effect of port variables can be obtained in CCS
through the use of an indexed set of ports [17]. That is, we

associate the CCS port 0,,,, with each instance of a NIL
outport variable X, where opid (short for outport id) is a
unique index. The outport X may now be referred to in the
CCS translation by its index opid, which we store in a
register associated with X. For example, X may be passed in
a message by reading the value of opid from its register and
then passing this value.

Similarly, we associate a CCS port ¢, and a register in
which to store the value of ipid, with each instance of a NIL
inport variable. Note that under this convention, the sort of
the CCS behavior expression resulting from the translation
of a NIL process will include the set {¢,, 0, j € Nj.

To supply a source of ids in our translation, we define the
following behavior expression:

IdGen(n) « gen(n) . IdGen(n + 1)

Through relabeling we obtain a source for inport and
outport ids: IdGen(0)[igen/gen)] and 1dGen(0)ogen/gen],
respectively. Note that both sources start with id 0. We will
also need a source of process ids (see the translation of
create) for which we use the behavior IdGen(0)pgen/gen].

As described in Section 2, message passing in NIL is
completely asynchronous in that messages are queued at the
receiving end, and the transit time of a message along a
communication channel is indeterminate. To model this
NIL asynchrony in CCS, where message passing is
unbuffered and synchronous, we “attach” an infinite queue
behavior to each of the U Bj CCS ports used in the
translation. The effect of a communication channel between

SCOTT A. SMOLKA AND ROBERT E. STROM

outport 0,,,, and inport ., can then be obtained by
diverting the output of the 0,,,, queue to the input of the ¢,
queue. Note that it is necessary to attach an infinite queue to
0, (as well as to v,) in order to “desynchronize”
transmitting processes.

To illustrate, consider a NIL channel configuration
consisting of outports X and Y connected to inport Z. Let
0,pia> Opiar» and 1, be the respective CCS ports. Our
translation would yield the picture in Figure 4.

The access sort of this channel configuration is
0> tipigt @8 desired. If an infinite queue were not
attached to each of ports o,,,, and o,,,., then the following
scenario could occur: Let e be the event of transmitting
message M over outport X, and let ¢’ be the event of
transmitting message M’ over outport Y. If e precedes e’ (in
the partial order of events in a NIL system—see Section 2),
then M would necessarily be enqueued at inport Z before
M’, violating the aspect of NIL semantics that says the
transit time of messages is indeterminate.

What follows are the CCS behavior expressions for
outport and inport queues. In each case, we first define a
behavior that models an empty queue, which evolves into the
behavior for a nonempty queue upon inputting a value, Of
course, a nonempty queue becomes an empty queue after
outputting its last value.

Outport queues are provided with a port Wz?)apid which
can be interrogated to determine the id of the inport to
which it is connected. This feature is needed in translating
outport assignment. Inport queues are provided with two
auxiliary ports. Port ETIW can be queried to detect the
current state of the queue, a feature needed in the translation
of select. Port make,,;, can be used to trigger the creation of
an outport opid connected to inport ipid.

{(_)opid ’

Empty outport queue

outq (opid, ipid) < o0,,,,(x) . outq’ (append x ¢, opid, ipid)
+ who (ipid) . outq (opid, ipid)
id

o
Nonempty outport queue
outq’ (s, opid, ipid) « o0, (x) . outq’ (append xs, opid, ipid)
+ @ip,d(ﬁrst s) . if (rest s = ¢€) then outq (opid, ipid)
else outq’ (rest s, opid, ipid)
+ who,,(ipid) . outq’ (s, opid, ipid)
Empty inport queue
ing (ipid) <= out,,,(x) . ing’ (append x «, ipid)
+ poll,,) . ing (ipid)

+ make,,(opid) . (inqg (ipid)| outq (opid, ipid)\out .}

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

Nonempty inport queue
ing’ (s, ipid) < out,,.(x) . inq’ (append x s, ipid)
+ 1, first 5) . if (rest s = €) then inq (ipid)

else ing’ (rest s, ipid)

i

+ poll,,(s) . ing’ (s, ipid)
+ make,, (opid)
. (ing’ (s, ipid)) outq (opid, ipid)\{out,;}

Notice the asymmetry in the definitions: outg (and outq’)
names the inport queue to which it transmits messages,
while ing (and ing’) receives messages anonymously. This
parallels the situation in NIL where more than one outport
may be connected to a single inport, but an outport may be
connected to only one inport. Also note that port out,,, in
outq’(s, opid, ipid) complements out,,, in inq'(s, ipid), thus
effecting the connection. These ports are hidden for every
inport-outport channel.

What follows are the translation rules for the rest of NIL.
The formal syntax of each statement type is evident in the
left-hand side of its corresponding translation rule.
Comments about the semantics of each statement and its
translation are included.

([initialize X]] = igen (ipid) . write,(ipid) . (done | ing (ipid))
creates an initialized inport (i.e., capability) X. We note that
another possibility for (done| inq (ipid)) is 6 . ing (ipid). We
view the former as an “optimization” of the latter.
[[Y := outport of X]] = ogen (opid) . write,(opid)

. read (ipid) . make,, (opid) . done

creates a unidirectional channel from outport Y to inport X.

[[Y:=X]] = (X, Y both outports)
read,(opid 1) . who,,,(ipid) . ogen (opid 2)
. write,(opid 2) . make,, (opid 2) . done

Y becomes an outport connected to the same inport to
which X is connected.

[[send(E,, ---, E,) to Y1) = (IE Do /]| - - - | [LE,]llp, /]|
(o,(x}) . -+ . pfx,) . read,(opid)
c Oppidlxys -5 X,) . done)Npy, -+, p,}

The values of expressions E,, - - -, E, are output to sendport
Y. The sender does not wait for a reply.

[[receive(X,, - - -, X,) from Y]] = read,(ipid)

Xy s X)L owriley (X)) e L writey (x,) . done

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

Values are input into variables X, - - -, X, from receiveport
Y. The receiver must wait if ¥’s message queue is empty.

[[call Y(X,, - - -, X)]] = igen (ret_ipid) . (done| ing (ret—ipid))

before

ogen (ret_opid) . make,, .. [Aret_opid) . done

before
(X Nle/ell - - - [TIXINpa/p]|
p(x)) . -+ L p(x,) . read,(opid)
O Xys =05 X, rL—0PId) . gy X5 -0, X))
- writey (x,") . -+ . writey (x,') . donelN{p,, - -+, p,}

Like Ada’s call, a callrecord, i.e., a list of actual parameters
X,, <+, X, 1s output to callport Y. The caller must wait for
the return of the callrecord. NIL also has a facility for
returning an exception on a call.

Regarding the translation, a communication channel for
the return message is first created. The capability for this
channel is passed along with the callrecord parameters to Y.
In this translation, all parameters are considered to be
in/out. The translation of in and out parameters is handled
similarly. For example, since out parameters may be
uninitialized at the time of call, no attempt is made to read
their values.

[[accept CALLREC from Y}] = ready(ipia’)
.t (callrecy . write (callrec) . done
ipid CALLREC

Like Ada’s accept, a callrecord is input from acceptport Y
into variable CALLREC, a record having one field for each
formal parameter. The acceptor must wait if Y’s queue is
empty. After dequeueing a callrecord, the acceptor is
responsible for either forwarding or returning the callrecord.

Regarding the translation, the (# + 1)th field of
CALLREC is the capability ret_opid to be used by a return
statement to return CALLREC to the caller.

[[return CALLREC]] = [[CALLREC]] result (o(callrec)

* Omllrec" "

l(all_but_last callrec) . done)
CALLREC is returned to the caller.

[[forward CALLREC to Y]] = ready(opid)

. read,; , pec(callrec) . o, (callrec) . done

opid

CALLREC is forwarded along sendport Y. The process that
eventually receives CALLREC assumes the responsibility of
returning CALLREC to the original caller or of reforwarding

CALLREC. 563

SCOTT A. SMOLKA AND ROBERT E. STROM

[[select

event (X)) guard (G)) S|

event (X,) guard (G,) S,
end select]] = ([Watchdog,| Controlle\{gotcha,

1=i=n
stop,, 1 s i< nj
where
Watchdog, < readxi(ipid) . ([[G 1] result (o(g) .
if g, then W, else stop, . NIL))
and

W, «= stop; . NIL + poll. (state) .

ipi

if state # ¢ then (gotcha . [[S]]|stop, . NIL)
+ stop; . NIL

else Wi
and

Controller < (gotcha . 1 stop, . NIL) before done

Isisn
Like Ada’s select, one of the “open” statements S, is
nondeterministically chosen for execution. No fairness
assumptions are made about the selection process. An S, is
open if the queue of its inport X, is nonempty and its guard
(Boolean expression) G, is true. If none of the S, are open,
the process waits.

In the translation, Watchdog, (through W) continually
polls the inport queue of X, waiting for it to be nonempty.
When this is the case and G, is true (i.e., the ith alternative is
open), it tries to get selected by signaling Controller with
gotcha. Controller will nondeterministically issue a
complementary gotcha with one of the open alternatives and
then kill all of the Watchdog,. The signal stop, is needed in
three different places in W, to make sure it gets killed. (The
killing of the Watchdog, is for the sake of cleanliness—we
view processes as resources—it does not affect the semantics
of the translation of select.)

[[create (Q, NAME, X, ---, X))]] =
igen (ipid) . (done| ing (ipid))
before
ogen (opid) . mipid(opid) . done
before
pgen (pid) . ;theQ(pid) . read,, ,,,(name)
o> X Py (iDid))

564 . ([[call “opid” (X, -

SCOTT A. SMOLKA AND ROBERT E. STROM

creates a process Q that executes the compiled NIL
program contained in file NAME. Creation-time parameters
X,, -+ -, X, are passed to Q over its initialization port.

A process id (pid) is returned as the value of Q, which the
owner of Q can use to signal Qs termination (see the
translation of the cancel operation and the Appendix).

This translation has the effect of starting up an instance of
the parameterized behavior P, ., which will correspond to
the created NIL process Q. P, .. must have previously been
defined through the translation of a process statement
labeled name. Before that a channel is created for passing the
creation-time parameters to Q. The parameter of P, __is the
inport id for this channel, to which P, will refer when
doing an accept over its initialization port. Quoted
arguments to translations (e.g., opid in
([call “opid” (X, -- -, X,)]]) are to be treated as constants,
and thus no access to a register is required. (This is strictly a
notational convenience, since we could factor out the
accessing of the callport variable register from the translation
of call. Similar comments apply to other uses of quoted
arguments to translations.)

[[accept CALLREC from Y]] = (where Y is of type initport)
[[accept CALLREC from “init_ipid™]]

In the translation, inir_ipid is the first parameter of the

behavior currently being defined (see ahead for the

translation of the process construct).

[[cancel Q]] = read,(pid) . can,, . done

The signal can,,, will invoke the cancel handler of Q (see the

Appendix) if Q has not already terminated.

[[L: block declare var X; --. ; var X, ;
begin

Sos
on(EX))S;

on (EX)S,;
end block]] = (LOC, | - - - | LOCy [S]I|
EX,.ex, .NIL|---|EX, .ex, NILNL, U--- UL,

U {EX,, -
[ex, . [[S11]---lex,.[[S,)]|L.done\ex,, -

i) EXni

'9ex}

U {L}

The begin-block construct is enlarged to include the
definition of a block label (L) and exception handlers:
Statement S, is executed whenever exception EX; is raised

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

during the execution of S, and is not handled by an
exception handler of an inner begin block.

In the translation, identifiers EX, are used as names of
“exception ports.” By restricting the names of these
exception ports, an exception will activate the handler
defined in the most closely surrounding block. The ex;
intermediate communications are used to ensure that
exceptions raised within one of the handlers S; do not
activate a handler S, | </, j=n, but rather a handler from
a block surrounding L. When an exception is raised (see
below for the translation of raise), [[S,]] terminates without
issuing a done signal; the done signal of the handler becomes
the done signal of the block.

[[raise EX]] = EX . NIL

raises exception EX.

[[leave L]] = L . NIL

Compound statements (begin, while, and select) may have
an optional label. The leave statement causes flow of control
to be diverted to the point immediately following the
compound statement labeled L, and must be nested within
this compound statement.

A leave statement is translated as an exception with a null
handler handled only by block L. (Refer to the behavior
L . done defined in connection with the translation of a
block statement labeled L.) Leave statements that refer to
other types of compound statements are translated similarly.

[[Ident: process D;
begin
S5
end process]] = P, (init_ipid)

Ident is the name of the entry in the executable library which
is created upon successful compilation of the NIL program
(process) being defined. This name is used by a create
statement to load the module, at which time statement S is
executed. As for a normal begin-block, exception handlers
can be provided with the process construct. A default
handler for the CANCEL exception is executed if no such
handler is provided explicitly.

The CCS behavior P,,,, will be equal to the translation of
a begin-block having declarations D and body S. The
parameter init_ipid will correspond to the id of the
initialization port for P,,,,, (see also the translation of create

fent

and of accept over an initialization port).

To complete the translation, we present the CCS behavior
corresponding to a NIL system generation. This behavior
will initiate the generators for inport, outport, and process
ids, and the translation of a special NIL process “Init,” with

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

predefined inports and outports. Init is supplied with
(constant-valued) creation-time parameters.

IdGen(0)[igen/gen] | IdGen(0)[ogen/gen) | IdGen(0)| pgen/gen]
ey EDI

In a typical NIL implementation, /nit would start up the
device drivers and then behave as a command shell.

[[[create (Q, “Init”, E,,

4. An example of the translation

We present a NIL implementation of a simple command
shell (interpreter) in order to illustrate our NIL-to-CCS
translation. We believe that this example is small enough to
be easily presented, yet large enough to highlight several
interesting features of NIL and its translation into CCS.

Our shell repeatedly prompts the user for a command,
waits until a command is input, and then creates a child
process to perform the desired task. Our shell is simplistic in
that background processing and I/O redirection are not
provided, users cannot kill any processes created by the shell
on their behalf, and command names are not checked for
their legality.,

Our NIL implementation of the shell uses the following
variables:

StdIO is a record variable with component fields StdlO.in,
a receiveport, and StdIO.out, a sendport.
initp is the shell’s initport.
Child is a process variable and will correspond to the
command that the shell is executing.
CmdName is a string variable and is the name of the
program that the user would like executed.

e Parms is a record variable and corresponds to the user-
supplied parameters.

In our NIL implementation of the shell, user commands
are processed within a while loop immediately following the
shell’s initial accept. This implementation is somewhat
artificial in that there is no return from this accept.

What follows is our NIL program for the shell:

Shell: process
declare
var StdlO; var initp; var Child; var CmdName, var Parms,
begin
accept (StdIO) from initp,
while true do
send ('?') to StdlO.out,
receive (CmdName, Parms) from StdIO.in;
create (Child, CmdName, Parms),
end while;
end process

The CCS behavior expression resulting from our
translation of Shell is presented in Figure 5.

SCOTT A. SMOLKA AND ROBERT E. STROM

566

Py, (init_ipid) e=
(LOCSIdIOI Locinllp I LOCChﬂdl LochdNaml I LOCPHIMJ '
(init_ipid (callrec) . writeg,,(callrec) . done)
before
w
)
)ledlo U Li’lllp v LChl'ld u LCmdNﬂmf U L

'Parms

where

we
brpus result
(p(x).
if x then
Bl 01/011(01(X) . 70105, (0PIC) . By) . domEN(p,)
before
(reads, e, (iPId) . 151 X} » WITE o iriamd(%,) - WETTER,,, (X,) . done)
before
(igen (ipid) . (done| inq (ipid))
before
ogen{(opid) . make,,,{opid) . done
before
pgen(pid) . write,,(pid) . read ., ol) .
((igen(ret—ipid) . (done|ing (ret—ipid))
before
ogen (ret_opid) . make,, ., (ret_opid) . done
before
((readp,,,,{(x) . 5(x) . NIL)[p,/p}|
(8,(%) . 0., ret—opid) .
b ipid X" - WHTtEp,,,, (X' . done)
Moy}
)
| P, (ipid)

)
before w
else done

CCS behavior expression resuiting from translation of shell.

5. Discussion

The NIL and CCS models of concurrency share several
fundamental principles: (1) Programs define dynamic
systems of communicating, nondeterministic, sequential
processes. (2) Message passing is the only means for
processes to communicate. (3) The interface of a process to
the rest of the system is the set of ports that it owns.

This commonality between NIL and CCS is certainly one
of the reasons we chose CCS as a semantic model for NIL.
Furthermore, the operation of restriction in CCS allowed us
to model NIL’s static scoping of variables and exception
handlers.

SCOTT A. SMOLKA AND ROBERT E. STROM

NIL and CCS do not agree on the issues of synchronous
vs. (buffered) asynchronous communication and dynamic
port creation. However, these differences were reconcilable.
To model the asynchronous communication of NIL,
infinite-queue processes at both the transmitting and
receiving ends were used in the CCS translation. NIL
dynamic port creation was modeled in CCS using indexed
sets of ports, a technique suggested by Milner in [17] and
applied in [9].

One of the primary concerns in giving a programming
language a formal semantics is the level of abstractness of
the semantics. In particular, the semantics should be abstract
enough to allow all possible implementations. Otherwise,
compilers for the language might be constrained to generate
code that is less than ideal with respect to a particular target
environment.

Our translations of NIL’s select and cancel may not be
abstract enough since they begin to suggest particular
implementations: the use of watchdog processes for the
former and the “canceled state” approach for the latter (see
the Appendix). For cancel, a truly abstract semantics would
be a temporal statement of the form, “a canceled process
eventually terminates.” As such, Aow termination is obtained
is left to the implementors and is not constrained by the
semantics.

Our translation of NIL into CCS is from one
(programming) language into another. One potential
application behind this approach is to be able to use CCS to
reason algebraically about NIL programs—e.g., to prove that
NIL program transformations, such as those given in [18],
are semantics-preserving. Alternatively, we could directly
give NIL a more abstract semantics such as archives [19],
sets of infinite strings of input/output events. Archives are
attractive as a semantics for NIL because they are very
abstract and naturally allow one to express fairness.

Proof systems for CCS are based upon various equivalence
notions, e.g., observational equivalence and congruence
[3,14]. When reasoning about NIL programs, however, one
typically wants to show that a program Q is a correct
implementation of a program P, rather than equivalence of
P and Q. Specifically, we would like Q to “satisfy” (or refine)
P; i.e., every property true of P is true of Q but not
necessarily vice versa (see also p. 22 of [15]). Thus the
addition to CCS of a proof system for satisfiability, along the
lines of the [15] proposal, would address this issue.

In general, the concept of fairness is not directly
expressible in CCS. For example, consider our CCS
description of NIL inport queues, and let P and Q be two
NIL processes having outports connected to a single inport
X. A possible computation of our translation would allow
the messages of P to be enqueued at X infinitely more often
than the messages of Q, thereby violating the “fair-merge
property” [20]. In certain cases, however, fairness can be
enforced in CCS by introducing additional “machinery.”

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

This is evidenced by our translation of cancel as described in
the Appendix which, with one noted exception, guarantees
the eventual termination of the canceled process.

Fairness in CCS has been a subject of intense study in
recent years ([15,16,21] to name only a few). For our CCS
translation of NIL, the work of [21] seems to be the most
relevant. They propose to modify the basic operational
semantics of CCS by introducing two rules (for both weak
and strong fairness) that rule out unfair computations. It
would be interesting future work to see if the [21] proof rules
are sufficient to satisfy our fairness requirements.

Finally, formal definitions of programming languages can
be used to substantiate “folklorish” assertions about the
behavior of programs written in the language. In NIL, one
such assertion is security [1]: the guarantee that processes in
a system cannot affect each other except by explicit
communication. Security, in turn, can be viewed in terms of
three modularity properties:

1. Local variables are accessed only by the process in which
they are declared.

2. Parameters passed by calls are accessed in a manner
consistent with their declarations, i.¢., in, out, or in/out.

3. Connections to inports are accessed by a process only
after having been received through explicit
communication. (This last property is one of “access
control.”)

By examining the CCS translation of NIL, the modularity
properties of NIL can be substantiated:

1. Ports read, and write,, used to implement the register
behavior for local variable X, are restricted in the
translation of the begin-block construct, effectively
limiting the scope of X to the NIL process in which it is
declared.

2. Consider first out parameters. These variables may be
uninitialized at the point of call, and therefore must not
be read at that time. This is consistent with the
translation of call, where, if X is an out parameter, no
attempt is made to access port read, before the call is
made. If X is an in parameter, the checking that X is
never modified by the called process is done statically by
the NIL compiler. Parameters of type in/out may be
accessed by the caller and callee as if they were ordinary
variables.

3. Processes in the CCS translation of a NIL program access
connections to inports through the set of ports {o,,,| opid
€ NjJ. Thus, the value of a NIL outport variable in the
CCS translation is a natural number. The type and
typestate checking of NIL programs [13] ensures that this
natural number was obtained through the explicit
communication of an outport or through local outport
assignment.

IBM). RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

Acknowledgments

The authors are indebted to Rocky Bernstein,

Alessandro Giacalone, Peter Wegner, and especially

Shaula Yemini for many helpful discussions. They would
also like to thank the referees of the IFIP WG 2.2
Conference on Formal Description of Programming
Concepts—III for a careful reading of an earlier version of
this paper that produced numerous comments/corrections.
This work was initiated in the summer of 1984 when the
first author was visiting IBM, Yorktown Heights, New York,
as a faculty researcher. He would like to thank IBM for its
support and also acknowledge the support he received under
NSF Grant DCR-8505873.

Appendix: Semantics of cancellation

o Informal semantics
Every NIL process is the value of a variable of type process
within its owner. The create P statement creates a new
process and assigns it as the value of a process variable P;
the cancel P statement causes the process designated by P to
enter the canceled state. A process in the canceled state may
execute some finite number of actions (“last wishes”) before
terminating, but is guaranteed to eventually terminate.
Processes may block indefinitely as a result of while,
select, receive, accept, or call statements. It would be
inconsistent for the semantics both to require that canceled
processes always terminate and to have some statements not
be live. Therefore, the above five statements are defined so
that they may terminate by raising the CANCEL exception,
as well as by normal termination. Normal termination will
occur as defined in the main body of the paper. The
exception termination must occur whenever normal
termination is impossible and failure to terminate would
result in the failure of a canceled process to terminate.,

o Derivation of the CCS specification
The CCS specification for termination of while, select,
receive, or accept for canceled processes is relatively
straightforward. If the process attempting to execute while,
select, or receive is in the canceled state, then the statement
may raise the CANCEL exception, or it may continue
normal execution. For receive/accept and select, a blocked
process will be waiting at ¢, or gotcha, respectively; by
waiting alternatively for a cancel “beacon” signal, these
statements will be guaranteed to eventually become
unblocked if the cancel signal is issued. For while, it is
necessary to execute the loop in parallel with a behavior
which waits for either the termination of the while or the
cancel beacon. If the cancel beacon is sensed, then if the
loop still does not terminate, a stop message is sent, forcing
the loop to terminate.

The CCS specification for termination of call is more

intricate as a result of the requirement that call must not 567

SCOTT A. SMOLKA AND ROBERT E. STROM

568

terminate, even with an exception, without the callrecord
being returned. Now it is necessary to require that the

called process raise an exception if it does not make progress
while holding a callrecord belonging to a canceled calling
process.

A process under obligation to return its callrecord in order
to allow some calling process to proceed toward cancellation
is said to be forced. If a forced process is itself blocked
because of a call statement, it may in turn cause the process
it is calling to become forced. A forced process ceases to be
forced after it has returned any callrecords it has accepted
from canceled or forced processes. So long as a process is in
the canceled state or is forced, attempts to execute otherwise
nonterminating statements will terminate with an exception.
Since in NIL, raising an exception always terminates the
current block, eventually all blocks will terminate. The NIL
typestate rules [13] guarantee that processes finalize all their
variables before termination, and in particular that any
accepted callrecords will be returned.

The CCS solution for call is as follows:

Every NIL process runs in parallel with a monitor process
which tracks the canceled and forced states. When the
monitor process receives a can signal, it enters the
Canceled state. If the NIL process becomes forced because
it owns a callmessage originating from another forced or
canceled process, then the monitor will receive a force
signal and enter the Forced state. A count is kept which is
incremented each time the force signal is received, and
decremented each time a callmessage from a canceled or
forced process is returned. When canceled or forced, the
beacon signal is repeatedly offered. The beacon signal
causes the blocked while, select, receive, or accept
statement to terminate.
¢ A monitor is provided which records whether the
associated NIL process is engaged in a call: Either (a) no
call is in progress; (b) a call is in progress to process pid
but the caller has not yet tried to force the call to return;
or (¢) a call is in progress and another process has been put
in the forced state because of the call.
The call behavior is modified so that if the call does not
return but the cancelbeacon is sensed, then a new state is
entered which attempts to either receive the returned
callrecord or force the current owner of the callmessage.
The calirecord is augmented so that it includes the pid
(process id) of the calling process.
¢ The return behavior is modified so that if the returning
process has had its forced count incremented as a result of
this callrecord, the forced count will be decremented.
o The forward behavior is modified so that if the forwarding
process has had its forced count incremented as a result of
this callrecord, the forward will be treated as a return, and
if not, the calling process will be aware of the identity of
the new owner of the callrecord.

SCOTT A. SMOLKA AND ROBERT E. STROM

¢ Output ports are modified so that the identity of the owner
of the associated input port can be determined. (This
modification is not shown here.)

Formal definitions

o Who (pid) < whoami (pid) . Who (pid)
® Normal (pid) & can,, . Canceled (pid)
+ force,,, . Forced (1, pid)
o Canceled (pid) « force,,, . Canceled (pid)
+ unforce,,, . Canceled (pid)
+ beacon . Canceled (pid)
e Forced (i, pid) « force,,, . Forced (i + 1, pid)
+ unforce,
. (ifi = 1 =0 then Normal else Forced (i — 1, pid))
+ beacon . Forced (i, pid) + can,, . Canceled (pid)
o NotCalling (pid) < call (pid 2) . Calling (pid, pid 2)
o Calling (pid, pid 2) «= returned . NotCalling (pid)

+ return_,, . Calling (pid, pid 2)

pid *
+ forwardp,.d(pid 3, opid, callrec)
. 0, callrec) . Calling (pid, pid 3)
+ forcecallee .Mpm . Forcing (pid, pid 2)
o Forcing (pid, pid 2) < returned . NotCalling (pid)
+ return,,, . Worcepw,2 . Forcing (pid, pid 2)
+ forward,,(pid 3, opid, callrec)
.0

callrec,,

l(all_but_last_two callrec)

. Forcing (pid, pid 2)

Translation of create The last line of the translation of
create given in Section 4.2 now reads:

([[call “opid” (X,, - -+, X)11

(P, (ipid)|Who (pid)| Normal (pid)| NotCalling (pid))

name

\{whoami, call, returned})

Translation of while We define two new behaviors that
will run in parallel with the translation of while.
Cancelmonitor waits for either the beacon or the loop
termination; if the beacon is sensed, a CANCEL exception
will be raised on a subsequent loop boundary:

Whilemonitor « check . (Whilemonitor

+ stop . [[raise CANCELY)))
Cancelmonitor < & . done + beacon . (5 . done + stop . NIL)

IBM J. RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

[[while E do S end while]] = ((w| Whilemonitor)\{check}

| Cancelmonitor)\{s, stop}

. M. Hennessy, W. Li, and G. Plotkin, “A First Attempt at
Translating CSP into CCS,” Proceedings of the 2nd IEEE
International Conference on Distributed Computing, 1981.

5. E. Astesiano and E. Zucca, “Semantics of CSP Via Translation
where w is as in Section 3 but begins with a check action into CCS,” Proceedings of the 10th Symposium on Mathematical
, . . Foundations of Computing, Lecture Notes in Computer Science
each time around. Note: If no fairness assumptions about 118, 172-182 (1981).
CCS are made, there is no guarantee that the stop will 6. M. Hennessy and W, Li, “Translating a Subset of Ada into
eventually be received even though continuously enabled, CCS,” Proceedings of the IFIP Conference on Formal
) R Description of Programming Concepts—II, North-Holland
because check may be infinitely often chosen. Publishing Co., Amsterdam, 1983, pp. 227-247.
7. L. Cardelli, “Sticks and Stones: An Applicative VLSI Design
; : et Language,” Report No. CSR-85-81, Department of Computer
Trans{atlon of receive . Nondeterministically or th? Science, University of Edinburgh, Edinburgh, Scotland, 1981.
behavior beacon . [[raise CANCEL]] to the translation of 8. M. W. Sheilds and M. J. Wray, “A CCS Specification of the OSI
receive given in Section 3. Network Service,” Report No. CSR-136-83, Department of
Computer Science, University of Edinburgh, Edinburgh,
, s . Scotland, August 1983.
Translation of accept Nondeterministically or the behavior 9. T. W. Doeppner, Jr., and A. Giacalone, “A Formal Description
beacon . [[raise CANCEL]] to the translation of accept given of the UNIX Operating System,” Proceedings of the 2nd ACM
in Section 3. Symposium on Principles of Distributed Computing, Montreal,
August 1983, pp. 241-253.
10. R. E. Strom, S. Yemini, and P. Wegner, “Viewing Ada from a
Translation of call The behavior immediately following Process Model Perspective,” Proceedings of the AdaTec
; : ; ; Symposium on the Ada Programming Language, Paris, 1985;
the second before of the translation of call given in Section 3 available 4 ACM SIGADA Proceedings.
now reads 11. C. A. R. Hoare, “Communicating Sequential Processes,”
Commun. ACM 21, 666677 (August 1978).
([([X\1llpy /o] - - - [ITX Do /0 py(x)) - - - p.(X,) 12. “Reference Manual for the Ada Programming Language”
. . — . MIL-STD 18154, U.S. Department of Defense,
. read(opid) . owner,,,(pid 2) . call (pid 2) Washington, DC, Februaryp1983.
L. _ . . 13. R. E. Strom and S. Yemini, “The NIL Distributed Systems
- whoami (pid 3) . Ovmd(x 15 "0 Xy rel_opid, pid 3) Programming Language: A Status Report,” Proceedings of the
, N T , Seminar on Concurrency, Lecture Notes in Computer Science
AbpopiaXy s <05 X)) writey (X)) .- 197, 512-523 (1985).
—_ , 14. R. Milner, “Calculi for Synchrony and Asynchrony,” J. Theor.
- writey (x,") . returned . done Comput. Sci. 25, 267-310 (1983).
, N —— , 15. R. Milner, “A Finite-Delay Operator in Synchronous CCS,”
+ beacon . (‘rer—ipid(x Vo X)) wr ’leX,(x) Report No. CSR-116-82, Department of Computer Science,
— , University of Edinburgh, Edinburgh, Scotland, May 1982.
- Wr ”ex,,(xn) . returned . done) 16. M. Hennessy, “Axiomatising Finite Delay Operators,” Acta
eIl , P , Informat., No. 21, 61-88 (1984).
+ forcecallee . (‘ret—ipid(x 1 X)) wr ”"X.(xl) 17. R. Milner, “Lectures on a Calculus for Communicating
_ , Systems” Proceedings of the Seminar on Concurrency, Lecture
- W”tex,,(xn) . returned Notes in Computer Science 197, 197-220 (1985).
. 18. R. E. Strom and S. Yemini, “Synthesizing Distributed and
. (done + [[raise CANCELID)Mp,, - -, o} Parallel Programs Through Optimistic Transformations,”
Proceedings of the 1985 International Conference on Parallel
; : : : Processing, August 1985, pp. 632-642.
Trar'zslatlon of return San.le as the tran.slatloﬂven m 19. R. M. Keller and P. Panangaden, “Semantics of Networks
Section 3 for return except insert the action refur Peare, ., Containing Indeterminate Operators,” Proceedings of the
immediately before the 0, action. Seminar on Concurrency, Lecture Notes in Computer Science
" 197, 479-496 (1985).
. . . . 20. D. Park, “On the Semantics of Fair Parallelism,” Lecture Notes
Translation of forward The translation of forward given in in Computer Science 86, 504-526 (1980).
Section 3 now reads 21. G. Costa and C. Stirling, “Weak and Strong Fairness in CCS,”

read,(opid) . read.; , pp(callrec) . owner, . (pid)

- Jorward,,,. (pid, opid, callrec) . done

References
1. R. E. Strom and S. Yemini, “NIL: An Integrated Language and
System for Distributed Programming,” Proceedings of the
SIGPLAN ‘83 Symposium on Programming Language Issues in
Software Systems, San Francisco, June 1983, pp. 73-82.

Report No. CSR-167-85, Department of Computer Science,
University of Edinburgh, Edinburgh, Scotland, January 1985.

Received March 11, 1987, accepted for publication May 22,
1987

Scott A. Smolka State University of New York, Department of
Computer Science, Stony Brook, New York 11794. Professor Smolka
received his B.A. and M.A. in mathematics from Boston University,
Massachusetts, in 1975 and 1977. In 1984, he received his Ph.D. in
computer science from Brown University, Providence, Rhode Island.

2. Robert Strom and Nagui Halim, “A New Programming
Methodology for Long-Lived Software Systems,” /BM J. Res.
Develop. 28, No. 1, 52-59 (January 1984).

3. R. Milner, A Calculus of Communicating Systems, Lecture

Notes in Computer Science 92, Springer-Verlag New York, 1980. 569

IBM J. RES, DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

SCOTT A. SMOLKA AND ROBERT E. STROM

570

Since 1983, he has been an assistant professor at SUNY Stony
Brook. His current research interests include the formal analysis of
communicating processes and related computational complexity
issues, design environments for concurrent systems, and distributed
algorithms.

Robent E. Strom [BM Thomas J. Watson Research Center, P.O.
Box 704, Yorktown Heights, New York 10598. Dr. Strom completed
his B.A. at Harvard University, Cambridge, Massachusetts, in 1966,
and his doctoral studies at Washington University, St. Louis,
Missouri, in 1972. He joined IBM in 1977 as a Research staff
member at the Thomas J. Watson Research Center. His current
interests are programming language design and implementation,
program transformations, distributed systems, and semantics.

SCOTT A. SMOLKA AND ROBERT E. STROM

IBM J. RES. DEVELOP. VOL. 31

NO. 5 SEPTEMBER 1987

