
Specification
statements
and refinement

by Carroll Morgan
Ken Robinson

We discuss the development of executable
programs from state-based specifications
written in the language of first-order predicate
calculus. Notable examples of such
specifications are those written using the
techniques 2 and VDM; but our interest is in the
rigorous derivation of the algorithms from which
they deliberately abstract. This is, of course, the
role of a development method. Here we propose
a development method based on specification
statements with which specifications are
embedded in programs-standing in for
developments “yet to be done.” We show that
specification statements allow description,
development, and execution to be carried out
within a single language: programs/
specifications become hybrid constructions in
which both predicates and directly executable
operations can appear. The use of a single
language-embracing both high- and low-level
constructs-has a very considerable influence
on the development style, and it is that influence
we discuss: the specification statement is
described, its associated calculus of refinement
is given, and the use of that calculus is
illustrated.

1. Introduction
In the Z [I] and VDM [2] specification techniques,
descriptions of external behavior are given by relating the
“before” and “after” values of variables in a hypothetical
program state. It is conventional to assume that the external

Topyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other

546
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

aspects are treated by designating certain variables as
containing initially the input values, and certain others as
containing finally the output values. As development
proceeds, structure is created in the program-and the
specifications, at that stage more “abstract algorithms,” come
increasingly to refer to internal program variables as well.
For example, we may at some stage wish to describe the
operation of taking the square root of some integer variable
n; by adopting the convention that n refers to the value of
that variable after the operation, and no to its value before,
this description could be written

n = n o (1)

Ordinarily, we would call the above a spec$cution, because
“conventional” computers do not execute (Le., find a
valuation making true) arbitrary formulas of predicate logic
(logic programming languages deal only with a restricted
language of predicates).

Two notable features of our specification (1) above are its
nondeterminism and that it is partial. It is nondeterministic
in the sense that for some initial values no (e.g., 4) there may
be several appropriate final values n (+2 in this case). It is
partial in the sense that for some initial values (e.g., 3) there
are no appropriate final values. We see below that our
proposed development method makes this precise in the
usual way (e.g., that of [3]): the nondeterminism allows an
implementation to return either result (whether consistently
or varying from one execution to the next); and the
implementor can assume that the initial value is a perfect
square, providing a program whose behavior is wholly
arbitrary otherwise.

In presenting a development technique, we are not
ignorant of the fact that VDM already has (or even is) one;
rather we are concentrating our attention on Z, where
development has been less well worked out. In this our aim
is most definitely to propose a lightweight technique-as Z is
itself-in which existing material is used as much as
possible. Dijkstra’s language [3] therefore was chosen as the

2

CARROLL MORGAN AND KEN ROBINSON IBM J RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

target, because it has a mathematically attractive and above
all simple semantic basis, and because it includes
nondeterminism naturally.

this paper-is we believe the integration of description and
execution in one language. This is not achieved, as is so
often proposed, by restricting our language to those
specifications which are executable, and thus treating
specifications as programs; instead we extend the language to
allow ourselves to write programs which we cannot see at
first how to execute: in effect we treat programs as
specifications. It is precisely the lack of semantic distinction
between the two that allows finally our smooth transition
from abstract description to executable algorithm.

condition concept and its associated guarded command
programming language [3].

The key to a smooth development process-the subject of

We assume some familiarity with Dijkstra’s weakest pre-

Weakest pre-conditions and specifications
In [3]. Dijkstra introduces for program P and predicate R
over the program variables, the weakest pre-condition of R
with respect to P; he writes it

wp(f‘, R)

This weakest pre-condition is intended to describe exactly
those states from which execution of P is guaranteed to
establish R, and Dijkstra goes on to develop a small language
by defining for its every construct precise syntactic rules for
writing up(P, R) as a predicate itself. For example, the
meaning of assignment in this language is defined as follows
for variable x, expression E, and post-condition R:

wp(“x := E”, R) = R[x\E]

The notation [x\E] here denotes syntactic replacement in R
of x by E in the usual way (avoiding variable capture, etc.).
Thus

M’p(‘‘.x := x - 1”. x 2 0)
= (x 2 O)[.u\x - 1 1
= (x - 1) 2 0
= x > o

We can specifv a program P by giving both a pre-condition
(not necessarily weakest) and a post-condition; our pre-
condition and post-condition predicates we usually call pre
and post:

pre * wp(P, post) (3)

Informally, this is read “if pre is true, then execution of P
must establish post”; formally, we regard the above as
admitting only program texts P for which it is valid. Either
way, it is a specification in the sense that it directs the
implementor to develop a program with the required
property.

write instead
Our point of divergence from the established style (3) is to

[pre, post] E P (4)

We take (3) and (4) as identical in meaning, but in (4) the
constituents are exposed more clearly: [pre, post] is the
specification; E is the relation of refinement; and P is the
program to be found. Thus we read (4) as “the specification
[pre, post] is refined by P.”

The principal advantage of the alternative style is that
[pre, post] can take on a meaning independent of its
particular use in (4) above: we will give it a weakest pre-
condition semantics of its own. It is just this which removes
the distinction between specification and program-not that
they both are executable, but that they both are predicate
transformers, being suitable first arguments to wp(,).
Programs are just those specifications which we can execute
directly.

The refinement relation E is likewise generalized, and we
do this immediately below.

ReJinement
In (4) we have introduced an explicit symbol E for
refinement, and we now give its precise definition (as given,
e.g., in [4]):

Dejnition I For programs P and Q, we say that P is
refined by Q, written P LZ Q, iff for all post-conditions post:

W P V , post) * WP(Q, post). 0

We justify the above informally by noting that any
occurrence of P in a (proved correct) program is justified by
the truth of wp(P, post) at that point, for some predicate
post. No matter what post it is, the relation P E Q gives us
wp(Q, post) as well, so that Q is similarly justified: thus Q
can replace P. Operationally, P E Q whenever Q resolves
nondeterminism in P, or terminates when P might not.

This refinement relation is independent of the notion of
specification, and can be evaluated for any two constructs
whose weakest pre-condition semantics are known. For
example, we have in the guarded command language of [3]

i f a s b + a : = a - b
O b 2 a - + b : = b - a
fi

E i f a s b + a : = a - b
[a $ b + b : = b - a
fi

The first program is nondeterministic, executing either
branch when a = b; the second program is a proper (i.e.,
nonidentical) refinement of it because this nondeterminism
has been removed. Such refinement relations between
programs allow us to implement the nondeterministic
program above in more conventional (deterministic)
languages; we transcribe the deterministic refinement as
follows:

?ARROLL MORGAN P

547

(N D KEN ROBINSON IBM J RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987 (

I F a < = b T H E N a : = a - b
ELSE b := b - a

END

Specification statements
From the preceding section we can see that in formal terms
we should have [pre, post] P iff for all R

wp([pre, post], R) * wp(f‘, R) (5)

But for this to have meaning, we must define its antecedent;
as in the definition (2) above for assignment statements, we
express up([pre, post], R) as a syntactic transformation of
the predicate R. We do this below, moving from simple to
more general cases.

The simple case
In the simplest case we have two predicates pre and post
each over the program variables in a single state. We have
the following:

Dejnition 2 Let the vector of currently declared program
variables be 3; for any predicates pre, post, and R, we define

wp([pre, post], R) = pre A (V; . post + R) 0

Note that our quantifiers always extend in scope to the first
enclosing parentheses (V. . . .). As indicated, we use V to
refer to the vector of all program variables, and do not
concern ourselves very much with how they are declared.

Section 2 discusses the consistency of Definition 2 and
Formula (5); here we justify the definition only informally.
We regard [pre, post] as a statement, and its first component
pre describes the states in which its termination is
guaranteed; thus pre is a necessary feature of our desired
weakest pre-condition, and in fact appears as the first
conjunct there. But the weakest pre-condition must
guarantee more than termination: it must ensure that on
termination, R holds. From the second component of
[pre, post], we know that post describes the states in which it
terminates-and so we require only that in all states
described by post the desired R holds as well: this is the
second conjunct.

abbreviations.

Conjining change
We allow a list of variables 6, in which appear all the
variables which the statement can change; variables not in 3
must retain their initial values. The precise definition
of fk [pre, post] is as follows:

Dejinition 3 Let the vector of currently declared program
variables be 3, and let 3 be a subvector of V; for any
predicates pre, post, and R, we define

We now continue with some notational extensions and

548 w p (k [pre, post], R) = pre A (V 3 . post - R) 0

The only change from Definition 2 is that the vector of
quantified variables is now 3 rather than 3. Taking, for
example, 3 to be “x, y,” we have

wp(x : [true, x = y] , R)
= true A (Vx . x = y + R)
= R[x\y].

Since also wp(x := y , R) = R[x\y], we have shown “x : [true,
x = y]” and “x := y” to have the same meaning.

Initial values
So far, we can specify only that a certain relationship (e.g.,
post) is to hold between thejinal values of variables. We now
adjust our definition so that 0-subscripted variables in the
second component of a specification statement can be taken
as refemng to the initial values of variables.

Dejinition 4 Let the vector of currently declared program
variables be V , and let 3 be a subvector of 3; let pre and R as
before be arbitrary predicates, and let post be a predicate
refemng optionally to 0-subscripted variables V,, as well. We
define

wp(D : [pre, post], R) = pre A (VD . post + R)[d,\d]

-provided R contains no 0-subscripted variables 6,. 0
By our definition we have reserved the use of 0-subscripts

to denote initial values, and so must forgo their use for other
purposes: this is why R should contain no 3,. It is possible,
however, to take the view that in R also the variables ;,, refer
to initial values; this leads in fact to the weakest pre-
speczjication of Hoare and He [5] . Josephs [6] has
investigated this.

Definition 4 reduces to Definition 3.
We note that if post does not refer to initial values, then

The substitution [3,\3] may require renaming of the
bound variables 3, but this is often unnecessary; for
example, taking 3 to be “x, y” as before, we have

wp(x : [true, x = x,, + yo], R)
= true A (Vx . x = x,, + yo + R)[x,, y,,\x, y]

= R[x\x + y].

This is, of course, wp(x := x + y, R), as one would hope.

Implicit pre-conditions
If the pre-condition is omitted, we supply a default condition
for it as follows:

= R[x\xo + ~ J [x o , Y~\x, YI

Dejnition 5 Let the vector of currently declared program
variables be 3, and let 3 be a subvector of 5; let post be a
predicate refemng optionally to 0-subscripted variables Go.
We define

3 : [post] abbreviates 3 :[(3 3 . post)[;,,\;], post] 0

CARROLL MORGAN AND KEN ROBINSON IBM J . RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

Thus the implicit pre-condition is simply “it is possible to
establish the post-condition.” This is exactly the view taken
in Z specifications generally, where only a single predicate is
given; in our original square-root example (])-writing it
n: [n2 = no]-the implicit pre-condition is (3 n . n2 = n,)[n,\n],
which we can simplify to (3 k . k2 = n). That is, termination
is guaranteed only if n is a perfect square.

Generalized assignment
The assignment statement x := E establishes the post-
condition x = E while changing only x-it has the same
meaning, therefore, as the specification statement x : [x =
E[x\x,]] (in which the renaming [x\xO] is necessary because
occurrences of x in E are initial values). Exploiting this, we
define below a generalized assignment statement in which
the binary relation = of ordinary assignment can be replaced
by any binary relation desired.

Definition 6 If Q is a binary relation symbol, then for any
variable x and expression E,

x :a E abbreviates x : [x a E[x\xo]]. 0

Thus we have that

x :< x decreases x; and that
m :E s chooses a member m from the set s.

Note that in the second case our implicit pre-condition is
“the set s is not empty”:

m :E s
= m : [m E s]
= m : [(3m’ . m‘ E s), m E s]
= m : [s # {] , m E s]

This abbreviation was suggested by Jean-Raymond Abrial.

Invariants
Often a formula appears as a conjunct in both the pre- and
the post-conditions, thus making it an invariant of the
statement. The following convention, suggested in [4] , allows
us to write it only once; we abbreviate [pre A I , I A post] by

[P , I , post1

Thus [pre, I , post] Q iff

pre A I wp(Q, I A post).

The above convention is useful when developing loops, as
we see in Section 3.

2. The refinement theorems
The following theorems justify our choice of semantics for
the specification statement. (Their full proofs may be found
in [7].) The first theorem shows that for every specification
there is a specification statement that satisfies it trivially.

Theorem I If 12 and 6 partition the vector 3 of program
variables, then for any predicates pre and post

pre A 3 = Co wp(3 : [pre, post], post A ii = ii,)

Proof (outline) The result follows by straightforward
application of Definition 4 and predicate calculus, except for
the possible occurrences of 0-subscripted variables in post A
ii = 6,. Since these are not program variables (we never
declare, e.g., x, in a program), we can avoid the problem by
a systematic renaming, proving instead that

pre A 3 = 3, + wp(3 : [pre, post], post[d,\C,] A ii = 6,)

This technique is used also in the proof of Theorem 3 in
Section 5, given in full. 0

The consistency mentioned in Section 1 follows easily
from the above, taking 3 = 3 and post free of 3,; clearly
other specializations are profitable as well.

The complementary problem is refining further a given
specification statement; the following theorem shows how
this can be done.

Theorem 2 If 3 and ii partition the program variables 3,
and if

pre A V = So + wp(P, post A ii = iio)

then

3 : [pre, post] E P

Proof (outline) The proof again simply applies definitions,
this time Definitions 1 and 4; the 0-subscripts are avoided as
before. 0

To summarize: Theorem 1 shows that 3 : [pre, post] is
always a solution to the specification (of P):

pre A V = Go + wp(P, post A ii = Go)

Theorem 2 shows it to be more general than any other
solution; thus overall we have that it is the most general
solution.

3. The refinement calculus
We now move to our main concern. With the definitions of
Section 1 we can mix specifications and executable
constructs freely, and program development becomes a
process of transformation within the one framework. But
this is only the beginning-the definitions supply the “first
principles” from which more specialized techniques spring,
and we can use these derived laws of rejinement directly in
our development of programs. Each law is designed to
introduce a particular feature into our final program, and the
process overall comes to resemble the natural deduction style
of formal proof, where our goals are not axioms but rather
directly executable constructs (the Vienna Development
Method [2] has a similar flavor).

IBM J . RES. DEVELOP. \ iOL. 31 I VO. 5 SEPTEMBER 1987 (’ARROLL I dORGAN P

549

LND KEN ROBINSON

We present the laws in the form

before-refinement .
after-refinement slde-condition

and by this we mean: “if side-condition is universally valid,
then before-rejinement c after-rejinement.”

Often, there is no side-condition-this indicates that the
stated refinement always obtains.

Strengthening the specification
Generally speaking, refinement strengthens a specification,
and it is characteristic of our refinement calculus that no
check is made against strengthening a specification too
much. The advantage of this is simplicity of the laws (Law
1 1 provides a striking example); a disadvantage is that
unproductive refinement steps may go longer unnoticed. But
there is no danger of invalidity resulting from over-
strengthened specifications, for we will see that they can
never provably be refined to executable code.

specification, and its failure predicts the failure of the
refinement process: we simply check that the specification
satisfies Dijkstra’s Law ofthe Excluded Miracle [3, p. 181
(paraphrased)

“For all executable programs P,

There is a simple feasibility test that can be applied to any

wp(P, false) =false”

If the specification failed this law, then so would any
refinement of it; and since no executable program fails the
law, we are forced to conclude that such a specification can
never be refined to an executable program. For
specifications, direct calculation yields that 3 : [pre, post] is
feasible iff pre * (3 6 . post)[;\;,].

The essence of our advantage is therefore that our laws do
not force us implicitly to apply a feasibility test at their every
application: very often the correctness of a development step
is obvious. Further discussion on this topic can be found in

Our first two laws deal with weakening the pre-condition
171.

and/or strengthening the post-condition of a specification.

Law I Weakening the pre-condition; the new specification
is more robust than the old (i.e., it terminates more often):

6 : [pre, post]
3 : [pre’, post] pre + pre’

For example, n : [n > 0, n = no - 11
E n : [n 2 0, n = n, - 11.

Law 2 Strengthening the post-condition; the new
specification allows less choice than the old:

3 : [pre, post]
6 : [pre, post’] pre (V 3 . post‘ post)[;,\;]

550 For example, n : [true, n 2 01 E n : [true, n > 01.

0

0

It is worth noting that a special case of Law 2 occurs when
.S and ii are the same; then we have for the side-condition

pre + (V; .post‘ *post)[;,\;]

Renaming ; to 5, throughout, this is equivalent to

pre[v‘\d,] (V; .post‘ * post)[G,,\v’][v’\d,]

which we may simplify to

pre[;\C,] - (V; . post‘ * post)

The quantifier Vd can be discarded since the antecedent
contains no i, and propositional calculus then gives us as
our special case the appealing

pre[;\;,] A post‘ +post

Law 3 Restricting change; the new specification can
change fewer variables than the old:

3, x : [pre, post]
3 : [pre, post]

0

For example, x, y : [x = yo] c x : [x = yo].
In Law 4 below, we use the compact symbols I [and] 1,

instead of the more conventional begin and end, to delimit
the scope of local variable declarations.

Law 4 Introducing fresh local variables (where “fresh”
means not otherwise occumng free):

3 : [pre, post]
I [var x; 3 x : [pre, post]] I x is a fresh variable 0

For example,f: [f = n!] ([var i ; f ; i : [f = n!] 1 1 .

Introducing executable constructs
The following laws allow us to introduce constructs from our
target programming language.

Law 5 Introducing abort:

3 : [false, post]
abort

0

Since abort E P for any P, we can by transitivity of E have
any program as the target of Law 5. Thus for any predicate
d@cult(n), we still have the easy refinement n : [n < 0 A
n > 0, drfficult(n)] c n := 17.

Law 6 Introducing skip:

3 : [post[;,\;], post]
skip

For example, x, y : [x = y, x = yo] E skip.

Law 7 Introducing assignment:

w : [p o s t [& $ G\i, E] , post]
3 := E

0

0

IBM J . RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987 CARROLL MORGAN AND KEN ROBINSON

For example, x : [true, x = x, + y] E x := x + y.
The next two laws are the weakest pre-specification and

weakest post-specijication constructions of Hoare and He [5] ,
with which one can “divide” one specification A by another
B, leaving a specification Q such that

A c Q; B (Law 8: weakest pre-specification)
A c B; Q (Law 9: weakest post-specification)

Law 8 Introducing sequential composition (weakest pre-
specification):

GI : [pre, post]
6 : [pre, wp(P, post)]; P

The side condition w : [true] E P can be read “P changes
only 3.” For example, we have

3 : [true] E P 0

x, y : [true, x = y + I]

E x, v : [true, x = 21;

y : = 1

Law 9 Introducing sequential composition (weakest post-
specification):

k : [pre, post]
& : [pre, mid]; mid, post contain no free Go

6, : [mid, post]

For example,

x : [true, x = y + I]

E x : [true, x = v] ;

x : [x = y . x = y + I]

Law 9 can be generalized to the case in which variables Go
do appear (as shown in [8]) ; in that case, one has effectively
supplied in mid the first component of the sequential
composition. For our larger example to follow (Section 4),
we need only the simpler version.

In Laws 10 and I 1, we use a quantifier-like notation for
generalized disjunction and alternation: If I for example
were the set { 1 . ~ 1 , then (Vi: I .G,) would abbreviate
GI V . . . V G,, and if (1 1 i .G, -+ S,) fi would abbreviate

if G, -+ SI
0 . . .
0 G” -+ S“
fi

Law IO Introducing alternation (if):

i t : [pre A (v i: I .G,), post]
if (0 i: I .G, + G : [pre A G,, post]) fi

The predicate pre is that part of the pre-condition irrelevant
to the case distinction being made by the guards G,: it is
passed on to the branches of the alternation. For example,

IBM J . RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

takingpre to be true, we have

y : [x = O V x = I , x + y = 11

E i f x = O + y : [x = O , x + y = I]
0 x = I - + y : [x = l , x + y = I]
fi

E i f x = O - + y : = 1
[x = I + y : = O
fi

Law I 1 Introducing iteration (do):

G : [true, inv, - (v i : I .G,)]
do

od

0

(0 i : I .Gi -+ 3 : [G,, inv, 0 5 var < var,])

The predicate inv is, of course, the loop invariant, and the
expression var is the variant. We use var, to abbreviate
var[G\G,].

note that inv can be any predicate and var any integer-
valued expression. Surprisingly, there are no side-
conditions-a bad choice of inv or var or indeed G, simply
results in a loop body from which no executable program
can be developed (see the remarks in Section 3).

An example of Law 11 is given in Section 4; for now, we

Law 1 1 is proved in Section 5.

4. An example: square root
For an example, we take the square-root development of
[3, pp. 61-65]; but our development here is deliberately
terse, because we are illustrating not how t o j n d such
developments (properly the subject of a whole book), but
rather how experienced programmers could record such a
development.

Specijication
We are given a nonnegative integer sq; we must set the
integer variable rt to the greatest integer not exceeding JG,
where the function J takes the nonnegative square root of its
argument.

a Specification

rt := 1 JsqJ
-

1 x J -the “floor” of x-is the greatest integer not
exceeding x.

Rejnement
We assume of course that J is unavailable to us, and
proceed as follows to eliminate it from our specification; we
eliminate 1 1 also. “Stacked” predicates denote
conjunction.

CARROLL MORGAN AND KEN ROBINSON

rt:= 1 & J

= r t : [r t = L & J 1 Definition 6

= r t : [sq 2 0, rt = 1 1 Definition 5

= r t : [s q z O , r t I G q < r t + 11 Definition of 1 J

0 I rt
rt2 I sq < (rt + I ? 1 Law 2

Refinement
Using Laws 4 and 2 , we introduce a new variable ru, and
strengthen the post-condition; our technique is to approach
the result from above (ru) and below (rt):

E [[var ru.

[0 5 rt
rt, ru : sq 2 0, r? I sq < ru

rt + I = ru 21
1 1

We now work on the inner part.

Refinement
Anticipating use of rt + 1 # ru as a loop guard, we
concentrate on the remainder of the post-condition, using
Law 9 with

to proceed:

0 I rt < ru
rt2 I sq < ru

0 5 rt < ru
rt‘ I sq < ru
rt + 1 = ru

Using Laws I and 7, we can show that for the first
component of the sequential composition above-
establishing mid, to become the loop invariant-we have

E rt, ru := 0, sq + 1

We now concentrate on the second component.

Refinement
We now introduce the loop, rewriting the second component
of the sequential composition (6) to bring it into the form
required by Law 1 I ; writing inv now for our mid above, we
have

= rt, ru : [true, inv, rt + 1 = T U]

and then by Law 1 I , with variant ru - rt, we proceed

E do rt + 1 # ru+
rt, ru : [rt + 1 # ru, inv, 0 5 ru - rt < ru, - rt,]

od 552

CARROLL MORGAN P

Refinement
For the loop body, we use Law 4 again to introduce a local
variable rm to “chop” the interval rt..ru in which the result
lies:

E I [var rm;
rt, ru, rm : [rt + 1 # ru, inv, 0 5 ru - rt < ru, - rt,]

1 1
We first choose rm between rt and ru, using Law 9, then
Law 3, twice to develop

E rm : [rt + 1 # ru, inv, rt < rm < ru];
rt, ru : [rt < rm < ru, inv, 0 I ru - rt < ru, - rt,]

Then with Laws 1 and 7 we quickly dispose of the first
component, deciding to make our choice of rm divide the
interval evenly:

E rm := (rt + ru) + 2

We proceed with the second component.

Refinement
The natural case analysis is now to consider rm2 I sq versus
rm2 > sq; accordingly, with Law IO, we so divide our task
and immediately apply Law 3 to each case; we have

E if rm2 I sq +

r t : [2 Inv, 0 L: ru - rt < ru, - rt, rt < rm < ru, .
rm L: sq, 1

1 rm2 > sq +

: [rt < rm < ru, . Inv, 0 I ru - rt < ru, - rt, rm2 > sq, 1
fi

For the first branch, we have by Law 7

E rt := rm

For the second branch, we have similarly

E ru := rm

This completes our development.

Consolidation: the implementation
Developments in this style generate a tree structure in which
children collectively refine their parents; to obtain the
program “neat,” we simply flatten the tree. For the square
root program, the result is as follows:

I [var ru;
rt, ru := 0, sq + I ;
do rt + I # ru +

1 [var rm;
rm := (rt + ru) + 2;
if rm2 I sq + rt := rm
0 rm2 > sq+ ru := rm

1 1
fi

11
od

rND KEN ROBINSON IBM J . RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

It is to be stressed that this consolidated presentation is not
to be carried off as the on1.v relic of our development. The
development itself must remain as a record of design steps
taken and their justifications (and in industrial practice, of
who took them!). Mistakes will still be made, and corrections
applied; only when a complete record is kept can we make
those corrections reliably, without introducing further
errors-and learn from the process.

5. Derivation of laws
In this section we prove Laws 2 and 1 1 of Section 3. We do
this for several reasons: to reassure the reader, who may
doubt their validity; to demonstrate the use of the weakest
pre-condition formula for specifications; and to suggest that
the collection of laws can easily be extended by similar
proofs.

ProqfofLaw 2
Law 2 allows us to strengthen the post-condition of a
specification; in simplest terms, this means replacing post by
post’ as long as we know that post’ * post. The side-
condition is weaker than this, however: It takes both the pre-
condition and changing variables into account, making the
law more widely applicable.

In the proof below, we assume that free-standing formulae
are closed-that is, that their free variables are implicitly
quantified (universally). It is this that allows us to rename
variables when necessary.

Theorem 3 Proof of Law 2: if the following side-condition
holds:

pre (V 6 . post‘ * post)[C,\G]

then so does this refinement:

6 : [pre, post] E 6 : [pre, post’]

Proof By Theorem 2 , we need only show

pre A j = j 0 + wp(6 : [pre, post‘], post A ii = 6,)

Since in Definition 4 the predicate R must not contain Go,
we rename those above to V , (we may do this because the
formula is closed); we must show

pre A V = d l wp(6 : [pre, post‘], post A li = 6,)

Definition 4 is now applied; we must show

pre A ii = V I pre A (VG . post’ *post A li = ii,)[V,\V]

Clearly we can remove the conjunct pre in the consequent,
because it occurs in the antecedent; we can remove ii = 6,
because 6 and the quantified 6 are disjoint, and V = V ,
appears in the antecedent. It remains to prove

pre A 6 = V , + (V 6 . post’ * post)[V,\V]

and this follows directly from the side-condition. 0

IBM J . RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

Proof of Law I I
We deal with the following restricted version of Law 1 1, in
which we consider a single guard only and take j and 6 the
same; we must show

Itrue. inv. lauurdl
do

od

Our proof is based on the loop semantics given in [2]; we
show that for k r 1

inv A (guard 4 var < k) Hk(inv A -guard) (7)

From this will follow

guard + [guard, inv, 0 I- var < var,]

inv
= inv A (guard (3 k 2 1 . var < k))
= (3 k 2 1 . inv A (guard var < k))
+ (3 k . Hk(inv A -guard))
= wp(do . . . od, inv A lguard)

Thus by Theorem 1 we have as required that

[inv, inv A -guard] E do . . . od

It remains therefore to prove (7), and this we do by
induction over k . We note first that H, = inv A ”guard,
and continue by direct calculation (writing pre‘ for
pre[G\;’], etc., and Hk for H,(inv A lguard)):

HI
guard

(VV . inv A 0 I- var < var, 4 H,)[Co\V]
= H, V guard A inv

c= (-guard A inv) V (guard A inv A var < 1)
= inv A (guard var < 1)

Our inductive step now concludes the argument:

H k + I

guard A inv

guard A inv
var < (k + 1)

= inv A (guard + var < (k + 1)) 0

The puzzling thing about Law 1 1 is that it has no side-
condition, whereas one might expect to find the condition

guard A inv + 0 I- var

But closer inspection reveals that whenever the above
formula fails, the loop body is infeasible: it must terminate

CARROLL MORGAN AND KEN ROBINSON

(since guard A inv holds initially) and must establish 0 I var
< 0 (since 0 $ var holds initially). By the law of the excluded
miracle (see [3]), no executable program can do this-the
refinement, though valid, is barren.

For the practicing developer, perhaps the side-condition
should be explicit; indeed, Law 1 1 can be rewritten this way,
with the 0 I var dropped from the post-condition of the
loop body. For the historical record of our development,
however, we want to prove the very minimum necessary-
and feasibility is of no interest. There would be no program,
and hence no record, if a feasibility check had failed.

6. Conclusion
We have claimed that the integration of specifications and
executable programs improves the development process. In
earlier work [7], the point was made that all the established
techniques of refinement are of course still applicable; their
being based on weakest pre-condition semantics
automatically makes them suitable for any construct so
given meaning. Indeed an immediate but modest application
of this work is our writing, for example, “choose e from s”
directly in our development language as “ e :E 3.’’

The refinement calculus is a step further. We are not
claiming that it makes algorithms easier to discover,
although we hope that this will be so; but it clearly does
make it easier to avoid trivial mistakes in development and
to keep a record of the steps taken there. A professional
approach to software development must record the
development process, and it must do so with mathematical
rigor. We propose the refinement calculus for that at least.

Another immediate possibility is the systematic treatment
of Z “case studies” as exercises in development, and we hope
to learn from this. (There are a large number of case studies
collected in [11.) Such systematic development is already
under way, for example, at the IBM Laboratories at Hursley
Park, UK [9].

The techniques of data refinement, in which high-level
data structures (sets, bags, functions. . .) are replaced with
structures of the programming language (arrays, trees . . .), fit
extremely well into this approach. Also facilitated is the
introduction of procedures and functions into a
development: the body of the procedure is simply a
specification statement “yet to be refined,” and the meaning
of procedures can once more be given by the elegant copq’
rule of Algol-60. These ideas are explored in [8] and [IO],
and we hope to publish them more widely.

7. Acknowledgments
It is clear that our approach owes its direction to the steady
pressure exerted by the work of Abrial, Back, Dijkstra,
Hoare, and Jones. More direct inspiration came from the
weakest pre-specification work of Hoare and He [5], who
provide a relational model and a calculus for development;
they strongly advocate the calculation of refinements as an 554

c

alternative to refinements proposed, then proved. Robinson
[IO] has done earlier work on the refinement calculus
specifically.

We believe the earliest embedding of specifications within
Dijkstra’s language of weakest pre-conditions to be that
reported in Back‘s thesis [1 11, and to him we freely give the
credit for it. His descriptions are single predicates, rather
than the predicate pairs we use here, and he gives a very
clear and comprehensive presentation of the resulting
refinement calculus. Our work extends his in that we
consider predicate pairs, and we do not require those pairs
always to describe feasible specifications. Because of this, we
obtain a significant simplification in the laws of our
refinement calculus.

In [121 L. Meertens explores similar ideas, and we are
grateful to him for making us aware of Back‘s work.

We have benefited from collaboration with the IBM
Laboratory at Hursley Park; the joint project [9] aims to
transfer research results directly from university to
development teams in industry.

to ours (even to allowing infeasible prescriptions); we
recommend his more abstract view, which complements
our own.

To the referees, and to Stephen Powell of IBM, we are

Moms [131 independently has taken a similar approach

grateful for their helpful suggestions.

References
I .

2.

3.

4.

5.

6.

7.

8.

9.

IO.

11.

12.

13.

I. J. Hayes, Specification Case Studies, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1987.
C. B. Jones, Systematic-Software Development Using VDM,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986.
E. W. Dijkstra, A Discipline ofProgramming, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1976.
E. C. R. Hehner, The Logic sf Programming, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1984.
C. A. R. Hoare and JiFeng He, “The Weakest Pre-
Specification,” Fundamenta Informatica IX, 5 1-84 (1986).
M. Josephs, “Formal Methods for Stepwise Refinement in the Z
Specification Language,” Programming Research Group,
Oxford, UK.
Carroll Morgan, “The Specification Statement,” submitted to
Trans. Programming Lang. & S.vst.
Carroll Morgan, Software Engineering Course Notes,
Programming Research Group, Oxford, UK.
J. E. Nicholls (for IBM) and I. H. Smensen (for Oxford),
Collaborative Project in Software Development.
Ken Robinson, “From Specifications to Programs,” Department
of Computer Science, University of New South Wales,
Kensington, Australia.
R.-J. Back, “On the Correctness of Refinement Steps in Program
Development,” Report A-1978-4, Department of Computer
Science, University of Helsinki, Finland, 1978.
L. Meertens, “Abstracto 84: The Next Generation,” Proceedings
of the 1979 Annual Conference, ACM.
J. Moms, “A Theoretical Basis for Stepwise Refinement and the
Programming Calculus,” submitted to Sci. Computer
Programming.

Received October 28, 1986; accepted for publication April 29,
1987

‘ARROLL MORGAN AND KEN ROBINSON IBM J . RES. I 3EVELOP. \ i0L. 31 NO. 5 SEPTEMBER I 987

Carroll Morgan Programming Research Group, 8-1 I Keble Road,
Oxford OX1 3QD, United Kingdom. Dr. Morgan received a BSc.
(Hons.) from the University of New South Wales, Kensington, and a
Ph.D. from the University of Sydney, both in computer science. He
worked for two years as a consultant in Sydney before returning to
the University of Sydney as a part-time lecturer. In 1982 he joined
the Programming Research Group at Oxford, working initially on
their Distributed Computing Project. Since 1985 Dr. Morgan has
been a university lecturer at Oxford and a Fellow of Pembroke
College.

Ken Robinson Department of Computer Science, University of
New South Wales, P.O. Box I , Kensington 2033, Australia.
Mr. Robinson received a BSc. and a B.E. from the University of
Sydney, and has since been mathematics tutor, systems programmer,
lecturer, and finally senior lecturer in computer science at the
University of New South Wales. He spent the year 1985-1986 on
sabbatical in Oxford.

IBM J . RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987

555

CARROLL MORGAN AND KEN ROBINSON

