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Specification
statements
and refinement

by Carroll Morgan
Ken Robinson

We discuss the development of executable
programs from state-based specifications
written in the language of first-order predicate
calculus. Notable examples of such
specifications are those written using the
techniques Z and VDM; but our interest is in the
rigorous derivation of the algorithms from which
they deliberately abstract. This is, of course, the
role of a development method. Here we propose
a development method based on specification
statements with which specifications are
embedded in programs—standing in for
developments “yet to be done.” We show that
specification statements allow description,
development, and execution to be carried out
within a single language: programs/
specifications become hybrid constructions in
which both predicates and directly executable
operations can appear. The use of a single
language—embracing both high- and low-level
constructs—has a very considerable influence
on the development style, and it is that influence
we discuss: the specification statement is
described, its associated calculus of refinement
is given, and the use of that calculus is
illustrated.

1. Introduction

In the Z [1] and VDM [2] specification techniques,
descriptions of external behavior are given by relating the
“before” and “after” values of variables in a hypothetical
program state. It is conventional to assume that the external
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aspects are treated by designating certain variables as
containing initially the inpur values, and certain others as
containing finally the ourput values. As development
proceeds, structure is created in the program—and the
specifications, at that stage more “abstract algorithms,” come
increasingly to refer to internal program variables as well.
For example, we may at some stage wish to describe the
operation of taking the square root of some integer variable
n; by adopting the convention that # refers to the value of
that variable after the operation, and n, to its value before,
this description could be written

no=n, 1)

Ordinarily, we would call the above a specification, because
“conventional” computers do not execute (i.e., find a
valuation making true) arbitrary formulas of predicate logic
(logic programming languages deal only with a restricted
language of predicates).

Two notable features of our specification (1) above are its
nondeterminism and that it is partial. It is nondeterministic
in the sense that for some initial values n, (e.g., 4) there may
be several appropriate final values » (£2 in this case). It is
partial in the sense that for some initial values (e.g., 3) there
are no appropriate final values. We see below that our
proposed development method makes this precise in the
usual way (e.g., that of [3]): the nondeterminism ailows an
implementation to return either result (whether consistently
or varying from one execution to the next); and the
implementor can assume that the initial value is a perfect
square, providing a program whose behavior is wholly
arbitrary otherwise.

In presenting a development technique, we are not
ignorant of the fact that VDM already has (or even is) one;
rather we are concentrating our attention on Z, where
development has been less well worked out. In this our aim
is most definitely to propose a lightweight technique—as Z is
itself—in which existing material is used as much as
possible. Dijkstra’s language [3] therefore was chosen as the
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target, because it has a mathematically attractive and above
all simple semantic basis, and because it includes
nondeterminism naturally.

The key to a smooth development process—the subject of
this paper—is we believe the integration of description and
execution in one language. This is not achieved, as is so
often proposed, by restricting our language to those
specifications which are executable, and thus treating
specifications as programs; instead we extend the language to
allow ourselves to write programs which we cannot see at
first how to execute: in effect we treat programs as
specifications. It is precisely the lack of semantic distinction
between the two that allows finally our smooth transition
from abstract description to executable algorithm.

We assume some familiarity with Dijkstra’s weakest pre-
condition concept and its associated guarded command
programming language [3].

o Weakest pre-conditions and specifications

In [3], Dijkstra introduces for program P and predicate R
over the program variables, the weakest pre-condition of R
with respect to P; he writes it

wp(P, R)

This weakest pre-condition is intended to describe exactly
those states from which execution of P is guaranteed to
establish R, and Dijkstra goes on to develop a small language
by defining for its every construct precise syntactic rules for
writing wp(P, R) as a predicate itself. For example, the
meaning of assignment in this language 1s defined as follows
for variable x, expression E, and post-condition R:

wp(“x := E”, R) = R[X\E]

The notation [x\ E£] here denotes syntactic replacement in R
of x by E in the usual way (avoiding variable capture, etc.).
Thus

wp(*x=x—-1", x=0)
= (xz 0)[x\x — 1]
=(x~1)=0
= x>0 2)

We can specify a program P by giving both a pre-condition
(not necessarily weakest) and a post-condition; our pre-
condition and post-condition predicates we usually call pre
and post:

pre = wp(P, post) (3)

Informally, this is read “if pre is true, then execution of P
must establish post”; formally, we regard the above as
admitting only program texts P for which it is valid. Either
way, it is a specification in the sense that it directs the
implementor to develop a program with the required
property.

Our point of divergence from the established style (3) is to
write instead
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[pre, post] = P 4)

We take (3) and (4) as identical in meaning, but in (4) the
constituents are exposed more clearly: { pre, posr] is the
specification; = is the relation of refinement; and P is the
program to be found. Thus we read (4) as “the specification
[pre, post] is refined by P.”

The principal advantage of the alternative style is that
[pre, post] can take on a meaning independent of its
particular use in (4) above: we will give it a weakest pre-
condition semantics of its own. It is just this which removes
the distinction between specification and program—not that
they both are executable, but that they both are predicate
transformers, being suitable first arguments to wp( , ).
Programs are just those specifications which we can execute
directly.

The refinement relation = is likewise generalized, and we
do this immediately below.

o Refinement

In (4) we have introduced an explicit symbol = for
refinement, and we now give its precise definition (as given,
e.g., in [4]):

Definition 1  For programs P and Q, we say that P is
refined by Q, written P = Q, iff for all post-conditions post:

wp(P, post) = wp(Q, post). O

We justify the above informally by noting that any
occurrence of P in a (proved correct) program is justified by
the truth of wp(P, post) at that point, for some predicate
post. No matter what post it is, the relation P = Q gives us
wp(Q, post) as well, so that Q is similarly justified: thus Q
can replace P. Operationally, P = Q whenever Q resolves
nondeterminism in P, or terminates when P might not.

This refinement relation is independent of the notion of
specification, and can be evaluated for any two constructs
whose weakest pre-condition semantics are known. For
example, we have in the guarded command language of [3]

fa<sbsa=a-b
lbza—-b:=b-a
fi

cifasbosa=a-b
lagbobi=b-a
fi

The first program is nondeterministic, executing either
branch when a = b; the second program is a proper (i.e.,
nonidentical) refinement of it because this nondeterminism
has been removed. Such refinement relations between
programs allow us to implement the nondeterministic
program above in more conventional (deterministic)
languages; we transcribe the deterministic refinement as

follows: 547
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Fa<=bTHENa:=a-—b
ELSEb:=b—a
END

o Specification statements
From the preceding section we can see that in formal terms
we should have [ pre, post] = P iff for all R

wp([ pre, post], R) = wp(P, R) (5)

But for this to have meaning, we must define its antecedent;
as in the definition (2) above for assignment statements, we
express wp([ pre, post], R) as a syntactic transformation of
the predicate R. We do this below, moving from simple to
more general cases.

e The simple case

In the simplest case we have two predicates pre and post
each over the program variables in a single state. We have
the following:

Definition 2 Let the vector of currently declared program
variables be 7; for any predicates pre, post, and R, we define

wp([ pre, post], R) = pre A (Vi . post = R) 0O

Note that our quantifiers always extend in scope to the first
enclosing parentheses (V. - - -). As indicated, we use v to
refer to the vector of all program variables, and do not
concern ourselves very much with how they are declared.

Section 2 discusses the consistency of Definition 2 and
Formula (5); here we justify the definition only informally.
We regard [ pre, post] as a statement, and its first component
pre describes the states in which its termination is
guaranteed; thus pre is a necessary feature of our desired
weakest pre-condition, and in fact appears as the first
conjunct there. But the weakest pre-condition must
guarantee more than termination: it must ensure that on
termination, R holds. From the second component of
[ pre, post], we know that post describes the states in which it
terminates—and so we require only that in all states
described by post the desired R holds as well: this is the
second conjunct.

We now continue with some notational extensions and
abbreviations.

Confining change

We allow a list of variables w, in which appear all the
variables which the statement can change; variables not in w
must retain their initial values. The precise definition

of w: [ pre, post] is as follows:

Definition 3 Let the vector of currently declared program
variables be v, and let w be a subvector of 7; for any
predicates pre, post, and R, we define

wp(W: [ pre, post], R) = pre A (YW . post = R) a
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The only change from Definition 2 is that the vector of
quantified vanables is now w rather than 4. Taking, for
example, v to be “x, y,” we have

wp(x : [true, x = y], R)
= true A (Vx.x=y=R)
= R[x\y].

Since also wp(x := y, R) = R[x\y], we have shown “x : [true,
x = y]” and “x := y” to have the same meaning.

Initial values

So far, we can specify only that a certain relationship (e.g.,
post) is to hold between the final values of variables. We now
adjust our definition so that 0-subscripted variables in the
second component of a specification statement can be taken
as referring to the initial values of variables.

Definition 4  Let the vector of currently declared program
variables be 7, and let W be a subvector of 7; let pre and R as
before be arbitrary predicates, and let post be a predicate
referring optionally to O-subscripted variables 7, as well. We
define

wp(W : [pre, post], R) = pre A (VW . post = R)[,\7]

—provided R contains no 0-subscripted variables 7, O

By our definition we have reserved the use of 0-subscripts
to denote initial values, and so must forgo their use for other
purposes: this is why R should contain no v, It is possible,
however, to take the view that in R also the variables 7, refer
to initial values; this leads in fact to the weakest pre-
specification of Hoare and He [5]. Josephs [6] has
investigated this.

We note that if post does not refer to initial values, then
Definition 4 reduces to Definition 3.

The substitution [4,\7] may require renaming of the
bound variables W, but this is often unnecessary; for
example, taking v to be “x, y” as before, we have

wp(x : [true, x = x, + y,l, R)
= true A (Vx.x = x5 + Y, = R)[xg Vo\X, V]
RIx\x, + llxg yo\x, V]
R[x\x + y].

This is, of course, wp(x := x + y, R), as one would hope.

Implicit pre-conditions
If the pre-condition is omitted, we supply a default condition
for it as follows:

Definition 5 Let the vector of currently declared program
variables be 7, and let w be a subvector of 7; let post be a
predicate referring optionally to O-subscripted variables 7,.
We define

W : [ post] abbreviates w :[(3W . post)[v,\d], post] 0
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Thus the implicit pre-condition is simply “it is possible to
establish the post-condition.” This is exactly the view taken

in Z specifications generally, where only a single predicate is
given; in our original square-root example (1)—writing it

n: [n2 = n,)—the implicit pre-condition is (3n . "= nln\nl,
which we can simplify to (3k . k* = n). That is, termination

is guaranteed only if n is a perfect square.

Generalized assignment

The assignment statement x := E establishes the post-
condition x = E while changing only x—it has the same
meaning, therefore, as the specification statement x : [x =
E[x\x,]] (in which the renaming [x\x,] is necessary because
occurrences of x in E are initial values). Exploiting this, we
define below a generalized assignment statement in which
the binary relation = of ordinary assignment can be replaced
by any binary relation desired.

Definition 6  If <is a binary relation symbol, then for any
variable x and expression E,

x :<J E abbreviates x : [x < E[x\x,]]. 0
Thus we have that

x :< x decreases x; and that
m :€ s chooses a member m from the set s.

Note that in the second case our implicit pre-condition is
“the set 5 is not empty”:

m:E€s
= m:{m€Es]
m:[(Am .m’ € 5), mE s}
m:[s#{}, mEs)

This abbreviation was suggested by Jean-Raymond Abrial.

Invariants

Often a formula appears as a conjunct in both the pre- and
the post-conditions, thus making it an invariant of the
statement. The following convention, suggested in [4], aliows
us to write it only once; we abbreviate [pre A I, I A post] by

[pre, 1, post]
Thus [pre, I, post] = Q iff
pre N I = wp(Q, I A post).

The above convention is useful when developing loops, as
we see in Section 3.

2. The refinement theorems

The following theorems justify our choice of semantics for
the specification statement. (Their full proofs may be found
in [7].) The first theorem shows that for every specification
there is a specification statement that satisfies it trivially.
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Theorem 1 If it and W partition the vector 7 of program
variables, then for any predicates pre and post

pre N v =0, = wp(W: [ pre, post], post \ it = i)

Proof (outline)  The result follows by straightforward
application of Definition 4 and predicate calculus, except for
the possible occurrences of 0-subscripted variables in post A
it = #i,,. Since these are not program variables (we never
declare, e.g., X, in a program), we can avoid the problem by
a systematic renaming, proving instead that

pre N o =0, = wp(W : [ pre, post), post[v\v,] A it = ii,)

This technique is used also in the proof of Theorem 3 in
Section 5, given in full. O

The consistency mentioned in Section 1 follows easily
from the above, taking W = 7 and post free of 7,; clearly
other specializations are profitable as well.

The complementary problem is refining further a given
specification statement; the following theorem shows how
this can be done.

Theorem 2
and if

If w and i partition the program variables 7,

pre N 0 =3, = wp(P, post \ it = il,)
then

w: [pre, post] = P

Proof (outline) The proof again simply applies definitions,
this time Definitions 1 and 4; the O-subscripts are avoided as
before. O

To summarize: Theorem 1 shows that w : [ pre, post] is
always a solution to the specification (of P):

pre N o =1,= wp(P, post \ it = ii,))

Theorem 2 shows it to be more general than any other
solution; thus overall we have that it is the most general
solution.

3. The refinement calculus

We now move to our main concern. With the definitions of
Section | we can mix specifications and executable
constructs freely, and program development becomes a
process of transformation within the one framework. But
this is only the beginning—the definitions supply the “first
principles” from which more specialized techniques spring,
and we can use these derived laws of refinement directly in
our development of programs. Each law is designed to
introduce a particular feature into our final program, and the
process overall comes to resemble the natural deduction style
of formal proof, where our goals are not axioms but rather
directly executable constructs (the Vienna Development

Method [2] has a similar flavor). 549
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We present the laws in the form

before-refinement

side-condition
after-refinement

and by this we mean: “if side-condition is universally valid,
then before-refinement = after-refinement.”

Often, there is no side-condition—this indicates that the
stated refinement always obtains.

e Strengthening the specification

Generally speaking, refinement strengthens a specification,
and it is characteristic of our refinement calculus that no
check is made against strengthening a specification too
much, The advantage of this is simplicity of the laws (Law
11 provides a striking example); a disadvantage is that
unproductive refinement steps may go longer unnoticed. But
there is no danger of invalidity resulting from over-
strengthened specifications, for we will see that they can
never provably be refined to executable code.

There is a simple feasibility test that can be applied to any
specification, and its failure predicts the failure of the
refinement process: we simply check that the specification
satisfies Dijkstra’s Law of the Excluded Miracle {3, p. 18]
(paraphrased)

“For all executable programs P,
wp(P, false) = false”

If the specification failed this law, then so would any
refinement of it; and since no executable program fails the
law, we are forced to conclude that such a specification can
never be refined to an executable program. For
specifications, direct calculation yields that w : [ pre, post] is
feasible iff pre = (3w . post)[o\v,).

The essence of our advantage is therefore that our laws do
not force us implicitly to apply a feasibility test at their every
application: very often the correctness of a development step
is obvious. Further discussion on this topic can be found in
71

Our first two laws deal with weakening the pre-condition
and/or strengthening the post-condition of a specification.

Law 1 Weakening the pre-condition; the new specification

is more robust than the old (i.e., it terminates more often):

W . [ pre, post]

— re e’ O
W [pre’, post] pre = pr

For example, n: [n >0, n=n,— 1]
Sn:[n=20,n=n,-1}.

Law 2 Strengthening the post-condition; the new
specification allows less choice than the old:

w : [ pre, post]

W [pre, post1 ¢ (YW . post’ = post)[vo\d] 0O

For example, n : [true, n = 0] = n : [true, n > 0].
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It is worth noting that a special case of Law 2 occurs when
v and w are the same; then we have for the side-condition

pre = (Y7 . post’ = post)[T,\7]

Renaming v to 4, throughout, this is equivalent to
pre[oNd,] = (V9 . post’ = post)[v,\6][v\7,]

which we may simplify to

pre[o\i,] = (V7 . post’ = post)

The quantifier V7 can be discarded since the antecedent
contains no v, and propositional calculus then gives us as
our special case the appealing

pre[i\i,] A post’ = post

Law 3 Restricting change; the new specification can
change fewer variables than the old:

W, X : [pre, post]
w: [pre, post]

For example, x, y: [x = y ] =Ex: [x = y,].

In Law 4 below, we use the compact symbols |[ and ]|,
instead of the more conventional begin and end, to delimit
the scope of local variable declarations.

Law 4 Introducing fresh local variables (where “fresh”
means not otherwise occurring free):

W : [pre, post]
|[var x; W x : [pre, post] ]

x is a fresh variable a
For example, f: [f=n]S |[var i; f, i : [f=n] ]I.

o Introducing executable constructs
The following laws allow us to introduce constructs from our
target programming language.

Law 5 Introducing abort:

w : [ false, post]

abort o

Since abort = P for any P, we can by transitivity of = have
any program as the target of Law 5. Thus for any predicate
difficult(n), we still have the easy refinement n: [n <0 A

n >0, difficuln)] = n .= 17.
Law 6 Introducing skip:

W o [ post[,\v], post]
skip

For example, x, y : [x = y, x = y,] = skip.

Law 7 Introducing assignment:

w : [ post[v,, W\o, E), post]

wi=F
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For example, x : [true, x = x, + YJEx =x + ).

The next two laws are the weakest pre-specification and
weakest post-specification constructions of Hoare and He [5],
with which one can “divide” one specification 4 by another
B, leaving a specification Q such that

A= Q; B (Law 8: weakest pre-specification)
A= B, Q (Law 9: weakest post-specification)
Law 8 Introducing sequential composition (weakest pre-

specification):

w : [ pre, post]
w : [ pre, wp(P, post)]; P

The side condition w : [true] = P can be read “P changes

>

only w.” For example, we have
X,y [true, x =y + 1]

= x, v: [true, x = 2];
yi=1

Law 9 Introducing sequential composition (weakest post-
specification):

‘4

» ¢ [ pre, post)
: [ pre, mid];
' 1 [mid, post]

=

+

For example,
X [true, x =y + 1]
C x: [true, x = y];
x:[x=px=y+1]

Law 9 can be generalized to the case in which variables 7,
do appear (as shown in [8]); in that case, one has effectively
supplied in mid the first component of the sequential
composition. For our larger example to follow (Section 4),
we need only the simpler version.

In Laws 10 and 11, we use a quantifier-like notation for
generalized disjunction and alternation: If 7 for example
were the set {1..n}, then (Vi: I .G)) would abbreviate
G, V.- VG,andif(]| i.G,— S)fi would abbreviate

if G, - S,

I -
I] Gn i Sn
fi
Law 10 Introducing alternation (if):

W [pre NV i 1.G), posi]
if (] i:1.G,— w:[pre N G, post]) fi

a

The predicate pre is that part of the pre-condition irrelevant
to the case distinction being made by the guards G: it is
passed on to the branches of the alternation. For example,
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w: [truej= P a

mid, post contain no free 7, O

taking pre to be true, we have
yilx=0Vx=1Lx+y=1]

Cifx=0-y:[x=0,x+y=1]
[x=1loy:[x=Lx+ypy=1]

fi
Cifx=0-oy:=1

[x=1—>y:=0

fi
Law 11  Introducing iteration (do):

w: [true, inv, —(Vi: I.G)]
|

do

{i:1.G,—> w:I[G, inv,0 < var <vary))
od

The predicate inv is, of course, the loop invariant, and the
expression var is the variant. We use var, to abbreviate
var[v\do].

An example of Law 11 is given in Section 4; for now, we
note that inv can be any predicate and var any integer-
valued expression. Surprisingly, there are no side-
conditions—a bad choice of inv or var or indeed G; simply
results in a loop body from which no executable program
can be developed (see the remarks in Section 3).

Law 11 is proved in Section 5.

4. An example: square root

For an example, we take the square-root development of
[3, pp. 61-65]; but our development here is deliberately
terse, because we are illustrating not how to find such
developments (properly the subject of a whole book), but
rather how experienced programmers could record such a
development,

o Specification

We are given a nonnegative integer sq; we must set the
integer variable ¢ to the greatest integer not exceeding «/;1,
where the function v takes the nonnegative square root of its
argument.

o Specification

rt = [\/E(}J

| x ] —the “floor” of x—is the greatest integer not
exceeding x.

o Refinement

We assume of course that v is unavailable to us, and
proceed as follows to eliminate it from our specification; we
eliminate | | also. “Stacked” predicates denote

conjunction. 551
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re = [\/E;)J
(= | Vsq]]

=rt:[sq=0,r= [@J]
= rt:[squ,rts\/s—(;<rt+l]

Definition 6

I
<

Definition 5
Definition of | |

In

Law 2

rt:[squ, 0=r ]

"< sq < (rt + 1)2

e Refinement

Using Laws 4 and 2, we introduce a new variable ru, and
strengthen the post-condition; our technique is to approach
the result from above (ru) and below (r?):

= |[var ru.
O=sn
rt, ru ;| sq =0, = sq < i
n+1=ru

Il

We now work on the inner part.

o Refinement

Anticipating use of rf + 1 # ru as a loop guard, we
concentrate on the remainder of the post-condition, using
Law 9 with

mid=<(z)frt<m)

rt sq < re
to proceed:
O=snrn<ru
= M > :
=i, ru [sq =0, - g < ruz]’
Osn<ru
0=<rt<ru, 2 2
r,oru: i< sqg < nd r <sqg<ru 6)
=5 n+1=ru

Using Laws | and 7, we can show that for the first
component of the sequential composition above—
establishing mid, to become the loop invariant—we have

= rt,ru:=0,s5q+ 1

We now concentrate on the second component.

o Refinement

We now introduce the loop, rewriting the second component
of the sequential composition (6) to bring it into the form
required by Law 11; writing inv now for our mid above, we
have

=, ru: [true, inv, rt + 1 = ru)
and then by Law 11, with variant ru — rt, we proceed

Edort+1#ru—
rt,ruc[rt 4+ 1% ru, inv, 0 < ru—~ rt <ruy — ri)
od
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o Refinement

For the loop body, we use Law 4 again to introduce a local
variable rm to “chop” the interval rz..ru in which the result
lies:

= |[var rm;
rt,ru, rmc [re 4+ 15 ru, inv, 0 < ru — rt <ruy — ;)

Il

We first choose rm between rt and ru, using Law 9, then
Law 3, twice to develop

= rm:[rt+1#ru, inv, t<rm<ruj,
rtruc e <rm<vru, inv, 0 < ru — rt < ruy — rt]

Then with Laws | and 7 we quickly dispose of the first
component, deciding to make our choice of rm divide the
interval evenly:

Crm=(t+ru)+2

We proceed with the second component.

® Refinement

The natural case analysis is now to consider rm’ < sq versus
i’ > sq; accordingly, with Law 10, we so divide our task
and immediately apply Law 3 to each case; we have

. 2
cifrm <sq—

[rt <rm<ru,
re:

2 m, 0=sru—nrn<ru,—r
rm° = sq, ’ 0 0]

|]rm2>sq—-)

n<rm<ru,
ru 2
rm’ > sq,

inv, 0 s ru— rt <ru, - rto]
fi

For the first branch, we have by Law 7

crti=rm

For the second branch, we have similarly

C ru:=rm
This completes our development.

o Consolidation: the implementation

Developments in this style generate a tree structure in which
children collectively refine their parents; to obtain the
program “neat,” we simply flatten the tree. For the square
root program, the result is as follows:

|[var ru;
rt,ru:=0,sq+ 1;
dort+1#ru—
j[var rm;
rm = (rt + ru) + 2;
if rm’° < sq—rti=rm
2
[ rm">sq—ru:=rm

fi
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It is to be stressed that this consolidated presentation is not
to be carried off as the only relic of our development. The
development itself must remain as a record of design steps
taken and their justifications (and in industrial practice, of
who took them!). Mistakes will still be made, and corrections
applied; only when a complete record is kept can we make
those corrections reliably, without introducing further
errors~—and learn from the process.

5. Derivation of laws

In this section we prove Laws 2 and 11 of Section 3. We do
this for several reasons: to reassure the reader, who may
doubt their validity; to demonstrate the use of the weakest
pre-condition formula for specifications; and to suggest that
the collection of laws can easily be extended by similar
proofs.

o Proof of Law 2

Law 2 allows us to strengthen the post-condition of a
specification; in simplest terms, this means replacing post by
post’ as long as we know that post’ = post. The side-
condition is weaker than this, however: It takes both the pre-
condition and changing variables into account, making the
law more widely applicable.

In the proof below, we assume that free-standing formulae
are closed—that is, that their free variables are implicitly
quantified (universally). It is this that allows us to rename
variables when necessary.

Theorem 3 Proof of Law 2: if the following side-condition
holds:

pre = (VW. post’ = post)[i,\v]

then so does this refinement:

W : [pre, post] © w : [pre, post’]

Proof By Theorem 2, we need only show
pre N o = 39, = wp(W : [ pre, post’], post N\ it = i)

Since in Definition 4 the predicate R must not contain v,,
we rename those above to v, (we may do this because the
formula is closed); we must show

pre N 0 =1, = wp(W : [pre, post’], post N i1 = 1,)
Definition 4 is now applied; we must show
pre N o =3, = pre N (NW . post’ = post N it = ii,)[J\7]

Clearly we can remove the conjunct pre in the consequent,
because it occurs in the antecedent; we can remove i = i,
because i and the quantified w are disjoint, and 7 = 7,
appears in the antecedent. It remains to prove

pre A o =3, = (VW . post’” = post)[v,\v]

and this follows directly from the side-condition. [
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e Proof of Law 11

We deal with the following restricted version of Law 11, in
which we consider a single guard only and take 7 and W the
same; we must show

[true, inv, —guard]

do
guard — [guard, inv, 0 < var < var,)
od
Our proof is based on the loop semantics given in [2]; we
show that for k = 1

inv N\ (guard = var < k) = H,(inv N —guard) 7)
From this will follow

iny

inv A (guard = (3k = 1 . var < k))

(k= 1. inv A (guard = var < k))

= (3k . H(inv N —guard))
= wp(do --- od, inv A —guard)

Thus by Theorem 1 we have as required that

[inv, inv A —guard] = do --- od

It remains therefore to prove (7), and this we do by
induction over k. We note first that H, = inv A —guard,
and continue by direct calculation (writing pre’ for
pre[t\v’], etc., and H, for H,(inv N —guard)):

Hl
guard
= H,V guard N inv
(Y7 . inv A O < var < vary = H)[7,\7]

= H Vv guard N inv
0 (Vo' . inv' A O = var’ < var = H))

e (—guard N inv) V (guard N\ inv A var < 1)
= inv A (guard = var < 1)

Our inductive step now concludes the argument:

H

k+1

HV guard N inv
0 (Vo' . inv' AN O < var <var= H))

guard N inv

=HyV Yo' . inv' A O < var < var= , inv’ ,
guard’ = var’ < k

guard N\ inv
var<(k + 1)

= inv A (guard = var < (k + 1)) O

<=H0V<

The puzzling thing about Law 11 is that it has no side-
condition, whereas one might expect to find the condition

guard N inv= 0 < var

But closer inspection reveals that whenever the above

formula fails, the loop body is infeasible: it must terminate 553
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(since guard A inv holds initially) and must establish 0 < var
< 0 (since 0 # var holds initially). By the law of the excluded
miracle (see [3]), no executable program can do this—the
refinement, though valid, is barren.

For the practicing developer, perhaps the side-condition
should be explicit; indeed, Law 11 can be rewritten this way,
with the 0 < var dropped from the post-condition of the
loop body. For the historical record of our development,
however, we want to prove the very minimum necessary—
and feasibility is of no interest. There would be no program,
and hence no record, if a feasibility check had failed.

6. Conclusion

We have claimed that the integration of specifications and
executable programs improves the development process. In
earlier work [7], the point was made that all the established
techniques of refinement are of course still applicable; their
being based on weakest pre-condition semantics
automatically makes them suitable for any construct so
given meaning. Indeed an immediate but modest application
of this work is our writing, for example, “choose e from s”
directly in our development language as “e :€ s5.”

The refinement calculus is a step further. We are not
claiming that it makes algorithms easier to discover,
although we hope that this will be so; but it clearly does
make it easier to avoid trivial mistakes in development and
to keep a record of the steps taken there. A professional
approach to software development must record the
development process, and it must do so with mathematical
rigor. We propose the refinement calculus for that at least.

Another immediate possibility is the systematic treatment
of Z “case studies™ as exercises in development, and we hope
to learn from this. (There are a large number of case studics
collected in [1].) Such systematic development is already
under way, for example, at the IBM Laboratories at Hursley
Park, UK [9].

The techniques of data refinement, in which high-level
data structures (sets, bags, functions . . .) are replaced with
structures of the programming language (arrays, trees . . .), fit
extremely well into this approach. Also facilitated is the
introduction of procedures and functions into a
development: the body of the procedure is simply a
specification statement “yet to be refined,” and the meaning
of procedures can once more be given by the elegant copy
rule of Algol-60. These ideas are explored in [8] and [10],
and we hope to publish them more widely.
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