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We discuss  the  development of executable 
programs  from  state-based  specifications 
written in the  language of first-order predicate 
calculus.  Notable  examples of such 
specifications  are  those  written  using  the 
techniques 2 and VDM; but our interest is in the 
rigorous  derivation of the  algorithms  from  which 
they  deliberately  abstract.  This  is,  of  course,  the 
role of a  development  method.  Here  we  propose 
a development  method  based on specification 
statements  with  which  specifications  are 
embedded in programs-standing in for 
developments  “yet to be done.”  We  show that 
specification  statements  allow  description, 
development,  and  execution to be carried  out 
within  a  single  language:  programs/ 
specifications  become  hybrid  constructions in 
which  both  predicates  and  directly  executable 
operations  can  appear.  The  use  of  a  single 
language-embracing  both  high-  and low-level 
constructs-has  a  very  considerable  influence 
on  the  development  style,  and it  is that  influence 
we discuss:  the  specification  statement is 
described, its associated  calculus of refinement 
is given,  and  the  use  of  that  calculus is 
illustrated. 

1. Introduction 
In the Z [I]  and  VDM [2] specification techniques, 
descriptions  of  external  behavior are given by relating the 
“before” and “after” values of variables in  a  hypothetical 
program  state. It is conventional to assume that  the external 
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aspects are treated by designating  certain variables as 
containing initially the input values, and certain  others  as 
containing finally the output values. As development 
proceeds, structure is created in  the program-and the 
specifications, at  that stage more  “abstract  algorithms,” come 
increasingly to refer to  internal program variables as well. 
For example, we may at  some stage wish to describe the 
operation of taking the square  root of some integer variable 
n; by adopting  the  convention  that n refers to  the value of 
that variable after the  operation,  and no to its value before, 
this  description  could be written 

n = n o  (1) 

Ordinarily, we would call the above  a spec$cution, because 
“conventional” computers  do  not execute (Le., find a 
valuation  making true) arbitrary  formulas of predicate logic 
(logic programming languages deal only with a restricted 
language of predicates). 

Two  notable  features of our specification (1) above are its 
nondeterminism and  that it is partial. It is nondeterministic 
in the sense that for some initial values no (e.g., 4) there  may 
be several appropriate final values n (+2 in  this case). It is 
partial  in the sense that for some initial values (e.g., 3) there 
are no appropriate final values. We see below that  our 
proposed development method makes  this precise in the 
usual way  (e.g., that of [3]): the  nondeterminism allows an 
implementation  to  return either result (whether consistently 
or varying from  one execution to  the next); and  the 
implementor  can assume that  the initial value is a perfect 
square,  providing  a  program whose behavior is wholly 
arbitrary otherwise. 

In presenting  a  development technique, we are  not 
ignorant  of the fact that  VDM already  has (or even is) one; 
rather we are  concentrating  our  attention  on Z, where 
development  has been less  well worked out. In this our  aim 
is most definitely to propose  a lightweight technique-as Z is 
itself-in which existing material is used as much as 
possible. Dijkstra’s language [3] therefore was chosen  as the 
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target, because it has a  mathematically  attractive and above 
all simple semantic basis, and because it  includes 
nondeterminism naturally. 

this paper-is  we believe the integration  of  description and 
execution  in one language. This is not achieved,  as is so 
often  proposed, by restricting our language to those 
specifications which are executable, and  thus treating 
specifications as  programs;  instead we extend the language to 
allow ourselves to write programs which we cannot see at 
first how to execute: in effect  we treat  programs as 
specifications. It is precisely the lack of semantic distinction 
between the  two  that allows finally our  smooth transition 
from  abstract  description to executable  algorithm. 

condition concept and its associated guarded command 
programming language [3]. 

The key to a smooth development process-the subject of 

We assume some familiarity with Dijkstra’s weakest pre- 

Weakest pre-conditions and specifications 
In [3]. Dijkstra introduces for program P and predicate R 
over the program variables, the weakest pre-condition of R 
with respect to P; he writes it 

wp(f‘, R )  

This weakest pre-condition is intended  to describe exactly 
those states  from which execution  of P is guaranteed to 
establish R, and Dijkstra goes on  to develop  a  small language 
by defining for its every construct precise syntactic  rules for 
writing up(P, R )  as a  predicate itself. For example, the 
meaning of assignment in  this language is defined as follows 
for variable x, expression E, and post-condition R: 

wp(“x := E”, R )  = R[x\E] 

The  notation [x\E] here denotes syntactic  replacement  in R 
of x by E in the usual way (avoiding variable capture, etc.). 
Thus 

M’p(‘‘.x := x - 1”. x 2 0 )  
= (x 2 O)[.u\x - 1 1  
= ( x -  1 ) 2 0  
= x > o  

We can specifv a program P by giving both a  pre-condition 
(not necessarily weakest) and a  post-condition; our pre- 
condition  and post-condition  predicates we usually call pre 
and post: 

pre * wp(P, post) ( 3 )  

Informally,  this is read “if pre is true, then execution of P 
must establish post”; formally, we regard the above  as 
admitting only program  texts P for which it is valid. Either 
way, it is a specification in the sense that it directs the 
implementor  to develop  a  program with the required 
property. 

write instead 
Our  point of divergence from the established style ( 3 )  is to 

[pre,  post] E P (4) 

We take (3) and (4) as identical in meaning, but  in (4) the 
constituents  are exposed more clearly: [pre,  post] is the 
specification; E is the relation  of  refinement; and P is the 
program to be found. Thus we read (4) as  “the specification 
[pre,  post] is refined by P.” 

The principal  advantage of the alternative style is that 
[pre,  post] can  take  on a meaning  independent of  its 
particular use in (4) above: we will give it a weakest pre- 
condition  semantics  of its own. It is just this which removes 
the distinction between specification and program-not that 
they both are executable, but  that they  both are predicate 
transformers, being suitable first arguments  to wp( , ). 
Programs are  just those specifications which we can execute 
directly. 

The refinement  relation E is likewise generalized, and we 
do this  immediately below. 

ReJinement 
In (4) we have introduced  an explicit symbol E for 
refinement, and we now give its precise definition  (as given, 
e.g., in [4]): 

Dejnition I For programs P and Q, we say that P is 
refined by Q, written P LZ Q, iff for all post-conditions post: 

W P V ,  post) * WP(Q,  post). 0 

We justify the above  informally by noting  that  any 
occurrence of P in  a  (proved  correct)  program is justified by 
the  truth of wp(P,  post) at  that  point, for some predicate 
post. No matter what post it is, the relation P E Q gives us 
wp(Q, post) as well, so that Q is similarly justified: thus Q 
can replace P. Operationally, P E Q whenever Q resolves 
nondeterminism in P, or  terminates when P might  not. 

This refinement relation is independent of the  notion of 
specification, and  can be evaluated  for any two  constructs 
whose weakest pre-condition  semantics are known. For 
example, we have  in the guarded command language of [3] 

i f a s b + a : = a - b  
O b 2 a - + b : = b - a  
fi 

E i f a s b + a : = a - b  
[ a $ b + b : = b - a  
fi 

The first program is nondeterministic,  executing  either 
branch when a = b; the second  program is a  proper (i.e., 
nonidentical)  refinement  of  it because this nondeterminism 
has been removed.  Such  refinement  relations between 
programs allow us to  implement  the nondeterministic 
program  above  in more  conventional (deterministic) 
languages; we transcribe the deterministic  refinement  as 
follows: 
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I F a < = b T H E N a : = a - b  
ELSE b := b - a 

END 

Specification  statements 
From  the preceding  section we can see that in  formal terms 
we should  have [ pre, post] P iff for all R 

wp([pre,  post], R )  * wp(f‘, R )  ( 5 )  

But for  this to have meaning, we must define its antecedent; 
as  in the definition ( 2 )  above for assignment statements, we 
express up( [ pre, post], R )  as a  syntactic transformation of 
the predicate R. We do  this below, moving  from  simple to 
more general cases. 

The simple case 
In the simplest case we have two predicates pre and post 
each  over the program variables in  a single state. We have 
the following: 

Dejnition 2 Let the vector of currently  declared  program 
variables be 3; for any predicates pre, post, and R, we define 

wp( [ pre, post], R )  = pre A (V; . post + R )  0 

Note that  our quantifiers always extend in scope to  the first 
enclosing  parentheses (V. . . .). As indicated, we use V to 
refer to  the vector of all program variables, and  do  not 
concern ourselves very much with how they are declared. 

Section 2 discusses the consistency  of  Definition 2 and 
Formula (5); here we justify the definition  only  informally. 
We regard [ pre, post] as  a statement,  and its first component 
pre describes the states  in which its termination is 
guaranteed; thus pre is a necessary feature of our desired 
weakest pre-condition, and in fact appears  as  the first 
conjunct there. But the weakest pre-condition must 
guarantee more  than  termination: it must ensure that  on 
termination, R holds. From  the second component of 
[ pre, post], we know that post describes the states in which it 
terminates-and so we require  only that in all states 
described by post the desired R holds  as well: this is the 
second conjunct. 

abbreviations. 

Conjining  change 
We allow a list of variables 6, in which appear all the 
variables which the  statement  can change; variables not in 3 
must  retain  their  initial values. The precise definition 
of fk [ pre, post] is as follows: 

Dejinition 3 Let the vector of  currently  declared  program 
variables be 3, and let 3 be a  subvector  of V; for any 
predicates pre, post, and R, we define 

We now continue with some  notational extensions and 

548 w p ( k  [ pre, post], R )  = pre A ( V 3  . post - R )  0 

The only  change  from  Definition 2 is that  the vector of 
quantified variables is now 3 rather than 3. Taking,  for 
example, 3 to be “x, y,” we have 

wp(x : [true, x = y] ,   R)  
= true A (Vx .  x = y +  R )  
= R[x\y]. 

Since also wp(x := y ,  R )  = R[x\y], we have shown “x : [true, 
x = y]” and “x := y” to have the  same meaning. 

Initial values 
So far, we can specify only that a  certain  relationship (e.g., 
post) is to hold between thejinal values of variables. We now 
adjust our definition so that 0-subscripted variables in the 
second component of a specification statement  can be taken 
as refemng  to  the initial values of variables. 

Dejinition 4 Let the vector of  currently declared program 
variables be V ,  and let 3 be a  subvector of 3; let pre and R as 
before be arbitrary predicates, and let post be a  predicate 
refemng optionally to 0-subscripted variables V,, as well. We 
define 

wp( D : [ pre, post], R )  = pre A (VD . post + R)[d,\d] 

-provided R contains  no 0-subscripted variables 6,. 0 
By our definition we have reserved the use of  0-subscripts 

to  denote initial values, and so must forgo their use for other 
purposes: this is why R should contain  no 3,. It is possible, 
however, to  take  the view that in R also the variables ;,, refer 
to initial values; this leads  in fact to  the weakest pre- 
speczjication of Hoare  and  He [ 5 ] .  Josephs [6] has 
investigated this. 

Definition 4 reduces to Definition 3. 
We note  that if post does  not refer to initial values, then 

The substitution [3,\3] may require renaming of the 
bound variables 3, but this is often unnecessary; for 
example,  taking 3 to be “x, y” as before, we have 

wp(x : [true, x = x,, + yo],  R) 
= true A (Vx  . x = x,, + yo + R)[x,, y,,\x, y] 

= R[x\x + y]. 

This is, of course, wp(x := x + y, R), as one would hope. 

Implicit  pre-conditions 
If the pre-condition is omitted, we supply  a  default condition 
for  it as follows: 

= R[x\xo + ~ J [ x o ,  Y~\x, YI 

Dejnition 5 Let the vector of  currently  declared  program 
variables be 3, and let 3 be a  subvector  of 5; let post be a 
predicate refemng optionally to 0-subscripted variables Go. 
We define 

3 : [post] abbreviates 3 :[( 3 3 .  post)[;,,\;], post] 0 

CARROLL  MORGAN AND KEN ROBINSON IBM J .  RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987 



Thus  the implicit pre-condition is simply  “it is possible to 
establish the post-condition.” This is exactly the view taken 
in Z specifications generally, where only  a single predicate is 
given; in our original  square-root  example (])-writing it 
n: [n2  = no]-the implicit  pre-condition is ( 3 n .  n2 = n,)[n,\n], 
which we can simplify to ( 3 k .  k2 = n). That is, termination 
is guaranteed  only if n is a perfect square. 

Generalized assignment 
The assignment statement x := E establishes the post- 
condition x = E while changing  only x-it has the  same 
meaning,  therefore, as  the specification statement x : [x = 
E[x\x,]] (in which the  renaming [x\xO] is necessary because 
occurrences of x in E are initial values). Exploiting  this, we 
define below a generalized assignment statement in which 
the binary  relation = of ordinary assignment can be replaced 
by any binary  relation  desired. 

Definition 6 If Q is  a  binary  relation  symbol, then for any 
variable x and expression E, 

x :a E abbreviates x : [x a E[x\xo]]. 0 

Thus we have that 

x :< x decreases x; and  that 
m :E s chooses a member m from  the set s. 

Note that in the second case our implicit  pre-condition is 
“the set s is not  empty”: 

m :E s 
= m : [ m E s ]  
= m : [ (3m’ .  m‘ E s), m E s] 
= m : [ s # { ] , m E s ]  

This abbreviation was suggested by Jean-Raymond Abrial. 

Invariants 
Often  a formula  appears as  a conjunct  in both the pre- and 
the post-conditions, thus making  it an invariant of the 
statement.  The following convention, suggested in [4] ,  allows 
us to write it only once; we abbreviate [pre A I ,  I A post] by 

[ P ,  I ,  post1 

Thus [ pre, I ,  post] Q iff 

pre A I wp(Q, I A post). 

The above convention is useful when  developing loops, as 
we see in  Section 3. 

2. The  refinement  theorems 
The following theorems justify our choice  of semantics for 
the specification statement.  (Their full proofs may be found 
in [7].) The first theorem shows that for every specification 
there is a specification statement  that satisfies it trivially. 

Theorem I If 12 and 6 partition the vector 3 of program 
variables, then for any predicates pre and post 

pre A 3 = Co wp(3 : [pre,  post], post A ii = ii,) 

Proof (outline) The result follows by straightforward 
application of Definition 4 and predicate  calculus,  except  for 
the possible occurrences  of 0-subscripted variables in post A 
ii = 6,. Since these are  not program variables (we never 
declare, e.g., x, in  a  program), we can avoid the problem by 
a  systematic  renaming,  proving  instead that 

pre A 3 = 3,  + wp(3 : [pre,  post], post[d,\C,] A ii = 6,) 

This  technique is used also in the proof of Theorem 3 in 
Section 5, given in full. 0 

The consistency mentioned in  Section 1 follows easily 
from  the above, taking 3 = 3 and post free of 3,; clearly 
other specializations are profitable as well. 

The  complementary problem is refining further a given 
specification statement;  the following theorem shows how 
this can be done. 

Theorem 2 If 3 and ii partition the program variables 3, 
and if 

pre A V = So + wp(P, post A ii = iio) 

then 

3 : [ pre, post] E P 

Proof (outline) The proof  again  simply  applies  definitions, 
this  time Definitions 1 and 4; the 0-subscripts are avoided as 
before. 0 

To summarize: Theorem 1 shows that 3 : [pre,  post] is 
always a  solution to  the specification (of P): 

pre A V = Go + wp(P, post A ii = Go) 

Theorem 2 shows it to be more general than  any  other 
solution; thus overall we have that it is the most general 
solution. 

3. The  refinement calculus 
We now  move to  our  main  concern. With the definitions  of 
Section 1 we can mix specifications and executable 
constructs freely, and program  development  becomes  a 
process of transformation within the  one framework. But 
this is only the beginning-the definitions  supply the “first 
principles” from which more specialized techniques spring, 
and we can use these  derived laws of rejinement directly in 
our development of programs. Each law is designed to 
introduce a  particular  feature into  our final program, and  the 
process overall comes  to resemble the natural deduction style 
of formal  proof, where our goals are  not  axioms  but  rather 
directly executable  constructs (the Vienna  Development 
Method [2] has  a  similar flavor). 
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We present the laws in the  form 

before-refinement . 
after-refinement slde-condition 

and by this we mean: “if side-condition is universally valid, 
then before-rejinement c after-rejinement.” 

Often, there is no side-condition-this indicates that  the 
stated  refinement always obtains. 

Strengthening the specification 
Generally  speaking,  refinement strengthens a specification, 
and it is characteristic of our refinement  calculus that  no 
check is made against  strengthening  a specification too 
much.  The advantage of this is simplicity  of the laws (Law 
1 1 provides  a  striking  example);  a  disadvantage  is that 
unproductive refinement  steps may go longer unnoticed. But 
there is no  danger of invalidity resulting from over- 
strengthened specifications, for we  will see that they can 
never provably be refined to executable  code. 

specification, and its failure predicts the failure  of the 
refinement process: we simply  check that  the specification 
satisfies Dijkstra’s Law  ofthe Excluded  Miracle [3, p. 181 
(paraphrased) 

“For all executable  programs P, 

There is a  simple feasibility test that  can  be applied to  any 

wp(P, false) =false” 

If the specification failed this law, then so would any 
refinement of it; and since no executable program fails the 
law, we are forced to  conclude  that such  a specification can 
never be refined to  an executable program.  For 
specifications, direct  calculation yields that 3 : [ pre, post] is 
feasible iff pre * (3 6 . post)[;\;,]. 

The essence of our advantage is therefore that  our laws do 
not force us implicitly to apply  a feasibility test at their every 
application: very often the correctness of a development step 
is obvious. Further discussion on  this  topic  can  be  found  in 

Our first two laws deal with weakening the pre-condition 
171. 

and/or strengthening the post-condition of a specification. 

Law I Weakening the pre-condition; the new specification 
is more robust than  the old (i.e., it terminates  more often): 

6 : [ pre, post] 
3 : [pre’,  post] pre + pre’ 

For example, n : [n > 0,  n = no - 11 
E n : [n 2 0, n = n, - 11. 

Law 2 Strengthening the post-condition; the new 
specification allows less choice than  the old: 

3 : [pre, post] 
6 : [ pre, post’] pre ( V 3  . post‘  post)[;,\;] 

550 For example, n : [true, n 2 01 E n : [true, n > 01. 

0 

0 

It is worth noting  that a special case of Law 2 occurs  when 
.S and ii are  the same; then we have for the side-condition 

pre + (V; .post‘ *post)[;,\;] 

Renaming ; to 5, throughout, this is equivalent to 

pre[v‘\d,] (V; .post‘ * post)[G,,\v’][v’\d,] 

which we may simplify to 

pre[;\C,] - (V; . post‘ * post) 

The quantifier Vd can  be discarded  since the  antecedent 
contains  no i, and propositional  calculus then gives us  as 
our special case the appealing 

pre[;\;,] A post‘ +post 

Law 3 Restricting  change; the new specification can 
change fewer variables than  the old: 

3, x : [pre,  post] 
3 : [ pre, post] 

0 

For example, x, y : [x = yo] c x : [x = yo]. 
In Law 4 below, we use the  compact symbols I [ and ] 1, 

instead of the  more  conventional begin and end, to  delimit 
the scope of local variable declarations. 

Law 4 Introducing fresh local variables (where  “fresh” 
means  not otherwise occumng free): 

3 : [pre,  post] 
I [var x;  3 x : [ pre, post] ] I  x is a fresh variable 0 

For  example,f: [ f = n!] ([var i ; f ;  i : [ f = n!] 1 1 .  

Introducing executable constructs 
The following laws allow us to  introduce  constructs from our 
target programming language. 

Law 5 Introducing abort: 

3 : [false,  post] 
abort 

0 

Since abort E P for any P, we can by transitivity of E have 
any program  as the target of Law 5. Thus for any predicate 
d@cult(n), we still have the easy refinement n : [n < 0 A 
n > 0, drfficult(n)] c n := 17. 

Law 6 Introducing skip: 

3 : [ post[;,\;], post] 
skip 

For example, x, y : [x = y, x = yo] E skip. 

Law 7 Introducing assignment: 

w : [ p o s t [ & $  G\i, E ] ,  post] 
3 := E 

0 

0 
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For example, x : [true, x = x, + y]  E x := x + y.  
The next two laws are  the weakest pre-specification and 

weakest post-specijication constructions of Hoare  and  He [ 5 ] ,  
with which one  can “divide” one specification A by another 
B, leaving a specification Q such that 

A c Q; B (Law 8: weakest pre-specification) 
A c B; Q (Law 9: weakest post-specification) 

Law 8 Introducing sequential  composition (weakest pre- 
specification): 

GI : [ pre, post] 
6 : [pre,  wp(P,  post)]; P 

The side  condition w : [true] E P can be read “P changes 
only 3.” For example, we have 

3 : [true] E P 0 

x, y : [true, x = y + I ]  

E x, v : [true, x = 21; 

y : =  1 

Law 9 Introducing sequential  composition (weakest post- 
specification): 

k : [pre,  post] 
& : [pre,  mid]; mid, post contain  no free Go 

6, : [mid,  post] 

For example, 

x : [true, x = y + I ]  

E x : [true, x = v ] ;  

x :  [ x = y . x = y +  I ]  

Law 9 can be generalized to  the case in which variables Go 
do  appear  (as shown  in [ 8 ] ) ;  in that case, one has effectively 
supplied in mid the first component of the sequential 
composition. For our larger example to follow (Section 4), 
we need only the simpler version. 

In Laws 10 and I 1, we use a  quantifier-like notation for 
generalized disjunction and alternation: If I for  example 
were the set { 1 . ~ 1 ,  then (Vi: I .G,) would abbreviate 
GI V . . . V G,, and if ( 1 1  i .G, -+ S,) fi would abbreviate 

if G, -+ SI 
0 . . .  
0 G” -+ S“ 
fi 

Law IO Introducing  alternation (if): 

i t  : [pre A ( v  i: I .G,), post] 
if ( 0  i: I .G, + G : [ pre A G,, post]) fi 

The predicate pre is that part  of the pre-condition  irrelevant 
to  the case distinction being made by the guards G,: it is 
passed on  to  the branches  of the  alternation. For example, 
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takingpre  to be true, we have 

y : [ x = O V x =  I , x + y =  11 

E i f x = O + y : [ x = O , x + y =  I ]  
0 x =  I - + y : [ x =  l , x + y =  I ]  
fi 

E i f x = O - + y : =  1 
[ x = I + y : = O  
fi 

Law I 1  Introducing iteration (do): 

G : [true, inv, - ( v i  : I .G,)] 
do 

od 

0 

(0 i : I .Gi -+ 3 : [G,, inv, 0 5 var < var,]) 

The predicate inv is, of  course, the loop invariant,  and  the 
expression var is the variant. We use var, to abbreviate 
var[G\G,]. 

note  that inv can be any predicate and var any integer- 
valued expression. Surprisingly, there  are  no side- 
conditions-a bad choice of inv or var or indeed G, simply 
results in a loop body  from which no executable  program 
can be developed (see the  remarks  in Section 3). 

An example of Law 11  is given in  Section 4; for now, we 

Law 1 1  is proved  in  Section 5. 

4. An example:  square  root 
For an example, we take  the square-root  development  of 
[3, pp. 61-65]; but  our development  here is deliberately 
terse, because we are illustrating not how t o j n d  such 
developments  (properly the subject of a whole book), but 
rather how experienced  programmers  could record such  a 
development. 

Specijication 
We are given a  nonnegative  integer sq; we must set the 
integer variable rt to  the greatest integer not exceeding JG, 
where the  function J takes the nonnegative  square  root of its 
argument. 

a Specification 

rt := 1 JsqJ  
- 

1 x J -the “floor”  of x-is the greatest integer not 
exceeding x. 

Rejnement 
We assume of course that J is unavailable to us, and 
proceed as follows to  eliminate it from our specification; we 
eliminate 1 1 also. “Stacked”  predicates denote 
conjunction. 
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rt:= 1 & J  

= r t : [ r t =  L & J  1 Definition 6 

= r t :  [sq 2 0, rt = 1 1 Definition 5 

= r t : [ s q z O , r t I G q < r t +  11 Definition  of 1 J 

0 I rt 
rt2 I sq < (rt + I ?  1 Law 2 

Refinement 
Using Laws 4 and 2 ,  we introduce a new variable ru, and 
strengthen the post-condition; our technique is to  approach 
the result from  above (ru) and below (rt): 

E [[var ru. 

[ 0 5 rt 
rt, ru : sq 2 0, r? I sq < ru 

rt + I = ru 21 
1 1  

We now  work on  the  inner  part. 

Refinement 
Anticipating use of rt + 1 # ru as  a loop  guard, we 
concentrate  on  the  remainder of the post-condition, using 
Law 9 with 

to proceed: 

0 I rt < ru 
rt2 I sq < ru 

0 5 rt < ru 
rt‘ I sq < ru 
rt + 1 = ru 

Using Laws I and 7, we can show that for the first 
component of the sequential composition above- 
establishing mid, to become the loop invariant-we have 

E rt, ru := 0, sq + 1 

We now concentrate  on  the second component. 

Refinement 
We now introduce  the loop, rewriting the second component 
of the sequential  composition (6) to bring  it into  the form 
required by Law 1 I ;  writing inv now for our mid above, we 
have 

= rt, ru : [true, inv, rt + 1 = T U ]  

and  then by Law 1 I ,  with variant ru - rt, we proceed 

E do rt + 1 # ru+ 
rt, ru : [rt + 1 # ru, inv, 0 5 ru - rt < ru, - rt,] 

od 552 
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Refinement 
For the  loop body, we use Law 4 again to  introduce a local 
variable rm to  “chop”  the interval rt..ru in which the result 
lies: 

E I [var rm; 
rt, ru,  rm : [rt + 1 # ru,  inv, 0 5 ru - rt < ru, - rt,] 

1 1  
We first choose rm between rt and ru, using Law 9, then 
Law 3, twice to develop 

E rm : [rt + 1 # ru, inv, rt < rm < ru]; 
rt, ru : [rt < rm < ru, inv, 0 I ru - rt < ru, - rt,] 

Then with Laws 1 and 7 we quickly  dispose of the first 
component, deciding to  make our choice of rm divide the 
interval evenly: 

E rm := (rt + ru) + 2 

We proceed with the second component. 

Refinement 
The  natural case analysis is  now to consider rm2 I sq versus 
rm2 > sq; accordingly, with Law IO, we so divide our task 
and immediately apply Law 3 to each case; we have 

E if rm2 I sq + 

r t : [  2 Inv, 0 L: ru - rt < ru, - rt, rt < rm < ru, . 
rm L: sq, 1 

1 rm2 > sq + 

: [rt < rm < ru, . Inv, 0 I ru - rt < ru, - rt, rm2 > sq, 1 
fi 

For the first branch, we have by  Law 7 

E rt := rm 

For the second branch, we have similarly 

E ru := rm 

This completes our development. 

Consolidation: the  implementation 
Developments in this style generate a tree structure in which 
children collectively refine their  parents; to  obtain  the 
program “neat,” we simply flatten the tree. For the square 
root  program, the result is as follows: 

I [var ru; 
rt, ru := 0, sq + I ;  
do rt + I # ru + 

1 [var rm; 
rm := (rt + ru) + 2; 
if rm2 I sq + rt := rm 
0 rm2 > sq+ ru := rm 

1 1  
fi 

11 
od 
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It is to be stressed that this consolidated presentation is not 
to be carried off as the on1.v relic of our development. The 
development itself must remain  as  a record of design steps 
taken and their  justifications (and in  industrial practice, of 
who took them!). Mistakes will still be made, and corrections 
applied;  only when a  complete record is kept can we make 
those  corrections reliably, without introducing further 
errors-and learn  from the process. 

5. Derivation of laws 
In this section we prove Laws 2 and 1 1  of Section 3. We do 
this  for several reasons: to reassure the reader, who  may 
doubt their validity; to  demonstrate  the use of the weakest 
pre-condition formula for specifications; and  to suggest that 
the collection of laws can easily be extended by similar 
proofs. 

ProqfofLaw 2 
Law 2 allows us to strengthen the post-condition  of  a 
specification; in  simplest  terms,  this means replacing post by 
post’ as long as we know that post’ * post. The side- 
condition is weaker than this, however: It takes  both the pre- 
condition  and changing variables into  account, making the 
law more widely applicable. 

In the proof below, we assume that free-standing  formulae 
are closed-that  is, that their free variables are implicitly 
quantified (universally). It is this that allows us to  rename 
variables when necessary. 

Theorem 3 Proof of Law 2: if the following side-condition 
holds: 

pre ( V 6 .  post‘ * post)[C,\G] 

then so does  this  refinement: 

6 : [ pre, post] E 6 : [pre, post’] 

Proof By Theorem 2 ,  we need  only  show 

pre A j = j 0  + wp(6 : [pre,  post‘], post A ii = 6,) 

Since in Definition 4 the predicate R must not  contain Go, 
we rename those  above to V ,  (we may do  this because the 
formula is closed); we must  show 

pre A V = d l  wp(6 : [pre,  post‘], post A li = 6,) 

Definition 4 is now  applied; we must show 

pre A ii = V I  pre A (VG . post’ *post A li = ii,)[V,\V] 

Clearly we can  remove  the conjunct pre in the consequent, 
because it occurs  in the antecedent; we can  remove ii = 6, 
because 6 and  the quantified 6 are disjoint, and V = V ,  
appears in the  antecedent. It remains  to prove 

pre A 6 = V ,  + ( V 6  . post’ * post)[V,\V] 

and this follows directly  from the side-condition. 0 
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Proof of Law I I 
We deal with the following restricted version of Law 1 1, in 
which we consider  a single guard  only and take j and 6 the 
same; we must show 

Itrue. inv. lauurdl 
do 

od 

Our proof is based on  the loop  semantics given in [2];  we 
show that for k r 1 

inv A (guard 4 var < k )  Hk(inv A -guard) (7) 

From this will follow 

guard + [guard, inv, 0 I- var < var,] 

inv 
= inv A (guard ( 3 k  2 1 . var < k))  
= ( 3 k  2 1 . inv A (guard var < k))  
+ ( 3 k .  Hk(inv A -guard)) 
= wp(do . . . od, inv A lguard) 

Thus by Theorem 1 we have  as  required that 

[inv, inv A -guard] E do . . . od 

It remains therefore to prove (7), and this we do by 
induction over k .  We note first that H, = inv A ”guard, 
and  continue by direct  calculation (writing pre‘ for 
pre[G\;’], etc., and Hk for H,(inv A lguard)): 

HI 
guard 

(VV . inv A 0 I- var < var, 4 H,)[Co\V] 
= H, V guard A inv 

c= (-guard A inv) V (guard A inv A var < 1) 
= inv A (guard var < 1) 

Our inductive  step now concludes the  argument: 

H k +  I 

guard A inv 

guard A inv 
var < ( k  + 1) 

= inv A (guard + var < ( k  + 1)) 0 

The puzzling thing  about Law 1 1 is that it  has no side- 
condition, whereas one might  expect to find the  condition 

guard A inv + 0 I- var 

But closer inspection reveals that whenever the above 
formula fails, the loop  body is infeasible: it must  terminate 
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(since guard A inv holds initially) and  must establish 0 I var 
< 0 (since 0 $ var holds initially). By the law of the excluded 
miracle (see [3]), no executable  program can  do this-the 
refinement, though valid, is barren. 

For the practicing  developer, perhaps  the side-condition 
should be explicit; indeed, Law 1 1  can be rewritten  this way, 
with the 0 I var dropped from the post-condition of the 
loop  body. For the historical record  of our development, 
however, we want to prove the very minimum necessary- 
and feasibility is of no interest. There would be no program, 
and hence no record, if a feasibility check had failed. 

6. Conclusion 
We have  claimed that  the integration  of specifications and 
executable  programs  improves the  development process. In 
earlier  work [7], the  point was made  that all the established 
techniques  of  refinement are of  course still applicable;  their 
being based on weakest pre-condition  semantics 
automatically makes  them suitable for any  construct so 
given meaning.  Indeed an  immediate  but modest  application 
of this work is our writing, for  example,  “choose e from s” 
directly in our  development language as “ e  :E 3.’’ 

The refinement  calculus is a  step  further. We are  not 
claiming that it  makes  algorithms easier to discover, 
although we hope that this will be so; but it clearly does 
make it easier to avoid trivial mistakes  in development  and 
to keep a record of the steps  taken  there.  A professional 
approach to software development must record the 
development process, and it must  do so with mathematical 
rigor. We propose the refinement  calculus for that  at least. 

Another  immediate possibility is the systematic treatment 
of Z “case studies”  as exercises in  development, and we hope 
to learn from this. (There are a large number of case studies 
collected in [ 11.) Such systematic development is  already 
under way, for example, at  the IBM Laboratories at Hursley 
Park, UK [9]. 

The techniques of data refinement, in which high-level 
data  structures (sets, bags, functions. . .) are replaced with 
structures of the programming language (arrays, trees . . .), fit 
extremely well into this approach. Also facilitated is the 
introduction of  procedures and  functions  into a 
development: the body of the procedure is simply  a 
specification statement “yet to be refined,” and  the  meaning 
of  procedures can once more be given by the elegant copq’ 
rule of Algol-60. These ideas are explored  in [8] and [IO], 
and we hope to publish them  more widely. 
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