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Several  primitives  for  transaction  processing 
systems  are  developed  using  the  notations of 
Communicating  Sequential  Processes.  The 
approach  taken is to  capture  each  requirement 
separately, in the  simplest  possible  context: The 
specification is then  the  conjunction  of all these 
requirements. As each is developed  as  a 
predicate  over  traces  of  the  observable  events 
in the  system, it  is also  implemented  as  a  simple 
communicating  process;  the  implementation of 
the  entire  system is then  merely  the  parallel 
composition of these  processes.  The  laws of 
CSP are  then  used to transform  the  system  to 
achieve  the  required  degree of  concurrency, to 
make it suitable  for  execution in a  multiple- 
tasking  system,  for  example.  Finally,  there is a 
discussion of  how state-based  systems may be 
developed  using this approach  together  with 
some appropriate  notation  for  specifying  and 
refining  data  structures  and  operations  upon 
them  and  of  how  the  system  may be 
implemented.  This  work is intended  as  a  case 
study in the  use  of CSP. 
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1. Introduction 
We describe below several primitives  for  transaction 
processing systems using Communicating Sequential 
Processes [ 1, 21: the  rather trivial case in which there is just a 
single user; multiple users with a  simple  locking  protocol to 
achieve mutual exclusion; the  same  but with queueing  for 
busy resources; and finally, discarding the locking of 
resources and instead  taking the  rather optimistic view that 
conflicts probably will not occur anyway. 

As we consider each system we separate  its requirements 
and  capture  them  as individual  predicates on  the history of 
the system. In  the style that we are exploring  in  this  paper, 
this is usually done by describing the firing condition for an 
event: If an event  occurs, some predicate must hold on  the 
history of  events up  to  that  moment.  The specification of 
each system is simply the  conjunction of its  requirements. 
This is  indeed  a powerful and  natural way to  capture  the 
formal specification of a  system. Less familiar  perhaps  is the 
approach to  implementation in CSP's process algebra. As the 
specification proceeds, we implement each requirement  as a 
simple communicating process. Keeping both  predicate and 
process as small as possible reduces the task of proving the 
implementation correct. In CSP, parallel combination of 
processes corresponds to  conjunction of  their specifications; 
thus  the  implementation of the system is just  the parallel 
composition  of the processes implementing each 
requirement. 

The result of the  development process that we are 
describing is an  implementation consisting of a highly 
distributed collection of communicating processes. The laws 
of CSP  are  then used to transform the  implementation. We 

J .  C. P. WOODCOCK 



could, if we wished, transform it into a  form which is readily 
translated into Occam [3] and have  it run  on a collection of 
transputers. 

Appendices contain a summary of the  notation used in 
this  paper  for the benefit of  those  unfamiliar with CSP. 

2. A single-user  system 
In the transaction processing systems that we are 
considering, there is a  shared data  structure  that takes values 
from the set C. We  make a gross simplification-for the 
moment-that there is only one user  in the system,  who 
accesses the  data by reading and writing values. 

In this  system, if a and b are  drawn  from  the set of values 
C, then  the event read. a corresponds to  the user  reading the 
value a; write. b corresponds to  the user writing the value b. 
Let 

R L {read.clc E C]  

W A (write.c I c E C) 

It is not difficult to see that if there is just a single user, the 
data behave as we would  expect  a programming variable 
would: If the user  reads  their contents,  then she discovers the 
most recently written value. We can specify this: We want  a 
process VAR with alphabet 

aVAR R U W 

and  any trace tr of VAR must satisfy the predicate 

VARSPEC L (Vc E C . f r o  = read.c + tr I Wo = write.c) 

That is, if the last thing  that happened in  the system is that 
the user read a  particular  value c, then  the most recently 
written value is also c. For  this predicate to  make sense, 
there  must be at least one write before the first read. This 
specification is really describing the firing conditions for 
events  in R. The events  in W are left unconstrained. 

An implementation is well-known (see, for  example, 
[2, p. 1371): 

VAR (write?x -+ VAR,) 

VAR, (read!x -+ VAR, 

I write?y -+ VARY) 

The process VAR is only willing to participate in a write 
event;  having done so, it  proceeds as VAR,. In  this behavior, 
VAR is rather like a nice sort of uninitialized variable: It does 
not  permit a read before the first write. VAR,, on  the  other 
hand, behaves like a variable currently  holding the value x. 
If the user tries to read the variable, she  finds that it  has the 
value x; this  does  not change the value (the variable 
continues  to behave like VAR,). However, the user can write 
a new value-say  y-replacing the old one  (the variable now 
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Note that we could  have  produced an  implementation  that 
avoids the use of  a state variable, but it  would  have  appeared 
rather more complicated. 

We have adopted  the  convention  that  the specification for 
a process P is called PSPEC. In this paper we have not 
included any proofs that  implementations actually satisfy 
their specifications; this is for reasons of space, rather than 
difficulty: In a development of this  kind, it is usual to  do 
proofs in a routine  manner. Write down  the predicate on 
traces; write down  the behavior in  the process algebra; write 
down the proof  of satisfaction. Developing all three together 
does offer valuable insights. 

3. Multiple-user  systems 

A simple  locking  protocol 
We now remove  the restriction to a single user and specify a 
multiple-tasking system. Let T be the set of  task names. The 
protocol we  wish to describe involves tasks locking the  data 
structure before accessing it. We add  two new events to  the 
interface: lock and unlock. Define 

LOCKED A (trllock - trlunlock = 1) 

LOCKED A (trllock - trlunlock = 0) 

LOCKED holds  for the trace tr-which is free in  the 
definition-just when there is one  more lock in tr than 
unlock. Similarly, UNLOCKED holds just when there is an 
equal number of lock and unlock events  in tr. A task may 
have either locked or not locked the  data structure: 

aLOCK A {lock, unlock} 

LOCKSPEC (LOCKED V LOCKED) 

This is implemented by a process which alternates between 
lock and unlock events: 

LOCK A pX . (lock -+ unlock -+ X) 

The definition  of the process LOCK is recursive: It is the 
process X which first engages in the event lock, followed by 
unlock, and  then it behaves like the process X. 

Each task guarantees  only to access information which it 
has previously locked. If a task reads a value from the  data 
structure, the  data  structure  must be locked: 

aREAD A R U aLOCK 

READSPEC L (tr, E R +. LOCKED) 

Similarly, if a task writes a value from the  data structure, the 
data  structure must be locked: 

aWRlTE A W U aLOCK 

WRITESPEC A (io E W +. LOCKED) 
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These  two requirements may be implemented by separate, 
but similar, processes: READ and WRITE. Instead, we  offer 
their combination:  the single process that permits  reading 
and writing  only  after  a lock, but before the next unlock. Let 

aREADWRlTE  aREAD U aWRlTE 

= aVAR U aLOCK 

READWRITE p X .  (lock + p Y .  (X : aVAR + Y 

lunlock + X)) 

Notice that, because of the way in which we have chosen to 
implement READWRITE, with alternating locks and unlocks, 
it also satisfies LOCKSPEC. Thus, when we put LOCK and 
READWRITE in parallel, we do not constrain the behavior of 
READWRITE at all. Formally, 

(LOCK 11 READWRITE) = READWRITE 

Each task must  behave in the way that we have specified, 
and guarantee to follow the locking protocol 

USESPEC A (Vt E T . 

t.LOCKSPEC A t.READSPEC A t.WRITESPEC) 

USESPEC is satisfied by 

USE G I I t : READWRITE 
tET 

Since conjunction in the specification corresponds to 
concurrency in  the  implementation,  the universal 
quantification  in USESPEC becomes parallel composition 
over  a set in the process USE. Each task relies on having 
exclusive access to locked information. So, when a task t 
acquires  a lock, no  other task may  already have it: 

MUTEXSPEC (Vt E T . Fo = t.lock 

(VU E T . u # t u.LOCKED)) 

An alternative specification-and perhaps a more obvious 
one-is that, for every pair  of  tasks t and u owning the lock, 
t and u are  one  and  the same: 

Vt. u E T . t.LOCKED A u.LOCKED * t = U 

MUTEXSPEC is implemented by a process that guarantees 
that a new lock cannot be acquired between a lock/unlock 
pair. Notice that  the  double parallelism corresponds nicely 
with the  double universal quantification: 

MUTEX A I I I I pX . (u.lock + u.unlock + X 
tET uET"ltl 

I t.lock + X) 

Also notice that  the recursive processes in this definition 
each have precisely three events  in  their  alphabet. 

Although MUTEX is  truly an  implementation,  the large 
amount of concurrency  actually  makes  it rather difficult to 
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use. After some straightforward  manipulations, we discover 
it really is a  simple,  sequential process: 

MUTEX = pX . ( 0  t.lock -+ t.unlock + X) 

This is probably the  implementation  that we would have 
obtained directly from our alternative to MUTEXSPEC. 
However, we have  had the choice of discarding the 
concurrency that MUTEX originally had;  it is always easier to 
remove  concurrency  from  a process if you do  not want it, 
than  to create  it if you do. 

already have: 

tET 

MUTEX is now simple  enough to  combine with what we 

USE 11 MUTEX = I I pX . (t.lOCk + pY . ( X  : a(t : VAR) + Y 
tET 

I t.unlock + X)) 

11 pX . ( 0  t.lock + t.unlock -+ X) 
tET 

= pX . (0  t.lock + pY .(X : a(t : VAR) + Y 
tET 

I t.unlock + X)) 

So far, all that we have done is to describe the interference 
that may be caused and  that  can be tolerated in  the system. 
Now we must say how information changes or persists in the 
system. In fact, our multiple-user system behaves not unlike 
a single-user system: Anyone  reading the  contents of a data 
structure discovers the most recently written value. Define a 
function which removes any task name  from  an event: 

tstrip UtET  stript 

strip, is the  function  that removes the particular label t from 
an event [ I ]  (see also Appendix A). tstrip then is the function 
that removes any label t from an event. Now, if  we consider 
just  the sequence of reads and writes and ignore which tasks 
initiated them,  then our structure behaves just like a variable 
does. Since we do not  care  who initiates read or write events, 
we can use our forgetful function tstrip to disregard who 
does  what: 

MVARSPEC  VARSPEC[(tstrip* tr) 1 aVAR/tr] 

tstrip* tr is the trace formed by applying tstrip to each element 
of tr. VARSPEC is a predicate on the free variable tr, and is in 
terms of the events  in aVAR; therefore, the definition  of 
MVARSPEC which substitutes an expression for tr carefully 
restricts that expression to use events  only from aVAR. 

Of  course, we already  know  how to  implement a variable, 
and we can reuse this implementation, with a  suitable 
relabeling of event  names.  Since we are  unconcerned with 
the identity  of tasks, the inverse image under tstrip of VAR 
will  give us  a  promiscuous version of VAR: It doesn't care 
who reads its values, nor  who writes new ones: 

MVAR tstrip" VAR 

Expanding  this, we obtain 
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MVAR = (0 t.write?x + MVAR,) 

where 

MVAR, A ( 0  t.read!x + MVAR, 

E T  

tET 

I 0 t.write?y + MVAR,) 
tET 

We have now  completed our specification of  how many 
users can  share  the  data structure. We have specified that 
tasks  may lock the  data  structure,  and  that they may only 
read and write while they have the lock; we have specified 
that while a  task  has the lock  it  has exclusive access; and we 
have specified that  the shared data behave like a variable. 
Our multiple-user system must satisfy all three requirements: 

MUSPEC A (USESPEC A MUTEXSPEC A MVARSPEC) 

Our system is implemented by 

MU A (USE 11 MUTEX )I MVAR) 

We already  have  a simplified version of USE 11 MUTEX. 
Substituting this  and  our definition of MVAR into  the 
definition of MU, we obtain 

MU = pX. (0 t.lock + pY . (X : a(t : VAR) + Y 
E T  

I t.unlock + X)) 

I[( 0 t.write?x + MVA R,) 
tET 

where 

MVAR, A (0 t.read!x ”+ MVAR, 
tET 

I 0 t.write?y ”-f MVAR,) 
t t T  

Now, we can rewrite this to simplify it and  eliminate  the 
remaining concurrency, obtaining 

MU = (0 t.lock -+ (t.unlock + MU 
E T  

I t.write?x + MU,,)) 
where 

MU, A ( 0 t h c k  + MU,,) 
t€T 

MU,, A (t.unlock -+ MU, 

It.read!x -+ MU,. 

It.write?y -+ MU,,) 

So MU is a process that allows an external  choice as  to 
which task gains the lock;  only that task may read or write 
values to  the  data  structure, until that  same task yields the 
lock. It also ensures that a value is written to  the  data 
structure before a value can be read. 

Queueing for busy resources 
The system described in the last section suffers from  the 

538 dangers of infinite overtaking: An unlucky task wanting  a 

lock may always be unsuccessful and be continually  pre- 
empted by faster tasks. We shall try to solve this by serving 
requests  for locks in  order.  We  introduce a new event: 
request. Let 

REQ1 A (trlrequest - trllock = 1) 

REQl A (trlrequest - trllock = 0) 

REQ2 A (trlrequest - trlunlock = 1) 

REQ2 A (trlrequest - trJunlock = 0) 

Each task may  have at most one  outstanding request: 

&REQUEST1 A {request, lock) 

REQUESTlSPEC A (REQl V REQ1) 

aREQUEST2 A {request, unlock} 

REQUEST2SPEC A (REQ2 V REQ2) 

These specifications should by now be quite familiar;  they 
have the  implementations 

REQUEST1 A pX . (request + lock + X) 

REQUEST2 A pX . (request + unlock + X) 

We need to say how these requests get serviced. Define, for 
each task t and event e, a  projection function which tells us 
which task initiated an event: 

task t.e = t 

- 

- 

- 

- 

Also, define the sets of all t.lock events and t.request events, 
for all possible t: 

Tlock A tstrip” lock 

Treq 2 tstrip” request 

Our requirement is that a task obtaining a lock must be 
the next one deserving it; that is, the longest outstanding 
request  should be served next: 

QSPEC A task* (tr r Tlock) 5 task* (tr 1 Treq) 

tr Tlock is the sequence  of t.lock events  in the trace tr. 
task* (tr I Tlock) is just  the sequence of the  names of  those 
tasks which gained the lock. Similarly, task* (tr 1 Treq) is 
just  the sequence of the  names of those  tasks which issued 
requests for the lock. QSPEC says that  the sequence of 
names of  tasks  gaining the lock is a prefix of the sequence  of 
names of tasks  requesting the lock. It is reminiscent of the 
specification of  a buffer: What  comes  out is a prefix of what 
goes in. This suggests an  implementation which is similar to 
that of a buffer: 

Q A Q,, 

Q,, A (0 r.request + Q,,,) 
E T  
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Initially, the  queue of  requests is empty,  and  the process is 
only willing to accept  a request. When  there is at least one 
request, the task at  the front of the  queue  may  obtain  the 
lock, or further requests  may be  added  to  the end of the 
queue.  This is where the  queueing discipline is encoded. 

A “fair”  multiple-user system behaves like our earlier 
multiple-user system, allows at most one  outstanding request 
per task, and  has  the  queueing discipline that we have 
described: 

FAIRMUSPEC A (MUSPEC A QSPEC A 

Vt E T.t.REQUEST1  SPEC A t.REQUEST2SPEC) 

FAIRMU A (MU I( Q 11 I 1 (t : REQUEST1 11 t : REQUEST2)) 

Of course,  in  this  section we have  only been fooling 
ourselves: We have  pushed the problem back from getting 
the lock to requesting  one. As before, a fast task might get 
into  the  queue,  acquire  the lock, release it, and get into  the 
queue again before a slower one gets its act together. Thus it 
is slightly misleading-in fact downright lying-to call this 
solution “fair.” As pointed out  in [2], the correct  solution to 
this  problem is probably to regard it as insoluble, because if 
any task is particularly determined  on having so much access 
to a data structure, then someone-this task or another 
requiring access-will inevitably be disappointed. In CSP, 
we cannot distinguish between a task that takes an infinite 
amount of time  to require access to a  particular data 
structure,  and  one which does  require access but is being 
discriminated  against by our transaction processing system. 
It seems that in our Katlcaesque world paranoia is 
indistinguishable  from  genuine  persecution.  However,  in 
practical terms, we have merely decided to delegate to  the 
implementor  the responsibility of ensuring that  any desired 
event that is possible takes place within an acceptable  period 
of  time. So we ask that  the  implementation  ensure  that 
requests are serviced in an even-handed way. 

E T  

4. An optimistic approach 
The last section  dealt with a system which allows multiple 
users to gain mutually exclusive access to shared data by 
locking. It can  handle  contention for resources by allocating 
them  on a first-come, first-served basis. In this  section we 
consider  a different strategy: Each task rather optimistically 
assumes that  there will be no interference from  other tasks, 
and so may  go blithely about its transaction. But there must 
always be a day of reckoning: Upon completion  of  a 
transaction, the system examines  whether, with hindsight, 
the case for optimism was justified or not. If indeed  there  has 
been no interference, then  the transaction is committed; if 
interference was possible, then  the offending transaction is 
deemed  not to have  occurred. Clearly, the suitability of this 

IBM J.  RES DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987 

approach depends  on  the character of the individual 
application. 

We introduce  some new events: start, comnull,  comread, 
cornwrite, and fail. We shall have  a different structure for our 
transactions than before. A transaction  has  a start  point,  and 
may be finalized in  one of four ways: It might be  the null 
transaction;  it  might be a read-only transaction; it  might also 
have written to  the  data  structure; or it  might fail in  some 
way. Which of the  options  are available to a  transaction at 
any  time will depend  on what  events are comprising the 
transaction, and  the interference that  the transaction  might 
cause, or might have to tolerate. 

Our specification starts in a  familiar way. Let 

Commit (comnull, comread, comwrite) 

Final A Commit U [fail) 

and define 

ST A (tristart - tr r Final = 1) 

ST A (tristart - tr r Final = 0) 

We shall require that  transactions have unique names: A 
transaction will only be started once: 

aUNlQUE A (start) 

UNIQUESPEC A ( t rpar t  5 1) 

UNIQUE A (start -+ STOP) 

Transactions  start and  then they are finalized either by being 
committed or by failing: 

@TRANS A (start) U Final 

TRANSSPEC A (ST V 5) 
This specification is rather like LOCKSPEC; not surprisingly, 
its implementation is similar to  that of LOCK: 

TRANS A pX . (start + x : Final + X) 

Reading and writing  may  only be done within  transactions: 

aRWTRANS A aTRANS U aVAR 

RWTRANSSPEC (Go E aVAR  ST) 

This specification is again familiar: It is similar to 
READSPEC and  to WRITESPEC. Its implementation is 
correspondingly straightforward: 

RWTRANS A pX . (start + pY . (x : aVAR + Y 

I x : Final + X)) 

- 

A transaction  must satisfy all three requirements: It may 
only be started  once, and  may only end by being committed 
or by failing, and reading and writing  may  only be camed 
out  during transactions: 
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TRANSACTSPEC A (UNIQUESPEC A TRANSSPEC A 

RWTRANSSPEC) 

This is implemented as 

TRANSACT A (UNIQUE 11 TRANS 11 RWTRANS) 

Simplifying this, we obtain 

TRANSACT = (start -+ pX . (x : aVAR -+ X 

I x : Final -+ STOP)) 

This shows quite clearly that a transaction can only occur 
once, is either committed or fails, and  that reading and 
writing are only permitted during the transaction. 

The three commit events for a particular transaction t are 
each  labeled by t taken from T, which we  now regard  as the 
set  of transaction names: 

Commit, A strip,’ Commit 

Let committed s denote the set  of names of successfully 
completed transactions in some trace s: 

committed s A It E T I s r Commit, # ())  

Of interest at the start of  each transaction is the most 
recently committed value-if it exists. The sequence of write 
events made by successfully committed transactions in a 
trace s is 

succwrite s A s 1 (t.write.c I t E committed s A c E C) 

If this is not empty, then lastwrite s is its last element, where 

lastwrite s A succwrites so 

The view that each transaction has of the shared data 
structure simply  consists  of the lastwritten value-if it 
exists-followed  by the reads and writes of the transaction 
itself. From each  of these viewpoints the data structure 
appears as though it  were a variable, possibly  with an initial 
value. If  we have 

W, strip,’ w 
then the requirement is 

OVARSPEC A Vt E T,  c E C . Go = t.read.c + 

(tr r W, = ( )  A 3u E T.lastwrite tr = u.write.c)V 

(tr r W, # ( )  A tr 1 W, = t.write.c) 

This should be reminiscent of the specification  of a variable, 
but with a few extra bits and pieces.  If a transaction t reads 
the value c from the  data structure, then one of two cases 
must hold: 

1. Transaction t has not previously written a value, in which 
case c is equal to  the last  successfully committed written 
value. 

2.  Transaction t has written a value, in which  case the last 
value  was also c. 

This is implemented by a process that maintains a state 
containing the last successfully committed value, and  the last 
written value  for  each transaction, 

OVAR A OVAR(1, 1))  

OVAR(v, f) A ( 0  t.start + OVAR(v, f CB It H v)) 
tET 

I 0 t.read!(f t) ”+ OVAR(v, f )  

I 0 t.write?x + OVAR(v,  f CB (t  H x)) 

I 0 x : Commit, + OVAR((f  t),  f)) 

t€Tl(f t)zl  

E T  

tET 

This optimistic variable OVAR initially behaves  like 
OVAR(1, (I), for some distinguished value 1. The second 
definition describes the behavior of OVAR  (v, f) for some 
value of the shared data structure v E C, and some function 
f : T 4 C. When a transaction t starts, the function f is 
updated with the maplet (t  H v). Values  may  be  read or 
written by transaction t; these are operations on t’s copy  of 
the  data structure in the mapping f. However, OVAR never 
engages in the event t.read.l, for any t. Finally, when 
transaction t is successfully committed, the shared value of 
the  data structure is updated with the final value computed 
by t. 

We can make the intuitive link between OVAR and VAR 
precise by being more explicit about the “view” that each 
transaction has of the shared data structure. If 

initial, A lastwrite (tr before t.start) if succwrites tr # ()  ill and tr 1 W, = ( )  

otherwise 

view,  initial, (tr 1 a(t : VAR)) 

then we can prove that 

OVARSPEC Vt E T. VARSPEC[tstrip*  view,/tr] 

That is, each view  of the shared data structure reveals  it to 
be just like a variable-no interference, no nasty surprises. 

Now consider the various commit events. comnull 
corresponds to finalizing the null transaction, so, if a 
transaction says that it made no access to a data structure, 
then this must be the case: 

aNULL A {comnull) U aVAR 

NULLSPEC A (Eo = comnull + tr ~ V A R  = 0 )  

Reading or writing disables the comnull event: 

NULL A pX . (comnull -+ X 

I X : aVAR STOPI,,,,III II RUNnvm) 

IBM J .  RES. DEVELOP. VOL. 31 NO. 5 SEPTEMBER 1987 J C. P. WOODCOCK 



A  transaction finalized with a comread event  must  have read 
something: 

aCR1 G (comread] u R 

CR1 SPEC A (Eo = comread +. tr r R # ( )) 

but  not written  anything: 

aCR2 G (comread] u W 

CR2SPEC z (Eo = comread 4 tr I W = ()) 

So reading enables the comread event: 

CR1 4 (X : R + RUN~mread~,,R) 

and writing disables it: 

CR2 A pX . (comread + X 

I x  : + SToP~,mre&l 11 
Putting these  two together, we get 

(CR1 11 CR2) = (X : R + pX . (X : R + X 

I comread + X 

1 X : W + RUNaVAR) 

1 x : W + RUNaVAR) 

If a  transaction says that it has  written to  the  data structure, 
then it must  not be lying: 

aCW1 A (comwrite) u W 

c w 1  SPEC (tr, = comwrite +. tr 1 w z ( )) 
Writing enables the comwrite event: 

c w 1  A (x : w + ~UNl,,w,,,eiu,) 

Adding  this to (CR1 1) CR2), we obtain 

(CR1 )I CR2 11 CWl) = (X : R + pX 

. ( x : R + X  

I comread + X 

I x : + RUNlcomwntelunVAR) 

1 x : + RUNlcomwr~lelunVAR) 

If we now add  to this the process NULL, we get a  description 
of how processes may be finalized: 

FINAL 4 (NULL 11 CR1 11 CR2 1) CWl) 

= ~IX . (comnull + X 

I x : R + p Y . ( x : R + Y  

lcomread + Y 

I X W + RUNIComwriteluavAR) 

A  transaction t cannot be finalized with a t.comread or 
tcomwrite event ifahere has been an  update of the  data 
structure  during t’s lifetime. The simplest way of  ensuring 
this is to say that  no  other transaction can have been 
finalized with a comwrite since t started. No interference  has 
been caused to t by u if 

oNOINT, , (t.start, t.comread,  t.comwrite,  u.comwrite] 

NOINT,  ,SPEC 2 (Eo E {Lcomread,  t.comwrite] +E; = tstart) 

The  implementation of this requirement  must  ensure  that 
u.comwrite disables t.comread and t.comwrite events: 

NOINT,,, 

pX . (t.start 4 (x : {t.comread,  t.comwrite] + uxomwrite 

-+ STOP 

I u.comwrite + STOP) 

1 u.comwrite + t.start + x : (t.comread, t.comwrite) 

+ STOP) 

We have now completed the description of the optimistic 
transaction processing primitives. Our full specification is: 

OPTSPEC A (OVARSPEC A 

Vt E T . t.TRANSACTSPEC A t.FINALSPECA 

VU E T.u # t +. NOINT,,,SPEC) 

That is, the shared data behave like an optimistic variable, 
reading and writing can only be done within  transactions 
which have unique names,  transactions  must be finalized in 
the  manner described, and  the success of  a  transaction  de- 
pends  on  the interference which has been caused or which 
can be tolerated. The  implementation  puts together the  com- 
ponents we have developed: 

OPT A OVAR )I 1 I (t : TRANSACT )I t : FINAL )I 1 I NOINT,,,) 
t€T uET\Ifl 

The generally accepted  correctness  criterion  for 
maintaining the consistency  of  a  database is called 
serializability [4]. A  sequence  of atomic reads and writes is 
called serializable essentially if its overall effect is as though 
the users took turns, in some  order, each executing  their 
entire  transaction indivisibly. The reader  may be wondering 
how the optimistic  transaction processing described above 
relates to  this  notion of serializability. 

to transaction t, returns  the sequence  of reads and writes 
performed by t in s: 

Define the  function f, for each trace s which, when applied 

fs t 4 s I a(t : VAR) 

Clearly, f, t is t’s entire transaction in s. Now define the 
function success which, when  applied to a trace S, returns 541 
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the sequence  of names of successfully committed 
transactions 

success s A trans* (s r utET CommitJ 

where trans merely projects the  transaction  name  from  an 
event 

trans t.e = t 

Given a  trace of OPT, tr, we can find the sequence  of entire 
transactions  in the  order of their successful commitment as 
follows: 

serial tr -/(f% (success  tr)) 

If tr is a  trace of our optimistic  transaction processing 
system, then tr and serial tr have the  same effect. The proof 
of this fact follows from  each  transaction’s view of the shared 
data  and  the freedom from interference that each 
successfully committed transaction  enjoys. 

5. Discussion 
The  transaction processing primitives that we have  presented 
in  this  paper offer particular  interfaces to  the user. Those 
which involve  locking items of data  are inspired by a very 
successful, but fairly primitive,  kind of system with which we 
are familiar. Here we are not providing  a robust interface: 
The system can suffer certain  deadlocks if users do  not obey 
the protocol  required to use the shared data. A  mischievous 
user can deadlock the  entire system by progressively gaining 
all the locks and refusing to yield them. Presumably 
everyone then dies of boredom. A careless user can  obtain 
the  same result by gaining all the locks and  then becoming 
livelocked and  not getting around  to yielding the locks. Pairs 
of users can deadlock  each other by each waiting for  a  lock 
owned by the  other. However, there  are well-known 
techniques that cooperative users can  employ  to get round 
these  problems, so we do  not  pursue  the  matter  further  (but 
see, for example, [ 5 ] ) .  

The optimistic  transaction processing system should be 
able to avoid  these  tiresome  outcomes: Transactions need 
not wait upon  other  transactions  to finish before they can 
start.  Of  course, users should be warned that  the possibility 
of deadlock  has  been traded for the possibility of starvation. 

application  of  a  mathematically precise notation-CSP-to 
an interesting  problem: that of  transaction processing. The 
usefulness of case studies can hardly be overemphasized: 
They  help to establish confidence  in the practicality of the 
notation  and ideas, especially when  applied to realistic, 
industrial-scale  problems;  they  help to explore the areas  of 
application  of CSP; they help to establish a convenient style 
for the use of CSP; and they  provide information  and 
motivation for further research. 

This  paper  documents a case study  in the practical 

This case study does indeed  show that  CSP is a  practical 
542 tool.  However, as with other  formal  methods  that have been 

introduced  into industry,  such  as Z [6, 71 or VDM [8], 
education  is essential before any degree of fluency in using 
CSP is achieved, or even before a paper such  as  this may  be 
read. The use of CSP allows a designer the  opportunity  to 
specify systems in a concise  fashion. For example, the 
optimistic  transaction processing system has  a very short  and 
simple specification, even though it is a  lot more 
sophisticated than  the  other systems considered,  as is borne 
out by its design and  implementation. 

The style adopted  in  this paper  seems quite successful: 
Specify each requirement separately,  in the simplest context 
that seems appropriate;  implement each  requirement as a 
simple process; form the specification from  the  conjunction 
of requirements, and  the  implementation  from  the parallel 
combination of the processes. The development of two 
complementary descriptions-a predicate and a piece of 
process algebra-helped us to  understand what we were 
describing much better than a single description  would  have 
done. Our confidence was bolstered by performing the 
usually simple  proof that  the process was indeed an 
implementation of the specification: that  the two 
descriptions were of the  same thing. 

Many of the specifications and  implementations in the 
systems that we have presented  in this paper are really the 
same  predicates and processes in different guises. We could 
obtain an economy  of expression by the widespread use of 
relabeling functions, but it is felt that this  often  leads to 
rather obscure  descriptions. The first reaction of the reader  is 
often to try to  do all the substitutions  in his head, to see 
what the definition really means. So we have  limited  such 
relabeling to  situations where it is easy to see what  is going 
on.  For example,  in promoting a  property of a process to 
being a  property of a labeled process, for any label in some 
set, relabeling is  a powerful technique which actually  makes 
it easier to  understand  the system. Drawing  a rather  tenuous 
link between disparate system properties, on  the  other  hand, 
seems to obscure the issues. The insight about  the 
connection is more valuable as a way of reducing the  burden 
of proof than as  a way of making the description more 
comprehensible. We still get the economy  of an easy 
implementation  and its proof, the strategy being merely to 
exhibit  a relabeling scheme to establish the  connection with 
an existing satisfaction proof. 

The style of writing the predicate as a firing condition for 
an event was also helpful. Often, rather complicated 
predicates-with plenty  of existential quantifiers-which we 
thought captured a requirement were replaced by several 
predicates describing firing conditions which matched our 
intuition for the problem. Also, such  simple  predicates  often 
have really very simple implementations,  and  some pleasing 
patterns have emerged in  this  and  other case studies: 
conjunctions of firing conditions as parallel processes, as 
usual;  disjunctions of firing conditions with disjoint 
alphabets  as  interleaved processes; disjunctions of firing 
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conditions with overlapping alphabets  as parallel processes 
with certain new internal events; and simple processes 
describing  predicates  in which events enable or disable other 
events. 

It would be a fairly straightforward matter  to translate the 
CSP  implementations of the systems that we have described 
to Occam [3]. This would be a  good  idea because Occam has 
direct language support for many of the  concepts of C S P  It 
was designed with  this in  mind. It is also a  simple language 
with a relatively simple  semantics;  a  proof  of the translation 
would not be too difficult. For many reasons Occam is not 
yet everyone’s first choice for the  implementation of 
concurrent systems. Companies have  in-house  standards: 
They support  some languages and  not others;  they  have 
concerns of  compatibility, and of running systems on a large 
variety of different computers.  In a companion paper, we 
shall address  ourselves to  the problems of implementing  CSP 
descriptions  in low-level languages with only  meager 
synchronization facilities. The idea is not  to  ape  the 
synchronization mechanisms  that  may be found in Occam, 
but  rather  to find a semantics  in  CSP for  whatever 
synchronization  mechanism happens  to be available  in the 
chosen language. An equivalence can  then be demonstrated 
between the  CSP  implementation  and  the  actual program. 
More case studies are required to  demonstrate  that this is a 
practical technique  that can be accomplished  in  a 
development laboratory. 

One of our declared aims is to  combine  CSP with Z in 
some  appropriate way; as a first step  toward  this, we can 
imagine the style that we have used in  this  paper extending 
to a development  method  incorporating both notations  and 
ideas (cf. [9]): 

Specify the system as a conjunction of simple  predicates 
over traces. Perhaps make design steps to get a  suitable 
description. 
Implement  the system as  a highly distributed  collection of 
communicating processes. 
Transform  the system using the laws of CSP until the 
required degree of concurrency is obtained. At this stage 
the system is described as  a  collection of parallel processes 
with implicit  state. 
Transform  the system to  make all the state explicit. The 
state can be described using a notation such as Z [6, 71. 
The result is a system described as  a  collection  of parallel 
state-based processes. 
Since the descriptions  of  states  have been derived  from the 
structure of processes, it will probably be necessary to 
refine the  data structures. 
An implementation in  a  programming language should 
now be straightforward. 

In this  paper we have omitted all the proofs that we 
conducted in the development  of each system. There  are 

three sorts  of  proof that we have found:  proofs  of theorems 
about predicates  over  traces;  proofs that processes satisfy 
their specifications; and proofs  of  equivalence between 
processes-process transformations. None of the proofs that 
we have  carried out seem  particularly difficult; however, they 
are often  long and tedious, and we have made  many a slip. 
Now that we understand how  each  proof  may be  made, we 
would like to check it with mechanical assistance, and we 
propose to  conduct  some research in this  area. Appropriate 
mechanical  assistance will have  a large impact  on  the 
acceptance of a notation such  as CSP in  industry; we must 
get it right. 
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Appendix A: Glossary of symbols 
This glossary of symbols was taken  from [2], except that we 
have  included  substitution for free variables in  predicates, 
and we do  not require relabeling functions  to  be injections, 
but find the definition given in [3] to be more convenient. 

Definitions 
Notation  Meaning Example 
- - is equal  to by definition R A Iread.c I c E C) 

Predicates 
Notation  Meaning 
- equals 
# is distinct from 
P A Q   P a n d Q  
P V Q   P o r Q  
,P not P 
P + Q P  implies Q 
P = Q   P i f a n d o n l y i f Q  

- 
Example 
x = x  
x # x + l  
x s x + l   A x #  
x 5 y V y s x  
-3 > 5 
x < y * x s y  
x < y = y > x  

x + l  
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3 x  E A .  P there exists an x in set A 
such that P 

Vx E A .  P for all x in set A, P 
P[a/b] P with a substituted for b (x < 9)[3/x] (3 C 9) 

Sets 

E is a member of 2 E I l , 2 , 3 )  
4 is a member of 4 4 ( 1 ,  2, 31 
( 4  the singleton set containing 

Notation  Meaning Example 

a {start} 
{a, b, c) the set with members a,  b, 

and c {request,lock,unlock} 
{x I P x )  the set of all x such that P x {read.c 1 c E C) 
A U 6 A union B { l } U { 2 , 3 ) = { 1 , 2 , 3 )  
A \ B A minus B { 1 , 2 , 3 } \ { 2 } = { 1 , 3 )  
U,,, S, the  union of a family of sets 

Functions 
Notation  Meaning Example 
f x function application, 

strip, the  function which 
f o f x  succ tr 

removes the label I strip, t.lock = lock 

strip,’ the  function which 

Events 
Notation  Meaning Example 
1.a participation in event a by process 

c.v communication of value v on  channel c  read.b 
1.c.v communication of value v on  channel 

named I t.lock 

1.c t.read.b 

Processes 
Notation  Meaning 
OlP the alphabet of process P 
(a 4 P) a then P 
(a + PI  b + Q) a then P choice b then Q 
(x : A .+ P x) choose x from A then P x 
gX.F X the process X which satisfies X = F X 
P II Q P in parallel with Q 
I :  P  P with name I 
P O Q  P choice Q 
b!e on  channel b output  the value of e 
b?x from  channel b input  to x 

tr an arbitrary  trace of the specified process 
ref an arbitrary refusal ofthe specified process 
P sat S process P satisfies specification S 

f”  P the inverse image under f of the process P 

adds  the label 1 stripylrequest = t.request 

under f of S strip;’ R = 1t.read.c I C E c) The  notations used in  this paper are all drawn  from [ 1, 21, 
f” S the inverse  image Appendix B: Additional  notation 

a H 1 a maps to 1 f & ( a H l , b + + 2 }  with the following exceptions, which either  are derived or are 
f 63 g function override f 63 {a H 3) notational conveniences. 

Given  a  sequence of events s containing  an event e, then 

Traces 
Notation  Meaning Example 
0 the  empty  trace 

the  trace  containing 
only a (t.commit) 

one  trace followed by 
another ( t )  - s 

distributed  catenation -/((a),  (b,  c)) = (a, b, C) 
s restricted to A tr W 
s is a prefix o f t  (a, b) s (a, b, C) 
s is in t (b,  c) fi (a, b, c, d) 

the  number of a’s 

the head of s (a, b,  c), = a 
in s (a, a, b, a, c) .1 a = 3 

sbeforee 

is the largest prefix of s not containing e. That is, 

-((e) @ (s before e)) 

and 

(s before e) A (e) I s (e) 

Given  a  predicate on traces PSPEC, 

1.PSPEC 

denotes a new predicate that may be satisfied by a process 
named by I: 

LPSPEC A PSPEC[strip:tr / tr] 
S‘  the tail of s (a, b, c) ’  = (b,.c) In CSP we have the proof rule (taken from [2, p. 911) 
s the reverse of s (a, b, c) = (c, b, a) 

50 

SI, the  penultimate 

the last element of s (a, b, c), = c 
if P sat PSPEC 

then f”  P sat PSPEC[f* tr / tr] 

element of s (a, b,  c); = b We can therefore  derive the following proof rule: 

f* s f applied to every 
544 

if P sat PSPEC 
element of s f ’ (a,b,c)=(fa,fb,fc) then I : P sat 1.PSPEC 
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since 

I : P A strip,’ P 

Also, since 

if P sat S 
and Q sat T 
then (P I( 0) sat (S[tr 1 a P  / tr] A T[tr aQ / tr]) 

we can  derive 

if P sat PSPEC 
then I I I : P sat VI E L . I.PSPEC 

IEL 
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