Transaction
processing
primitives
and CSP

by J. C. P. Woodcock

Several primitives for transaction processing
systems are developed using the notations of
Communicating Sequential Processes. The
approach taken is to capture each requirement
separately, in the simplest possible context: The
specification is then the conjunction of all these
requirements. As each is developed as a
predicate over traces of the observable events
in the system, it is also implemented as a simple
communicating process; the implementation of
the entire system is then merely the parallel
composition of these processes. The laws of
CSP are then used to transform the system to
achieve the required degree of concurrency, to
make it suitable for execution in a multiple-
tasking system, for example. Finally, there is a
discussion of how state-based systems may be
developed using this approach together with
some appropriate notation for specifying and
refining data structures and operations upon
them and of how the system may be
implemented. This work is intended as a case
study in the use of CSP.
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1. Introduction

We describe below several primitives for transaction
processing systems using Communicating Sequential
Processes [1, 2]: the rather trivial case in which there is just a
single user; multiple users with a simple locking protocol to
achieve mutual exclusion; the same but with queueing for
busy resources; and finally, discarding the locking of
resources and instead taking the rather optimistic view that
conflicts probably will not occur anyway.

As we consider each system we separate its requirements
and capture them as individual predicates on the history of
the system. In the style that we are exploring in this paper,
this is usually done by describing the firing condition for an
event: If an event occurs, some predicate must hold on the
history of events up to that moment. The specification of
each system is simply the conjunction of its requirements.
This is indeed a powerful and natural way to capture the
formal specification of a system. Less familiar perhaps is the
approach to implementation in CSP’s process algebra. As the
specification proceeds, we implement each requirement as a
simple communicating process. Keeping both predicate and
process as small as possible reduces the task of proving the
implementation correct. In CSP, parallel combination of
processes corresponds to conjunction of their specifications;
thus the implementation of the system is just the parallel
composition of the processes implementing each
requirement.

The result of the development process that we are
describing is an implementation consisting of a highly
distributed collection of communicating processes. The laws

of CSP are then used to transform the implementation. We 535
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could, if we wished, transform it into a form which is readily
translated into occam [3] and have it run on a collection of
transputers.

Appendices contain a summary of the notation used in
this paper for the benefit of those unfamiliar with CSP.

2. A single-user system

In the transaction processing systems that we are
considering, there is a shared data structure that takes values
from the set C. We make a gross simplification—for the
moment—that there is only one user in the system, who
accesses the data by reading and writing values.

In this system, if a and b are drawn from the set of values
C, then the event read.a corresponds to the user reading the
value a; write.b corresponds to the user writing the value b.
Let

R = {read.c|c € C}
W = {write.c|c € C}

It is not difficult to see that if there is just a single user, the
data behave as we would expect a programming variable
would: If the user reads their contents, then she discovers the
most recently written value. We can specify this: We want a
process VAR with alphabet

aVAR =R UW
and any trace tr of VAR must satisfy the predicate
VARSPEC = (Vc € C - t_r0 =read.c = tr | W0 = write.c)

That is, if the last thing that happened in the system is that
the user read a particular value ¢, then the most recently
written value is also ¢. For this predicate to make sense,
there must be at least one write before the first read. This
specification is really describing the firing conditions for
events in R. The events in W are left unconstrained.

An implementation is well-known (see, for example,
[2, p. 137]):

VAR = (write?x — VAR,)
VARX = (readix — VARX
| write?y — VARy)

The process VAR is only willing to participate in a write
event; having done so, it proceeds as VAR, . In this behavior,
VAR is rather like a nice sort of uninitialized variable: It does
not permit a read before the first write. VAR , on the other
hand, behaves like a variable currently holding the value x.
If the user tries to read the variable, she finds that it has the
value x; this does not change the value (the variable
continues to behave like VAR, ). However, the user can write
a new value—say y—replacing the old one (the variable now
behaves like VAR).
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Note that we could have produced an implementation that
avoids the use of a state variable, but it would have appeared
rather more complicated.

We have adopted the convention that the specification for
a process P is called PSPEC. In this paper we have not
included any proofs that implementations actually satisfy
their specifications; this is for reasons of space, rather than
difficulty: In a development of this kind, it is usual to do
proofs in a routine manner. Write down the predicate on
traces; write down the behavior in the process algebra; write
down the proof of satisfaction. Developing all three together
does offer valuable insights.

3. Multiple-user systems

e A simple locking protocol

We now remove the restriction to a single user and specify a
multiple-tasking system. Let T be the set of task names. The
protocol we wish to describe involves tasks /ocking the data
structure before accessing it. We add two new events to the
interface: lock and unlock. Define

LOCKED = (tr|lock — tr|unlock = 1)

LOCKED = (tr|lock — tr{unlock = 0)

LOCKED holds for the trace tr—which is free in the
definition—just when there is one more lock in tr than
unlock. Similarly, UNLOCKED holds just when there is an

equal number of lock and unlock events in tr. A task may
have either locked or not locked the data structure:

«LOCK = {lock, unlock}
LOCKSPEC = (LOCKED V LOCKED)

This is implemented by a process which alternates between
lock and unlock events:

LOCK = uX - (lock — unlock — X)

The definition of the process LOCK is recursive: It is the
process X which first engages in the event lock, followed by
unlock, and then it behaves like the process X.

Each task guarantees only to access information which it
has previously locked. If a task reads a value from the data
structure, the data structure must be locked:
aREAD = R U olLOCK

READSPEC = (tr, € R = LOCKED)

Similarly, if a task writes a value from the data structure, the
data structure must be locked:

aWRITE = W U aLOCK
WRITESPEC = (tr, € W = LOCKED)
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These two requirements may be implemented by separate,
but similar, processes: READ and WRITE. Instead, we offer
their combination: the single process that permits reading
and writing only after a lock, but before the next unlock. Let

«READWRITE = «READ U oWRITE

I

aVAR U al.OCK

READWRITE = uX - (lock — uY - (X : aVAR — Y
|uniock — X))

Notice that, because of the way in which we have chosen to
implement READWRITE, with alternating locks and unlocks,
it also satisfies LOCKSPEC. Thus, when we put LOCK and
READWRITE in parallel, we do not constrain the behavior of
READWRITE at all. Formally,

(LOCK || READWRITE) = READWRITE

Each task must behave in the way that we have specified,
and guarantee to follow the locking protocol

USESPEC = (VtE T -

t.LOCKSPEC A t.READSPEC A t. WRITESPEC)
USESPEC is satisfied by
USE = | | t : READWRITE

teT

Since conjunction in the specification corresponds to
concurrency in the implementation, the universal
quantification in USESPEC becomes parallel composition
over a set in the process USE. Each task relies on having
exclusive access to locked information. So, when a task t
acquires a lock, no other task may already have it:

MUTEXSPEC = (Vt € T - tr, = tlock =
(Yu € T - u # t = u.LOCKED))

An alternative specification—and perhaps a more obvious
one—is that, for every pair of tasks t and u owning the lock,
t and u are one and the same:

Vt,ue T tLOCKED A u.LOCKED=t=u

MUTEXSPEC is implemented by a process that guarantees
that a new lock cannot be acquired between a lock/unlock
pair. Notice that the double parallelism corresponds nicely
with the double universal quantification:

MUTEX = || ||

teT ueT—Iith

uX + (ulock — u.unlock — X

[tlock — X)

Also notice that the recursive processes in this definition

each have precisely three events in their alphabet.
Although MUTEX is truly an implementation, the large

amount of concurrency actually makes it rather difficult to
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use. After some straightforward manipulations, we discover
it really is a simple, sequential process:
MUTEX = uX - (O tlock — t.unlock — X)
teT

This is probably the implementation that we would have
obtained directly from our alternative to MUTEXSPEC.
However, we have had the choice of discarding the
concurrency that MUTEX originally had; it is always easier to
remove concurrency from a process if you do not want it,
than to create it if you do.

MUTEX is now simple enough to combine with what we
already have:
USE || MUTEX = | | uX . (tlock — uY -{X: a(t: VAR) > Y

teT
|t.unlock — X))

| X - (0 tlock — t.unlock — X)

teT

= uX - (0 tlock = uY -(x: oft: VAR) = Y

teT

j t.unlock — X))

So far, all that we have done is to describe the interference
that may be caused and that can be tolerated in the system.
Now we must say how information changes or persists in the
system. In fact, our multiple-user system behaves not unlike
a single-user system: Anyone reading the contents of a data
structure discovers the most recently written value. Define a
function which removes any task name from an event:

tstrip = Uier strip,

strip, is the function that removes the particular label t from
an event [1] (see also Appendix A). tstrip then is the function
that removes any label t from an event. Now, if we consider
just the sequence of reads and writes and ignore which tasks
initiated them, then our structure behaves just like a variable
does. Since we do not care who initiates read or write events,
we can use our forgetful function tstrip to disregard who
does what:

MVARSPEC = VARSPEC|(tstrip* tr) | «VAR/tr]

tstrip* tr is the trace formed by applying tstrip to each element
of tr. VARSPEC is a predicate on the free variable tr, and is in
terms of the events in «VAR; therefore, the definition of
MVARSPEC which substitutes an expression for tr carefully
restricts that expression to use events only from «VAR.

Of course, we already know how to implement a variable,
and we can reuse this implementation, with a suitable
relabeling of event names. Since we are unconcerned with
the identity of tasks, the inverse image under tstrip of VAR
will give us a promiscuous version of VAR: It doesn’t care
who reads its values, nor who writes new ones:

MVAR = tstrip”' VAR

Expanding this, we obtain 537
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MVAR = (O t.write?x — MVAR )

teT
where

MVAR,_ = (0O t.read!x — MVAR,

teT

|0 twrite?y - MVAR)

teT

We have now completed our specification of how many
users can share the data structure. We have specified that
tasks may lock the data structure, and that they may only
read and write while they have the lock; we have specified
that while a task has the lock it has exclusive access; and we
have specified that the shared data behave like a variable.

Our multiple-user system must satisfy all three requirements:

MUSPEC = (USESPEC A MUTEXSPEC A MVARSPEC)
Our system is implemented by
MU = (USE || MUTEX || MVAR)

We already have a simplified version of USE || MUTEX.
Substituting this and our definition of MVAR into the
definition of MU, we obtain

MU = uX- (0 tlock — uY - (x : aft : VAR) > Y

teT
| t.unlock — X))

(0 t.write?x — MVAR,)

teT
where

MVAR, = (0 tread!x — MVAR,

teT

|0 t.write?y — MVAR )

teT
Now, we can rewrite this to simplify it and eliminate the
remaining concurrency, obtaining
MU = (O tlock — (t.uniock — MU

teT
| t.write?x — MU, ,))
where

MU, = (O tlock — MU, )

teT

MU,, = (t.unlock — MU,
|t.read!x — MU,
[t.write?y — MU, )

So MU is a process that allows an external choice as to
which task gains the lock; only that task may read or write
values to the data structure, until that same task yields the
lock. It also ensures that a value is written to the data
structure before a value can be read.

e Queueing for busy resources
The system described in the last section suffers from the
dangers of infinite overtaking: An unlucky task wanting a
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lock may a/ways be unsuccessful and be continually pre-
empted by faster tasks. We shall try to solve this by serving
requests for locks in order. We introduce a new event:
request. Let

REQ1 = (tr|request — tr]lock = 1)

REQ1 = (tr|request — tr|lock = 0)

REQ2 = (tr|request — tr|uniock = 1)

REQ2 = (trrequest — trjunlock = 0)

Each task may have at most one outstanding request:
«REQUEST1 = {request, lock}

REQUEST1SPEC = (REQ1 V REQ1)

«REQUEST2 = {request, unlock}

REQUEST2SPEC = (REQ2 V REQ2)

These specifications should by now be quite familiar; they
have the implementations

REQUEST1 = uX - (request — ilock — X)
REQUEST2 = uX - (request — unlock — X)

We need to say how these requests get serviced. Define, for
each task t and event e, a projection function which tells us
which task initiated an event:

taskte =t

Also, define the sets of all t.lock events and t.request events,
for all possible t:

II»

Tlock = tstrip ' lock

1M

Treq = tstrip ' request

Our requirement is that a task obtaining a lock must be
the next one deserving it; that is, the longest outstanding
request should be served next:

QSPEC = task* (tr | Tlock) < task* (tr | Treq)

tr | Tlock is the sequence of t.lock events in the trace tr.
task* (tr | Tlock) is just the sequence of the names of those
tasks which gained the lock. Similarly, task* {tr | Treq) is
just the sequence of the names of those tasks which issued
requests for the lock. QSPEC says that the sequence of
names of tasks gaining the lock is a prefix of the sequence of
names of tasks requesting the lock. It is reminiscent of the
specification of a buffer: What comes out is a prefix of what
goes in. This suggests an implementation which is similar to
that of a buffer:

Q=Q,

Q,, = (O rrequest —» Q)
reT
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Q- = (tlock — Q,

| O r.request — Q
reT

')

Initially, the queue of requests is empty, and the process is
only willing to accept a request. When there is at least one
request, the task at the front of the queue may obtain the
lock, or further requests may be added to the end of the
queue. This is where the queueing discipline is encoded.

A “fair” multiple-user system behaves like our earlier
multiple-user system, allows at most one outstanding request
per task, and has the queueing discipline that we have
described:

FAIRMUSPEC = (MUSPEC A QSPEC A
Vvt € T-tREQUEST1SPEC A t.REQUEST2SPEC)
FAIRMU = (MU | Q[ | | (t: REQUEST1 || t: REQUEST2))

teT

Of course, in this section we have only been fooling
ourselves: We have pushed the problem back from getting
the lock to requesting one. As before, a fast task might get
into the queue, acquire the lock, release it, and get into the
queue again before a slower one gets its act together. Thus it
is slightly misleading—in fact downright lying—to call this
solution “fair.” As pointed out in [2], the correct solution to
this problem is probably to regard it as insoluble, because if
any task is particularly determined on having so much access
to a data structure, then someone—this task or another
requiring access—will inevitably be disappointed. In CSP,
we cannot distinguish between a task that takes an infinite
amount of time to require access to a particular data
structure, and one which does require access but is being
discriminated against by our transaction processing system.
It seems that in our Kafkaesque world paranoia is
indistinguishable from genuine persecution. However, in
practical terms, we have merely decided to delegate to the
implementor the responsibility of ensuring that any desired
event that is possible takes place within an acceptable period
of time. So we ask that the implementation ensure that
requests are serviced in an even-handed way.

4. An optimistic approach

The last section dealt with a system which allows multiple
users to gain mutually exclusive access to shared data by
locking. It can handle contention for resources by allocating
them on a first-come, first-served basis. In this section we
consider a different strategy: Each task rather optimistically
assumes that there will be no interference from other tasks,
and so may go blithely about its transaction. But there must
always be a day of reckoning: Upon completion of a
transaction, the system examines whether, with hindsight,
the case for optimism was justified or not. If indeed there has
been no interference, then the transaction is committed; if
interference was possible, then the offending transaction is
deemed not to have occurred. Clearly, the suitability of this
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approach depends on the character of the individual
application.

We introduce some new events: start, comnull, comread,
comwrite, and fail. We shall have a different structure for our
transactions than before. A transaction has a start point, and
may be finalized in one of four ways: It might be the null
transaction; it might be a read-only transaction; it might also
have written to the data structure; or it might fail in some
way. Which of the options are available to a transaction at
any time will depend on what events are comprising the
transaction, and the interference that the transaction might
cause, or might have to tolerate.

Our specification starts in a familiar way. Let

Commit = {comnull, comread, comwrite}
Final = Commit U {fail}

and define

ST = (tr]start — tr | Final = 1)

ST = (tr|start — tr | Final = 0)

We shall require that transactions have unique names: A
transaction will only be started once:

«UNIQUE = {start}
UNIQUESPEC = (tr|start < 1)
UNIQUE = (start — STOP)

Transactions start and then they are finalized either by being
committed or by failing;

aTRANS = {start} U Final
TRANSSPEC < (ST V ST)

This specification is rather like LOCKSPEC; not surprisingly,
its implementation is similar to that of LOCK:

TRANS = uX . (start — x : Final — X)

Reading and writing may only be done within transactions:
aRWTRANS = «TRANS U aVAR

RWTRANSSPEC = (t—ro € aVAR = ST)

This specification is again familiar: It is similar to
READSPEC and to WRITESPEC. Its implementation is
correspondingly straightforward:

RWTRANS = uX - (start —» uY - (x : «VAR > Y

Ix : Final — X))

A transaction must satisfy all three requirements: It may
only be started once, and may only end by being committed
or by failing, and reading and writing may only be carried
out during transactions:

539
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TRANSACTSPEC = (UNIQUESPEC A TRANSSPEC A
RWTRANSSPEC)
This is implemented as
TRANSACT = (UNIQUE || TRANS || RWTRANS)
Simplifying this, we obtain
TRANSACT = (start — uX - (X : VAR — X
| x : Final - STOP))

This shows quite clearly that a transaction can only occur
once, is either committed or fails, and that reading and
writing are only permitted during the transaction.

The three commit events for a particular transaction t are
each labeled by t taken from T, which we now regard as the
set of transaction names:

Commit, = strip, ' Commit

Let committed s denote the set of names of successfully
completed transactions in some trace s:

committed s = {t € T|s | Commit, # ()}

Of interest at the start of each transaction is the most
recently committed value—if it exists. The sequence of write
events made by successfully committed transactions in a
trace S is

succwrite s = s [ {t.write.c|t € committed s A ¢ € C}
If this is not empty, then lastwrite s is its last element, where
lastwrite s = succwrites s,

The view that each transaction has of the shared data
structure simply consists of the lastwritten value—if it
exists—followed by the reads and writes of the transaction
itself. From each of these viewpoints the data structure
appears as though it were a variable, possibly with an initial
value. If we have

W, £ strip,' W
then the requirement is

OVARSPEC=VtE€ T,c € C - tr, = tread.c =

(tr | W,= () A u € T-lastwrite tr = u.write.c)V

{arf W, # () Atr] W"J = t.write.c)
This should be reminiscent of the specification of a variable,
but with a few extra bits and pieces. If a transaction t reads
the value ¢ from the data structure, then one of two cases
must hold:

1. Transaction t has not previously written a value, in which

case ¢ is equal to the last successfully committed written
value.
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2. Transaction t has written a value, in which case the last
value was also c.

This is implemented by a process that maintains a state
containing the last successfully committed value, and the last
written value for each transaction,

1>

OVAR OVAR(L, {})

OVAR(v, f) = (0 t.start — OVAR(v, f @ {t > v})

teT

| O tread!(f t) — OVAR(, f)

teTH(ftp=L

| O t.write?x — OVAR(v, f ® {t — x})

teT

| O x : Commit, — OVAR(( 1), f))

teT

This optimistic variable OVAR initially behaves like
OVAR(L, {}), for some distinguished value L. The second
definition describes the behavior of OVAR (v, f) for some
value of the shared data structure v € C, and some function
f: T — C. When a transaction t starts, the function f is
updated with the maplet {t — v}. Values may be read or
written by transaction t; these are operations on t’s copy of
the data structure in the mapping f. However, OVAR never
engages in the event t.read. 1, for any t. Finally, when
transaction t is successfully committed, the shared value of
the data structure is updated with the final value computed
by t.

We can make the intuitive link between OVAR and VAR
precise by being more explicit about the “view” that each
transaction has of the shared data structure. If

initial, lastwrite (tr before t.start) if succwrites tr # ()
and tr | W, = ()

QO otherwise

view, = initial, " (tr [ «(t : VAR))
then we can prove that
OVARSPEC = Vt € T-VARSPEC][tstrip* view,/tr]

That is, each view of the shared data structure reveals it to
be just like a variable—no interference, no nasty surprises.

Now consider the various commit events. comnull
corresponds to finalizing the null transaction, so, if a
transaction says that it made no access to a data structure,
then this must be the case:

aNULL = {comnull} U aVAR
NULLSPEC = (Eo = comnull = tr | aVAR = ())
Reading or writing disables the comnull event:
NULL = gX - (comnull — X
[x : VAR — STOP;_ .. || RUN_5)
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A transaction finalized with a comread event must have read
something;

«CR1 = {comread} U R
CR1SPEC = (tr, = comread = tr [ R # ())
but not written anything:
«CR2 = {comread} U W
CR2SPEC = (tr, = comread = tr | W = ())
So reading enables the comread event:
CR1 = (x : R = RUN,__, . cagiur)
and writing disables it:
CR2 = uX - (comread — X

IX : W — STOP,__ oot | RUN,)
Putting these two together, we get
(CR1|CRY)=x:R—->uX - - (x:R—>X

| comread — X

Ix : W — RUN_,,)

IX 1 W — RUN,,)

If a transaction says that it has written to the data structure,
then it must not be lying:

a«CW1 = {comwrite} U W
CW1SPEC = (tr, = comwrite = tr | W # ())
Writing enables the comwrite event:
CW1 = (x : W > RUN___iiow)
Adding this to (CR1 || CR2), we obtain
(CR1 || CR2 || CW1) = (x : R — uX
- x:R—>X
| comread — X
[x: W — RUNiomurietuavar)
IX: W — RUN o wrieluavar)

If we now add to this the process NULL, we get a description
of how processes may be finalized:

FINAL = (NULL | CR1 | CR2 || CW1)
= uX - (comnull — X
[ X R>uY-x:R>Y
|comread — Y

[X : W — RUN, o ritelUavar)

IX W RUN‘comwri(e'UuVAR)
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A transaction t cannot be finalized with a t.comread or
t.comwrite event if shere has been an update of the data
structure during t’s lifetime. The simplest way of ensuring
this is to say that no other transaction can have been
finalized with a comwrite since t started. No interference has
been caused to t by u if

aNOINT,, = {t.start, t.comread, t.comwrite, u.comwrite}

NOINT, SPEC = (tr, € {t.comread, t.comwrite} = tr; = t.start)

The implementation of this requirement must ensure that
u.comwrite disables t.comread and t.comwrite events:

NOINT, , =
uX - (t.start — (x : {t.comread, t.comwrite} — u.comwrite
— STOP
| u.comwrite — STOP)
u.comwrite — t.start — x : {t.comread, t.comwrite}

— STOP)

We have now completed the description of the optimistic
transaction processing primitives. Our full specification is:

OPTSPEC = (OVARSPEC A
Vt € T - ., TRANSACTSPEC A t.FINALSPECA
Vu € T-u # t = NOINT_SPEC)

That is, the shared data behave like an optimistic variable,
reading and writing can only be done within transactions
which have unique names, transactions must be finalized in
the manner described, and the success of a transaction de-
pends on the interference which has been caused or which
can be tolerated. The implementation puts together the com-
ponents we have developed:

OPT = OVAR || | | (t: TRANSACT || t: FINAL | || NOINT,,)
T\

eT ue

The generally accepted correctness criterion for
maintaining the consistency of a database is called
serializability [4]. A sequence of atomic reads and writes is
called serializable essentially if its overall effect is as though
the users took turns, in some order, each executing their
entire transaction indivisibly. The reader may be wondering
how the optimistic transaction processing described above
relates to this notion of serializability.

Define the function f, for each trace s which, when applied
to transaction t, returns the sequence of reads and writes
performed by tin s:

f.t=s|alt: VAR)

Clearly, f, tis t's entire transaction in s. Now define the
function success which, when applied to a trace s, returns 541
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the sequence of names of successfully committed
transactions

success s = trans* (s | U,., Commit)

where trans merely projects the transaction name from an
event

transte=t

Given a trace of OPT, tr, we can find the sequence of entire
transactions in the order of their successful commitment as
follows:

serial tr = “/(f} (success tr))

If tr is a trace of our optimistic transaction processing
system, then tr and serial tr have the same effect. The proof
of this fact follows from each transaction’s view of the shared
data and the freedom from interference that each
successfully committed transaction enjoys.

5. Discussion

The transaction processing primitives that we have presented
in this paper offer particular interfaces to the user. Those
which involve locking items of data are inspired by a very
successful, but fairly primitive, kind of system with which we
are familiar. Here we are not providing a robust interface:
The system can suffer certain deadlocks if users do not obey
the protocol required to use the shared data. A mischievous
user can deadlock the entire system by progressively gaining
all the locks and refusing to yield them. Presumably
everyone then dies of boredom. A careless user can obtain
the same result by gaining all the locks and then becoming
livelocked and not getting around to yielding the locks. Pairs
of users can deadlock each other by each waiting for a lock
owned by the other. However, there are well-known
techniques that cooperative users can employ to get round
these problems, so we do not pursue the matter further (but
see, for example, [5]).

The optimistic transaction processing system should be
able to avoid these tiresome outcomes: Transactions need
not wait upon other transactions to finish before they can
start. Of course, users should be warned that the possibility
of deadlock has been traded for the possibility of starvation.

This paper documents a case study in the practical
application of a mathematically precise notation—CSP-—to
an interesting problem: that of transaction processing. The
usefulness of case studies can hardly be overemphasized:
They help to establish confidence in the practicality of the
notation and ideas, especially when applied to realistic,
industrial-scale problems; they help to explore the areas of
application of CSP; they help to establish a convenient style
for the use of CSP; and they provide information and
motivation for further research.

This case study does indeed show that CSP is a practical
tool. However, as with other formal methods that have been
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introduced into industry, such as Z {6, 7] or VDM [8],
education is essential before any degree of fluency in using
CSP is achieved, or even before a paper such as this may be
read. The use of CSP allows a designer the opportunity to
specify systems in a concise fashion. For example, the
optimistic transaction processing system has a very short and
simple specification, even though it is a lot more
sophisticated than the other systems considered, as is borne
out by its design and implementation.

The style adopted in this paper seems quite successful:
Specify each requirement separately, in the simplest context
that seems appropriate; implement each requirement as a
simple process; form the specification from the conjunction
of requirements, and the implementation from the parallel
combination of the processes. The development of two
complementary descriptions-—a predicate and a piece of
process algebra—helped us to understand what we were
describing much better than a single description would have
done. Our confidence was bolstered by performing the
usually simple proof that the process was indeed an
implementation of the specification: that the two
descriptions were of the same thing.

Many of the specifications and implementations in the
systems that we have presented in this paper are really the
same predicates and processes in different guises. We could
obtain an economy of expression by the widespread use of
relabeling functions, but it is felt that this often leads to
rather obscure descriptions. The first reaction of the reader is
often to try to do all the substitutions in his head, to see
what the definition really means. So we have limited such
relabeling to situations where it is easy to see what is going
on. For example, in promoting a property of a process to
being a property of a labeled process, for any label in some
set, relabeling is a powerful technique which actually makes
it easier to understand the system. Drawing a rather tenuous
link between disparate system properties, on the other hand,
seems to obscure the issues. The insight about the
connection is more valuable as a way of reducing the burden
of proof than as a way of making the description more
comprehensible. We still get the economy of an easy
implementation and its proof, the strategy being merely to
exhibit a relabeling scheme to establish the connection with
an existing satisfaction proof.

The style of writing the predicate as a firing condition for
an event was also helpful. Often, rather complicated
predicates—with plenty of existential quantifiers—which we
thought captured a requirement were replaced by several
predicates describing firing conditions which matched our
intuition for the problem. Also, such simple predicates often
have really very simple implementations, and some pleasing
patterns have emerged in this and other case studies:
conjunctions of firing conditions as parallel processes, as
usual; disjunctions of firing conditions with disjoint
alphabets as interleaved processes; disjunctions of firing
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conditions with overlapping alphabets as parallel processes
with certain new internal events; and simple processes
describing predicates in which events enable or disable other
events.

It would be a fairly straightforward matter to translate the
CSP implementations of the systems that we have described
to occam [3]. This would be a good idea because occam has
direct language support for many of the concepts of CSP: It
was designed with this in mind. It is also a simple language
with a relatively simple semantics; a proof of the translation
would not be too difficuit. For many reasons occam is not
yet everyone’s first choice for the implementation of
concurrent systems. Companies have in-house standards:
They support some languages and not others; they have
concerns of compatibility, and of running systems on a large
variety of different computers. In a companion paper, we
shall address ourselves to the problems of implementing CSP
descriptions in low-level languages with only meager
synchronization facilities. The idea is not to ape the
synchronization mechanisms that may be found in occam,
but rather to find a semantics in CSP for whatever
synchronization mechanism happens to be available in the
chosen language. An equivalence can then be demonstrated
between the CSP implementation and the actual program.
More case studies are required to demonstrate that this is a
practical technique that can be accomplished in a
development laboratory.

One of our declared aims is to combine CSP with Z in
some appropriate way; as a first step toward this, we can
imagine the style that we have used in this paper extending
to a development method incorporating both notations and
ideas (cf. [9]):

o Specify the system as a conjunction of simple predicates
over traces. Perhaps make design steps to get a suitable
description.

& Implement the system as a highly distributed collection of
communicating processes.

& Transform the system using the laws of CSP until the
required degree of concurrency is obtained. At this stage
the system is described as a collection of parallel processes
with implicit state.

o Transform the system to make all the state explicit. The
state can be described using a notation such as Z [6, 7].
The result is a system described as a collection of paraliel
state-based processes.

& Since the descriptions of states have been derived from the
structure of processes, it will probably be necessary to
refine the data structures,

& An implementation in a programming language should
now be straightforward.

In this paper we have omitted all the proofs that we
conducted in the development of each system. There are
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three sorts of proof that we have found: proofs of theorems
about predicates over traces; proofs that processes satisfy
their specifications; and proofs of equivalence between
processes—process transformations. None of the proofs that
we have carried out seem particularly difficult; however, they
are often long and tedious, and we have made many a slip.
Now that we understand how each proof may be made, we
would like to check it with mechanical assistance, and we
propose to conduct some research in this area. Appropriate
mechanical assistance will have a large impact on the
acceptance of a notation such as CSP in industry; we must
get it right.
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Appendix A: Glossary of symbols

This glossary of symbols was taken from [2], except that we
have included substitution for free variables in predicates,
and we do not require relabeling functions to be injections,
but find the definition given in [3] to be more convenient.

Definitions

Notation Meaning Example

= is equal to by definition R = {read.c|c € C}

Predicates

Notation Meaning Example

= equals X=X

# is distinct from X#Xx+1

PAQ Pand Q xsx+1Ax#x+1

PVQ PorQ XxX=yVy=x

—P not P —3>5

P=Q P implies Q X<y=x=sy

P=Q P if and only if Q xX<ysy>X 543
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3Ix € A-P there exists an x in set A
such that P
VYx € A-P forall xinset A, P
P[a/b] P with a substituted forb (x < 9)[3/x] =(3<9)

Sets
Notation Meaning Example
€ is a member of 2€i1,2,3}
¢ is a member of 4¢(1,2, 3}
{a} the singleton set containing
a {start}
{a, b, ¢} the set with members a, b,
and ¢ {request,lock,unlock}

{x|P x} the set of all x such that P x {read.c|{c € C}
AUB AunionB 11uf2,31={1,2, 3}
A\B AminusB {1,2,3}\{2}=1{1, 3}
Ug S, the union of a family of sets

Functions
Notation Meaning Example
fx function application,

f of x succ tr

strip, the function which
removes the label | strip, t.lock = lock

strip,'  the function which
adds the label 1

's the inverse image
under f of S

a—1 amapsto1l

strip; 'request = t.request

strip,' R = {tread.c|c € C}
f=fa—1,b— 2}

f@ g function override f® {a+~—> 3}
Traces
Notation Meaning Example
O the empty trace
(a) the trace containing

only a (t.commit)
A one trace followed by

another t)'s
°/ distributed catenation “/((a), (b, ¢)) = (a, b, ¢)
s|A s restricted to A tr | W
s=t s is a prefix of t (a,b) =(a, b, c)
sint sisint (b, ¢) in (a, b, c, d)
sla the number of a’s

ins (a,a,b,acyla=3
So the head of s (a,b,c),=a
s’ the tail of s (a, b, c) =(b,.c)
§ the reverse of s (a, b, c)=1(c, b, a)
3, the last element of s (a,b, ¢)y=¢
8 the penultimate

element of s (a,b,c)g=Db
f*s f applied to every

element of s f*(a,b,c) =(fa,fb,fc)

J. C. P. WOODCOCK

Events

Notation Meaning Example
la participation in event a by process

named | t.lock
cv communication of value v on channel ¢ read.b
l.cv communication of value v on channel

l.c t.read.b
Processes
Notation Meaning
aoP the alphabet of process P
@a—P) a then P

(@ —» P|b — Q) a then P choice b then Q

(x: A— Px) choose x from A then P x

uX-F X the process X which satisfies X = F X
PlQ P in parallel with Q

1:P P with name |

pOQ P choice Q

ble on channel b output the value of e

b?x from channel b input to x

f'p the inverse image under f of the process P
tr an arbitrary trace of the specified process
ref an arbitrary refusal of the specified process
P sat S process P satisfies specification S

Appendix B: Additional notation
The notations used in this paper are all drawn from [1, 2],
with the following exceptions, which either are derived or are
notational conveniences.

Given a sequence of events $ containing an event &, then

s before e
is the largest prefix of s not containing e. That is,
—((e) in (s before e))
and
(sbeforee)” (e) <s” (e)
Given a predicate on traces PSPEC,
I.PSPEC

denotes a new predicate that may be satisfied by a process
named by [:

I.PSPEC = PSPEC][strip*tr / tr]

In CSP we have the proof rule (taken from [2, p. 91])
if P sat PSPEC

then f~' P sat PSPECIf* tr / tr]

We can therefore derive the following proof rule:

if P sat PSPEC
then | : P sat |.PSPEC
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since
l:P = strip, P
Also, since

if Psat S
andQsatT
then (P || Q) sat(S[tr [ aP /tr] A T[tr | «Q / tr])

we can derive

if P sat PSPEC
then | || :PsatVie L - |.PSPEC

leL
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